
 1

Benchmark Functions for the CEC’2008 Special Session and

Competition on Large Scale Global Optimization

K. Tang1, X. Yao1, 2, P. N. Suganthan3, C. MacNish4, Y. P. Chen5, C. M. Chen5, Z. Yang1

1Nature Inspired Computation and Applications Laboratory (NICAL), Department of Computer Science and

Technology, the University of Science and Technology of China, Hefei, Anhui, China
2The Center of Excellence for Research in Computational Intelligence and Applications (CERCIA), School of

Computer Science, the University of Birminham, Edgbaston, Birmingham B15 2TT, U.K.
3 School of EEE, Nanyang Technological University, Singapore, 639798

4 School of Computer Science & Software Engineering, the University of Western Australia, M002, 35 Stirling
Highway, Crawley, Western Australia, 6009

5Natural Computing Laboratory, Department of Computer Science, National Chiao Tung University, Taiwan

ketang@ustc.edu.cn, x.yao@cs.bham.ac.uk, epnsugan@ntu.edu.sg, cara@csse.uwa.edu.au,

ypchen@nclab.tw, ccming@nclab.tw, zhyuyang@mail.ustc.edu.cn

 2

In the past two decades, different kinds of nature-inspired optimization algorithms have been
designed and applied to solve optimization problems, e.g., simulated annealing (SA),
evolutionary algorithms (EAs), differential evolution (DE), particle swarm optimization (PSO),
Ant Colony Optimisation (ACO), Estimation of Distribution Algorithms (EDA), etc. Although
these approaches have shown excellent search abilities when applying to some 30-100
dimensional problems, many of them suffer from the "curse of dimensionality", which implies
that their performance deteriorates quickly as the dimensionality of search space increases. The
reasons appear to be two-fold. First, complexity of the problem usually increases with the size of
problem, and a previously successful search strategy may no longer be capable of finding the
optimal solution. Second, the solution space of the problem increases exponentially with the
problem size, and a more efficient search strategy is required to explore all the promising regions
in a given time budget.

Historically, scaling EAs to large size problems have attracted much interest, including both
theoretical and practical studies. The earliest practical approach might be the parallelism of an
existing EA. Later, cooperative coevolution appears to be another promising method. However,
existing work on this topic are often limited to the test problems used in individual studies, and a
systematic evaluation platform is not available in the literature for comparing the scalability of
different EAs.

In this report, 6 benchmark functions are given based on [1] and [2] for high-dimensional
optimization. All of them are scalable for any size of dimension. The codes in Matlab and C for
them are available at http://nical.ustc.edu.cn/cec08ss.php. The other benchmark function
(Function 7 - FastFractal "DoubleDip") is generated based on [3] [4]. The C code for function 7
has been contributed by Ales Zamuda from the University of Maribor, Slovenia. It uses the GJC
/ CNI interface to run the Java code from C++. In the package, C code is provided in a separate
zip file, named “cec08-f7-cpp.zip”.

The mathematical formulas and properties of these functions are described in Section 2, and

the evaluation criteria are given in Section 3.

1. Summary of the 7 CEC’08 Test Functions
 Unimodal Functions (2):

 F1: Shifted Sphere Function
 F2: Shifted Schwefel’s Problem 2.21

 Multimodal Functions (5):
 F3: Shifted Rosenbrock’s Function
 F4: Shifted Rastrigin’s Function
 F5: Shifted Griewank’s Function
 F6: Shifted Ackley’s Function
 F7: FastFractal “DoubleDip” Function

 3

2. Definitions of the 7 CEC’08 Test Functions

2.1 Unimodal Functions:

2.1.1. F1: Shifted Sphere Function

2
1 1

1
() _

D

i
i

F z f bias
=

= +∑x , = −z x o , 1 2[, ,...,]Dx x x=x

D: dimensions. 1 2[, ,...,]Do o o=o : the shifted global optimum.

Figure 2-1 3-D map for 2-D function

Properties:

 Unimodal
 Shifted
 Separable
 Scalable
 Dimension D as 100, 500 and 1000
 [100,100]D∈ −x , Global optimum: * =x o , 1(*) 1F f_bias=x = - 450

Associated Data files:
Name: sphere__shift_func_data.mat
Variable: o 1*1000 vector the shifted global optimum
 When using, cut o=o(1:D) for D=100, 500

 4

2.1.2. F2: Schwefel’s Problem 2.21

2 2() max{| |,1 } _ii
F z i D f bias= ≤ ≤ +x , = −z x o , 1 2[, ,...,]Dx x x=x

D: dimensions. 1 2[, ,...,]Do o o=o : the shifted global optimum.

