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Abstract—Continuous optimization is one of the most active
research lines in evolutionary and metaheuristic algorithms.
Since CEC 2005 and CEC 2008 competitions, many different
algorithms have been proposed to solve continuous problems.
Despite there exist very good algorithms reporting high quality
results for a given dimension, the scalability of the search
methods is still an open issue. Finding an algorithm with
competitive results in the range of 50 to 500 dimensions is
a difficult achievement. This contribution explores the use of a
hybrid memetic algorithm based on the differential evolution
algorithm, named MDE-DC. The proposed algorithm combines
the explorative/exploitative strength of two heuristic search
methods, that separately obtain very competitive results in
either low or high dimensional problems. This paper uses the
benchmark problems and conditions required for the workshop
on “evolutionary algorithms and other metaheuristics for Con-
tinuous Optimization Problems — A Scalability Test” chaired
by Francisco Herrera and Manuel Lozano.
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I. INTRODUCTION

Continuous optimization is a field of research which is
getting more and more attention in the last years. Many
real-world problems from very different domains (biology,
engineering, data mining, etc.) can be formulated as the
optimization of a continuous function. These problems have
been tackled using evolutionary algorithms (EA) or similar
metaheuristics [1], [2].

Selecting an appropriate algorithm to solve a continuous
optimization problem is not a trivial task. Although a par-
ticular algorithm can be configured to perform properly in
a given scale of problems (considering the number of vari-
ables as their dimensionality), the behavior of the algorithm
degrades as this dimensionality increases, even if the nature
of the problem remains the same.

In this contribution, a new hybrid method is presented
to deal with continuous problems through different problem
sizes. The proposed approach is named MDE-DC that stands
for memetic differential evolution with deterministic and
cancelable local search. MDE-DC uses a local search mech-
anism to improve the solutions obtained by the differential
evolution (DE) optimization. The rationale behind this hy-
brid optimization strategy is founded on the following facts:
(i) DEs are good competitors with state-of-the-art evolution
strategies (ESs), like CMA-ES [1], which are among the
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best performing techniques in low-dimensionality complex
continuous problems and, (ii) local search methods, as for
example, the multiple trajectory search algorithm (MTS) [2],
have shown a great performance in large-scale optimization
problems.

MDE-DC has been designed to use the DE search as
the baseline algorithm, performing a local search after a
certain number of generations. These local search phases are
executed applying one of the MTS local search algorithms
(LS1, which is actually the responsible of most of the MTS
performance). If MDE-DC detects that an application of the
local search does not improve the results, the rest of the
local search iterations are cancelled.

In this paper we will show that the MDE-DC hybrid
algorithm actually obtains the best results compared with
their components (DE and LS1) using the problems already
presented in the “Special Session and Competition on Large
Scale Global Optimization™ held at the CEC 2008 congress
[3], together with additional problem functions. The experi-
ments have been carried out on a wide range of dimensions
in order to evaluate the behavior of the algorithms as the
number of variables increases.

The rest of the paper is organized as follows: In Section
II, relevant related work is briefly reviewed. Section III,
presents the algorithm MDE-DC and its parameters. In
Section IV, the experimental results are reported. Finally,
in Section V, the conclusions and further research lines are
discussed.

II. PRELIMINARIES

In the “Special Session on Real-Parameter Optimization”
held at the CEC 2005 Congress, a benchmark of 25 contin-
uous functions was proposed [4]. In this competition, the
CMA-ES algorithm [1], obtained the best results among
all the evaluated techniques. However, the use of a covari-
ance matrix makes it not appropiate for high dimensional
functions. Differential evolution showed to be a competitive
alternative in 10-dimensions: SaDE, a self-adaptive DE [5],
obtained the third position in the final funcion value and
a real-coded DE algorithm [6] was ranked third in success
performance.

On the other hand, in the “Special Session and Com-
petition on Large Scale Global Optimization” held at the
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CEC 2008 Congress, the session focused on 7 functions with
100, 500 and 1000 dimensions [3]. The MTS algorithm [2],
which combines several local search strategies using a small
population, was the champion of the competition.

Considering both results, an intuitive approach would be
to combine the local search algorithms, in particular those
similar to the ones proposed by MTS, with an appropriate
DE algorithm. This hybrid approach is equivalent to the
memetic algorithms in classical genetic algorithms.

Memetic differential evolution has appeared in the litera-
ture in the last few years with interesting approaches. Gao
and Wang [7] proposed CSDEI, a memetic DE, to optimize
thirteen 30 dimensional continuous problems. CSDEI uses
simplex (Nelder-Mead method) to perform local search
using also chaotic systems to create the initial population.
CSDEI! applies the local search only to the best individual
in the population of each generation.

