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Abstract- Despite the existence of a number of proce-
dures for real-parameter optimization using evolution-
ary algorithms, there is still a need of a systematic and
unbiased comparison of different approaches on a care-
fully chosen set of test problems. In this paper, we de-
velop a steady-state, population-based optimization al-
gorithm which allows the main search principles to be
independently designed. The algorithm so developed is
applied to a set of 25 test problems and results on 10
and 30 dimensions are presented. Although the pro-
posed procedure cannot find the exact optimum within
the specified number of function evaluations, in most
problems, the algorithm shows steady progress towards
the optimum. Moreover, it is also observed that the per-
formance of the algorithm does not get affected by the
rotation of the functions, discontinuity and embedded
noise in function description.

1 Introduction

This paper is written for the special session devoted
to comparing different real-parameter optimization
methods on a set of 25 test problems described at
http://ww.ntu. edu. sg/hcre/ENuga /
indxfiles/cBIO-O 5/CB05.htm . In this paper,
we employ a population-based, steady-state optimization
algorithm for the purpose. The algorithm is developed
based on adaptation of a population-based algorithm-
generator [1]. The generator requires specification of four
plans of the optimization process: (i) selection plan, (ii)
generation plan, (iii) replacement plan and (iv) update
plan. These plans are designed based on essential aspects
needed in solving uni-modal and multi-modal optimization
problems, such as importance of diversity preservation and
need for creation of offspring solutions based on diversity
in parent solutions. This method has also been used in
other successful real parameter optimization schemes, such
as evolution strategy [2, 3] and differential evolution [4].
We pre-specify all the GA parameters (involving the four
plans mentioned above) based on past studies and some
experimentations. However, significantly better results can
be obtained by fine-tuning the control parameters for a
particular problem.

The test problems involve uni-modalities to multi-
modalities, deterministic to noisy functions, low to high di-
mensionalities etc. It is our intuition that such wide vari-
ety of problems may be difficult to be solved to optimality
using one single optimization algorithm. This is because
for an efficient solution of a uni-modal problem, a greedy

technique emphasizing the current best solution can be em-
ployed, whereas for an efficient solution of a multi-modal
problem diversity preservation is an important task. It is
also our believe that to solve such vagaries of problems to
a reasonable level of satisfaction, the algorithm has to be
simple and not specifically designed to solve a particular
problem. In the following section, we describe the proposed
procedure. In Section 3, we present the simulation results in
tabular form and in Section 4, we discuss the performance
of our algorithm on different test problems.

2 Description of the Algorithm

The optimization algorithm used here is derived from the
population-based algorithm generator suggested elsewhere
[ 1]. The algorithm-generator requires four plans to be spec-
ified and generates a steady-state optimization procedure:

* Selection Plan (SP): Strategy used to select a fixed
number of parents for recombination from the current
population.

* Generation Plan (GP): Methodology used to create
offspring solutions from parents chosen in the selec-
tion plan.

* Replacement Plan (RP): Strategy used to select a
fixed number of members from population that will
compete with the newly generated offspring solutions
for inclusion in the population.

* Update Plan (UP): Strategy used to decide the win-
ners from a set consisting of offspring solutions and
members obtained from replacement plan that will
eventually get included in the current population.

The above division of an algorithm into different plans al-
lows one to design each essential feature of an optimization
task independently. With a set of population members, the
first task (SP) is to choose a set of good solutions (parents)
so that they can be utilized to create new solutions in GP.
The use of a suitable probability distribution around par-
ent solutions to create new offspring solutions would be one
way to implement a GP. Once the offspring solutions are
created they can be accepted in the fixed-size population by
first choosing a set of possible population members for dele-
tion using a RP and then designing a scheme for updating
the population in UP. This is where an elite preserving strat-
egy can be implemented. Here we design a suitable scheme
for each of the four plans as described below.

The algorithm starts with an initial population (generated
randomly) of size N. We then use the Selection Plan to
choose ,u parents from the initial population. In the present
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selection scheme, we first sort the entire population in as-
cending order based on the function value. This requires
O(N log(N)) computations. We then divide the population
into r, equal segments (based on the fitness value), where ,
is a user-defined parameter (lying in the range 1 to N) indi-
cating the extent of modality of the problem. For uni-modal
problems, a small value and for a multi-modal problem a
large value of n is suggested. The best solution of each seg-
ment is picked and stored in B. We, now randomly pick one
solution from the set of best solutions B as the first parent.
We also call this solution as the index parent and denote its
index as p. Thereafter, the other (b - 1) parents are picked
randomly from the population.

In the Generation Plan, we create A offspring solutions
from the chosen ,u parent solutions. We use the parent-
centric recombination (PCX) operator [5] with modifica-
tion for the purpose of recombination and produce A off-
spring solutions. The modified PCX operator creates a new
solution using a uniformly distributed random number u
(E [0, 1]), as follows:
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Figure 1: PCX Crossover

as the generation proceeds this value monotonically reduces
and at the end of the optimization process, w~= 0.2. To al-
low a broad search early on and to make a focussed search
later for convergence, such settings are desired. It is also
interesting to note that equation 1 allows both parent and
mean-centric version of the recombination operation based
on the modality index K. When K = 1, the recombination
operation is always parent-centric and for a large value of

Xp + w~D + Zdi,i$p w ,de, if (u > 0.5 (I-)) K both parent and mean-centric versions occur with almost
M + &j D + Z '=i,ip w?1de otherwise. equal probability. Figure 1 depicts the crossover operator

