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Abstract- A comprehensive set of experiments was
conducted with a continuous EDA on 25 test problems
provided in the real-parameter optimization special
session. It is expected that the results presented here
could be used to gain some deeper understanding of the
performance of the EDA as well as facilitate the
comparison across different algorithms.

1 Introduction

The field of Evolutionary Computation has produced a
large number of real-parameter optimization algorithms.
Some well-known examples in this class are Evolution
Strategies, real-coded Genetic Algorithms, continuous
Estimation of Distribution Algorithms, Particle Swarm
Optimizer and Differential Evolution.

A common practice in current empirical research is to
test a new algorithm with hand-tuned parameter values on
a few selected test problems and conclusions on its
performance are made based on the corresponding
experimental results. However, it has been pointed out that
this methodology has some serious issues [2, 5] and it is
difficult to effectively compare different algorithms.

This paper presents an empirical study of a continuous
Estimation of Distribution Algorithm (EDA). Experiments
are conducted following the specifications given for the
Special Session on real-parameter optimization at the 2005
Congress on Evolutionary Computation [1]. This session is
intended to facilitate comparisons among a variety of real-
parameter Evolutionary Algorithms, via a common set of
artificially constructed benchmark problems and identical
performance criteria.

2 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [3] refer to
a class of novel Evolutionary Algorithms based on
probabilistic modelling instead of classical genetic
operators such as crossover or mutation. The fundamental
mechanism is to conduct searching by sampling new
individuals from a probability distribution, which is
estimated based on some selected promising individuals in
the current population. The major advantage of EDAs is
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that they can explicitly learn the dependences among
variables of the problem and use this structural information
to efficiently generate new individuals.

In this paper we utilize a simple, continuous EDA that
uses a multivariate Gaussian distribution to model selected
individuals and generate new individuals. A framework
for such EDAs is EMNA;4.[3] and RECEDA[4] can be
seen as one implementation of this framework. The
algorithm used here has some modifications (detailed
below) and is referred to as EDA,,, (where mvg refers to
the MultiVariate Gaussian model involved).

Initialize and evaluate the population P

While stopping criteria not met
Select some individuals P from P.
Estimate the mean p and covariance & of P*°.
Sample a population P' from G (u, X).
Evaluate individuals in P'.
Combine P and P’ to create a new P.

End While

Figure 1: The Pseudo Code of EDA,,,,,

In Figure 1, the general procedure of EDA,, is to, in
each generation, estimate the statistics (i.e., p and ¥) of
selected individuals from the current population and
generate new individuals P' (i.e., IPl = IP'l) by sampling
from the corresponding Gaussian so that new individuals
would follow the same distribution as those promising
ones. The new population is created by choosing the best
individuals from the union of old and new individuals.

The Cholesky decomposition is used to sample
individuals from a Gaussian G (u, X):

X=u+S-Z Eq. 1
where S is a lower triangular matrix subject to ¥.=SS” and
Z is an N-by-M matrix with random elements sampled
from a standard normal distribution G (0, 1) where N is the

dimensionality and M is the number of individuals. It is
easy to verify that the covariance of X is equal to }:

Cov (X) = 2(X = )X = )

1 r Eq.2
—M—(S Z)S-Z)

§-1-8T=2
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Since the initial population is randomly generated
within the whole search space, EDAy, typically starts with
relatively large standard deviations, which makes it
capable of searching a wide area and thus less likely to get
stuck at local optima compared to local searching methods.
On the other hand, once it identifies a promising area
possibly containing the global optimum, it can quickly
reduce its search scope represented by the eigenvalues of
the covariance matrix to achieve fast convergence speed.

An inherent shortcoming of EDA.,, is that it cannot

~handle multimodal problems efficiently in general, which
is mainly due to the single Gaussian distribution in use.
However, this does not necessarily mean that it will never
work well on such problems. Previous research has shown
that as long as the problem presents the “Big-Valley”
structure, EDA.,, may still stand a good chance.
Furthermore, in some preliminary experiments, a few
additional issues have been identified, which may result in
significant performance loss.

Firstly, it has been noticed that EDA,,, may even get
stuck on unimodal problems such as the Sphere function,
especially in high dimensional spaces. Note that an
idealized situation for EDA.,, is when the Gaussian is
right on top of the global optimum so that it could be
found quickly with consistently shrinking search scope.
However, when the mean vector is not close to the global
optimum, EDA,, is then required to be able to move
towards it in a similar manner as a hill-climbing algorithm.
Unfortunately, an investigation into the dynamics of its
model parameters reveals that the eigenvalues often
quickly dropped to zero while its mean vector was still a
bit distant from the global optimum.