Tirronen et al. [8] designed a hybrid DE algorithm that
combined the Hooke-Jeeves algorithm (HJA) and stochastic
local search (SLS) coordinated by an adaptive rule that esti-
mates fitness diversity using the ratio between the standard
deviation and the average fitness of the population. This
algorithm was compared against a regular DE and an ES
to weight coeficients to detect defects in paper production.

The SFMDE (super-fit memetic differential evolution) [9]
hybridizes the DE framework with other three algorithms:
the particle swarm optimization, the Nelder-Mead algorithm
and the Rosenbrock algorithm. This algorithm was tested on
two engineering problems: the optimal control drive design
for a direct current motor and the design of a digital filter
for image processing purposes.

The FAMA (fast adaptive memetic algorithm) [10], pro-
posed by Caponio et al., is a memetic algorithm with a dy-
namic parameter setting and two local searchers adaptively
launched, either one by one or simultaneously, according
to the needs of the evolution. The employed local search
methods are: the Hooke-Jeeves method and the Nelder-Mead
simplex. The Hooke-Jeeves method is executed only on the
elite individual while the Nelder-Mead simplex is carried out
on 11 randomly selected individuals. FAMA includes a self-
adaptive criterium based on a fitness diversity measure and
the iteration number. Mutation probability and other search
parameters depend also on the diversity measure. FAMA
was compared against Tirronen’s algorithm and SFMDE
obtaining better results for the problem of permanent magnet
synchronous motors [11].

Finally, Subudhi et al. [12] applied memetic differential
evolution methods to train neural networks. In this case, the
local search algorithm is based on a back-propagation mech-
anism. The algorithm was tested against a genetic algorithm-
based equivalent (using also neuronal back-propagation).

III. PROPOSAL

The proposed memetic differential evolution algorithm
(MDE-DC) combines a standard differential evolution al-
gorithm with the first local search of the MTS algorithm.

The MTS algorithm was designed for multi-objetive
problems but it has also obtained very good results with
large scale optimization problems. In fact, it was the best
algorithm of the Special Session and Competition on Large
Scale Global Optimization [3]. At each iteration, the MTS
algorithm applies three different local searches to a single
individual and selects the best from the new three solutions.

The DE algorithm is one of the recent algorithms that, due
to its results, has quickly gained popularity on continuous
optimization. In the last IEEE competitions on continuous
optimization, a DE-based algorithm has always reached one
of the best three positions. Nevertheless, DE is subject
to stagnation problems which could heavily influence the
convergence speed an the robustness of the algorithm [13].
Therefore, the proposed algorithm tries to assist the explo-
rative power of the DE by hybridizing it with a exploitative
local search which has proven to obtain good results with
similar functions. The reason for selecting only the first of
the three local searches of the MTS is that, in a previous
study of the authors on the same set of functions, this local
search was the one that achieved the greatest improvements.
As a result of the constraint on the number of evaluations of
the Workshop, it was decided to discard the other two local
searches in order to provide the DE with more evaluations.

Algorithm 1 MDE-DC Algorithm
for i = 1 to PopulationSize do
Improve[il] = TRUE

SearchRangeli] =
LOWER_BOUND)/2
Population[i] = RandomInitialization
end for
while # Evaluations < max_evaluations do
DE(Population)
if generation % localsearch_freq = 0 then
for j =1 to j < max_localsearch_iters do
X = bestIndividual FromPopulation
Improve[k], SearchRangel[k]
LocalSearchl(Xy, Improve[k], SearchRange[k))
if Improvelk] = FALSE then
break
end if
end for
end if
end while

(UPPER_BOUND -

The details of the algorithm are presented on algorithm 1
and can be summarized as follows: First, the population of
individuals is uniformly initialized on the function search



space range. Then, a generation of the DE shown on al-
gorithm 2 is executed. After localsearch_freq generations
of the DE, the local search of algorithm 3 is executed
over the best solution of the population. The LS1 algorithm
is executed for at most max_localsearch_iters iterations
depending on whether the individual is improved by the
local search procedure or not. These two steps are repeated
until the maximum number of evaluations is reached. Since
the DE and the LS1 could exceed the number of eval-
uations until the next verification, both algorithms have
been implemented so that they stop their execution if this
condition is satisfied during one of their steps. In order to
clarify the description of the algorithms, this detail of the
implementation has not been included in Algorihtms 2 and 3.