Figure 2-2 3-D map for 2-D function

Properties:

 Unimodal
 Shifted
 Non-separable
 Scalable
 Dimension D as 100, 500 and 1000
 [100,100]D∈ −x , Global optimum: * =x o , 1(*) 1F f_bias=x = - 450

Associated Data files:
Name: schwefel_shift_func_data.mat
Variable: o 1*1000 vector the shifted global optimum
 When using, cut o=o(1:D) for D=100, 500

 5

2.2 Multimodal Functions

2.2.1. F3: Shifted Rosenbrock’s Function
1

2 2 2
3 1 3

1
() (100() (1)) _

D

i i i
i

F z z z f bias
−

+
=

= − + − +∑x , 1= − +z x o , 1 2[, ,...,]Dx x x=x

D: dimensions
1 2[, ,...,]Do o o=o : the shifted global optimum

−100

−50

0

50

100

−100

−50

0

50

100
0

2

4

6

8

10

x 10
10

Figure 2-3 3-D map for 2-D function

Properties:
 Multi-modal
 Shifted
 Non-separable
 Scalable
 Having a very narrow valley from local optimum to global optimum
 Dimension D as 100, 500 and 1000
 [100,100]D∈ −x , Global optimum * =x o , *

3 () 3F f_bias=x = 390

Associated Data file:
Name: rosenbrock_shift_func_data.mat
Variable: o 1*1000 vector the shifted global optimum
 When using, cut o=o(1:D) for D=100, 500

 6

2.2.2. F4: Shifted Rastrigin’s Function

2
4 4

1
() (10cos(2) 10) _

D

i i
i

F z z f biasπ
=

= − + +∑x , = −z x o , 1 2[, ,...,]Dx x x=x

D: dimensions
1 2[, ,...,]Do o o=o : the shifted global optimum

Figure 2-4 3-D map for 2-D function

Properties:
 Multi-modal
 Shifted
 Separable
 Scalable
 Local optima’s number is huge
 Dimension D as 100, 500 and 1000
 [5,5]D∈ −x , Global optimum * =x o , *

4 () 4F f_bias=x = - 330

Associated Data file:
Name: rastrigin_shifit_func_data.mat
Variable: o 1*1000 vector the shifted global optimum
 When using, cut o=o(1:D) for D=100, 500

 7

2.2.3. F5: Shifted Griewank’s Function
2

5 5
1 1

() cos() 1 _
4000

DD
i i

i i

z zF f bias
i= =

= − + +∑ ∏x , ()= −z x o , 1 2[, ,...,]Dx x x=x

D: dimensions
1 2[, ,...,]Do o o=o : the shifted global optimum

Figure 2-5 3-D map for 2-D function

Properties:
 Multi-modal
 Shifted
 Non-separable
 Scalable
 Dimension D as 100, 500 and 1000
 [600,600]D∈ −x , Global optimum * =x o , *

5 () 5F f_bias=x = -180

Associated Data file:
Name: griewank_shfit_func_data.mat
Variable: o 1*1000 vector the shifted global optimum
 When using, cut o=o(1:D) for D=100, 500

 8

2.2.4. F6: Shifted Ackley’s Function

2
6 6

1 1

1 1() 20exp(0.2) exp(cos(2)) 20 _
D D

i i
i i

F z z e f bias
D D

π
= =

= − − − + + +∑ ∑x , ()= −z x o ,

1 2[, ,...,]Dx x x=x , D: dimensions

1 2[, ,...,]Do o o=o : the shifted global optimum;

Figure 2-6 3-D map for 2-D function

Properties:
 Multi-modal
 Shifted
 Separable
 Scalable
 Dimension D as 100, 500 and 1000
 [32,32]D∈ −x , Global optimum * =x o , *

6 () 6F f_bias=x = - 140

Associated Data file:
Name: ackley_shift_func_data.mat
Variable: o 1*1000 vector the shifted global optimum
 When using, cut o=o(1:D) for D=100, 500

 9

2.2.5. F7: FastFractal “DoubleDip” Function

Note: To make use of this function in a .m file, please include the following line at the beginning
of your file that calls the function:

javaclasspath('FractalFunctions.jar')

7 (mod) 1
1

() (())
D

i i D
i

F fractal1D x twist x +
=

= +∑x

4 3 2() 4(- 2)twist y y y y= +
1 ()3 2

1
1 1 1

1() (, (),)
2 (2 ())

k ran2 o

k
k

fractal1D x doubledip x ran1 o
ran1 o

−

−
=

≈
−∑∑ ∑

6 4 2(6144() 3088() 392() 1) , 0.5 0.5
(, ,)

0,otherwise
x c x c x c s x

doubledip x c s
⎧ − − + − − − + − < <

= ⎨
⎩

1 2[, ,...,]Dx x x=x , D: dimensions

ran1(o): double, pseudorandomly chosen, with seed o, with equal probability from the interval
[0,1]

ran2(o): integer, pseudorandomly chosen, with seed o, with equal probability from the set {0,1,2}
fractal1D(x) is an approximation to a recursive algorithm, it does not take account of wrapping
at the boundaries, or local re-seeding of the random generators - please use the executable
provided

Figure 2-7 3-D map for 2-D function

 10

Properties:
 Multi-modal
 Non-separable
 Scalable
 Dimension D as 100, 500 and 1000
 [1,1]D∈ −x , Global optimum unknown, *

7 ()F x unknown

Associated Data file:
Name: fastfractal_doubledip_data.mat
Variable: o integer seeds the random generators

 11

3. Evaluation Criteria

3.1 Description of the Evaluation Criteria
Problems: 7 minimization problems

Dimensions: D=100, 500, 1000

Runs / problem: 25 (Do not run many 25 runs to pick the best run)

Max_FES: 5000*D (Max_FES_100D= 500000; for 500D=2500000; for 1000D=5000000)

Initialization: Uniform random initialization within the search space

Global Optimum: All problems have the global optimum within the given bounds and there is

no need to perform search outside of the given bounds for these problems.