The reason is that in each generation those selected
individuals are typically distributed in a smaller area
compared to the current population. As a result, the new
Gaussian model to be built is expected to have smaller
eigenvalues compared to the current Gaussian model. If
the current mean vector is distant from the global
optimum, several generations may be needed for the
Gaussian to move close to it but it is possible that the
eigenvalues may become close to zero within just a few
generations, incapable of making any significant progress.

The key to this issue is to explicitly maintain the
population diversity. The first question is when to maintain
the diversity because if the Gaussian is very close to the
global optimum, maintaining extra diversity may not be
helpful and instead it may reduce the convergence speed.
A simple heuristic adopted here is the distance between the
mean vector and the best individual in the current
population. If the best individual is less than a threshold
away from the mean vector in each dimension, it may
imply that the Gaussian is currently near the global
optimum. In this case, no diversity maintenance is to be
applied. Otherwise, it may indicate that the current
Gaussian model is still on its way to the global optimum
and should not shrink too rapidly.

Another question is how to maintain the diversity. A
simple approach is to amplify the covariance matrix by a
factor larger than 1. A more precise way is to treat each
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dimension separately because the best individual may be
close to the mean vector in some dimensions while far
away from it in other dimensions. In this paper, the
diversity is maintained by enlarging the corresponding
eigenvalues so that the distance between the best
individual and the mean vector in these dimensions is
equal to the threshold (i.e., a maximum amplification value
Q is set in advance to avoid too dramatic changes). Note
that since the Gaussian model employs a full covariance
matrix, the concept of “dimension” in the above analysis is
defined with regard to the eigenvectors.

Secondly, it has shown that with the help of the
diversity maintenance technique the performance of
EDA v on a number of test problems could be improved.
However, the convergence speed is not always fast enough
to enable a very good solution to be found within a limited
number of fitness evaluations. This is partially because that
all selected individuals are given equal weight in building
the model despite of their difference in quality. A
straightforward approach is to increase the influence of the
best individual by explicitly moving the mean vector
towards it in an incremental manner:

Uo=0-a) u+a-X* Eq. 3

Thirdly, for some problems, there are a huge number of
optima around the global optimum with comparable
quality and basin sizes. In this case, selected individuals
are likely to be distributed in a wide range and the
Gaussian model usually has quite large eigenvalues, which
may prevent better solutions from being found efficiently.
One way to solve this issue is to divide the population into
clusters of individuals and build a Gaussian for each of
them. However, this would inevitably require an extra
clustering algorithm, which should be able to handle a
large (unknown) number of clusters. Instead, the solution
utilized here is to increase the selection pressure to force
EDA,; to focus on the very best individuals to speedup
the convergence.

3 Experimental Configuration

The benchmark suite for the Special Session consisted of
25 artificial test functions most of which are variations of
well-known test functions through rotation, shifting and
hybridization in the hope of overcoming some known
disadvantages of these functions [1].

The major performance criterion was the distance
(error) between the best individual found and the global
optimum in terms of fitness value, examined after some
predefined numbers of fitness evaluations (check points).
Additionally, an accuracy level was set for each problem
and the success rate was calculated based on the
percentage of trials reaching that level and the
corresponding number of fitness evaluations required was
recorded for comparison. The computational complexity of
each algorithm was also measured in order to better reflect
its real running time. Please refer to [1] for details of the
performance criteria in use.
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For EDA,,,, the truncation selection with ratio T was
used as the selection operator. The threshold used in
diversity maintenance was set to be half the square root of
the eigenvalues (i.e., half the standard deviations with
regard to the eigenvectors). The initial population was
randomly generated within the search space and
individuals during evolution outside the search space were
reset to the corresponding boundaries except for problems
No. 7&25 where the global optima are not within the
initialization region. It was observed that it is also
beneficial to assume no boundary for problem No. 5.

Given the fixed amount of FEs, there are four tunable
parameters <P, Q, o, 7> defined as below:

¢ P: population size

¢ Q: Maximum amplification value (1<Q)

e o: Learning rate (0<a<1)

¢ 7. Selection ratio (0<1<1)

For the experiments, our intention was to do as little
parameter tuning as possible, while achieving reasonable
performance across the suite. It was assumed that a
population size of 10-50 times the problem dimensionality
would be required. Beyond this, only a few selected
combinations of coarse values were tested for five trials on
the first 5 problems (i.e., P=200, 500 and 1000; Q=1, 1.5
and 2; a=0 and 0.2; 1=0.2 and 0.3). Based on the results
from around 150 tuning trials, for all 10D problems, the
parameters were chosen as <200, 2.0, 0.2, 0.3> while for
all 30D problems the values were <1000, 1.5, 0.2, 0.3>.
Additionally, around 50 trials were conducted to try to
further improve the performance of EDAy,, on problems
No. 6-10, which resulted in the following exceptions:

¢ 0=0 for problem No. 6 (i.e., no incremental learning).

