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In the past two decades, different kinds of nature-inspired optimization algorithms have been 
designed and applied to solve optimization problems, e.g., simulated annealing (SA), 
evolutionary algorithms (EAs), differential evolution (DE), particle swarm optimization (PSO), 
Ant Colony Optimisation (ACO), Estimation of Distribution Algorithms (EDA), etc. Although 
these approaches have shown excellent search abilities when applying to some 30-100 
dimensional problems, many of them suffer from the "curse of dimensionality", which implies 
that their performance deteriorates quickly as the dimensionality of search space increases. The 
reasons appear to be two-fold. First, complexity of the problem usually increases with the size of 
problem, and a previously successful search strategy may no longer be capable of finding the 
optimal solution. Second, the solution space of the problem increases exponentially with the 
problem size, and a more efficient search strategy is required to explore all the promising regions 
in a given time budget. 

Historically, scaling EAs to large size problems have attracted much interest, including both 
theoretical and practical studies. The earliest practical approach might be the parallelism of an 
existing EA. Later, cooperative coevolution appears to be another promising method. However, 
existing work on this topic are often limited to the test problems used in individual studies, and a 
systematic evaluation platform is not available in the literature for comparing the scalability of 
different EAs.  

In this report, 6 benchmark functions are given based on [1] and [2] for high-dimensional 
optimization. All of them are scalable for any size of dimension. The codes in Matlab and C for 
them are available at http://nical.ustc.edu.cn/cec08ss.php. The other benchmark function 
(Function 7 - FastFractal "DoubleDip") is generated based on [3] [4]. The C code for function 7  
has been contributed by  Ales Zamuda from the University of Maribor, Slovenia. It uses the GJC 
/ CNI interface to run the Java code from C++. In the package, C code is provided in a separate 
zip file, named “cec08-f7-cpp.zip”. 

 
The mathematical formulas and properties of these functions are described in Section 2, and 

the evaluation criteria are given in Section 3. 
 
 

1. Summary of the 7 CEC’08 Test Functions 
 Unimodal Functions (2): 

 F1: Shifted Sphere Function  
 F2: Shifted Schwefel’s Problem 2.21 

 
 

 Multimodal Functions (5): 
 F3: Shifted Rosenbrock’s Function 
 F4: Shifted Rastrigin’s Function 
 F5: Shifted Griewank’s Function 
 F6: Shifted Ackley’s Function 
 F7: FastFractal “DoubleDip” Function 
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2. Definitions of the 7 CEC’08 Test Functions 

2.1 Unimodal Functions: 

2.1.1.  F1: Shifted Sphere Function 
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D: dimensions.  1 2[ , ,..., ]Do o o=o  : the shifted global optimum. 

 
Figure 2-1 3-D map for 2-D function 

 
Properties: 

 Unimodal  
 Shifted 
 Separable 
 Scalable 
 Dimension D as 100, 500 and 1000 
 [ 100,100]D∈ −x , Global optimum: * =x o , 1( *) 1F f_bias=x = - 450 

 
Associated Data files: 
Name:   sphere__shift_func_data.mat  
Variable:  o 1*1000 vector  the shifted global optimum 
  When using, cut o=o(1:D) for D=100, 500 
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2.1.2.   F2: Schwefel’s Problem 2.21 

2 2( ) max{| |,1 } _ii
F z i D f bias= ≤ ≤ +x , = −z x o , 1 2[ , ,..., ]Dx x x=x  

D: dimensions.  1 2[ , ,..., ]Do o o=o  : the shifted global optimum. 