(1) pictorially.
p t c l y hei Next we use the Replacement Plan to choose r solutions

[petermsnalusmpledxinbov ethi arossoverd pefd asfol from the population. In the present scheme, we choose theserhe terms used in above equation are defined as fol- sltosradol fro thniepouainsolutions randomly from the entire population.
We then form a pool (of size (r + A)) consisting of r so-

p B is index parent, lutions chosen from the population by the replacement plan
is the mean of 1L parents, and A newly created offspring solutions by the generation

Xp= - G, plan. The current population is then updated using the Up-
is the mean of entire population, date Plan, in which we replace the r solutions chosen in the

1 isth ea ontrppuaio,replacement plan by the best r solutions of the pool. This
is the average of perpendicular distances from par- operation ensures an elite-preservation strategy.
nts Xi (i :& p) to the line joining Xp and G, In performing a single iteration of above mentioned pro-
are (u-1) orthonormal vectors that span the sub- cedure, we have exhausted A function evaluations (same as

pace perpendicular to D. For information on how to the number of offspring solutions produced). The iteration
nd ei, please refer to [5]. continues until a prescribed number of function evaluations
parameters we and wi,, describing the extent of vari- is achieved or a pre-defined termination criterion is met. If
*idirection D and orthogonal to it, respectively,are at some instant, the diversity is lost in the population, we

as follows (after some experimentation): use cataclysmic mutation and choose the best individual ob-
tained so far as the index parent and reproduce the popula-

=~e -a--+ 0.2 () tion [6]. We use the polynomial mutation [7] as the mutation
02 2 operator with mutation index 71m = 1.0 and mutation prob-

w77 = ( . (3) ability Pm = 1/n, where n is the number of real variables.
2 For the purpose of simulation runs, we assume the diversity

Jh we use a constant value of K = 10 here in this is lost whenever all the population members become identi-
Dr a better use of the ronosed Drocedure. we suggest cal.OLLA%47 ssAW v64 L1% W LA. F.L FL W%%.%AL%1_Mv 9sw VVw%

to set K = 1 for uni-modal problems and a large value of K
for multi-modal problems. With a large value of K, we will
also take a large value, thereby introducing a larger diversity
among offspring solutions - a matter which is important in
solving multi-modal problems. Another interesting aspect
of the above equation is that the parameter a is defined as
the fraction of function evaluations performed to the over-
all desired number of function evaluations. Thus, for any
chosen K value, the parameter a starts with a value close
to zero and approaches one as the generation proceeds. In
other words, at the initial generation, wf = 1.2 - l/l and

3 Performance Benchmarks

We run all simulations using the following hardware and
software: (i) Operating System Name: RedHat Linux 9.0
(i386 GNU/Linux), (ii) Machine Architecture: P-III 1.0
GHz, 256 MB RAM, (iii) Programming Language: ANSI-
C, and (iv) Compiler Used: GCC version-3.2.2. Follow-
ing parameters control the performance of the algorithm:
(i) Population Size: N, (ii) Modality parameter: K, (iii)
Number of parents chosen for crossover: ,u, (iv) Number of
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offspring solutions created: A, and (v) Number of solutions
chosen for replacement: r. We pre-set all the control param-
eters to some suitable values (with past experience of the
authors and with some experimentations). We fix N = 300,
r,= 10, ,u = 3, A = 2 and r = 1 for performing the
benchmark runs. Thus, there exists no parameter which is
problem-dependent in this study.

3.1 Results of benchmark run for D = 10

Results for D = 10 and MaxFES = 100, 000 are reported
in tables 1 to 4.

3.2 Results of benchmark run for D = 30

Figures 2 to 6 are the convergence graphs for D = 30 and
MaxFES = 300, 000.

Results for D = 30 and MaxFES = 300, 000 are re-
ported in tables 5 to 8.

3.3 Algorithm running time benchmarks

Benchmarks for running time of algorithm are presented in
Table 9. All times are reported in seconds.

Table 9: Computational Complexity of Algorithm
TO T1 T2 T2-T1 (T2-TO)/To

D=10 0.24 1.25 34.37 33.12 138.0
D=30 0.24 24.60 105.75 81.15 338.12

3.4 Normalized value of convergence

We present here the degree of convergence achieved for all
the test problems for D = 10 and D = 30. For every
test problem, we have performed 25 independent simula-
tion runs. We take the mean of best function value achieved
in each simulation run and denote it as Actual Mean in table
10. For computing Normalized Mean, we first find the max-
imum absolute function value obtained from 10,000 ran-
domly created solutions in the search range. For the pur-
pose of normalization, we consider only the exponent of
this maximum absolute function value for each function.
We then divide the actual mean by the exponent of the
maximum absolute function value and obtain the normal-
ized mean. Table 10 presents the normalized mean values
achieved for all test problems for D = 10 and D = 30. In
table 10, Problem Range is the exponent of the maximum
absolute function value obtained from 10,000 randomly cre-
ated solutions. The cases where the achieved function value
is within 1% of the maximum absolute function value of the
search space, are shown in bold.

4 Inferences from benchmark runs

We have performed an exhaustive benchmark analysis of the
algorithm on 25 synthetic test problems. Benchmark study
shows mixed results.