¢ Q=1 and 1=0.2 for problems No. 9&10 (i.e., strong

selection pressure and no diversity maintenance).

4 Results and Discussion

Full results are presented in the Appendix, following the
requirements given in the Special Session documentation.
In summary, in 10D cases (Tables 1-3), EDAp,, was often
able to reach the accuracy level on problems No. 1-6 and
also on problems No. 7, 11&12 sometimes (Table 8). In
30D cases (Tables 4-6), EDAp,, was able to solve
problems No. 1-4&7 with 100% success rate (Table 9).
However, for all composition problems No. 15-25, no
satisfactory results could be found. In fact, almost all
results (error values) were two orders of magnitude. The
complexity of EDAp,, is given in Table 7 showing that it
required 50% more time in 30D than in 10D. The
convergence graphs for all 30D problems showing the
median performance are plotted in Figures 2-6.
There are a number of interesting things and issues that
need to be noticed:
¢ EDA,, is mainly suitable for optimizing unimodal

problems (e.g., No. 1-4) or multimodal problems

with the “Big-Valley” structure (e.g., No. 7, 9&10)

and is relatively robust against rotation, noise and

shifting applied on the test problems.

1794

e EDA,,, is also able to solve the Rosenbrock function
by walking along the long path towards the global
optimum at the bottom of a deep valley with
appropriate diversity maintenance approaches.

e The performance of EDA,, on problem No. 7 was
significantly improved from 10D to 30D (i.e., 4% vs.
100%), which means that the difficulty of this
problem, at least for some algorithms, is reduced as
the dimensionality goes up. This is because the
influence of the local optima created by the Cosine
functions becomes trivial in high dimensional spaces.

e The computational time of EDA,, itself is largely
dependent on the number of generations (i.e., the
number of times the Gaussian model needs to be
built) instead of population size, which means that
for a fixed amount of FEs, the running time could
vary noticeably with different population sizes. In
Table 7, the same population size was used for each
dimension as in the main experiments to correctly
reflect the real algorithm complexity.

o The values reported in Tables 8 & 9 indicate the
number of FEs after half of the final population has
been evaluated. This is because the population of
solutions is not ordered or sorted and thus the actual
number of FEs until termination will contain some
randomness depending on when the first individual
that satisfies the termination condition is evaluated.

o In Figures 2-6, some curves have not really flattened
out, suggesting that more FEs would lead to better
results (i.e., the curves of problems No.1&2 are
broken at the end as the error values were zero).

The experimental comparison of algorithms is by all
means an important yet challenging task. Nevertheless, we
believe that it is vital for the future of the field, to continue
to conduct large-scale studies of this kind. We hope that
this Special Session will provide a seed for further
evaluations in the future.
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Table 1: Error Values Achieved When FES=1e3, FES=1e4, FES=1e5 for Problems 1-8 (10D)

Appendix

Prob
1 2 3 4 5 6 7 8
FES

1™ 7.4429E+02 | 1.7492E+03 | 4.3913E+06 | 2.0791E+03 | 3.9229E+03 | 2.2780E+07 | 2.4657E+02 | 2.0427E+01

70 1.5449E+03 | 2.8191E+03 | 7.7070E+06 | 3.4274E+03 | 5.6708E+03 | 5.4174E+07 | 5.1446E+02 | 2.0644E+01

13" 1.8109E+03 | 2.9987E+03 | 9.2662E+06 | 4.5502E+03 | 6.5111E+03 | 9.0827E+07 | 6.7094E+02 | 2.0748E+01

1e3 [19%  [2.0962E+03|3.9976E+03 | 1.4613E+07 | 5.3307E+03 | 7.8372E+03 | 1.7301E+08 | 9.6598E+02 | 2.0830E+01

25" 3.0641E+03 | 6.3958E+03 | 2.9237E+07 | 9.4041E+03 | 1.0721E+04 | 5.9184E+08 | 1.6916E+03 | 2.0921E+01

Mean | 1.8225E+03|3.4610E+03 | 1.2649E+07 | 4.7055E+03 | 6.8539E+03 | 1.3452E+08 | 7.4274E+02 | 2.0724E+01

