
An Adaptive Memory Procedure for Continuous Optimization

Abraham Duarte
Universidad Rey Juan Carlos

abraham.duarte@urjc.es

Rafael Martí
Universidad de Valencia

rafael.marti@uv.es

Fred Glover
OptTek Inc.

glover@opttek.com

Abstract

In this paper we consider the problem of finding a global
optimum of an unconstrained multimodal function within the
framework of adaptive memory programming, focusing on
an integration of the Scatter Search and Tabu Search
methodologies. Computational comparisons are performed
on a test-bed of 11 types of problems. For each type, four
problems are considered, each one with dimension 50, 100,
200 and 500 respectively; thus totalling 44 instances. Our
results show that the Scatter Tabu Search procedure is
competitive with the state-of-the-art methods in terms of the
average optimality gap achieved.

1. Introduction

From a naive standpoint, virtually all heuristics other
than complete randomization induce a pattern whose
present state depends on the sequence of past states,
and therefore incorporate an implicit form of
“memory.” However, such an implicit memory, as
indicated in [5], does not take a form normally viewed
to be a memory structure. By contrast, the explicit use
of memory structures constitutes the core of a large
number of intelligent solving methods. They include
tabu search, scatter search and evolutionary path
relinking among others. These methods focus on
exploiting a set of strategic memory designs. Tabu
search (TS), the metaheuristic that launched this
perspective, is the source of the term Adaptive Memory
Programming (AMP) to describe methods that use
advanced memory strategies (and hence learning, in a
non-trivial sense) to guide a search. In linguistic terms,
to define semantic hierarchies, we can say that AMP is
the hyperonym of tabu search in a similar way that
mathematical programming is the hyperonym of linear
programming.

The unconstrained continuous global optimization
problem may be formulated as follows:

(P) Minimize f(x)
subject to nxuxl , ,

where f(x) is a nonlinear function and x is a vector of
continuous and bounded variables. We investigated in
[2] AMP methods for P; in particular we hybridized
Scatter Search (SS) [7] and Tabu Search (TS) [5] for
an efficient exploration of its solution space. In this
paper we first summarize the main elements of this
method, and then perform computational testing on the
benchmark set of problems collected by Herrera and
Lozano [6] for which global optima are known.

2. Scatter Search

The fundamental structure of our Scatter Search
(SS) procedure is sketched in Figure 1. The method
starts with the creation of an initial large set of diverse
solutions D with the Diversification Generation
Method.

Since we want the solutions in D to be diverse, we
do not directly admit a generated solution x to become
part of D, but only admit those with an Euclidean
distance to the solutions already in D, d(x,D), larger
than a pre-established distance threshold value dthresh.
Therefore, in the initialization we generate solutions
with a frequency mechanism until DSize solutions
qualify to enter in D. Instead of the one-by-one
selection of diverse solutions typically employed in
Scatter Search to build the Reference Set, RefSet, we
propose solving the max-min diversity problem
(MMDP) [3] in the Step 5 of Figure 1.

Considering that the MMDP is a hard problem, we
apply the D2 method [4] because it provides a good
balance between solution quality and speed, attributes
that are important in order to embed it as part of the
overall solution method. The MMDP consists of
finding, from a given set of elements (D in this case)
and corresponding distances between elements,
Euclidean in this case, the most diverse subset of a
given size (the RefSet size b). The diversity of the
chosen subset is given by the minimum of the distances
between every pair of elements.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.93

1085

1. Start with D = Pool = RefSet = Ø.
while (|D| < DSize) {
2. Use the Diversification Generation Method

to construct a solution x.
3. If x D and d(x,D) > dthresh then add x

to D (i.e., D = D {x}).
4. Evaluate the solutions in D and build

RefSet = { x1, …, xb1 } with the best b1
solutions according to f. NumEval = |D|

}
while (NumEval < MaxEval) {
5. Solve the MMDP in D to obtain b2 diverse

solutions (b2=b-b1) w.r.t. the solutions
in RefSet.

