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MEMBERSHIP FUNCTION VALUE

MEDIUM HIGH

FIGURE 1.

Fuzzy membership
functions define
the linguistic
variables.

A

needed, but this goal poses a substantijal
search problem because a high degree of
nonlinearity can appear in the search.

Genetic algorithms (GAs) are a search
technique drawing increasing attention in
the (ield of optimization. GAs are algo-
rithms that use operations fournd in natural
genetics to guide their trek through a
search space. R. B. Hollstien and K. A. De
Jong have demonstrated the technique’s ef-
ficiency in function optimization. Dc Jong’s
work, in particular, establishes the GA as a
robust scarch technique efficient across a
spectrum of problems, as compared to other
traditional schemes. Subsequent application
ol GAs to the search problems of pipeline
engineering, VLSI microchip layout, struc-
tural optimization, job-shop scheduling,
equipment design, and machine learning
support the claim that GAs are broadly
based.

The robust nature and simple mechanics
of GAs make them inviting tools not only
for establishing membership functions, but
also for selecting rules to be used i FLGs.
GAs are also potentially useful for selecting
rules due to some special traits that differ-
entiate them from conventional techniques.

FLC MECHANICS
Several approaches to FLC development are
possible. Generally, a compositional “‘rule of
inference” {a mathematical statement de-
scribing how the linguistic variables are to
be manipulated) is employed to control the
problem environment. However, this rule is
often described by complex fuzzy math-
ematics foreign to anyone unfamiliar with
fuzzy logic. Instead, I'll present a bands-on,
rational approach to FLC development used
at the U.S. Bureau of Mines and describe
the procedure in generic lorm.

The first step is to determine which vari-

ables will be important in choosing an effec-
tive control action. Any number of these de-
cision variables may appear, but the more
that are used, the larger the rule set that
must be written. (Decision variables are sun-
ply the variables upon which the conurol de-
cisions are based.)

Once the deasion varables have been
chosen, the control variables moust be identi-
fied. Unlike decision variables, the number
of contral variables has no impact on the
size of the rule set—they are the “knobs”
that can be turned to effect a change on the
system.

Next, the fuzzy terms that will be used to
describe both the decision and control vari-
ables must be delined (these terms are some-
times called fuzzy sets). The variables allow
the FLC o model the human decision-mak-
ing process; you should choose terms simifar
to those used by human controllers. Fuzzy
terms allow for the most straightforward
production of a rule sel.

The choice ol fuzzy sets defines the num-
ber of fuzzy rules required; a fuzzy rule is
written for every possible conditon that
could exist in the physical systern. The rules,
commouly catled production rules, are of
the form:

TF [c, is (C,) AND ¢, is (C.) AND ...]
—> THEN [a, 1s (A,) AND & is (A) AND ...]

where C;1s fuzzy sets characterizing the re-
spective decision variables, and A; is fuzzy
sets characterizing the countrol variables. Al-
though writing rules for all possible condi-
tions in the physical system seems imposing
at first, the mcorporation of fuzzy terms
into the rules makes their development much
easier than that of conventional expert-sys-
tem rules.

FLCs are based on the idea thal some un-
certainty exists in categorizing the values of
the variables: fuzzy sets mean different things
to different people. As a result, some
mechanism, for interpreting the fuzzy sets is
necessary. The fuzzy membership funciion
serves this purpose: it allows precise nu-
meric values of the decision variables 1o be
transformed into fuzzy sets and the fuzzy-
control actions of the production rules to be
transformed into precise, discrete control
actions.

Fuzzy membership functions can be thought
of as approximations of the confidence with
which a precise numeric value is described
by a fuzzy set, and fuzzy membership func-
tion values (f) are numeric representations
of these confidences. When a fuzzy mer-
bership function has a value of f = 1, a
maximum confidence exists that the precise
nwmeric value is accurately described by the
fuzzy set (Figure 1). For every precise deci-
ston value, each fuzzy set has a membership
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funciion value. For mstance, a decision vari-
able is described by the fuzzy terms low, me-
dium, and high simultaneously with varying
degrees of confidence.