Std 5.9124E+02 | 1.1530E+03 | 7.3448E+06 | 1.6848E+03 | 1.8869E+03 | 1.2231E+08 | 3.2877E+02 | 1.3330E-01

™ 1.3633E-07 | 7.1460E-07 | 5.0966E-03 | 2.0959E-06 | 3.9958E-01 | 6.4988E+00 | 4.6597E-01 | 2.0354E+01

7% 4.7251E-07 | 3.0955E-06 | 9.5634E-03 | 9.4220E-06 | 8.8041E-01|8.2194E+00| 6.5126E-01 | 2.0458E+01

13" 9.0985E-07 | 3.8031E-06 | 2.6574E-02 | 2.0827E-05 | 1.0970E+00 | 1.0736E+01| 7.1729E-01 | 2.0545E+01

led |19M 1.5927E-06 | 6.3622E-06 | 6.1694E-02| 7.8753E-05 | 1.9118E+00 | 3.5801E+01 | 7.5294E-01 | 2.0593E+01

250 6.7828E-06 | 2.1157E-05 | 3.5398E+03 | 1.0288E-03 | 9.6715E+00 | 1.5888E+02 | 8.3123E-01 | 2.0705E+01

Mean | 1.3726E-06| 5.7484E-06 | 2.1530E+02 | 8.7425E-05 | 1.8943E+00 | 2.6413E+01| 6.9606E-01 | 2.0525E+01

Std 1.4808E-06 | 4.9475E-06 | 7.7909E+02 | 2.0576E-04 | 2.0081E+00 | 3.3282E+01 | 9.2404E-02| 9.1877E-02

1 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 { 0.0000E+00 | 0.0000E+00 | 2.0154E+01

70 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 1.8190E-12| 0.0000E+00 | 3.4077E-01 | 2.0304E+01

13 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 3.6380E-12 [ 0.0000E+00| 4.7212E-01 | 2.0341E+01

1e5 [j9™ 0.0000E-+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 3.6380E-12| 0.0000E+00 | 5.0593E-01|2.0381E+01

250 0.0000E+00 | 0.0000E+00 | 3.7548E+02 | 0.0000E+00 | 3.6380E-12| 6.8255E-01 | 5.9828E-01 | 2.0468E+01

Mean |0.0000E+00 | 0.0000E+00 | 2.1207E+01 | 0.0000E+00 | 2.8376E-12 | 4.1817E-02| 4.2049E-01 | 2.0344E+01

Std 0.0000E+00 | 0.0000E+00 | 8.0018E+01 | 0.0000E+00 | 1.0606E-12| 1.5075E-01| 1.3303E-01| 6.4467E-02

Table 2: Error Values Achieved When FES=1e3, FES=1e4, FES=1eS for Problems 9-17 (10D)
Prob
9 10 11 12 13 14 15 16 17
FES
I 3.1118E+01(4.7194E+01|1.0334E+01| 1.6150E+04| 1.7504E+01| 3.7422E+00| 5.7889E+02| 2.3088E+02| 2.3469E +02
7% 4.6647E+01|5.9538E+01|1.1222E+01|4.4364E+04| 2.4316E+01|4.1167E+00| 6.6082E+02| 2.8378E+02| 3.2413E+02
13® 5.2076E+01|6.3431E+01| 1.1844E+01|6.2453E+04| 5.2347E+01| 4.2461E+00| 6.6968E+02| 2.9964E +02| 3.4355E+02