6. Build RefSet = { x1, …, xb } with the b1
quality and b2 diverse solutions.

7. Evaluate the solutions in RefSet and
order them according to their objective
function value (x1 is the best sol).

8. Make NewSolutions = TRUE
while (NewSolutions) {
9. Pool = Ø. NewSolutions = FALSE
10. Generate NewSubset (all pairs of

solutions in RefSet that include at
least one new solution.)

while (NewSubset) {
11. Select the next subset s in

NewSubset.
12. Apply the Solution Combination

Method to s to obtain a new
solution x.

13. Evaluate x. NumEval++
14. Add x to Pool.
15. Apply the Improvement Method to

the best b solutions in Pool.
Replace these b solutions with
the outputs of the Improvement
Method. Update NumEval adding
the number of evaluations
performed.

16. Delete s from NewSubset
}

while (Pool) {
17. Select the next solution x in

Pool.
18. Let yx be the closest solution in

RefSet to x.
if (f(x)<f(x1) or (f(x)<f(xb) &

d(x, yx)>dthresh))
19. Add x to the RefSet and

remove xb.
20. Make NewSolutions = TRUE.
21. Remove x from Pool

}
}
22. Remove the worst b2 solutions from the
RefSet

}

Figure 1. Outline of the SS procedure.

In the Step 4 of the method, the best b1 solutions in
terms of the objective function f are selected from D.
Then, the b2 (b2=b-b1) most diverse solutions in D
found with the D2 method considering that b1 solutions
are already selected, are chosen in Step 5 to form the

RefSet. The initialization of the SS algorithm finishes in
the Step 6 with the construction of RefSet = {x1,…, xb}.

The search is then initiated by assigning the value
TRUE to the Boolean variable NewSolutions. In Step
10, NewSubset is constructed with all pairs of solutions
in RefSet. The pairs in NewSubset are selected one at a
time in lexicographical order and the Solution
Combination Method is applied to generate a new
solution in Step 12. The (b2-b)/2 combined solutions
are stored in a new set called Pool. The Improvement
Method is applied to the best b solutions in Pool in
Step 15. Each of these b solutions is replaced with the
output of the Improvement Method.

If a solution x obtained by combination qualifies to
enter RefSet, then, the worst solution xb is removed
from it (Step 19). The NewSolutions flag is switched to
TRUE. If a new solution entered the RefSet, in the next
main loop, when generating the pairs of solutions in the
RefSet (Step 10), only pairs containing new solutions
are included in NewSubset. Finally, when no new
solutions are admitted to the reference set in the main
while loop in Figure 1, the SS methodology dictates
that the search either terminates or a RefSet rebuilding
step is performed. The rebuilding step consists of
eliminating all but the best b2 reference solutions and
reinitializing the process from the Step 5 in Figure 1. In
our implementation, we have chosen to terminate the
SS method after a pre-specified number of solution
evaluations MaxEval as in most of the previous
applications.

In the final steps of the SS algorithm, we test
whether the solutions in Pool qualify to enter the
RefSet. Given a solution x in Pool, let yx be the closest
solution to x in RefSet. We admit x to RefSet if it
improves upon the best solution in it, x1, or
alternatively, if it improves upon the worst solution, xb,
and its distance to the closest solution in the RefSet, yx,
is larger than the pre-established distance threshold
dthresh introduced above.

The Improvement Method is based on the so-
called line-search. Given a solution x and an index i of
a variable xi, the line-search from x in the i-direction
can be represented as the set ls(x,h,i) where h is the
width of the uniform grid of the discretized search
space. This set contains all the feasible solutions that
can be obtained in the h-grid by modifying variable xi
in solution x.

Given a solution x, we first order the variables in a
random fashion and then perform the line search
associated with each variable in this order. In other
words, at a given step, we scan the set ls(x,h,i)
associated with variable xi and if it contains a better
solution than x, we move to this improved solution (and

1086

replace x with it). The improvement method performs
iterations until no further improvement is possible

The Combination Method considers the line
through two solutions x and y, given by the
representation z() = x + (y – x), where is a scalar
weight. We consider three points in this line: the
convex combination z(1/2), and the exterior solutions
z(-1/3) and z(4/3). We evaluate these three solutions
and return the best as the result of the combination of x
and y.