Now that the precise numeric conditions
in the system at any given time can be cate-
gorized in 2 fuzzy set with some certainty, a
process for determining 2 precise value of
the actions to be applied must be developed.
This task mvolves writing a rule set that
provides a fuzzy action (one of the fuzzy sels
chosen to describe the control variables) for
any condition that could possibly exist in the
problem environment. Therefore, 2 human
expert provides a fuzzy action for ecach con-
dition possible in the environment. (The
formanion of the rule set is comparable to
that of an expert system, except that the
rules incorporate linguistic variables with
which human operaiors are comfortable.)
The use of fuzzy sets allows rules to be de-
rived based mostly on the expert’s intuition,
although some experience with the system
o be controlled certainly makes the devel-
opment of the rule set more efficient.

At this point, a means for converting a
precise set of conditions to a set of fuzzy
conditions, and a set of fuzzy rules prescrib-
ing a fuzzy action associated with a particu-
lar set of fuzzy conditions, have been devel-
oped. We still have to convert the individual
fuzzy actions provided by the fuzzy rules
into a single, precise set of actions to be tak-
en on the physical system.

L. I. Larkin found that a procedure known
as the center-of-area scheme is an eflicient
method for determining these precise ac-
tions. In this method, the fuzzy membership
functions describing the control actions are
used in a weighted summing procedure to
{ind one precise action. The scheme for
Onding the weighted sum can be easily
thought of in graphical terms: each produc-
t1on rule has its action membership function
plotted with a height equal to the minimum
confidence (degree of membership) associat-
ed with the condition portion of the rule
(Figure 2). The single vatue of the control
actions, associated with the centroid, is the
single value of the action 1o be applied to
the physical system. The rules in which one
has the greatest confidence produce shapes
with the largest areas and thus have the
greatest effect on the selection of the ac-
tion. This process is summarized in this
pscudocode, which describes the implemen-
tation of the cenier-of-area method for a set
of triangular membership functions:

for (first rule to last rule) begin.
GetMuVals /* fuzzify the conditions in physical
system */
if {all Mu values for this rule ) 0.0) begin
TriagAres = (Base * MuMin) / 2
TriagMidpt = BasePosition + (BaseLength / 2)

SumArea = SumArea + Triaghres
SurMidpt = SumMidpt + TriagMidpt
end end Action = Sumirea / SumMidpt

Producing an FLC that controls a particu-
lar system is reasonably easy. However, to
produce an eflicient conwoller, the FLC
must be properly designed. The rules must
adequacely model the human's approach to
controlling the system, and the membership
functions must be massaged until the con-
troller performs acceptably for the spec-
trum of conditions that could exist in the
conurolled environment.

GENETIC ALGORITHMS

GAs have some properties that make them
inviting as a technique for selecting high-
performance membership functions for FLCs.
Due to these properties, GAs differ funda-
mentally from more conventional search
techniques. For example, they:

m Consider a population of points, not a sin-
gle point

® Work directly with strings of characters
representing the parameter sef, not the pa-
rameters themselves

® Use probabilistic rules to guide their search,
not deterministic rules.

GAs consider many points from the search
space simultaneously and therefore have a
reduced chance of converging to local opti-
ma. These populations are generated and
tested iteracion by iteration. This process is
similar to a natural population of biological
creatures in which successive generations of
organisms are produced and raised until
they themselves are ready to reproduce. In
most conventional search techniques, a
point-by-point search is conducted wherein
a single point is selected, tested, and used
with some decision rule 1o select the next
point to be considered.

FIGURE 2.

The center-of-area
method is used o
determine a single
action.
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These methods can be dangerous in mul-
timodal (many peaked) search spaces be-
cause they can converge to local optima.
However, GAs genevate entire populations
of points (coded strings), test each point in-
dependently, and combine qualities from ex-
isting points to form a new population con-
taining improved points. Aside from produc-
ing a more global search, the GA’s simulta- !
neous consideration of many points makes it
bighly adaptable to parallel processors since
the evaluation of each point is an indepen-
dent process. Avoiding convergence o a lo-
cal optimum is important in selecting high-
efficiency membership functions because
the search spaces are ofien poorly behaved.
Compazability with parallel processors is im-
portant in the selection of rules for control
systems because adaptive FLGs—those in
which the rule sets change during the pro-
Cess—put a premium on execution speed.