Algorithm 2 LS1(Xy, Improve, SR)
if Improve = FALSE then
SR =SR/2
if SR < 1le — 14 then
SR (UPPER_BOUND
LOWER_BOUND) % 0.4
end if
end if
Improve = FALSE
for : = 1 to #Dimensions do
X = Xi[i] — SR
if X}, score is better than the current best solution then
Update current best solution
end if
if score of X}, is the same then
Restore X, to its original value
else
if score of X} degenerates then
Restore X}, to its original value
Xili) = Xkli] + 0.5« SR
if X, is better than the current best solution then
Update current best solution
end if
if score of X}, has not been improved then
restore X}, to its original value
else
Improve =TRUFE
end if
else
Improve =TRUFE
end if
end if
end for
return SR, Improve
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Algorithm 3 DE(Population)
for i = 1 to PopulationSize do
X, = Select(Population)
Xo = Select(Population)
X3 = Select(Population)
for j =1 to #Dimensions do
Vij=X1;+F (X2, — Xz;)
end for
U = DECrossover(Population|i], V,CR)
if score(U) > score(Population[i]) then
Population[i] = U
end if
end for

IV. EXPERIMENTATION

A. Parameter Tuning

The parameters of the algorithm were tuned in a set of
previous tests. The values of these parameters were selected
based on previous studies and in the literature. Tables I and II
display the values that were analyzed. The best combination
of values is highlighted on the table.

B. Benchmark Suite

A total of 11 continuous optimization functions have
been considered for this experimentation. The first 6 func-
tions were originally proposed for the “Special Session and
Competition on Large Scale Global Optimization” held at
the CEC 2008 Congress [3]. The other 5 functions have
been specially proposed for the Workshop on Evolutionary
Algorithms and other Metaheuristics for Continuous Opti-
mization Problems - A Scalability Test to be held at the
ISDA 2009 Conference. They are all completely scalable
functions, which makes possible the scalability test proposed
for this workshop. A detailed description of the selected
benchmark can be found at the web page of the organizers
of the workshop'.

The results reported in this section are the average of 25
independent executions executed on the computer configu-
ration displayed on Table III. For each function, 4 different
numbers of dimensions have been tested: D = 50, D = 100,
D = 200 and D = 500. The maximum number of Fitness
Evaluations has been fixed to 5000*D. Due to the constraints
of the framework employed, the maximum reachable error
without loosing precision is le-14. Tables IV, V, VI and
VII present the results obtained on the 50, 100, 200 and
500 dimensional functions. In order to analyze the results of
the hybrid MDE-DC algorithm, the results of the algorithms
which compose the MDE-DC are also presented in the
tables.



Table I
DE VALUES THAT WERE USED FOR PARAMETER TUNING
[ Parameter [ Values |
Size 20,25,30,40,50,60
CR 0.1,0.5,0.9
F 0.1,0.5,0.9

Crossover Operator
Selection Operator
Model

Exponential, Binary
Uniform, Tournament 2
classic, current to best/2

Table 1T
LS1 VALUES THAT WERE USED FOR PARAMETER TUNING

[ Parameter [ Values |

30,40,50,60
2,345

localsearch_freq
max_localsearch_iters

Table III
COMPUTER CONFIGURATION
PC Intel Xeon 8 cores 1.86Ghz CPU
Operating System Ubuntu Linux 8.04
Prog. Language C++
Table IV

AVERAGE ERROR ON 50-D FUNCTIONS

[ Function [ MDE-DC | DE [ LS1 ]
Shifted Sphere 0.0000e+00 | 2.7040e-02 | 0.0000e+00
Schwefel’s Problem 2.21 | 9.6161e-12 | 2.1087e-01 | 0.0000e+00
Shifted Rosenbrock 4.8624e+00 | 6.0043e+01 | 1.1709e+02
Shifted Rastrigin 3.1839¢-01 1.0469¢-01 | 0.0000e+00
Shifted Griewank 0.0000e+00 | 0.0000e+00 | 7.9886e-03
Shifted Ackley 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schwefel’s Problem 2.22 | 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schwefel’s Problem 1.2 6.0076e-01 | 8.4199¢+02 | 0.0000e+00
Extended f10 0.0000e+00 | 5.7240e-11 | 8.5569e+01
Bohachevsky 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schaffer 0.0000e+00 | 5.7680e-11 | 8.4234e+01

Table V
AVERAGE ERROR ON 100-D FUNCTIONS

[ Function [ MDE-DC | DE [ LS1 ]
Shifted Sphere 0.0000e+00 | 7.6211e-02 | 0.0000e+00
Schwefel’s Problem 2.21 5.3250e-11 3.0337e+00 | 0.0000e+00
Shifted Rosenbrock 1.4225e+01 | 1.2682e+02 | 4.4314e+02
Shifted Rastrigin 2.7879e-01 4.9106e-02 | 0.0000e+00
Shifted Griewank 0.0000e+00 | 3.5153e-02 5.3264e-03
Shifted Ackley 0.0000e+00 | 7.6019e-02 | 0.0000e+00
Schwefel’s Problem 2.22 | 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schwefel’s Problem 1.2 1.3989e+01 | 8.3804e+03 2.6699¢-03
Extended f10 0.0000e+00 | 3.1551e-10 | 1.8471e+02
Bohachevsky 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schaffer 0.0000e+00 | 3.2785e-10 | 2.3032e+02

