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Abstract - This study reports how the Differential
Evolution (DE) algorithm performed on the test bed
developed for the CEC05 contest for real parameter
optimization. The test bed includes 25 scalable
functions, many of which are both non-separable and
highly multi-modal. Results include DE's performance
on the 10 and 30-dimensional versions of each function.

1 Overview
This paper looks at how the Differential Evolution

(DE) algorithm performs on the functions developed for
the CEC05 contest for real-parameter optimizers
(Suganthan 2005). The general problem is to find a set of
parameter values, (xl, X2,..., XD) = x, that minimizes a
function,JAx), ofD real variables, i.e.,

Find: x *f(x )<(x), VxE=lflD.

The next section of this paper describes the version of
DE used for this competition. The third section discusses
how to choose the algorithm's three control parameters.
Section 4 briefly discusses the characteristics that make
the contest's 25 test functions useful probes of algorithmic
performance, while Sect. 5 summarizes the contest's
performance criteria. Next, Sect. 6 presents results that
show how DE performed on the ten and thirty-dimensional
versions of each function. In addition, Sect. 6 provides a
measure of DE's algorithmic efficiency and it's scaling
characteristics. Section 7 briefly discusses DE's
performance on individual functions, while Sect. 8 puts
DE's performance into perspective.

2 The Differential Evolution Algorithm
The version of DE used for this contest is known as

DE/rand/l/bin, or "classic DE" (Price and Stom 1997;
Stom and Price 1997; Price et al. 2005). Classic DE begins
by initializing a population of Np, D-dimensional vectors
with parameter values that are distributed with random
uniformity between pre-specified lower and upper initial
parameter bounds, xj,low and Xj,high, respectively.

xj ,g= xO + rand(0,1) (X],high - Xjjow
j = (1,2,...,D), i = (1,2,...,Np), g= 0.

The subscript, g, is the generation index, whilej and i are
the parameter and population indices, respectively. Hence,

x,i,g is the jh parameter of the i"' population vector in
generation g. The random number generator rand(0,1)
returns a uniformly distributed value in the range [0, 1). In
DE, parameter values are encoded as ordinary floating-
point numbers and are manipulated with standard floating-
point operators like those available in high level languages
like C and FORTRAN.

To generate a trial solution, DE first mutates a vector
from the current population by adding to it the scaled
difference of two other vectors from the current
population:

Vi,g = Xrl,g + F. (Xr2,g - Xr3,g)
rl,r2,r3 E {1,2,...,Np}.

Vector indices rl, r2 and r3 are randomly selected except
that all are distinct and different from the population
index, i, i.e., rl . r2 . r3 . i. The mutation scalefactor, F,
is a positive real number that is typically less than 1.0.

Next, one or more parameter values of this mutant
vector, vig, are uniformly crossed with those belonging to
the ith population vector, xig, (a.k.a., the target vector).
The result is the trial vector, uig.

v i,g if rand(0,1) < Cr or J = irand;
uxj,=,g otherwise

irand E {1,2,...,D}.

The crossover constant, 0.0 < Cr < 1.0 controls the
fraction of parameters that the mutant vector contributes to
the trial vector. In addition, the trial vector always inherits
the mutant vector parameter with the randomly chosen
index jra,d to ensure that the trial vector differs by at least
one parameter from the vector with which it will be
compared (i.e., the target vector, xi,g).

If the trial vector's function value is less than or equal
to that of the target vector, the trial vector replaces the
target vector in the next generation. Otherwise, the target
vector remains in the population for at least one more
generation.

Ui g if f(ui,g). f(x ,g)
{Xi,g otherwise.

To keep solutions feasible when problems are bound-
constrained, trial parameters that violate boundary
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constraints are reflected back from the bound by the
amount of the violation.

I2 xjjlow - Uj,i,g if u],j,g < Xj,10w
U1,j,g = Xj,high-Uj,i,g if Uj,j,g > Xj,high

Some of the contest functions have added evaluation
noise. Our approach did not recalculate the fitness function
for each evaluation, so for these noisy functions, each
population member received a fixed fitness that includes
random noise.

3 Choosing Control Parameters
Classic DE has three control parameters that must be

set by the user: Np, F and Cr. The population size, Np,
typically ranges from 2-D to 40.D. Separable and uni-
modal functions require the smallest population sizes,
while parameter-dependent, multi-modal functions require
the largest populations. Typically, Np must be larger than
a critical value to obtain a globally optimal result, but
making Np too large, while improving convergence
probability, may needlessly increase the number of
function evaluations.

The scale factor, F, is strictly greater than zero. While
F > 1 can solve many problems, F < 1 is usually both
faster and more reliable. Like Np, F must be above a
certain critical value to avoid premature convergence to a
sub-optimal solution, but if F becomes too large, the
number of function evaluations to find the optimum grows
very quickly. Typically, 0.4 < F < 0.95, with F = 0.9 being
a good compromise between speed and probability of
convergence.

Several studies have explored making F a random
variable. By transforming F into a Gaussian random
variable, Zaharie (2002) proved that DE will converge to
the global optimum in the long time limit, i.e., DE
becomes "provably convergent" (Rudolph 1996). Despite
this theoretical advantage over classic DE, both Zaharie
(2002) and Ronkkonen and Lampinen (2003) found that
transforming F into a Gaussian distributed random
variable did not significantly enhance DE's perforrnance.
In addition, Price et al. (2005) demonstrated that unless the
variance of the randomizing distribution is very small, DE
will suffer a significant performance loss on highly
conditioned non-separable functions. Because
randomizing F fails to significantly enhance DE's
performance and because it involves additional
assumptions (e.g., the type of distribution and its defining
characteristics), only F = constant (= 0.9) was considered
for this contest.