GAs require the natural parameter set of
the problem to be coded as a finite length
string of characters. It has become standard
practice to use bit strings to represent the
possible solutions to search problems. In
some problems, the creation of appropriate
finite string codings may require complicat-
ed mappings, but with a little creativity the
possibilities are endless. Forwnately, GAs
have been used long enough for the devel-
opment of some fairly standard codings. Be-
cause they work directly with a2 coding of
the parameter set and not the parameters
themselves, GAs are difficult to fool because
they’re not dependent on continuity of pa- f:
rameter space. This characteristic is certain- |
ly important in the design of FLCs, because
the meaning of the term “continuity of the
search space” isn’t even clear. .

A GA requires only information concern- '
ing the quality of the solution produced by
each parameter set (objective function value
information). This characteristic differs |
from optimization methods that require de- l
.. rivative information or, worse yet, complete
Linker : knowledge of the problem structure and pa-
" rameters. (Imagine trying to produce de-
rivative information for different rules and
membership function definitions in an
FLC.) Since GAs do nol require such prob-
lem-specific information, they're more flexi-
ble than most search methods.

GAs also differ from other search tech- L
niques in that they use random choice to :
guide their search. Although chance is used
to define decision rules, GAs are not ran-
dom walks through the search space. They
use random choice efficiently in ther ex-
ploitation of prior knowledge to locate
near-optimal solutions rapidly.

Which expert system shell also has HyperWindows?

SIMPLE GENETIC ALGORITHM
A simple GA that has given good results 1 2
variety of engineering problems comprises




three operators: reproduction, crossover, and
mutation. These operators are implemented
by performing the basic tasks of copying
strings, exchanging poruions of strings, and
generating random mumbers—those easily
performed on a computer. Before looking
at the operators, consider the overall pro-
cessing of a GA during a single generation.
[t begins by randomly generating a popula-
tion of N strings, cach of length m.

Remember that each string represents
one possible solution to the problem: one
set of fuzzy membership functions if search-
ing for high-efficiency membership func-
tions, or one set of actions associated with a
set of conditions it searching for a rule set.
Each of these strings is decoded so the char-
acter strings yield the actual parameters.

The parameters are sent to some concep-
tual framework that yields a measure of the
solution’s quality (often a mathematical
model of the physical system is used), evalu-
ated with some objective function (told how
good an FLC the parameters produce), and
assigned a fitness value that is simply a non-
negative measurc of velative worth. Some GA
reproduction operalors do not require the
fitness values to be non-negative.

The fitness is used when employing the
three operators that produce a new popula-
tion of strings (a new generation). With luck,
this new generation will contain better solu-
tions to the problem. Even if improved solu-
tions are not found on the microscopic scale
from one particular generation to the next,
GAs will locate improved solutions on the
macroscopic scale over several generations.
The new strings produced in subsequent
generations are again decoded, evaluated,
and transformed using the basic operators.
The process continues until convergence is
achieved or a suitable solution is found.

Reproduction js a process by which
strings with large fitness values (good solu-
tions to the problem at hand) receive corre-
spondingly large numbers of copies in the
new population. For example, in roulette-
wheel selection, those strings with high fit-
ness values f; are given a proportionately
higher probability of reproduction selec-
tion, pselecy, according to this distribution:

f,

Pselect, = —————
P

Once the strings are reproduced ot copied
(or possible use in the next generation, they
are placed in a mating pool where they await
the action of the other two operators.

In chiist reproduction, the survival of the
current best string is ensured from genera-
tion to generation by allowing one copy of
the best string to pass undaunted info the
next generation. This approach guarantees

|
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MEMBERSHIP FUNCTION VALUE

MEDIUM HIGH

FIGURE 3.
Triangular-shaped
membership
functions are easily
altered using a GA.

] L. T
A;

that the best solution in a particular genera-
tion will always be at least as good as any so-
lutions that have been encountered in pre-
vious ones.