* Test functions 1 and 2 are simple and are easily solved
by the algorithm without even requiring to perform

Table 10: Normalized mean value of convergence obtained
for various test problems

Test Problem Actual Mean Normalized Mean
Problem Range D = 10 D = 30 D = 10 D = 30

1 1.OOe+05 8.71 e-09 8.95e-09 8.71e-14 8.95e-14
2 1.OOe+07 9.40e-09 1.44e-02 9.40e-16 1.44e-09
3 1.OOe+ 1 3.02e+04 5.07e+05 3.02e-07 5.07e-06
4 1.OOe+08 7.94e-07 1.1 le+03 7.94e-15 1.lle-05
5 1.00ee+06 4.85e+01 2.04e+03 4.85e-05 2.04e-03
6 1 .OOe+12 2.07e+01 9.89e+02 2.07e-11 9.89e-10
7 1.OOe+05 6.40e-02 3.63e-02 6.40e-07 3.63e-07
8 1.00e+03 2.00e+01 2.00e+01 2.00e-02 2.00e-02
9 1.00e+04 1.19e-01 2.79e-01 1.19e-05 2.79e-05
10 1.00e+04 2.39e-01 5.17e-01 2.39e-05 5.17e-05
11 1.OOe+03 9.1 Ie+00 2.95e+01 9.11e-03 2.95e-02
12 1.00e+07 2.44e+04 1.04e+06 2.44e-03 1.04e-01
13 1.OOe+08 6.53e-01 1.19e+01 6.53e.09 1.19e-07
14 1.OOe+03 2.35e+00 1.38e+01 2.35e-03 1.38e-02
15 1.00e+04 5.1Oe+02 8.76e+02 5.1Oe-02 8.76e-02
16 1.00e+04 9.59e+01 7.15e+O1 9.59e-03 7.15e-03
17 1.OOe+04 9.73e+01 1.56e+02 9.73e-03 1.56e-02
18 1.00e+04 7.52e+02 8.30e+02 7.52e-02 8.30e-02
1191.OOe+04 7.51e+02 8.31e+02 7.51e-02 8.31e-02
20 1.00e+04 8.13e+02 8.3 le+02 8.13e-02 8.31e-02
21 1.OOe+04 1.05e+03 8.59e+02 1.05e-0 I 8.59e-02
22 1.OOe+08 6.59e+02 1.56e+03 6.59e-06 1.56e-05
23 1.OOe+04 1.06e+03 8.66e+02 1.06e-01 8.66e-02
24 1.OOe+04 4.06e+02 2.13e+02 4.06e-02 2.13e-02
25 1.OOe+04 4.06e+02 2.13e+02 4.06e-02 2.13e-02

the prescribed maximum number of function evalua-
tions.

* The algorithm also solves functions 4, 6, 7, 9, and 10
for a majority of simulation runs.

* Introduction of noise to test functions does not ham-
per the performance of the algorithm significantly as
is evident from the results on test function 4 in which
the algorithm has 84% convergence rate for D = 10.

* Rotating a test problem has little effect on the perfor-
mance of the algorithm as is evident from the perfor-
mance of the algorithm on test problems 9 and 10.
Test problem 10 is a rotated version of test problem
9.

* The algorithm does not perform well on hybrid test
problems which can be attributed to the fact that hy-
brid test problems have a complicated profile, a large
number of local optima, narrow global basin sur-
rounded by huge number of local maxima which can
cause any algorithm to divert away from the global
basin. We can infer from the performance of al-
gorithm on test problems 21, 22, and 23 that intro-
ducing noise or making the function profile discon-
tinuous does not hamper the performance of the al-
gorithm and it achieves similar convergence rate for
these functions, table 7.

* The proposed procedure finds problems 8, 15, and 22
most difficult to solve. Problem 8 is like a needle-
in-a-haystock problem and will cause difficulty to
most algorithms. Problem 22 has a high condition
number causing non-uniform importance among vari-
ables. This may have caused some difficulty to the
proposed algorithm.

* Problems 15 to 25 are hybrid problems having dif-
ferent landscapes at different locations in the search
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Table 1: Error values achieved at FES = i03, i04,~i0 for problems 1-9 (D = 10)
Problem 1 2 3 4 5 6 7 8 9
FES

T7(Bst) 3.67e+03 6.26e+03 2.23e+07 9.72e+03 7.30e+03 7.72e+08 4.59e+02 2.04e+Ol 6.58e+Ol
7tn ~~6.74e+03 9.70e+03 7.77e+07 1.53e+04 9.58e-i03 1.20e+09 6.37e+02 2.06e+0l 8.90e+O1I

i3tt Meian) 8.29e+03 1.33e+04 9.42e+07 1.79e+04 1.lIOe+04 1.53e-i09 7.59e+02 2.07e+O1 9.60e+O1
1e3 1gt 8.78e+03 1.64e+04 1.14e+08 2.02e+04 1.21e+04 2.22e+09 9.56e+02 2.08e+O1 1.03e+02

25 a Worst 1.l1Oe+04 2.06e+04 1.50e-i08 2.91e+04 1.34e+04 3.97e+09 1.26e-i03 2.09e+01 l.13e+02
Mean 7.84e+03 l.31e+04 9.31e+07 1.81e+04 1.07e+04 1.82e+09 8.12e+02 2.07e+01 9.49e+O1
Std 1.92e+03 4.15e+03 3.03e+-07 4.75e+03 1.86e+03 8.90e+08 2.9e0 1.27e-01 12eO

't(Best) 1.43e-02 7.01e+01 7.75e+06 1.42e+02 1.41e+03 1.77e+05 8.82e+00 2.00e+0l 3.28e+01
7th ~~6.13e-02 1.56e-i02 1.92e+07 2.79e+02 2.24e+03 3.82e+05 1.29e+01 2.00e+0l 4.14e+01