Since Cr is a probability, 0 < Cr < 1. When the
objective function is separable, a value for Cr from the
range (0.0, 0.2) is best because then each trial vector
frequently competes with a target vector from which it
differs by a single parameter. In effect, this "change-one-
parameter-at-a-time" strategy optimizes each parameter
independently as a series of D, randomly interleaved, one-
dimensional optimizations (Salomon 1997). While

effective on separable functions, using low values of Cr
when the objective function is multi-modal and non-
separable can cause the search to take longer than a simple
random search (Salomon 1996). For such functions, all
parameters may have to be adjusted simultaneously for the
search to remain efficient. In DE, this occurs when Cr = 1
and each parameter of an existing vector is modified by
the addition of a scaled vector difference. When Cr = 1,
however, the population may stagnate because the size of
the pool of potential trial vectors is limited. At the setting
chosen for this contest (Cr = 0.9), trial vectors having all
new parameter values are common enough that the search
remains efficient when a function is both non-separable
and multi-modal. Additionally, the occasional uniform
crossover with the target vector when Cr = 0.9 inflates the
size of the pool of potential trial vectors and minimizes the
risk of stagnation.

For this contest, control parameters were F = 0.9, Cr =
0.9, Np = 30 for all functions. Only the population size,
Np, was tuned to yield DE's best performance. A
population of only thirty vectors is much too small to
produce regular convergence to the global optimum for
any but the simplest (e.g. uni-modal) ten-dimensional
functions. Ordinarily, population sizes should be between
Np = 200 and Np = 600 to optimize difficult ten and thirty-
dimensional functions. For this contest, however, Np was
chosen smaller than usual to emphasize speed over
convergence probability because the maximum allowed
number of function evaluations per trial (Max FES) was
typically too brief to allow DE to reach the termination
error. In other words, populations large enough to produce
regular convergence would converge too slowly for DE to
perform well at the specified function error checkpoints.

4 Test Functions
Functions fi-fi are uni-modal while the remaining

twenty functions are multi-modal. Seven of these are
simple test functions, while two others are expanded
functions (Whitley et al. 1996). The remaining eleven
functions are hybrid composition functions. Onlyfi andf9
are separable. Test bed functions can be scaled to
arbitrarily high dimension, but this contest uses only their
ten and thirty-dimensional versions.

Test functions were designed to test an optimizer's
ability to locate a global optimum under a variety of
circumstances:

0

S

0

S

0

Function landscape is highly conditioned
Function landscape is translated
Function landscape is rotated
Optimum lies in a narrow basin
Optimum lies on a bound
Optimum lies beyond the initial bounds
Function is not continuous everywhere
Gaussian noise is added to the function evaluation
Bias is added to the function evaluation

Test function definitions can be found in Suganthan et
al. (2005) and are also available on-line at:
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http://www.ntu.edu.sg/home/epnsugan

5 Performance Criteria

The function error, Ax) - Ax*), is recorded at three
checkpoints (1.Oe3, 1.0e4 and 1.0e5 function evaluations
(FES)). The function error is also measured upon
termination when either the error is less than Ter_Err
(1.Oe-8), or the number of function evaluations equals
Max FES (D 1.Oe4). Error data is collected for 25 runs
after which the trials are ordered from best to worst. The
trial mean and standard deviation as well as the results of
trials 1, 7, 13, 19 and 25 are tallied for each of the three
checkpoints and upon termination.

In addition, trials that reach a preset accuracy level
before exceeding Max FES are deemed successes. Both
the fraction of successful trials (success rate) and the ratio
of the average number of evaluations per success and the
success rate (success performance) are reported for each
function's ten and thirty-dimensional versions. In addition,
convergence plots show how the median thirty-
dimensional function value changes with time.

Finally, the complexity and scaling behavior of DE are
estimated by comparing the actual time taken to compute a
sum of transcendental functions with the time taken to
optimize function f3 (the high conditioned, rotated elliptic
function). Further details about the contest criteria can be
found in Suganthan et al. (2005).

6 Results
All results appear on the subsequent 5 pages. Tables 1-

3 plot function error versus FES for the ten-dimensional
test bed. Table 4 then summarizes DE's success
performance on the ten-dimensional test bed. Next, Tables
5-7 report function error values for the thirty-dimensional
problems, while Table 8 presents DE's corresponding
success performance. Figures 1-5 follow, showing the
median trial's function value versus FES. Table 9
summarizes DE's algorithmic efficiency and scaling
performance.

7 Discussion of Results
None of the five, ten-dimensional uni-modal functions

were a challenge for DE. The shifted sphere (fl) was
solved with regularity, but run times would have been
better if Cr had been lowered to exploit this function's
separable nature. The shifted Schwefel problem proved to
be easy to solve both with (f2) and without (f4) the addition
of function evaluation noise. In addition, relocating the
optimum of this function to the search space boundary did
not trick DE. Only in the case of the rotated, high
conditioned elliptic function (f3) was DE unable to
successfully optimize all trials in less than Max_FES trials
(f3 success rate = 0.8). A slight adjustment of DE's control
variables, or a small increase in the allowed Max_FES
would show that DE can easily solvef3 with regularity.