le3 o™ 5.9478E+01|6.7429E+01| 1.2182E+01| 7.0122E+04| 7.3742E+01| 4.3484E+00| 6.9037E+02| 3.1761E+02| 3.6573E+02
25 7.3728E+01|8.5372E+01|1.3417E+01| 1.2576E+05| 3.5896E+02| 4.5397E+00| 7.3166E+02| 3.5488E+02| 4.2456E+02
Mean |5.2430E+01(6.4880E+01|1.1754E+01|5.9272E+04|6.9055E+014.2331E+00|6.7187E+02| 2.9990E+02| 3.3974E+02
Std 1.0149E+01)9.1246E+00| 7.6046E-01|2.3938E+04|7.1379E+01| 1.7794E-01|3.4014E+01/2.7915E+01|4.5618E+01
1™ 6.0999E+00| 8.4075E+00| 2.8515E+00| 1.1421E-02| 1.6063E+00| 3.4144E+00| 3.4446E+02| 1.4492E+02| 1.5685E+02
70 2.7632E+01|2.5827E+01|9.6743E+00| 1.9561E+00| 2.6644E+00| 3.7498E+00| 4.0384E+02| 1.6813E+02| 1.8851E+02
130 3.1118E+01|3.0808E+01|1.0277E+01| 1.0546E+01| 3.0282E+00| 3.9349E+00| 5.1027E+02| 1.7171E+02| 1.9866E+02
le4 [19® 3.2684E+01|3.4567E+01| 1.0783E+01|7.2090E+01| 3.8884E+00| 3.9991E+00| 5.3203E+02| 1.8812E+02|2.0746E+02
250 3.7142E+01|4.0416E+01| 1.1571E+01|5.1846E+03| 4.4398E+00| 4.0942E+00| 5.6325E+02| 2.0037E+02| 2.1703E+02
Mean |2.9342E+01|2.9426E+01|9.9626E+00|6.2420E+02| 3.2076E+00| 3.8730E+00| 4.7914E+02| 1.7623E+02| 1.9664E+02
Std 6.3410E+00| 7.3722E+00| 1.6811E+00| 1.3720E+03| 7.9417E-01| 1.8456E-01|6.7786E+01|1.4106E+01|1.3622E+01
1™ 2.2831E+00| 1.9899E+00| 0.0000E+00] 0.0000E+00| 8.7299E-01| 1.8955E+00} 1.3176E+02| 1.1950E+02| 1.3989E+02
70 4.2680E+00/| 3.0710E+00| 9.8396E-01|0.0000E+00| 1.6412E+00| 2.3809E+00| 4.0000E+02| 1.3791E+02/ 1.5072E+02
13" 5.8297E+00| 4.1805E+00| 3.5443E+00| 1.0003E+01| 1.8858E+00| 2.6264E+00| 4.0000E+02| 1.4468E+02| 1.5625E+02
1le§ (19t 6.1401E+00| 7.9776E+00| 5.6281E+00| 1.7541E+01| 2.0400E+00| 2.8309E+00| 4.0000E+02| 1.5317E+02| 1.6170E+02
25" |1.2080E+01]1.0945E+01]9.5647E+00| 5.1846E+03( 2.4741E+00| 3.3198E+00| 5.0746E+02| 1.6847E+02 1.8020E+02
Mean |5.4179E+00(5.2891E+00|3.9446E+00| 4.4231E+02| 1.8412E+00| 2.6298E+00| 3.6500E+02| 1.4392E+02| 1.5679E+02
Std 1.9107E+00| 2.7737E+00| 3.1202E+00| 1.1692E+03| 3.4013E-01| 3.9422E-01|9.2391E+01|1.3678E+01| 1.0050E+01
1795
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Table 3: Error Values Achieved When FES=1e3, FES=1e4, FES=1e5 for Problems 18-25 (10D)