13'tf (Median) 7.53e-02 2.05e+02 2.50e+07 3.84e+02 2.43e+03 1.12e+06 1.71e+O1 2.00e+O1 4.55e+0l
1e4 lt 1.28e-01 2.98e+02 3.15e+07 5.05e+02 2.84e+03 1.80e+06 2.06e+01 2.00e+Ol 5.Ole+0l

2t7Worst) 1.83e-01 4.33e+02 5.12e+07 8.57e+02 3.28e+03 4.94e+06 2.36e+01 2.02e-OI-0 5.72e+01
Mean 9.42e-02 23e+T- 2.57e+07 4.08e-i02 2.46e+03 1.24e+06 1.70e+01 2.00e-i0l 4.51e+0lI
Std 5.l1Oe-02 1.05e+02 1.1 Ie+07 1.77e+02 4.68e+02 1.02e+06 4.45e+00 4.7e-0 6.62e+00
PT-(B-est 3.76e-09T 7.57e-09T 5.90e+03 8.68e-09T 9.15e-01 8.30e-09T 5.27e-09T 2.00e+01 4.76e-09T
7th7.43e-09T 9.3le-09T 1.48e+04 9.83e-09T 1.52e+01 2.16e-04 3.20e-02 2.00e-i01 7.4le-09T
13"' (Meian) 8.31e-09T 9.54e-09T 2.04e+04 9.96e-09T 3.82e+0lI 3.99e+00 5.42e-02 2.00e+01 8.82e-09T

le5 11tt 9.33e-09T 9.76e-09T 3.91e+04 2.95e-07 6.47e+O1 8.63e+00 i.l8e-0OI 2.00e+01 9.66e-09T
25tt Worst) 9.89e-09T 9.88e-09T 9.87e+04 8.02e-06 2.55e+02 1.09e+02 1.53e-01 2.00e+01 2.98e+00
Mean 8.71e-09T 9.40e-09T 3.02e+04 7.94e-07 4.85e+01 2.07e+Ol 6.40e-02 2. 00e+01I 1.19e-01

___ Std 1.22e-09T 5.37e-IOT 2.38e+U04 1.97e-06 5.17e+Ol 73.56e+O1 5.15e-02 3.25e-07 I5.97e-01

Table 2: Effor values achieved at FES - 103, i04,1 i05 for problems 10-17 (D = 10)
Problem 10 11 12 13 14 15 16 17

FES__

IT" (Bst) 8.47e+01 9.42e+00 2.56e+04 8.93e+01 4. 13e+00 7.38e+02 3.78e+02 4.07e+02
7th 1~~.21e+02 1.09e+O1 6.76e+04 4.86e+02 4.36e+00 8.21e+02 4.19e+02 4.80e+02
1"(Median) l.31e+02 1.16e+0 1 7.60e+04 1.96e-i03 4.38e+00 8.50e+02 4.35e+02 5.25e+02

1e3 11t 1.36e+02 1.20e+01 9.81e+04 3.47e+03 4A44e+00 8.76e+02 4.80e+02 5.76e+02

-257" (Wrst 1.56e+02 1.29e+O1 1.32e+05 9.84e+03 4.63e+00 9.l1Oe+02 5.59e+02 6.67e+02
Mean 1.28e-+T0 1.14e+OI 8.29-e+04 2.38e+03- 4.39e+00 8.41e+02 4.47e+02 5.27e+02
St-d- ~1.69e-s01 8.96e-01 2.63e+04 2.43e+03 1.1l8e-01 4.74e+01 5.12e+01 6.60e+01

T '(Best7 4.12e+01 7.63e+00 2.56e-i04 2.59e+00 3.67e+00 6.37e+02 1.73e+02 1.72e+02
7th ~~4.70e+01 9.78e+00 4.03e+04 3.37e+00 4.15e+00 6.99e+02 1.85e+02 2.08e+02
13h(Median) 5.30e+O1 1.O1e+01 4.55e+04 3.53e+00 4.27e+00 7.34e+02 1.95e+02 2.17e+02

1e4 -it 5.73e+01 1.05e+O1 5.63e+04 3.96e+00 4.37e+00 7.50e+02 2.02e+02 2.24e+02
-2t Wrt 6.58e+01 1.1l8e+O1 7.14e+04 4.66e+00 4.51e+00 7.88e+02 2.22e+02 2.42e+02
Mean 5.25e+01 1.O1e+O1 4.78e+04 3.63e+00 4.25e+00 7.25e+02 1.95e+02 2.14e+02
Std ~~6.80e+00 8.34e-01 1.19e+04 4.82e-01 1.65e-01 3.98e+O1 1.32e+O1 1.78e+01

(Best) 6.26e-09T 7.64e+00 1.98e+02 3.28e-01 1.53e+00 2.79e+02 8.75e+O1 8.82e+01
7tn ~~7.69e-09T 8.80e+00 2.06e+04 4.74e-0OI 1.97e+00 4.14e+02 9.14e+O1I 9.42e+01
1t(eian)~ 8.85e-09T 9.22e+00 2.50e+04 7.15e-01 2.40e+00 4.63e+02 9.37e+01I 9.69e+O1

le5S t 9.73e-09T 9.42e+00 2.88e+04 8.01e-01 2.75e+00 6.38e+02 9.64e+O1 9.94e+01
-25t" Wort) 2.98e+00 9.91e+00 4.00e+04 1.07e+00 3.30e+00 7.06e+02 1.13e+02 1.14e+02
Mean 2.39e-01 9.1lle+00 2.44e+04 6.53e-01 2.35e+00 5.l1Oe+02 9.59e+01 9.73e+01