Once D = 30, fi is the only uni-modal function that DE
can solve within the Max_FES set by the contest.
Experience has shown, however, that given a little more

time, DE can easily optimize functions f-f5 to within the
specified error.
DE also solved f6 with regularity, failing to reach the

optimum before Max_FES only once in 25 trials, but other
multi-modal functions were more challenging. Ofthe other
ten-dimensional basic and expanded functions (f6-fi4), DE
was able to find solutions not only forf6 but also forf7,fi,
fi 1 andflf2, albeit not with 100% reliability. With a larger
population and higher Max_FES than were used for this
contest, all of these functions can be solved with
regularity. In addition, experience has shown that DE can
also optimizeflo given more time, even though none of the
trials conducted at Np = 30, F = 0.9 and Cr = 0.9
converged within the Max FES set by this contest. Except
forfi, the relatively low Max_FES also prevented DE from
resolving the optima of the thirty-dimensional versions of
these functions quickly enough to qualify any trials as
successes. In experiments not reported here, these thirty-
dimensional functions have been solved by setting both Cr
and F closer to 1.0 (e.g., 0.98) and by increasing both Np
and Max_FES. Among the basic and expanded functions,
only f8 proved to be intractable for DE. This function is
easy to solve when the optimum is centrally located in the
search space. Consequently, DE's failure to locate the
optimum would seem to be due either to the location of the
optimum at the edge of the search space, or to the
additional distance from the optimum at which some
points are initialized.

Except for ten-dimensional version of f5, the hybrid
composition functions were too hard for DE to solve
within the limits imposed by this contest. Without
knowing how other contest optimizers performed, it is
difficult to assess DE's performance on these newly
designed functions based on error measurements at
checkpoints. If, however, results for other functions are
any indication, increasing both Np and Max_FES for these
functions would likely give a better final result than is
reported here.

8 Summary
While DE's success performance on hybrid

composition functions seems poor, we believe that this is
in large part due to both the contest's low Max_FES and
its restriction on parameter tuning, especially in the case of
Np. Experience has shown that ten-dimensional functions
characteristically take anywhere from hundreds of
thousands to several millions of fimctions evaluations to
solve when DE is well tuned. In addition, the number of
finction evaluations that DE takes to optimize parameter-
dependent, multi-modal functions tends to scale with D2,
so the linear dependence of the contest Max_FES on
dimension places a significant restriction on DE.
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Table 1. Error values for the ten-dimensional functionsf1 -f8, sampled at 1e3, 1e4 and 1e5 FES

FES Function #: 1 2 3 4 5 6 7 8
1 st (Best) 8,92E+002 1,63E+003 9,76E+006 3,01 E+003 3,98E+003 5,12E+006 3,09E+002 2,06E+001

7th 2,03E+003 3,86E+003 2,35E+007 5,37E+003 6,78E+003 3,23E+007 5,44E+002 2,07E+001
13th (Median) 2,52E+003 4,98E+003 2,90E+007 5,79E+003 7,42E+003 5,26E+007 6,34E+002 2,08E+001

1 .OOE+03 19th 2,85E+003 6,95E+003 3,60E+007 8,72E+003 7,94E+003 7,72E+007 6,84E+002 2,08E+001
25th (Worst) 4,37E+003 7,67E+003 6,86E+007 1,46E+004 8,96E+003 2,49E+008 1 ,09E+003 2,10E+001

Mean 2,50E+003 5,14E+003 3,1OE+007 6,90E+003 7,21 E+003 7,06E+007 6,27E+002 2,08E+001
Std 8,60E+002 1 ,70E+003 1 ,42E+007 2,82E+003 1 ,1 9E+003 6,32E+007 1 ,74E+002 9,75E-002

1 st (Best) 4,89E-001 1 ,59E+001 1 ,08E+005 1,19E+001 1 ,65E+001 3,28E+002 2,25E+000 2,03E+001
7th 1 ,03E+000 2,58E+001 1,91 E+005 3,94E+001 2,99E+001 9,94E+002 3,47E+000 2,05E+001

13th (Median) 1,66E+000 3,82E+001 3,08E+005 5,88E+001 3,82E+001 1,37E+003 4,05E+000 2,06E+001
1 .OOE+04 1 9th 2,15E+000 4,41 E+001 4,36E+005 8,72E+001 6,31 E+001 2,24E+003 4,60E+000 2,06E+001

25th (Worst) 4,94E+000 8,60E+001 8,88E+005 2,33E+002 1,09E+002 6,17E+003 7,30E+000 2,07E+001
Mean 1,80E+000 3,79E+001 3,45E+005 7,22E+001 4,85E+001 1,80E+003 4,13E+000 2,06E+001
Std 1,12E+000 1,65E+001 2,04E+005 4,87E+001 2,64E+001 1,32E+003 1,11 E+000 8,47E-002

1st (Best) O,OOE+000 O,OOE+000 9,67E-01 I O,OOE+000 O,OOE+000 O,OOE+000 7,40E-003 2,03E+001
7th O,OOE+000 O,OOE+000 2,80E-008 O,OOE+000 O,OOE+O00 O,OOE+000 8,12E-002 2,04E+001