C. Discussion

In order to analyze the results, a comparison with the
algorithms which constitute the proposed hybrid (DE and

Uhttp://sci2s.ugr.es/programacion/workshop/Scalability.html

Table VI
AVERAGE ERROR ON 200-D FUNCTIONS

[ Function [ MDE-DC | DE [ LS1 |
Shifted Sphere 0.0000e+00 | 2.0320e-01 | 0.0000e+00
Schwefel’s Problem 2.21 | 4.8608e-09 | 1.7212e+01 | 4.0000e-08
Shifted Rosenbrock 2.8950e+01 | 2.5392e+02 | 1.7237e+02
Shifted Rastrigin 1.6796e-01 4.9346e-02 | 0.0000e+00
Shifted Griewank 0.0000e+00 | 3.9092e-03 | 7.2006e-03
Shifted Ackley 0.0000e+00 | 3.3032e-02 | 0.0000e+00
Schwefel’s Problem 2.22 | 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schwefel’s Problem 1.2 2.7426e+02 | 4.4700e+04 | 1.5465e+01
Extended f10 3.0987e-07 1.2955e-09 | 4.2116e+02
Bohachevsky 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schaffer 3.9111e-07 1.3451e-09 | 4.1816e+02

Table VII

AVERAGE ERROR ON 500-D FUNCTIONS

[ Function [ MDE-DC | DE [ LS1 |
Shifted Sphere 0.0000e+00 | 2.8648e-01 0.0000e+00
Schwefel’s Problem 2.21 3.3906e-04 | 5.0182e+01 6.1200e-06
Shifted Rosenbrock 2.9614e+01 | 7.0482e+02 | 2.7538e+02
Shifted Rastrigin 0.0000e+00 | 3.7446e-01 | 0.0000e+00
Shifted Griewank 0.0000e+00 | 3.2445e-02 6.8063¢-03
Shifted Ackley 0.0000e+00 | 5.6647e-02 | 0.0000e+00
Schwefel’s Problem 2.22 | 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schwefel’s Problem 1.2 1.0958e+04 | 2.8707e+05 | 6.6316e+03
Extended f10 3.2455e+00 | 6.2471e-09 | 9.7798e+02
Bohachevsky 0.0000e+00 | 0.0000e+00 | 0.0000e+00
Schaffer 3.2687¢+00 | 6.4134e-09 | 9.7745e+02

LS1) has been carried out. Table VIII presents the average
ranking of the MDE-DC, DE and LS1 algorithms. These
rankings represent the mean ranking of the average error of
each algorithm on every function. It is clearly shown that the
MDE-DC algorithm is always ranked first on each dimension
and also in the overall comparison.

Table IX displays the p-values of the comparisons among
the algorithms using a non-parametric Wilcoxon test. Even
though LS1 is not statistically better than the DE, the MDE-
DC algorithm (that hybridizes both approaches) outperforms
both algorithms when compared on all dimensions. The
significance test also shows that MDE-DC is better than each
of the algorithms on certain dimensions.

V. CONCLUSIONS

In the last years, several metaheuristic algorithms have
shown a great performance in low-dimensionality continuous
optimization problems. However, most of these algorithms
get their performance reduced as the dimensionality of the
problems grows. For this reason, it is important to analyze
which factors help an algorithm to scale well, which is the
objective of this workshop.

In this contribution, a hybrid memetic evolutionary al-
gorithm is presented and its performance on problems of
different sizes is studied. The hybridization with a exploita-
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Table VIII
RANKINGS
Dimension | MDE-DC DE LS1
50 1.7272 2.2272 | 2.0454
100 1.6363 2.4545 | 1.9090
200 1.7272 2.2727 | 2.0000
500 1.6818 2.4545 | 1.8636
all 1.6931 2.3522 | 1.9545
Table IX
WILCOXON TEST P-VALUES
Dimension | MDE-DCvsDE MDE-DCvsLS1 LS1vsDE
50 0.0640 0.1552 0.5832
100 0.0253 v 0.1552 0.4528
200 0.0429 v 0.1552 0.2386
500 0.0865 0.2315 0.2035
all 0.0006 v 0.0288 v 0.1904

+/ represents that the p-value is oo = 0.05 significant

tive local search helps the DE to avoid the stagnation. On
the other hand, the DE allows the local search to find
promising regions with a moderate consumption of fitness
evaluations. The results from this study suggest that this
memetic approach is appropiate to deal with problems of
different dimensionality.

As a further research line, the inclusion of a dynamic
self-adaptive approach is under consideration. This approach
would provide fine tuning of the decisions whether the local
search should be performed. In an extended study, it is
planned to include the effects of a non-uniform initialization
and a comparative evaluation of the different MTS local
searchers.
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