___ Std 7.20e-01 5.27e-0I1 8.92e+03 2.06e-01 4.82e-01 1.27e+02 -0 5.55e+00

Table 3: Error values achieved at FFS = 103,1 i04, i05 for problems 18-25 (D = 10)
Problem 18 19 20 21 22 23 24 25
FES_

st(Best) 1.09e+03 1.1 Ie+03 1.06e+03 1.22e+03 9.37e+02 -1.25e+03 -4.86e+02 -5.53e+02
7tn ~~1.19e+03 1.19e+03 1.17e+03 1.31e+03 1.05e+03 -1.39e+03 -7.09e+02 --7.05e+02
1t (Median) 1.22e+03 1.23e+03 1.20e+03 1.35e+03 I.lOe+03 -1.41e+03 -7.22e+02 -7.73e+02

1e3 A 1.26e+03 1.24e+03 1.24e+03 -1.37e+03 1.l14e+03 --1.42e+03 --8.79e+02 -8.69e+02
25'(Wrt 1.30e+03 1.32e+03 1.34e+03 1.40e+03 1.22e+03 -1.45e+03 --9.95e+02 --9.74e+02

FMean 1.22e+03 1.22e+03 1.21e+03 -1.34e+03 1l09e+03 -1.40e+03 -7.63e+02 -7.72e+02
___ Std 5.38e+01 5.03e+O1 6.30e+01 4.62e+01 -6.59e+01 -4.96e+01 - 1.35e-i02 1.20e+02

1e4

le5

l't (Best) 8.48e+02 8.47e+02 8.60e+02 9.42e-i02 5.50e+02 1.03e+03 4.08e+02 4.l1Oe+02
1h8.76e+02 9.42e+02 9.23e-i02 [.l12e+03 [5.77e+02 J1.16e+03 4.l1Oe+02 4.l1Oe+02

13 Mein 9.47e+02 J9.91e+02 {9.77e+02 [.l13e+03 [7.95e+02 1.17e+03 4.12e+02 4.1lIe+02
_________ 1.02e-i03 j1.02e+03 {1.04e+03 l.13e+03 [9.00e+02 J1.18e+03 4.12e-s02 4.12e+02
25t'" (Worst) 1.06e+03 1.08e+03 l.07e+03 l.14e+03 9.30e+02 1.20e+03 4.13e+02 4. 13e+02
Mean I9.52e+02 I9.76e+02 I9.74e+02 I1.12e+03 I7.43e+02 I1.16e+03 14.1 Ie+02 T141

7.16oe+U I j.80e+Ul 1.54le+u2-
+ + :I (Best) 3.00Ue+02 3.00e+02_[ 3.00e+02 5.00e+02 5.27e+02

1 .44e+00
5.59e+02 4.05e+02 4.05e+02

7th ~~8.00e+02 8.00e+02 8.22e+02 r1.06e+03 r5.31le+02 1.l1Oe+03 r4.06e+02 4.06e+02
1t" (Meian)W 8.22e+02 8.24e+02 [8.26e+02 1.08e+03 [7.29e+02 1. IlOe+03 L4.06e+02 4.06e+02
YgI 8.26e+02 8.27e+02 8.94e+02 1.08e+03 7.41e+02 1.l1Oe+03 4.06e+02 4.06e+02
25t (Worst) 9.5 Ile+02
Mean 7.52e+02

9.42e+02 9.59e+02 1.09e+03 8.69e+02 1.lIlIe+03 4.07e+02 4.07e+02
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Table 4: Number of FES required to achieve a given accuracy level for problems 1 - 25 (D = 10)
Prob ist 7th 13 th 19th 25 th Mean Std Rate. Perf.

1 14878 15204 15542 15764 16148 1.5494e+04 3.255e+03 100.00% 1.5509e+04
2 30708 33208 33950 34796 38982 3.4138e+04 6.930e+03 100.00% 3.4148e+04
3 -0.00%-

4 36044 39550 48878 57892 - 4.7705e+04 8.7414e+03 84.00% 5.6806e+04
5 - - - - 0.00%-
6 73188 90134 - - - 8.663e+04 8.473e+03 40.00% 2.16585e+05
7 31290 - - - - 3.5534e+04 8.017e+03 20.00% 1.77682e+05-
8 - - - - --- 0.00%-
9 42956 44616 48236 49476 - 4.7246e+04 9.8935e+03 96.00% 4.9226e+04
10 41722 45644 47570 52234 - 4.8381e+04 9.5963e+03 88.00% 5.4991e±04
11 0.00%

12 - - - - - - - 00.00%-
13 - - - - - - - 0.00% -

14 - - - - - - - 0.00% -

15 - - - - - - - 0.00% -

16 - - - - - - - 0.00% -

17 - - - - --- 0.00% -

18 - - - - --- 0.00% -

19 - - - - --- 0.00% -

20 - - - - --- 0.00% -

21 - - - - --- 0.00% -

22 - - - - --- 0.00% -

23 - - - - --- 0.00% -

24 - - - - -- 0.00% -

25 - - -~ ~~~~- - -- 0.00% -

Table 5: Error values achieved at FES = 103. i0o4,i05 for problems 1-9 (D = 30)
Problem 1 2 3 4 5 6 7 8 9