13th (Median) O,OOE+000 O,OOE+000 1,57E-007 O,OOE+000 O,OOE+000 O,OOE+OOO 1,08E-001 2,04E+001
1 .OOE+05 1 9th O,OOE+OOO O,OOE+000 8,31 E-007 O,OOE+000 O,OOE+000 1,14E-013 1,60E-001 2,05E+001

25th (Worst) O,OOE+000 O,OOE+000 2,01E-005 1,14E-013 O,OOE+000 3,99E+000 6,14E-001 2,05E+001
Mean O,OOE+000 O,OOE+000 1 ,94E-006 9,09E-015 O,OOE+000 1 ,59E-001 1 ,46E-001 2,04E+001
Std O,OOE+OOO O,OOE+000 4,63E-006 3,15E-014 O,OOE+000 7,97E-001 1 ,38E-001 7,58E-002

Table 2. Error values for the ten-dimensional functionsfg -fi7, sampled at 1e3, 1e4 and le5 FES

FES Function #: 9 10 11 12 13 14 15 16 17
1st (Best) 4,76E+001 6,63E+001 8,99E+000 1,56E+004 3,53E+001 3,98E+000 4,75E+002 2,53E+002 2,63E+002

7th 6,08E+001 8,04E+001 1,12E+001 3,1 1E+004 2,40E+002 4,21 E+000 6,64E+002 2,92E+002 3,28E+002
13th (Median) 6,73E+001 8,53E+001 1,21E+001 4,66E+004 6,69E+002 4,31E+000 6,79E+002 3,01E+002 3,65E+002

1 .OOE+03 1 9th 7,13E+001 8,90E+001 1,26E+001 5,28E+004 1,55E+003 4,38E+000 6,93E+002 3,22E+002 3,80E+002
25th (Worst) 8,OOE+001 1 ,02E+002 1 ,32E+001 6,92E+004 7,64E+003 4,52E+000 7,45E+002 3,67E+002 3,99E+002

Mean 6,62E+001 8,51E+001 1,18E+001 4,27E+004 1,24E+003 4,30E+000 6,66E+002 3,03E+002 3,54E+002
Std 8,1 1E+O0O 8,75E+000 9,93E-001 1,40E+004 1,65E+003 1,44E-001 6,47E+001 3,01 E+001 3,69E+001

1st (Best) 1,89E+001 3,06E+001 6,48E+000 2,92E+002 3,64E+000 3,58E+000 2,21E+002 1,56E+002 1,65E+002
7th 2,59E+001 4,08E+001 9,81 E+000 1,41E+003 4,74E+000 3,89E+000 3,78E+002 1,85E+002 2,16E+002

13th (Median) 3,12E+001 4,90E+001 1,03E+001 2,25E+003 5,27E+000 3,98E+000 5,07E+002 2,02E+002 2,38E+002
1 .OOE+04 19th 3,61E+001 5,23E+001 1,05E+001 4,02E+003 5,59E+000 4,02E+000 5,39E+002 2,12E+002 2,50E+002

25th (Worst) 5,12E+001 6,31E+001 1,11 E+001 6,55E+003 7,40E+000 4,13E+000 5,58E+002 2,26E+002 2,66E+002
Mean 3,12E+001 4,69E+001 1,OOE+001 2,59E+003 5,20E+000 3,95E+000 4,56E+002 1,98E+002 2,31E+002
Std 7,87E+000 8,85E+000 9,46E-001 1 ,53E+003 7,94E-001 1 ,24E-001 1 ,03E+002 1 ,82E+001 2,56E+001

continued on next page
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1 st (Best) O,OOE+000 3,98E+000 2,32E-004 O,OOE+000 1,39E-001 2,1 OE+000 O,OOE+000 6,14E+001 9,77E+O01
7th O,OOE+000 5,97E+000 1 ,70E-003 O,OOE+000 6,96E-001 3,24E+000 6,84E+001 1,01 E+002 1 ,04E+002

13th (Median) 9,95E-001 9,95E+000 1,46E-002 2,27E-013 9,63E-001 3,60E+000 4,05E+002 1,16E+002 1,12E+002
1 .OOE+05 1 9th 1,99E+000 1,49E+i001 1,50E+000 1,44E-0 1 1,22E+000 3,77E+000 4,18E+002 1,25E+002 1,20E+002

25th (Worst) 2,98E+000 3,83E+001 5,95E+000 7,12E+002 2,44E+000 3,89E+000 4,34E+002 1,45E+002 1,98E+002
Mean 9,55E-001 1,25E+001 8,47E-001 3,17E+001 9,77E-001 3,45E+000 2,59E+002 1,13E+002 1,15E+002

I_____I__ Std 9,73E-001 7,96E+000 1,40E+000 1,42E+002 4,67E-001 4,40E-001 1,83E+002 1,80EE+001 2,01E+001

Table 3. Error values for the ten-dimensional functionsfi8 -f25, sampled at 1e3, 1e4 and 1e5 FES

FES Function #: 18 19 20 21 22 23 24 25
1st (Best) 8,47E+002 1,01EE+003 1,02E+003 1,06E+003 8,86E+002 1,03E+003 7,59E+002 9,97E+002