 
Figure 2-2  3-D map for 2-D function 

 
Properties: 

 Unimodal  
 Shifted 
 Non-separable 
 Scalable 
 Dimension D as 100, 500 and 1000 
 [ 100,100]D∈ −x , Global optimum: * =x o , 1( *) 1F f_bias=x = - 450 

 
Associated Data files: 
Name:   schwefel_shift_func_data.mat  
Variable:  o 1*1000 vector  the shifted global optimum 
  When using, cut o=o(1:D) for D=100, 500 
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2.2  Multimodal Functions 

2.2.1. F3: Shifted Rosenbrock’s Function 
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Figure 2-3 3-D map for 2-D function 

Properties: 
 Multi-modal  
 Shifted 
 Non-separable 
 Scalable 
 Having a very narrow valley from local optimum to global optimum 
 Dimension D as 100, 500 and 1000 
 [ 100,100]D∈ −x , Global optimum * =x o , *

3 ( ) 3F f_bias=x = 390 
 
Associated Data file: 
Name:   rosenbrock_shift_func_data.mat  
Variable:  o 1*1000 vector  the shifted global optimum 
  When using, cut o=o(1:D) for D=100, 500 
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2.2.2. F4: Shifted Rastrigin’s Function 
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D: dimensions 
1 2[ , ,..., ]Do o o=o  : the shifted global optimum 

 
Figure 2-4 3-D map for 2-D function 

Properties: 
 Multi-modal  
 Shifted 
 Separable 
 Scalable 
 Local optima’s number is huge 
 Dimension D as 100, 500 and 1000 
 [ 5,5]D∈ −x , Global optimum * =x o , *

4 ( ) 4F f_bias=x = - 330 
 
Associated Data file: 
Name:   rastrigin_shifit_func_data.mat  
Variable:  o 1*1000 vector  the shifted global optimum 
  When using, cut o=o(1:D) for D=100, 500 
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2.2.3. F5: Shifted Griewank’s Function 
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D: dimensions 
1 2[ , ,..., ]Do o o=o  : the shifted global optimum 

 
Figure 2-5 3-D map for 2-D function 

Properties: 
 Multi-modal  
 Shifted 
 Non-separable 
 Scalable 
 Dimension D as 100, 500 and 1000 
 [ 600,600]D∈ −x , Global optimum * =x o , *

5 ( ) 5F f_bias=x = -180 
 
Associated Data file: 
Name:   griewank_shfit_func_data.mat 
Variable:  o 1*1000 vector  the shifted global optimum 
  When using, cut o=o(1:D) for D=100, 500 
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2.2.4. F6: Shifted Ackley’s Function 
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1 2[ , ,..., ]Do o o=o  : the shifted global optimum;  

 
Figure 2-6 3-D map for 2-D function 

Properties: 
 Multi-modal  
 Shifted 
 Separable 
 Scalable 
 Dimension D as 100, 500 and 1000 
 [ 32,32]D∈ −x , Global optimum * =x o , *

6 ( ) 6F f_bias=x = - 140 
 
Associated Data file: 
Name:   ackley_shift_func_data.mat 
Variable:  o 1*1000 vector  the shifted global optimum 
  When using, cut o=o(1:D) for D=100, 500 



 9

2.2.5. F7: FastFractal “DoubleDip” Function 
 
Note: To make use of this function in a .m file, please include the following line at the beginning 
of your file that calls the function: 

javaclasspath('FractalFunctions.jar') 
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1 2[ , ,..., ]Dx x x=x , D: dimensions 

 
ran1(o): double, pseudorandomly chosen, with seed o, with equal probability from the interval 
[0,1] 
 
ran2(o): integer, pseudorandomly chosen, with seed o, with equal probability from the set {0,1,2} 
fractal1D(x) is an approximation to a recursive algorithm, it does not take account of wrapping 
at the boundaries, or local re-seeding of the random generators - please use the executable 
provided 
 
 

 
Figure 2-7 3-D map for 2-D function 
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Properties: 
 Multi-modal  
 Non-separable 
 Scalable 
 Dimension D as 100, 500 and 1000 
 [ 1,1]D∈ −x , Global optimum unknown, *

7 ( )F x  unknown 
 
Associated Data file: 
Name:   fastfractal_doubledip_data.mat 
Variable:  o integer   seeds the random generators 
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3. Evaluation Criteria 

3.1 Description of the Evaluation Criteria 
Problems: 7 minimization problems 

Dimensions: D=100, 500, 1000  

Runs / problem: 25 (Do not run many 25 runs to pick the best run) 

Max_FES: 5000*D (Max_FES_100D= 500000; for 500D=2500000; for 1000D=5000000) 

Initialization: Uniform random initialization within the search space  

Global Optimum: All problems have the global optimum within the given bounds and there is 

no need to perform search outside of the given bounds for these problems. 