FES__

I'(et) 6.43e+04 1.00e+05 7.17e+08 1.16e+05 3.50e+04 4.35e+10 6.73e+03 2.1lle+01 4.43e+02
7th ~~9.72e+04 1.16e+05 1.60e+09 1.49e+05 3.98e+04 6.01e+10 8.14e+03 2.12e+01 4.92e+02

1tT" (Median) 1.07e+05 1.39e+05 1.95e+09 1.64e+05 4.12e+04 6.68e+10 8.77e+03 2.12e+01 5.07e+02
1e3 19 1.13e+05 1.63e+05 2.07e+09 1.87e+05 4.33e+04 8.29e+10 8.99e+03 2.12e+01 5.17e+02

25"(Wrst) I124e-e05 3.1 le-i05 2.61e-i09 2.40e+05 4.89e+04 1.05e+1 9.67e-i03 2.13e+O1 5.61e+02
Mean 1.04e+05 1.46e+05 1.83e+09 1.69e+05 4.14e+04 7.06e+10 8.57e+03 2.12e+01 5.03e+02
Std 1.54e+04 4.23e+04 4.89e+08 3.47e+04 3.28e+03 1.6le+10 7.87e+02 5.86e-02 2.87e+01I
IT"(Bet) 6.43e+04 1.00e+05 7.17e+08 1.16e+05 3.50e+04 4.35e+10 4.l1Oe+03 2.03e+0l 4.43e+02
7th9.72e+04 1.16e+05 1.54e+09 1.49e+05 3.98e+04 6.01e+10 4.47e+03 2.1lle+01 4.92e+02
13th (Median) 1.07e+05 1.39e+05 1.90e+09 1.64e+05 4.12e+04 6.69e+10 5.17e+03 2.1lle+01 5.03e+02

1e4 igth1.13e+05 1.63e+05 2.05e+09 1.87e+05 4.28e+04 8.29e+10 5.61e+03 2.1lle+01 5.17e+02
25"' (Worst) 1.24e+05 2.50e+05 2.61e+09 2.40e+05 4.89e+04 1f05e+1 1 7.28e+03 2.12e-'-1 5.61e-'02
Mean 1.03e+05 1.44e+05 1.75e+09 1.69e+05 4.12e+04 7.06e+10 5.19e+03 2.10e+01 5.02e+02
Std 1.52e+04 3.33e+04 5.23e+08 3.47e+04 3.07e+03 1.61e+10 8.03e+02 1.78e-01 2.80e+01
is -( -st7 8.79e+03 7.22e+04 7.17e+08 9.99e+04 2.18e+04 6.77e+09 t.32e+03 2.00e+01 2.91e+02
7th9.94e+03 1.00e+05 1.04e+09 1.40e+05 2.72e+04 1.10e+10 2.05e+03 2.00e+01 3.53e+02
13h(Median) 1.31e+04 1.15e+05 1.16e+09 1.53e+05 2.89e+04 1.33e+10 2.17e+03 2.00e+01 3.62e+02

le5 1i h 1.52e+04 1.24e+05 1.45e+09 1.59e+05 3.04e+04 1.43e+10 2.41e+03 2.00e+01 3.84e+02
25 n7Wost) 1 91e±04 1661e±05 1.76e+09 1.84e±05 3.28e±04 2.25e±10 2.92e±03 2.00e-i-1 4.19e-i02
Mean 1.31e+04 1.13e+05 1.22e+09 1.47e+05 2.87e+04 1.30e+10 2.17e+03 2.00e+01 3.65e+02

___ Std 3.14e+03 2.21e+04 2.74e+08 2.16e+04 2.89e+03 3.5Sle+09 3.63-e+02 7.24e-07 2.65e+01

3e5

1"(Best) 5.1 Ile-09T 2.09e-03 2.27e+05 3.22e+02 1.31le+03 2.53e+Ul 9.86e-03 2.00Oe+Ul
7th ~~8.58e-09T 6.35e-03 3.63e+05 r6.87e+02 1 .80e+03 3~1.29e+02 9.86e-03 32.00e+01 9.68e-09T

13t (Median) 9.18e-09T 1.22e-02 j4.70e+05 1.19e+03 2.06e+03 1j.48e+02 2.95e-02 j2.00e+01l 1.1l6e-08

__________ 9.57e-09T 2.14e-02 6.88e+05 1.34e+03 2.36e+03 8.48e+02 3.69e-02 jJ2.00e+01 9.95e-01
25tf (Worst) 9.96e-09T 3.89e-02 8.39e+05 2.17e+03 2.64e+03
Mean I8.95e-09T I1.44e-02 I5.07e+05I 1.1le+03 I 2.0e+03
Std 9.90e-ITU 9.853e-03 1 .86e+05 4.35e+02 3.8s e+02

6.45e+03 2.26e-01 2.00e+01 9.95e-01
2.00e+01 2.79e-01
4.97e-07 ]46e01

8.27e-09T
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Table 6: Error values achieved at FES = 103,104, 105 for problems 10-17 (D = 30)
Problem 10 11 12 13 14 15 16 17
FES

lt (Best) 7.57e+02 2.77e+01 1.39e+06 3.21e+05 1.40e+O1l 9.37e+02 9.82e+02 1.16e+03
7thn 7.73e+02 3.1Oe+01 1.61e+06 8.10e+05 1.42e+Ol 9.97e+02 1.12e+03 1.27e+03
13fth(Median) 8.56e+02 3.34e+01 1.77e+06 1.35e+06 1.44e+OI 1.02e+03 1.18e+03 1.36e+03