7th 1 ,05E+003 1 ,06E+003 1 ,07E+003 1 ,20E+003 9,25E+002 1 ,27E+003 9,35E+002 1 ,04E+003
13th (Median) 1 ,08E+003 1,1OE+003 1 ,08E+003 1 ,26E+003 9,66E+002 1 ,30E+003 9,99E+002 1 ,08E+003

1 .OOE+03 19th 1,1 1 E+003 I I 1 E+003 1,1OE+003 1,30E+003 9,76E+002 1,32E+003 1,1 OE+003 1,1 3E+003
25th (Worst) 1,15E+003 1,13E+003 1,17E+003 1,34E+003 1,06E+003 1,36E+003 1,21E+003 1,48E+003

Mean 1 ,07E+003 1 ,08E+003 1 ,09E+003 1 ,24E+003 9,56E+002 1 ,27E+003 9,99E+002 1,1 OE+003
Std 6,1 3E+001 3,53E+001 3,58E+001 7,57E+001 4,37E+001 1,01 E+002 1,1 3E+002 9,81 E+001

1 st (Best) 3,25E+002 3,18E+002 3,29E+002 5,01 E+002 4,50E+002 5,59E+002 2,OOE+002 9,25E+002
7th 3,97E+002 3,86E+002 3,97E+002 5,02E+002 7,86E+002 5,59E+002 2,01E+002 9,28E+002

13th (Median) 4,26E+002 4,28E+002 4,48E+002 5,03E+002 7,91 E+002 5,60E+002 2,02E+002 9,29E+002
1.OOE+04 19th 5,14E+002 4,92E+002 8,01E+002 5,04E+002 7,95E+002 5,60E+002 2,02E+002 9,30E+002

25th (Worst) 8,07E+002 8,03E+002 8,04E+002 5,18E+002 8,06E+002 1,01E+003 2,04E+002 9,34E+002
Mean 4,98E+002 5,OOE+002 5,43E+002 5,04E+002 7,77E+002 5,90E+002 2,02E+002 9,29E+002
Std 1 ,64E+002 1 ,78E+002 1 ,86E+002 4,63E+000 6,85E+001 1 ,07E+002 1 ,07E+000 1 ,94E+000

1st (Best) 3,OOE+002 3,00E+002 3,OOE+002 3,OOE+002 3,OOE+002 5,59E+002 2,OOE+002 9,22E+002
7th 3,OOE+002 3,00E+002 3,00E+002 5,OOE+002 7,68E+002 5,59E+002 2,OOE+002 9,23E+002

13th (Median) 3,OOE+002 3,OOE+002 3,OOE+002 5,OOE+002 7,75E+002 5,59E+002 2,OOE+002 9,23E+002
1 .OOE+05 19th 3,OOE+002 3,OOE+002 8,OOE+002 5,OOE+002 7,80E+002 5,59E+002 2,OOE+002 9,23E+002

25th (Worst) 8,OOE+002 8,OOE+002 8,OOE+002 5,OOE+002 7,89E+002 7,21E+002 2,OOE+002 9,23E+002
Mean 4,OOE+002 4,20E+002 4,60E+002 4,92E+002 7,18E+002 5,72E+002 2,OOE+002 9,23E+002
Std 2,04E+002 2,18E+002 2,38E+002 4,OOE+001 1 ,58E+002 4,48E+001 O,OOE+000 3,40E-001

Table 4. Ten-dimensional functions: the FES to reach the specified level of accuracy and the success performance

Func. 1 st (Best) 7th 1 3th 1 9th 25th Mean Std. Success rate Success~~~es, ~~~~(Median) (Worst) Performance
1 2,67E+004 2,84E+004 2,96E+004 3,03E+004 3,30E+004 2,94E+004 1 ,67E+003 1 29410
2 4,03E+004 4,47E+004 4,60E+004 4,84E+004 5,03E+004 4,63E+004 2,48E+003 1 46308,8
3 7,73E+004 8,72E+004 9,16E+004 9,74E+004 1,OOE+005 9,20E+004 7,01 E+003 0,8 115018
4 4,74E+004 4,99E+004 5,21 E+004 5,48E+004 5,78E+004 5,24E+004 3,25E+003 1 52372
5 3,71 E+004 3,95E+004 4,09E+004 4,19E+004 4,36E+004 4,07E+004 1 ,67E+003 1 40746
6 3,87E+004 4,19E+004 4,31E+004 4,47E+004 1,OOE+005 4,55E+004 1,16E+004 0,96 47398,3
7 4,39E+004 1 ,OOE+005 1 ,OOE+005 1 ,OOE+005 1 ,OOE+005 9,62E+004 1 ,33E+004 0,08 1 ,20E+006
8 0

9 3,36E+004 4,90E+004 1 ,OOE+005 1 ,OOE+005 1 ,OOE+005 7,78E+004 2,69E+004 0,44 176805
10 _ 0

1 1 6,66E+004 8,20E+004 1,OOE+005 1,OOE+005 1,OOE+005 9,05E+004 1,21E+004 0,48 188522
12 3,39E+004 3,90E+004 4,13E+004 5,OOE+004 1,OOE+005 5,46E+004 2,62E+004 0,76 71903,7
13 0

14 -------0-

15 5,88E+004 1,OOE+005 1,OOE+005 1,OOE+005 1,OOE+005 9,84E+004 8,24E+003 0,04 2,46E+006
16-25 - 0-

6.2 Results for Thirty-dimensional Functions

Table 5. Error values for thirty-dimensional problemsf1 -f8, measured at 1.0e3, l.Oe4, I.Oe5 and 3.0e5 FES