Prob
18 19 20 21 22 23 24 25
FES
1 8.4853E+02 | 8.9952E+02| 1.0039E+03| 1.0991E+03| 8.8535E+02| 1.1487E+03| 8.3969E+02| 1.0257E+03
7t 1.0093E+03 | 1.0189E+03| 1.0548E+03| 1.2861E+03| 9.0692E+02| 1.2697E+03| 1.0081E+03| 1.4119E+03
13t 1.0833E+03 | 1.0901E+03| 1.0772E+03| 1.3036E+03| 9.3869E+02 | 1.3058E+03| 1.0585E+03| 1.4847E+03
1e3 |19t 1.1063E+03| 1.1173E+03 | 1.1188E+03| 1.3226E+03| 9.8322E+02 | 1.3299E+03| 1.1037E+03| 1.5967E+03
25h 1,1454E+03| 1.2011E+03| 1.1840E+03| 1.3527E+03| 1.0601E+03| 1.3669E+03| 1.1911E+03| 1.7113E+03
Mean 1.0522E+03 | 1.0633E+03 | 1.0827E+03| 1.2870E+03| 9.4561E+02 | 1.2878E+03| 1.0406E+03| 1.4843E+03
Std 7.8132E+01 | 8.6763E+01| 4.8733E+01| 6.3251E+01| 4.7277E+01| 5.5108E+01| 8.9004E+01| 1.4709E+02
1% 3.0000E+02| 3.0000E+02| 3.0000E+02| 3.0001E+02| 7.6696E+02 | 5.5947E+02| 2.0000E+02| 3.7738E+02
7% 3.0000E+02 | 3.0000E+02| 3.0003E+02| 5.0000E+02| 7.7683E+02 | 5.5947E+02| 2.0000E+02| 3.8224E+02
130 3.0007E+02 | 8.0000E+02| 8.0000E+02| 5.0000E+02 | 7.7779E+02 | 5.5947E+02| 2.0000E+02| 3.8510E+02
led4 |joh 8.0000E+02 | 8.0000E+02| 8.0000E+02| 5.0000E+02| 7.8252E+02| 7.2163E+02| 2.0000E+02| 3.8830E+02
25h 8.0004E+02| 8.0010E+02| 9.9557E+02 | 1.1077E+03 | 8.4924E+02| 1.1645E+03| 7.9862E+02| 4.0409E+02
Mean 4.8324E+02 | 5.6439E+02| 6.5858E+02| 5.4097E+02| 7.8564E+02| 6.5166E+02| 2.2395E+02| 3.8615E+02
Std 2.4298E+02 | 2.5072E+02 | 2.4600E+02| 2.1391E+02| 2.2050E+01| 1.6344E+02| 1.1972E+02| 6.0176E+00
1% 3.0000E+02 3.0000E+02| 3.0000E+02| 3.0000E+02| 7.5544E+02 | 5.5947E+02| 2.0000E+02| 3.6434E+02
7% 3.0000E+02 | 3.0000E+02| 3.0000E+02| 3.0000E+02 | 7.6281E+02| 5.5947E+02| 2.0000E+02 | 3.7078E+02
13t 3.0000E+02 | 8.0000E+02| 8.0000E+02| 5.0000E+02| 7.6355E+02| 5.5947E+02| 2.0000E+02| 3.7335E+02
1leS [gt 8.0000E+02 | 8.0000E+02| 8.0000E+02| 5.0000E+02 | 7.6708E+02| 7.2122E+02| 2.0000E+02 | 3.7538E+02
25™M 8.0000E+02| 8.0000E+02| 9.0070E+02| 8.0000E+02| 8.2733E+02| 9.7050E+02 | 2.0000E+02| 3.8090E+02
Mean 4.8319E+02 | 5.6438E+02| 6.5190E+02| 4.8400E+02 | 7.7088E+02| 6.4052E+02 | 2.0000E+02 | 3.7304E+02
Std 2.4302E+02 | 2.5071E+02| 2.3809E+02| 1.6753E+02| 2.0094E+01| 1.3858E+02| 0.0000E+00| 3.7179E+00