3. Tabu Search
Our AMP method couples the SS design described

in Section 2 with Tabu Search elements. We have
considered two alternative extensions for the
improvement method; the first one introduces memory
structures in the line-search scheme described above,
and the second one replaces the line searches with an
implementation of the Nelder-Mead simplex method
[1], which we also modify by incorporating memory
structures to improve its performance.

3.1 Tabu Line Search

Our improvement method consists of a short term
Tabu Search procedure based on line-searches. A
global iteration first orders the variables according to
their attractiveness for movement in the current
solution. Given a solution x=(x1, x2,…, xi, …, xn), we
compute for each variable xi two associated solutions,
xi+h =(x1, x2,…, xi+h, …, xn) and xi-h =(x1, x2,…, xi-h,
…, xn). We then evaluate the attractiveness for
movement of each variable xi in x, A(x,i), as

A(x,i) = max (f(x)-f(xi+h) , f(x)-f(xi-h)).

Then, given an initial solution x, a global iteration of
the improvement method first computes A(x,i) for i=1
to n, and then orders the variables according to their A-
values (where the variable with the largest A-value
comes first). The first ts variables are selected one at a
time in this order, and their corresponding line-searches
are performed. Say for instance that j is the first
variable in the list. Then we scan ls(x,h,j) and select the
best solution x’ in this set. We then consider the
second variable in the list, say xk, and scan its
associated line search from x’: ls(x’,h,k) selecting the
best solution x’’ in this set if it improves upon the
current solution, and so on.

As it is customary in Tabu Search implementations,
we permit non-improving moves that deteriorate the
objective value. Specifically, in the first step, the
method selects the best solution x’ in ls(x,h,i) and the
search moves from x to x’, even if f(x’)>f(x). In a

similar way, in the second step the method moves from
x’ to x’’ thus defining the trajectory of the Tabu Search
algorithm. Also note that when we select the second
variable in the list, say k, to perform the move from x’
to x’’, its attractiveness, A(x,k), is computed with
respect to the initial solution x and we do not perform
an update by computing A(x’,k), so that the
attractiveness value A(x,i) for any given variable xi only
represents an indicator. This is why the attractiveness
information is updated after ts iterations and we do not
explore additional variables in the list. At this point the
search can either stop or continue with the next global
iteration. In the latter case the A-values are first
computed with respect to the solution obtained in the
previous global iteration and the variables are ordered
according to the values obtained.

Our Tabu Search algorithm implements a short term
memory structure incorporating the following simple
design. When a variable xi is selected and we move to
the best solution in its associated line-search, we label
xi tabu and we do not allow the method to select it
during the next tenure iterations. Therefore, in each
global iteration, the TS algorithm selects the first ts
non-tabu variables in the list computed with the A-
values. When TS finishes it returns as the output the
best solution visited during its application. If no
improvement has been found, it returns the initial
solution as the output.

3.2 Nelder-Mead Simplex Search

The simplex search procedure of Nelder and Mead
maintains a set of n+1 points, located at the vertices of
a n-dimensional simplex. Each major iteration
attempts to replace the worst point by a new and better
one using reflection, expansion, and contraction steps.
Given a solution x, our Improvement Method starts by
perturbing each variable to create an initial simplex
from which the local search begins.

Tabu restrictions in continuous spaces can be based
both on direction and location, where location is
usually expressed in terms of proximity to solutions
previously visited. In our present work, we adopt a
proximity criterion for generating tabu restrictions,
which operates by reference to a distance threshold.
Accompanying this, we use a simple memory structure
to record all trial solutions we operate on with our
modified simplex method. Then, at a given iteration,
before applying the improvement method to a given
trial solution, we test whether the trial solution lies
within a hypersphere centered at any solution
previously submitted to the simplex method (or
centered at any of the perturbed solutions). If, so, the

1087

trial solution is considered tabu, and the improvement
method is not applied. In order to reduce the
computational effort associated with this memory
structure, as in a customary short term tabu list, we
limit the memory by maintaining a record only of the
last NumSol solutions submitted to the simplex search.