Termination: Terminate when reaching Max_FES. 

 

1) Record function error value (f(x)-f(x*)) after 1
100

*FES, 1
10

*FES and FES at 

termination (due to Max_FES) for each run. 

For each function, sort the error values in 25 runs from the smallest (best) to the largest 

(worst)  

Present the following:   

1st (best), 7th, 13th (median), 19th, 25th (worst) function values  

Mean and STD for the 25 runs 

NOTE: The value of f(x*) is not available for function 7 (FastFractal “DoubleDip” Function). 

In this case, please record the function value f(x) directly (i.e., we regard the f(x*) is 0).   

 

2) Convergence Graphs (or Run-length distribution graphs) 

Convergence Graphs for each problem for D=1000. The graph would show the median 

performance of the total runs with termination by the Max_FES. The semi-log graphs should 

show log10( f(x)- f(x*)) vs FES for the first 6 functions (as shown in Figure 3-1). 

NOTE: The function 7 always takes negative value. In this case, please plot ( f(x)- f(x*) vs FES 

directly (as shown in Figure 3-2).   
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3) Parameters 

We discourage participants searching for a distinct set of parameters for each 

problem/dimension/etc. Please provide details on the following whenever applicable: 

a) All parameters to be adjusted     

b) Actual parameter values used. 

c) Estimated cost of parameter tuning in terms of number of FEs 

d) Corresponding dynamic ranges 

e) Guidelines on how to adjust the parameters 

 

4) Encoding 

If the algorithm requires encoding, then the encoding scheme should be independent of the 

specific problems and governed by generic factors such as the search ranges. 

 

 

FYI: Estimated runtime for the test suite 

Dimension: 1000D 

Problems: Functions 1-7 

Algorithm: Differential Evolution 

Runs: Only one run 

Max_FES: 5000000 

PC: CPU-P4 2.8G, RAM-512M 

Runtime: 15 hours 
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3.2 Example  
System: Windows XP (SP1)  

CPU: Pentium(R) 4 3.00GHz  

RAM: 1 G           

Language: Matlab 7.1 

Algorithm: Particle Swarm Optimizer (PSO) 
 
 
Results, D=100, Max_FES=500000 

Table 3-1 Error Values Achieved for Problems 1-7, with D=100 

           Prob 
FES 1 2 3 4 5 6 

 
7 

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

5.00e+3 

Std        

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

5.00e+4 

Std        

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

5.00e+5 

Std        
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Results, D=500, Max_FES=2500000 

Table 3-2 Error Values Achieved for Problems 1-7, with D=500 

           Prob 
FES 1 2 3 4 5 6 

 
7 

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

2.50e+4 

Std        

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

2.50e+5 

Std        

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

2.50e+6 

Std        
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Results, D=1000, Max_FES=5000000 

Table 3-3 Error Values Achieved for Problems 1-7, with D=1000 

           Prob 
FES 1 2 3 4 5 6 

 
7 

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

5.00e+4 

Std        

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

5.00e+5 

Std        

1st(Best)        

7th        
13th(Median)        
19th        
25th (Worst)        
Mean        

5.00e+6 

Std        
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Convergence Graphs (Function 1-6, 1000D) 
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  Figure 3-1  Convergence Graph for Functions 1-6 
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Convergence Graphs (Function 7, 1000D) 
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  Figure 3-2  Convergence Graph for Function 7 
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