1e3 i1th 8.74e+02 3.48e+01 1.83e+06 1.70e+06 1.45e+O1 1.04e+03 1.28e+03 1.42e+03
25th (Worst) 9.44e+02 3.87e+01 2.09e+06 2.35e+06 1.46e+O1 1.07e+03 1.36e+03 1.55e+03
Mean 8.36e+02 3.30e+01 1.74e+06 1.29e+06 1.44e+01 1.02e+03 1.20e+03 1.36e+03
Std 5.94e+01 2.95e+00 1.62e+05 5.52e+05- 1.54e-01 3.12e+01 1.07e+02 1.06e+02
1 (Best) 7.57e+02 2.43e+01 9.99e+05 3.21e+05 1.40e+01 8.82e+02 9.82e+02 1.16e+03
7th 7.73e+02 2.67e+01 1.33e+06 8.lOe+05 1.42e+01 9.65e+02 1.Ile+03 1.27e+03
13h (Median) 8.56e+02 3.08e+01 1.44e+06 1.35e+06 1.44e+01 9.87e+02 1.18e+03 1.36e+03

le4 19th 8.74e+02 3.27e+01 1.55e+06 1.70e+06 1.44e+01 1.OOe+03 1.28e+03 1.42e+03
25t (Worst) 9.44e+02 3.67e+01 1.69e+06 2.35e+06 1.45e+01 1.03e+03 1.36e+03 1.55e+03
Mean 8.36e+02 3.01e+01 2.69e+03 1.43e+06 1.43e+01 9.79e+02 1.19e+03 1.36e+03
Std 5.94e+01 3.63e+00 3.52e+03 1.81e+05 1.40e-01 3.30e+01 1.07e+02 1.06e+02
l't (Best) 3.81e+02 2.42e+01 6.74e+05 2.56e+03 1.40e+O1 8.81e+02 4.18e+02 1.08e+03
7thth 4.87e+02 2.67e+O1 1.06e+06 8.54e+03 1.41e+01 9.04e+02 8.02e+02 1.25e+03
13t (Median) 5.14e+02 3.08e+01 1.15e+06 1.42e+04 1.42e+01 9.23e+02 1.05e+03 1.31e+03

leS 9t-i 5.59e+02 3.27e+01 1.24e+06 2.43e+04 1.43e+01 9.36e+02 1.16e+03 1.39e+03
25"4 (Worst) 5.97e+02 3.67e+01 1.32e+06 4.97e+04 1.44e+01 9.72e+02 1.32e+03 1.52e+03
Mean 5.16e+02 3.Ole+O1 1.12e+06 1.74e+04 1.42e+01 9.23e+02 9.45e+02 1.31e+03
Std 4.98e+01 3.64e+00 1.50e+05 1.18e+04 1.07e-O1 2.44e+01 2.79e+02 1.07e+02
i St (Best) 3.71e-08 2.29e+01 6.74e+05 2.27e+00 1.32e+01 8.24e+02 1.85e+01 3.39e+01
7't n 7.68e-08 2.67e+01 9.93e+05 1.26e+01 1.38e+01 8.66e+02 2.46e+01 4.67e+01
13t7 (Median) 1.73e-07 2.90e+01 1.06e+06 1.33e+O1 1.39e+01 8.82e+02 3.30e+01 6.74e+01

3e5 19th 9.95e-01 3.15e+O1 1. 15e+06 1.38e+O1 1.40e+01 8.87e+02 1. 13e+02 1.57e+02
25th (Worst) 2.98e+00 3.67e+01 1.23e+06 1.49e+01 1.41e+01 9.02e+02 4.00e+02 5.45e+02
Mean 5.17e-01 2.95e+01 1.04e+06 1.19e+O1 1.38e+01 8.76e+02 7.15e+Ol 1.56e+02

1tdit` 7.1le-01 3.65e+00 1.32e+05 3.80e+00 1.90e-01 1.9e+O1 8.lOe+Ol 1.58e+02

Table 7: Error values achieved at FES = 103,104,105 for problems 18-25 (D = 30)
Problem 18 19 20 21 22 23 24 25
FES

I't (Best) 1.33e+03 1.33e+03 1.33e+03 1.39e+03 1.58e+03 1.38e+03 1.48e+03 1.52e+03
7t h 1.39e+03 1.38e+03 1.38e+03 1.55e+03 1.79e+03 1.55e+03 1.56e+03 1.66e+03
13t h(Median) 1.42e+03 1.41e+03 1.41e+03 1.57e+03 1.93e+03 1.56e+03 1.59e+03 1.68e+03

le3 1gth1 .45e+03 1 .44e+03 1 .44e+03 1.61e+03 2.02e+03 1.61e+03 1.62e+03 1.75e+03
25Th (Worst) 1.48e+03 1.49e+03 1.49e+03 1.65e+03 2.29e+03 1.64e+03 1.65e+03 1.80e+03
Mean 1.42e+03 1.42e+03 1.42e+03 1.56e+03 1.91e+O3 1.56e+03 1.59e+03 1.69e+03
Std 3.82e+01 4.07e+01 4.07e+01 6.lOe+O 1 .94e+02 6.25e+01 3.99e+01 6.68e+01
1 "t (Best) 1.26e+03 1.28e+03 1.22e+03 1.39e+03 1.50e+03 1.38e+03 1.43e+03 1.lOe+03
____ _ 1.34e+03 1.32e+03 1.31e+03 1.55e+03 1.73e+03 1.55e+03 1.55e+03 1.51e+03
13t" (Median) 1.37e+03 1.38e+03 1.38e+03 1.57e+03 1.85e+03 1.56e+03 1.57e+03 1.56e+03