FES Function #: 1 2 3 4 5 6 7 8
1 st(Best) 3,24E+004 6,07E+004 3,76E+008 5,82E+004 2,50E+004 1,06E+010 4,91E+003 2,1 1 E+001

7th 4,03E+004 8,12E+004 7,46E+008 8,53E+004 2,83E+004 1,60E+0 10 6,22E+003 2,12E+001
13th (Median) 4,45E+004 8,52E+004 8,31E+008 1,01 E+005 3,04E+004 1,87E+O1O 6,51E+003 2,12E+001

.OOE+03 19th 5,08E+004 9,61E+004 9,27E+008 1,1 OE+005 3,13E+004 2,70E+010 7,70E+003 2,13E+001
25th(Worst) 5,66E+004 1,02E+005 1,1 OE+009 1,28E+005 3,29E+004 3,33E+010 8,66E+003 2,13E+001

Mean 4,53E+004 8,66E+004 8,18E+008 9,90E+004 2,98E+004 2,09E+010 6,83E+003 2,12E+001
Std 6,99E+003 1 ,12E+004 1 ,90E+008 1 ,83E+004 2,30E+003 6,85E+009 1 ,04E+003 6,45E-002
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1st (Best) 3,31E+003 2,74E+004 1,11E+008 3,62E+004 1,12E+004 1,73E+008 8,53E'-002 2,10E+001
7th 4,68E+003 3,90E+004 1,96E+008 4,78E+004 1,21E'004 3,25E+008 1,49E+003 2,1IIE+001

13th (Median) 5,68E+003 4,09E+004 2,37E+008 5,22E'004 1,38E+004 4,32E+008 1,80E+003 2,11E+001
1 .OOE+04 19th 6,56E+003 4,42E+004 2,53E+008 5,67E+004 1,45E+004 5,IOE+008 2,35E'-003 2,1 IEs00Ol

25th (Worst) 9,66E-'003 6,1IOE+004 3,27E+008 6,59E+004 1,75E+004 8,30E+008 3,1 IE+003 2,12E'-001
Mean 5,74E+003 4,1 9E+004 2,29E+008 5,27E+004 1 ,36E+004 4,37E+008 1,91 E+003 2,1 1 E+001
Std 1,66E+003 8,15E+003 5,I1OE+007 7,44E+003 1,82E+003 1,58E+008 6,30E+002 5,21E-002

1st (Beat) 1,27E-004 7,29E+001 1,61E+006 7,45E+002 8,41E+002 2,91E+00O1 3,28E-001 2,09E'-001
7th 4,91E-004 3,04E+002 3,71E+006 1,27E+003 1,28E+003 5,86E+001 7,16E-001 2,10E+001

13th (Median) 9,59E-004 4,OOE+002 4,94E+006 1 ,66E+003 1 ,65E+003 1 ,16E+002 9,59E-001 2,10E+001
1 OOE+05 19th 1,99E-003 5,08E+002 6,07E+006 2,76E+003 2,22Es-003 1,64E+002 1,01E'-000 2,10E+001

25th (Worst) 7,59E-003 9,15E+002 1,OIE+007 5,OOE+003 2,67E+003 5,82E+002 1,05E+000 2,111E+001
Mean 1 ,41E-003 4,13E+002 5,23E+006 2,10E+003 1,72E+003 1 ,42E+002 8,45E-001 2,I1OF+00O1
Std 1 ,57E-003 1 ,95E+002 2,23E+006 1,1 7E+003 5,37E+002 1 ,25E+002 2,30E-001 4,94E-002

1st (Best) O,QOE+000 9,84E-004 2,85E+005 8,87E-001 2,08E+001 4,47E-001 3,54E-010 2,08E+001
7th O,OOE'-OOO 7,98E-003 4,91E-'005 2,99E+OOO 8,13E'-001 9,96E+000 2,60E-009 2,09E'-001

13th (Median) O,OOE'OOO 2,22E-002 7,29E-'005 6,68E+000 9,35E+001 1,29E'-001 1,20E-008 2,10E+001
3.OOE+05 19th O,OOE+000 3,OOE-002 8,46E+005 1,87E+001 1,77E+002 1,83E+001 6,69E-008 2,10E+001

25th (Worst) O,OOE+000 2,42E-OO1 9,48E+005 7,25E+001 8,06E+002 1,06E+002 1,72E-002 2,10E+001
Mean O,OOE+000 3,33E-002 6,92E+005 1,52E+001 1,70E+002 2,51E+OQ1 2,96E-003 2,10E+001
Std O,OOE+OOO 4,90E-002 2,04E+005 1,81E+001 1,84E+002 2,90E+001 5,55E-003 5,II1E-002

Table 6. Error values for thirty-dimensional problemsf9 - f17, measured at 1.0e3, 1.0e4, 1.0e5 and 3.0e5 FES

FES Function #: 9 10 1 1 12 13 14 15 16 17
1st (Best) 3,29E+002 4,69E+002 4,31E+001 9,43E+005 4,05E+004 1,37E+001 7,60E+002 5,25E+002 5,57E+002