4 Computational Experiments
The first set of experiments determines the key

search parameters of our method. We refer the reader
to the exhaustive preliminary experimentation in [2] to
set the values of the search parameters as
h=MinRange/100 where MinRange is the minimum of
the variables ranges, (b1 ,b2)=(2, 6), and
dthresh=dgrid/3 where dgrid is the distance grid. Here
we only highlight one of these experiments in which we
compare the following five alternative designs of our
algorithm:

SS: SS method described on Section 2,
SS+TS: SS with Tabu Line Search,
SS+Sx: SS with the original simplex method,
SS+TSx: SS with TS simplex method,
STS: SS+TS +TSx.

In this preliminary experiment we set the maximum
number of solution evaluations MaxEval to 10,000 and
we employ the following well-known 9 non-linear
multimodal functions [7]: Branin, Rosenbrock(2),
Shekel(5), Rastrigin(10), Rastrigin(20), Powell(24),
Ackley(30), Beale and Powersum(8,18,44,114). As
typically done in global optimization, we define the
optimality gap as:

)()(*xfxfGAP

where x is a heuristic solution and x* is the optimal
solution. We have implemented our procedures in C
and all the experiments were conducted on a Pentium 4
computer at 3 GHz with 3 GB of RAM.

Method Avg. GAP # Optima
SS 0.029 7

SS+TS 0.004 7
SS+Sx 0.001 8

SS+TSx 0.001 8
STS 0.000 9

Table 1. Scatter Search variants

Table 1 shows that the five variants considered are
able to provide high quality results for this problem,
since the average gap values are, in all the cases, below
0.1%. Moreover, comparing SS with SS+TS we can
see that significant marginal improvement is achieved

by replacing the simpler form of the line-search with
the tabu line-search in the Scatter Search algorithm.
Further, comparing SS+Sx with SS+TSx, we see the
advantage of including a memory structure to modify
the improvement method (the Nelder-Mead simplex
method in this case), so that successive applications of
the method are restricted to operate only with solutions
relatively far from those already submitted to the
improvement method. Finally, the STS method, which
couples the SS+TS with the TS-modified Nelder-Mead
simplex procedure outperforms the other Adaptive
Memory Programming variants. Thus, in sum, the
combination of two different improvement methods
provides the best results, producing a variant that is
able to obtain optimal solutions to all of the 9 instances
tested.

Having determined the values of the key search
parameters for our algorithm in the first set of
experiments, we perform a second set of experiments to
execute the best variant, STS, over the proposed set of
11 scalable function optimization problems by Herrera
and Lozano [6]:

F1 to F6 functions of the CEC'2008 [8] test suite.
Schwefel’s Problem 2.22 (F7), Schwefel’s
Problem 1.2 (F8), Extended f10 (F9),
Bohachevsky (F10), and Schaffer (F11).

Following the guidelines of the organizers, STS is
run for 25 independent times on each instance.

Min Max Mean
F1 0.13 0.64 0.25
F2 74.87 94.23 86.08
F3 102.38 384.62 208.23
F4 0.16 0.49 0.26
F5 1.09 1.13 1.12
F6 0.08 0.25 0.14
F7 0.00 0.00 0.00
F8 587.69 1915.55 1159.37
F9 0.00 0.40 0.03
F10 0.00 0.00 0.00
F11 0.00 0.35 0.05

Table 2. Results with n=50

The study is performed with dimensions n=50, 100,
200 and 500 (i.e., the 11 functions above are
instantiated for each value of n considered), and the
maximum number of evaluations is 5,000n. Each run
stops when the maximum number of evaluations is
achieved. We then record the best value (Min), the
worst value (Max) and the mean value (Mean) over the

1088

25 runs for each instance. Tables 2 to 5 report the
results for each dimension respectively.