le4 19it 1.40e+03 1 .40e+03 1 .40e+03 1 .61e+03 1 .99e+03 1 .61e+03 1 .61e+03 1.58e+03
25t (Worst) 1.48e+03 1.47e+03 1.47e+03 1.65e+03 2.18e+03 1.64e+03 1.65e+03 1.66e+03
Mean 1.37e+03 1.37e+03 1.36e+03 1.56e+03 1.86e+03 1.56e+03 1.57e+03 1.52e+03
Std_5.64e+01 4.76e+01 5.71e+O 1 6. 1Oe+O 1 1.75e+02 6.25e+01 5.42e+01 1. 18e+02
1 st (Best) 9.97e+02 9.83e+02 9.80e+02 9.71e+02 1.04e+03 9.78e+02 3.52e+02 3.05e+02
7th 1.03e+03 1.03e+03 1.04e+03 9.93e+02 1.63e+03 1.OOe+03 3.87e+02 3.52e+02
13th (Median) 1.06e+03 1.05e-+03 1.06e+03 1.OOe+03 1.84e+03 1.02e+03 3.97e+02 3.6 1e+02

le5 igth 1.07e+03 1.09e+03 1.09e+03 1.02e+03 1.94e+03 1.04e+03 4.42e+02 4.00e+02
25't (Worst) 1.14e+03 1.14e+03 1.14e+03 1.04e+03 2.05e+03 1.06e+03 5.09e+02 4.60e+02
Mean 1.06e+03 1.06e+03 1.06e+03 1.Ole+03 1.77e+03 1.02e+03 4.17e+02 3.75e+02
Std 3.04e+01 4.40e+01 3.87e+0O1 1.91e+O1 2.45e+02 2.13e+01 4.31e+O 1 4.14e+01
1't (Best) 8.28e+02 8.28e+02 8.28e+02 8.58e+02 5.25e+02 8.65e+02 2.12e+02 2.12e+02
7th 8.30e+02 8.30e+02 8.30e+02 8.59e+02 1.50e+03 8.66e+02 2.13e+02 2.13e+02
13t (Median) 8.30e+02 8.31e+02 8.31e+02 8.60e+02 1.78e+03 8.66e+02 2.13e+02 2.13e+02

3e5 1gth 8.31e+02 8.32e+02 8.32e+02 8.60e+02 1.91e+03 8.67e+02 2.13e+02 2.14e+02
25"h (Worst) 8.37e+02 8.34e+02 8.33e+02 8.60e+02 1.96e+03 8.68e+02 2.14e+02 2.14e+02
Mean 8.30e+02 8.31e+02 8.31e+02 8.59e+02 1.56e+03 8.66e+02 2.13e+02 2.13e+02
Std 1 .61e+00 1.47e+00 1.32e+00 5.44e-01 4.83e+02 8.07e-01 3.89e-01 5.50e-01
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Table 8: Number of FES required to achieve a given accuracy level for problems 1 - 25 (D = 30)
Prob 1st 7th 13th 19th 25th Mean Std Succ. SPuecc.

1 146536 147008 147520 147820 148610 1.4753e+05 3.0022e+04 100.00% 1.4753e+03
2 - - - - - -- 0.00% -

3 - - 0.00% -

4 0.00%
5 - - - - - - - 0.00% -

6 - - - - - 0.00% -

7 257332 273750 - 2.71361e+05 1.4685e+03 44.00% 6.1674e+05
8 - - - - 0.00%-
9 228064 236104 239896 2.3886e+05 1.8124e+04 72.00% 3.3176e+05
10 238612 249548 261126 2.5140e+05 5.0578e+04 56.00% 4.4894e+05
11I - 0.00%

12 - - - - - - - 0.00% -

13 - - - - - - - 0.00% -

14 - 0.00%
15 - - - - - - - 0.00% -

16 0.00%

17 - 0.00%

18 - 0.00%

19 - 0.00%

20 - - - - - - - 0.00% -

21 - - - - - - - 0.00% -
22 - - 0.00%
23 - 0.00%
24 - 0.00%

25 - - - - 0.00%-

space. For an algorithm to find the exact optimum,
it needs to first locate the global basin by avoiding to
get stuck at many local optimal basins. This feature
of the problems makes it difficult for an algorithm to
solve to optimality.

5 Conclusions

In this paper, we have developed a steady-state, population-
based real-parameter optimization algorithm based on an
algorithm-generator suggested elsewhere [1] and have at-
tempted to solve 25 different benchmark test problems of di-
mensions 10 and 30. The proposed algorithm uses modified
parent-centric recombination (PCX) operator and a polyno-
mial mutation operator along with a niched-selection opera-
tor for creating offspring solutions. The algorithm has been
developed with simple-minded yet essential aspects needed
for solving uni-modal as well as multi-modal optimization
problems. Extensive simulation results have demonstrated
mixed performances on the test problems. Although in most
problems, the desired accuracy could not be achieved, our
algorithm has been able to find solutions close to the opti-
mum function value, relative to the function values of the
landscape. Moreover, our algorithm has not shown any re-
markable sensitivity to (i) noise in the function values and
rotation of the landscape. Comparisons with other algo-
rithms should test the efficacy of the proposed procedure.
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