The systematic information exchange uti-
lizing probabilistic decisions is implemented
by che second operator, crossover. Cross-
over provides a mechanism for strings to
mix and match their desirable qualities
through a random process. After reproduc-
tion, simple crossover proceeds in three
steps. First, two newly reproduced strings
are selected from the mating pool formed
through reproduction. Second, a position
along the two strings is selected uniformly at
random. For example, the following binary
coded strings 4 and 5 of length 10 are shown
aligned for crossover:

A=110 1010000
B=001 0111111.

Notice how crossing site three has been se-
lected in this particular example through
random choice, although any of the other
eight positions were just as likely to have
been selected.

The third step is to exchange all charac-
ters following the crossing site. 4* and 2’ are
two new strings following this crossing:

A"=1100111111.
B"=0011010000.

String 4’ is made up of the first part of
string 4 and the til of string 3 Likewise,
string 8 is made up of the first part of string
sand the tail of string A Although crossover
has a random element, it should not be
thought of as a random walk through the
search space. When combined with repro-
duction, it is an effective means of exchang-
ing information and combining portions of

high quality solutions.

Reproductjon and crossover give GAs most
of their search power. The third opcrator,
mutation, enhances a GA’s ability to find
near optimal solutions. Mutation is the occa-
sional alceration of a value at a particular
string position, an insurance policy against
the permanent loss of any simple bit. A gen-
eration may be created void of 4 particular
character at a4 given string position. For ex-
ample, a generation may exist that does not
have a one in the third siring position when,
due to the chosen coding, a one in the third
position may be critical to obuining a qual-
ity solution.

Under these conditions, neither rcpro-
duction nor crossover will ever produce a
one in this third positian in subsequent gen-
erations. Mutation, however, causes a zero
in the third position to be changed to a one
occasionally. Thus, the critical piece of in-
formation can be reinstated into the popula-
tion. Although mutation can serve a vital
role in a GA, 1t occurs with a small probabil-
ity (on the order of one mutation per 1,000
string positions) and is secondary to repro-
duction and crossover.

FLC VS. GA

The basic objective of the Bureau of Mines’
research was to develop a robust technique
for designing FLCs. This design process was
executed either by establishing a set of rules
and selecting membership functions, or by
establishing a set ol membership functions
and selecting a set of rules. GAs demon-
strate many characteristics that make them
inviting for this task. When applying a GA
to a search problem, two decisions have to
be made: how to code the possible solutions
to the problem as finite bit strings and how
10 evaluate the merit of each string.

Consider an approach to coding the TL.C
design problem in which the rule set has
been established. In this problem, high-per-
formance membership functions are sought.
These membership functions can be repre-
senled in any of a number of ways. How-
ever, they are gencrally represented with
functional relationships of one kind or an-
other. For the purpose of this discussion,
the degree of membership will be consid-
ered to be defined by a triangular-shaped
membership function (Figure 3).

The only constraint placed on the individ-
ual triangles is that the triangles bordering
the extreme limits of the action or control
variables (extreme triangles like low and
high) must remain right triangles, while the
triangles not bordering the extreme limics
of the action or control variables (interior
triangles like medium) must remain isos-
celes triangles. Other than that, they can
distort (variable base width) and translate
(shift along the x-axis) freely. Therefore,
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each extremc triangle requires the defini-
tion of only one point to bix it. Each interior
triangle requires the definition of wwo points
1o fix it (both base points).

To code the problem adequatcly, the en-
tire set of membership functions necessary
to drive an FL.C must be represented as a bit
siring. This task is easily accomplished with
a common coding called a concatenated,
mapped, unsigned binary coding.

As for the sccond decision, the bit stvings
representing the parameters of the search
problem must be judged and assigned a
score (a fitness-function value) representing
the degree to which they accomplish the
goal of defining a high-performance FLC.
For most systems, this goal requires driving
the system to a setpoint and maintaining
that setpoint until told to do otherwise.

Some squared-error term can be evaluat-
ed where the error is the distance between
the setpoint and the state of the system.
This aspect of the technique borders more
on art than science. The development of a
fitness function that entices the GA to lo-
cate membership functions that drive the
physical system to the setpoint as rapidly as
possible is applicarion-dependent.
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