Termination: Terminate when reaching Max_FES.

1) Record function error value (f(x)-f(x*)) after 1
100

*FES, 1
10

*FES and FES at

termination (due to Max_FES) for each run.

For each function, sort the error values in 25 runs from the smallest (best) to the largest

(worst)

Present the following:

1st (best), 7th, 13th (median), 19th, 25th (worst) function values

Mean and STD for the 25 runs

NOTE: The value of f(x*) is not available for function 7 (FastFractal “DoubleDip” Function).

In this case, please record the function value f(x) directly (i.e., we regard the f(x*) is 0).

2) Convergence Graphs (or Run-length distribution graphs)

Convergence Graphs for each problem for D=1000. The graph would show the median

performance of the total runs with termination by the Max_FES. The semi-log graphs should

show log10(f(x)- f(x*)) vs FES for the first 6 functions (as shown in Figure 3-1).

NOTE: The function 7 always takes negative value. In this case, please plot (f(x)- f(x*) vs FES

directly (as shown in Figure 3-2).

 12

3) Parameters

We discourage participants searching for a distinct set of parameters for each

problem/dimension/etc. Please provide details on the following whenever applicable:

a) All parameters to be adjusted

b) Actual parameter values used.

c) Estimated cost of parameter tuning in terms of number of FEs

d) Corresponding dynamic ranges

e) Guidelines on how to adjust the parameters

4) Encoding

If the algorithm requires encoding, then the encoding scheme should be independent of the

specific problems and governed by generic factors such as the search ranges.

FYI: Estimated runtime for the test suite

Dimension: 1000D

Problems: Functions 1-7

Algorithm: Differential Evolution

Runs: Only one run

Max_FES: 5000000

PC: CPU-P4 2.8G, RAM-512M

Runtime: 15 hours

 13

3.2 Example
System: Windows XP (SP1)

CPU: Pentium(R) 4 3.00GHz

RAM: 1 G

Language: Matlab 7.1

Algorithm: Particle Swarm Optimizer (PSO)

Results, D=100, Max_FES=500000

Table 3-1 Error Values Achieved for Problems 1-7, with D=100

 Prob
FES 1 2 3 4 5 6

7

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

5.00e+3

Std

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

5.00e+4

Std

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

5.00e+5

Std

 14

Results, D=500, Max_FES=2500000

Table 3-2 Error Values Achieved for Problems 1-7, with D=500

 Prob
FES 1 2 3 4 5 6

7

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

2.50e+4

Std

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

2.50e+5

Std

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

2.50e+6

Std

 15

Results, D=1000, Max_FES=5000000

Table 3-3 Error Values Achieved for Problems 1-7, with D=1000

 Prob
FES 1 2 3 4 5 6

7

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

5.00e+4

Std

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

5.00e+5

Std

1st(Best)

7th
13th(Median)
19th
25th (Worst)
Mean

5.00e+6

Std

 16

Convergence Graphs (Function 1-6, 1000D)

0 1 2 3 4 5

x 10
6

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

FEs

lo
g(

f(
x)

−
f(

x*
))

f
1

f
2

f
3

f
4

f
5

f
6

 Figure 3-1 Convergence Graph for Functions 1-6

 17

Convergence Graphs (Function 7, 1000D)

0 1 2 3 4 5

x 10
6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6
x 10

4
f
7

FEs

f(
x)

−
f(

x*
)

 Figure 3-2 Convergence Graph for Function 7

 18

 References:

[1] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and S. Tiwari,

“Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-

Parameter Optimization,” Technical Report, Nanyang Technological University,

Singapore, http://www.ntu.edu.sg/home/EPNSugan, 2005.

[2] X. Yao, Y. Liu, and G. Lin, “Evolutionary Programming Made Faster,” IEEE

Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999.

[3] MacNish, C.,Towards Unbiased Benchmarking of Evolutionary and Hybrid Algorithms

for Real-valued Optimisation, Connection Science, Vol.19, No. 4, December 2007. To

appear.

[4] MacNish, C., Benchmarking Evolutionary and Hybrid Algorithms using Randomized

Self-Similar Landscapes, Proc. 6th International Conference on Simulated Evolution and

Learning (SEAL'06), LNCS 4247, pp. 361-368, Springer, 2006.