Table 4: Error Values Achieved When FES=1e3, FES=1e4, FES=1e5, FES=3e5 for Problems 1-8 (30D)

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

Prob
1 2 3 4 5 6 7 8

FES
1% 6.4766E+04 | 6.4464E+04 | 8.7083E+08 | 7.4316E+04 | 3.2596E+04 | 1.2940E+10 | 1.0214E+04 | 2.1062E+01
70 7.9338E+04 | 1.0243E+05 | 1.3872E+09 | 1.1350E+05 | 3.5919E+04 | 4.0659E+10 | 1.0666E+04 | 2.1174E+01
13% 8.1474E+04 | 1.0988E+05 | 1.4972E+09 | 1.2930E+05 | 3.8150E+04 | 6.1536E+10 | 1.1037E+04 | 2.1211E+01
1e3 [qo™ 8.7593E+04 | 1.1928E+05 | 1.7421E+09 | 1.4862E+05 | 3.9168E+04 | 6.7127E+10 | 1.1209E+04 | 2.1234E+01
25 1.0330E+05 | 1.3817E+05 | 2.5262E+09 | 1.7114E+05 | 4.3070E+04 | 8.3975E+10 | 1.1713E+04 | 2.1284E+01
Mean |8.3569E+04 | 1.0883E+05 | 1.5591E+09 | 1.2729E+05 | 3.7872E+04 | 5.6316E+10 | 1.0978E+04 | 2.1199E+01
Std 8.8251E+03 | 1.6422E+04 | 3.7759E+08 | 2.7827E+04 | 2.6937E+03 | 1.6743E+10 | 4.0520E+02 | 5.7618E-02
1 9.6670E+03 | 1.7309E+04 | 5.9897E+07 | 1.8732E+04 | 1.5866E+04 | 2.0813E+09 | 3.6010E+03 | 2.0916E+01
7% 1.0946E+04 | 2.1458E+04 | 8.5518E+07 | 2.5122E+04 | 1.7319E+04 | 3.2404E+09 | 4.3054E+03 | 2.1031E+01
13t 1.2085E+04 | 2.2351E+04 | 1.0220E+08 | 2.7478E+04 | 1.8545E+04 | 3.6156E+09 | 4.5595E+03 | 2.1080E+01
led [1gh 1.3816E+04 | 2.4235E+04 | 1.1284E+08 | 3.0061E+04 | 2.0087E+04 | 4.5719E+09 | 5.0857E+03 [ 2.1134E+01
25%h 2.7035E+04 [ 2.8186E+04 | 1.8176E+08 | 3.8106E+04 | 2.2583E+04 | 6.5199E+09 | 5.9215E+03 | 2.1168E+01
Mean |1.3394E+04]2.2781E+04 |1.0575E+08 | 2.7868E+04 | 1.8880E+04 | 3.9473E+09 | 4.6831E+03 | 2.1078E+01
Std 3.8168E+03 | 2.6586E+03 | 3.0794E+07 | 4.8535E+03 | 1.9123E+03 | 1.0857E+09 | 5.9336E+02 | 6.1353E-02
1% 8.8117E-04 | 5.7950E-03 | 3.0707E+01 | 1.3907E-01 | 1.6556E+02 | 4.2679E+02 | 3.3931E-01 | 2.0814E+01
7h 2.3338E-03 | 1.1152E-02 | 5.0916E+01 | 2.2696E-01 | 2.4458E+02 | 8.3183E+02 | 6.7917E-01 | 2.0973E+01
13t 3.8545E-03 | 1.3118E-02 | 6.8676E+01 | 2.5974E-01 | 2.8990E+02 | 1.0108E+03 | 7.5221E-01 | 2.1003E+01
1e5 |19t 5.1188E-03 | 2.1318E-02 | 1.0528E+02 | 4.3105E-01 | 3.5157E+02 | 1.1703E+03 | 8.1013E-01 | 2.1021E+01
25 1.0657E-02 | 4.8730E-02 | 1.7465E+02 | 8.5895E-01 | 5.0557E+02 | 2.4757E+03 | 9.1287E-01 | 2.1074E+01
Mean 4.1528E-03 | 1.6243E-02 | 8.3579E+01 | 3.3773E-01 | 3.0630E+02 | 1.0672E+03 | 7.3268E-01 [ 2.0990E+01
Std 2.3862E-03 | 9.5842E-03 | 4.1951E+01 | 1.7282E-01 | 9.0395E+01 | 4.7259E+02 | 1.3773E-01| 5.6130E-02
1 0.0000E+00 | 0.0000E+00 | 1.1369E-13 | 3.4106E-13| 1.3231E-02 | 1.9084E+01 | 0.0000E+00 | 2.0814E+01
7t 0.0000E+00 | 0.0000E+00 | 6.2528E-13 | 8.5265E-13| 4.0436E-02 | 2.0694E+01 | 2.8422E-14 | 2.0925E+01
13t 0.0000E+00 { 0.0000E+00 | 1.1937E-12( 1.3642E-12 | 4.8325E-02 | 2.0936E+01 | 2.8422E-14 | 2.0969E+01
3e5 (ot 0.0000E+00 | 0.0000E+00 | 2.2737E-12 | 3.3538E-12| 7.1404E-02 | 2.1621E+01 | 2.8422E-14 | 2.0980E+01
25™ 5.6843E-14 | 5.6843E-14 | 7.2760E-12| 7.8444E-12| 1.1709E-01 | 2.2739E+01 | 1.9895E-13 | 2.1018E+01
Mean 9.0949E-15 | 9.0949E-15| 1.7758E-12 | 2.2601E-12| 5.5133E-02 | 2.1103E+01 | 3.8654E-14 | 2.0945E+01
Std 2.1269E-14 | 2.1269E-14| 1.7241E-12| 1.9799E-12| 2.5375E-02 | 8.2756E-01 | 3.6582E-14 | 4.9832E-02
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Table 5: Error Values Achieved When FES=1e3, FES=1e4, FES=1e5, FES=3e5 for Problems 9-17 (30D)