7th 3,89E-e002 5,43E+002 4,47E'001 1,33E+006 1,93E+005 1,41E+001 8,62E+002 6,04E+002 6,73E+002
13th (Median) 4,OOE+002 5,54E+002 4,61E+001 1,53E+006 2,70E+005 1,42E+OO1 9,53E+002 6,67E+002 7,49E+002

1 .OOE+03 19th 4,05E-002 5,92E+002 4,68E+001 1,63E+006 3,35E+005 1,43E+001 9,80E+002 7,39E+002 7,90E+002
25th (Worst) 4,37E'-002 6,75E+002 4,80E+001 1,91E+006 6,34E-s005 1,45E+001 1,09E+003 8,40E+002 8,97E+002

Mean 3,94E+002 5,66E+002 4,58E+001 I1,49E+006 2,92E+005 I1,42E+OO1 9,28E+002 6,65E+002 7,38E+002
Std 2,39E+001 5,06E+001 1,34E+000 2,45E+005 1,47E+005 1,59E-001 9,46E+001 8,46E+001 8,60E+001

1st (Best) 2,16E+002 2,47E+002 4,01E+001 4,83E+005 6,21E+002 1,34E+001 5,13E+002 3,13E+002 2,85E+002
7th 2,45E+002 2,88E+002 4,25E'-0O1 7,09E+005 I1,60E'-003 1 ,38E+001 5,24E+002 3,40E+002 3,74E+002

13th (Median) 2,53E'-002 3,12E+002 4,30E+001 8,03E+005 3,94E+003 I1,39E+001 5,35E+002 3,51iE+002 3,96E+002
1 .OOE+04 19th 2,61E+002 3,41E+002 4,34E'-O01 8,81E+005 7,35E+003 1,40E+001 6,39E+002 3,75E+002 4,30E+002

25th (Worst) 2,81E4-002 3,65E+002 4,44E+001 I1,07E+006 2,07E+004 I1,41E+001 7,27E+002 4,86E+002 6,41 E+002
Mean 2,52E+002 3,14E+002 4,29E-'-O1 8,06E+005 5,62E+003 I1,39E+001 5,84E+002 3,67E+002 4,12E+002
Std 1,65E+001 3,06E+001 9,66E-001 1,37E+005 5,47E+003 1,91E-001 7,06E+001 4,46E+001 7,58E+001

1st (Best) I1,52E+001 1 ,82E+002 3,58E+OO1 2,09E+003 4,22E+000 I1,31E+001 2,02E+002 2,29E+002 2,29E+002
7th 2,07E4-001 2,16E+002 4,02E+001 4,09E+003 9,52E+000 1,34E+001 2,06E+002 2,57E+002 2,66E+002

13th (Median) 2,86E'-001 2,20E'-002 4,05E'001 5,40E-.003 1,13E-'001 1,35E+001 4,OOEi-002 2,67E+002 2,80E+002
I1.OOE+05 19th 4,72E+OO1 2,39E+002 4,09E+001 B,04E+003 1,50E+001 1,37E+OO1 4,OOE+002 2,80E+002 3,OOE+002

25th (Worst) 8,04Ei-QO1 2,62E+002 4,22E+001 1,76E+004 1,94E+001 1,38E+OO1 5,03E+002 4,OOE+002 5,73E+002
Mean 3,36E+001 2,27E+002 4,05E+001 6,83E+003 1,20E+001 1,35E+001 3,61E+002 2,84E+002 3,06E+002
Std I1,58E+001 1 ,95E+001 1 ,25E-e000 4,27E+003 4,54E+000 I1,48E-001 I1,07E+002 4,73E+001 7,87E+001

1st (Best) 9,95E+000 2,15E+001 7,39E+OOO 9,56E+000 1,83E+000 1,30E+001 2,OOE+002 4,77E+001 5,14E+001
7th 1,49Ei-001 2,98E+001 3,76E+001 4,02E+002 2,63E+000 1,34E+001 2,01IE+002 7,27E+001 1,16E+002

13th (Median) 1,81E'-OO1 4,88E+001 3,95E+001 1,78E+003 3,18E+000 1,34E+001 4,OOE+002 2,28E+002 2,53E+002
3.OOE+05 19th 2,09E4-001 2,07E+002 4,OOE+001 3,79E+003 3,68E+000 1,35E+001 4,OOE+002 2,58E+002 2,65E+002-

25th (Worst) 3,28E4-001 2,19E+002 4,13E+001 1,13E+004 4,97E+000 1,36E+001 5,03E+002 4,OOE+002 5,47E+002
Mean I1,85E4OO1 9,69E+001 3,42E+001 2,75E+003 3,23E+000 1 ,34E+00O1 3,60E+002 2,12Ei-002 2,37E+002
Std 5,20E+QOO 8,23E+001 1,03E+001 I3,22E+003 I8,23E-001 I1,41E-001 1,08E+002 1,10E+002 1,22E+002

Table 7. Error values for thirty-dimensional problemsf18- f25, measured at 1.0e3, 1.0e4, 1.0e5 and 3.0e5 FES

FES Function #: 18 19 20 21 22 23 24 25
Ist (Best) 1,14E+003 1,15E+003 1,12E+003 1,30E+003 1,29E+003 1,30E'-003 1,31E+003 1,51E+003

7th 1,19E+003 1,17E+003 1,16E+003 1,32E+003 1,38E+003 1,32E-'003 1,35E+003 1,98E+003
13th (Median) 1 ,20E+003 1 ,20E+003 1,21 E+003 1 ,35E+003 1 ,43E+003 I1,35E+003 I1,38E.-003 2,03E+003