Min Max Mean
F1 0.84 4.48 2.12
F2 87.67 118.51 106.19
F3 698.94 1156.16 897.29
F4 1.75 4.23 2.99
F5 1.23 1.26 1.24
F6 1.22 1.48 1.38
F7 0.00 0.00 0.00
F8 4253.12 13217.69 7581.45
F9 0.00 0.46 0.09
F10 0.00 0.00 0.00
F11 0.00 0.61 0.21

Table 3. Results with n=100

Min Max Mean
F1 28.30 52.49 37.04
F2 104.58 134.19 123.08
F3 2391.61 5131.75 3340.09
F4 19.60 26.67 22.67
F5 1.48 1.55 1.53
F6 1.09 1.71 1.60
F7 0.00 0.00 0.00
F8 23070.83 52254.88 33918.05
F9 0.09 3.78 0.61
F10 0.00 0.00 0.00
F11 0.00 15.50 2.09

Table 4. Results with n=200

Min Max Mean
F1 146.42 152.99 150.40
F2 133.05 151.20 144.05
F3 7833.68 14696.60 11409.55
F4 66.79 83.85 80.46
F5 2.30 2.42 2.37
F6 1.25 1.83 1.71
F7 0.00 0.00 0.00
F8 153165.44 325991.44 241959.97
F9 1.18 47.38 16.96
F10 0.00 0.00 0.00
F11 6.21 67.63 27.89

Table 5. Results with n=500

As expected, the results in these tables confirm that
the larger the dimension the more difficult the instance.
The STS method provides optimal or near optimal
solutions for problems F1, F4 to F7 and F9 to F11

(especially in lower dimensions). Problems F2, F3 and
F8 emerged as very difficult to solve, especially F8 for
which our method seems inadequate.

5. Conclusions
We have described the development and

implementation of an adaptive memory programming
procedure integrating Scatter Search and Tabu Search
for unconstrained nonlinear optimization. Our
experimentation shows that we significantly improve
the local search methods by introducing a memory
structure. This is especially true for the line search
based method, but we were also able to appreciably
improve the popular Nelder and Mead simplex method.
Moreover, our study reveals that a combination of line
search with the simplex algorithm, when both are
equipped with a suitable memory structure, produces
high quality outcomes for the preponderance of the test
functions considered.

Acknowledgments
This research has been partially supported by the

Ministerio de Ciencia e Innovación of Spain
(TIN2006-02696, TIN2009-07516) and by the
Comunidad de Madrid (URJC/TIC-3731). The authors
would like to thank Profs. Herrera and Lozano for their
invitation to perform this study.

References
[1] Avriel, M. 1976. Nonlinear Programming, Analysis and

Methods, Prentice-Hall, Englewood Cliffs, New Jersey.
[2] Duarte, A., Martí, R. and Glover, F., 2009. Hybrid Scatter Tabu

Search for Unconstrained Global Optimization, Annals of
Operations Research, to appear.

[3] Resende, M., R. Martí, M. Gallego and A. Duarte, 2009.
GRASP and Path Relinking for the Max-Min Diversity
Problem, Computers and Operations Research, to appear.

[4] Glover, F., C.C., Kuo and K.S. Dhir, 1998. Heuristic algorithms
for the maximum diversity problem. Journal of Information and
Optimization Sciences 19 (1), 109-132.

[5] Glover, F. and M Laguna, 1997 Tabu Search, Kluwer Academic
Publishers, Boston.

[6] Herrera, F. And M. Lozano, 2009, Workshop on Evolutionary
Algorithms and other Metaheuristics for Continuous
Optimization Problems - A Scalability Test,
http://sci2s.ugr.es/programacion/workshop/Scalability.html

[7] Laguna, M., R. Martí, 2003. Scatter Search – Methodology and
Implementations in C. Kluwer, Boston, MA.

[8] Tang, K., X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C.
M. Chen, and Z. Yang. Benchmark for the CEC'2008. Technical
Report, Nature Inspired Computation and Applications
Laboratory, USTC, China, 2007

1089