Prob
9 10 11 12 13 14 15 16 17
FES
1 4.3267E+02|6.0253E+02|4.0776E+01| 1.3967E+06| 1.9539E+05| 1.3860E+01| 9.5589E+02|6.9913E+02|7.4932E+02
7h 4.6218E+02|7.1045E+02| 4.4829E+01| 1.6740E+06| 4.5304E+05| 1.4113E+01| 1.1372E+03| 8.2778E+02| 9.8379E+02
13% 4.8279E+02|7.3974E+02| 4.5598E+01| 1.7640E+06| 5.5122E+05| 1.4247E+01| 1.1650E+03| 9.7815E+02| 1.0433E+03
1e3 [19h 4.9762E+02|7.8264E+02(4.6641E+01|1.8759E+06| 6.7365E+05| 1.4309E+01| 1.1892E+03| 1.0170E+03| 1.1203E+03
25M 5.2759E+02|8.7458E+02|4.7758E+01(2.1114E+06| 9.1741E+05| 1.4422E+01{ 1.2306E+03| 1.0955E+03| 1.1894E+03
Mean |4.8069E+02(7.4799E+02|4.5612E+01|1.7633E+06|5.4610E+05| 1.4211E+01|1.1472E+03(9.3427E+02| 1.0336E+03
Std 2.3251E+01|5.9182E+01( 1.5074E+00( 1.8674E+05| 1.9682E+05| 1.4239E-01(6.8119E+01{ 1.1896E+02| 1.0988E+02
1% 2.1796E+02(2.6602E+02{4.0776E+01| 6.6886E+05( 6.8473E+02| 1.3563E+01| 5.3282E+02| 2.4419E+02| 3.1513E+02
7t 2.4092E+02(2.9026E+02(4.2281E+01|8.9468E+05| 3.9579E+03| 1.3814E+01| 5.3867E+02| 3.0468E+02| 3.6598E+02
131 2.5779E+02(3.0117E+02{ 4.3226E+01(9.8146E+05| 5.4160E+03| 1.3917E+01 | 5.5386E+02| 3.3590E+02}| 3.8099E+02
led (o™ 2.6686E+02(3.0559E+02(4.3766E+01| 1.1274E+06| 8.0248E+03| 1.3995E+01| 5.7049E+02| 3.5537E+02 | 4.0299E+02
25t 2.8964E+02| 3.4612E+02| 4.4573E+01| 1.2351E+06| 1.7558E+04| 1.4181E+01| 7.3842E+02| 4.1708E+02| 5.3539E+02
Mean [2.5405E+02|3.0088E+02(4.3037E+01(9.9405E+05|6.2895E+03| 1.3895E+01|5.6912E+02| 3.3281E+02| 3.8926E+02
Std 1.9430E+01|1.9196E+01| 1.0942E+00| 1.5475E+05| 3.6730E+03| 1.5393E-01|5.3611E+01|3.7350E+01|4.3495E+01
s 1.5976E+02| 1.6636E+02|3.7561E+01|1.1726E+03| 1.4808E+01| 1.3303E+01|2.3021E+02| 2.0682E+02(2.0761E+02
7% 1.8533E+02| 1.9566E+02| 4.0027E+01|5.8597E+03| 1.6399E+01| 1.3499E+01| 4.0000E+02| 2.1657E+02|2.3931E+02
13® 1.8872E+02| 2.0723E+02| 4.0599E+01|1.3917E+04| 1.7182E+01| 1.3579E+01| 4.0001E+02| 2.1867E+02| 2.4605E+02
1e5 [1ot 1.9661E+02| 2.1849E+02| 4.1359E+01|2.5676E+04| 1.7770E+01| 1.3645E+01|4.0001E+02| 2.3680E+02(2.6051E+02
25h 2.1360E+02|2.4118E+02|4.1871E+01{6.5465E+04| 1.9365E+01| 1.3735E+01 | 5.0001E+02| 3.1260E+02| 4.4007E+02
Mean |1.8950E+02(2.0536E+02|4.0491E+01|1.8684E+04|1.7201E+01|1.3554E+01|3.9722E+02|2.2865E+02| 2.5850E+02
Std 1.2597E+01| 1.8600E+01{ 1.0321E+00| 1.7230E+04| 1.2072E+00| 1.2494E-01|4.0124E+01|2.4775E+01|4.6959E+01
1™ 1.5685E+02| 1.4763E+02| 3.5960E+01| 3.6695E+00| 1.3243E+01| 1.2763E+01{2.0003E+02| 1.7733E+02| 1.8536E+02
7t 1.7291E+02|1.7779E+02( 3.9224E+01|5.0595E+02| 1.5131E+01| 1.3219E+01| 4.0000E+02( 1.9339E+02( 2.0915E+02
13t 1.7997E+02| 1.8734E+02| 3.9924E+01| 3.6196E+03| 1.5509E+01| 1.3321E+01| 4.0000E+02| 2.0644E+02| 2.2651E+02
3eS 1ot 1.8293E+02| 2.0024E+02| 4.0194E+01|7.0942E+03| 1.6009E+01| 1.3453E+01]| 4.0000E+02| 2.1377E+02| 2.3471E+02
25" [2.0275E+02[2.2489E+02]4.1147E+01]2.7886E+04] 1.6676E+01| 1.3565E+01|5.0000E+02| 2.8982E+02[ 4.3153E+02
Mean [1.7868E+02|1.8852E+02|3.9453E+01|6.0542E+03|1.5310E+01{1.3321E+01|3.9600E+02| 2.0789E+02}| 2.3759E+02
Std 1.0242E+01)1.9372E+01| 1.2844E+00| 7.7717E+03| 9.5194E-01| 1.7390E-01|4.5455E+01|2.6580E+01|5.0793E+01
Table 7: Computational Complexity (Seconds)*
TO T1 T2 (T2-T1)/TO
D=10 0.810 3.646 0.4035
7.029
D=30 1.371 5.648 0.6085

* System: Windows XP (SP2)

CPU: Xeon 2.4G Hz

For D=10: Population Size= 200 (applied to T1&T?2)
For D=30: Population Size= 1000 (applied to T1&T2)

1797

RAM: 1G

Language: Matlab 6.5
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