I1.OQE+03 19th 1,23E+003 1,24E+003 1,23E+003 1,39E+003 1,51E+003 1,40E'-003 1,40E+003 2,07E'-003
25th (Worst) 1,28E+003 1,30E+003 1,26E+003 1,41E+003 1,64E+003 1,43E+003 1,46E+003 2,13E+003

Mean 1 ,21E-'003 1 ,21E+003 I1,20E+003 I1,36E+003 I1,43E+003 I1,35E+003 I1,38E+003 2,OOE+003
Std 3,75E+001 4,54E+001 4,26E+001 3,71IE+00O1 8,90E+001 3,83E+001 4,17E+00O1 1,31E'002

1st (Best) 9,51E+002 9,44E+002 9,36E+002 8,99E'-002 1,05E'-003 8,67E+002 7,89E+002 8,34E+002
7th 9,64E-'002 9,57E+002 9,59E'-002 1,01E+003 1,06E'-003 9,7BE+002 8,91E-i002 8,83E+002

13th (Median) 977E+002 9,65E+002 9,68E+002 1,04E-*003 1,10E+003 1,04E+003 9,45E+002 9,26E+002
I1.OOE+04 19th 9,86E--002 9,75E+002 9,83E+002 1,08E+003 1,12E+003 1,07E+003 9,80E+002 9,54E+002

25th (Worst) 1,02E+003 9,97E+002 9,99E+002 1 ,1 3E+003 1,21 E+003 1,11E+003 1,04E+003 1,06E+003
Mean 9,778E+002 9,66E+002 9,69E+002 1,04E+003 1,1 OE+003 1,03E+003 9,35E+002 9,22E+002
Std 2,02E+001 1 ,26E+001 1 ,67E+001 5,23E+001 4,39E+001 6,75E+001 6,45E+001 5,49E+001
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1st (Best) 9,04E+002 9,04E+002 9,04E+002 5,00E+002 8,97E+002 5,34E+002 2,OOE+002 7,30E+002
7th 9,06E+002 9,06E+002 9,06E+002 5,OOE+002 9,14E+002 5,34E+002 2,OOE+002 7,32E+002

13th (Median) 9,07E+002 9,07E+002 9,07E+002 5,00E+002 9,20E+002 5,34E+002 2,00E+002 7,33E+002
1 .OOE+05 19th 9,07E+002 9,07E+002 9,07E+002 5,00E+002 9,30E+002 5,34E+002 2,00E+002 7,34E+002

25th (Worst) 9,08E+002 9,1OE+002 9,08E+002 5,OOE+002 9,48E+002 5,34E+002 2,OOE+002 7,37E+002
Mean 9,06E+002 9,06E+002 9,06E+002 5,00E+002 9,21E+002 5,34E+002 2,00E+002 7,33E+002
Std 9,58E-001 1 ,25E+000 1,01 E+000 5,02E-004 1 ,38E+001 4,22E-004 6,65E-004 1 ,56E+000

1st (Best) 9,03E+002 9,03E+002 9,03E+002 5,00E+002 8,74E+002 5,34E+002 2,00E+002 7,29E+002
7th 9,04E+002 9,04E+002 9,04E+002 5,OOE+002 8,88E+002 5,34E+002 2,OOE+002 7,29E+002

13th (Median) 9,04E+002 9,04E+002 9,04E+002 5,00E+002 8,97E+002 5,34E+002 2,OOE+002 7,30E+002
3.OOE+05 19th 9,04E+002 9,04E+002 9,04E+002 5,OOE+002 9,08E+002 5,34E+002 2,OOE+002 7,30E+002

25th (Worst) 9,05E+002 9,06E+002 9,07E+002 5,00E+002 9,24E+002 5,34E+002 2,OOE+002 7,30E+002
Mean 9,04E+002 9,04E+002 9,04E+002 5,OOE+002 8,97E+002 5,34E+002 2,OOE+002 7,30E+002
Std 3,13E-001 6,25E-001 6,15E-001 1,66E-013 1,33E+001 4,26E-004 1,35E-012 3,74E-001

Table 8. Thirty-dimensional functions: the FES to reach the specified level of accuracy and the success performance

Func. 1 st (Best) 7th a13th 1 9th 25 h (Worst) Mean Std Success rate Success Performance
1 1 ,28E+005 1,33E+005 1,40E+005 1,43E+005 1,51 E+005 1 ,39E+005 6,08E+003 1138549
2 -------0

3 - - - - - - °0 -

4 - - - - - 0 -

5 -------0-

6 - 0

7 1,33E+005 1,50E+005 1 ,56E+005 1,60E+005 3,OOE+005 I,76E+005 5,07E+004 0,88199521
8 0 - I : I : -01
9 -------0-

10&-25 ------ 0

6.3 Convergence Graphs for Thirty-dimensional Functions
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6.4 Algorithmic complexity

The system used for the computations presented in this paper consists of an AMD Sempron 2800+ CPU with 1 GB of
RAM, running Mandrake Linux 10.1. Functions were written in C and compiled using gcc with optimization -03.

Table 9. Run times in seconds for contest measures TO, Ti, T2 and the mean of T2 ( i.e., (T2) )
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