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Abstract- In this paper, we propose a novel Self-
adaptive Differential Evolution algorithm (SaDE),
where the choice of learning strategy and the two
control parameters F and CR are not required to be
pre-specified. During evolution, the suitable learning
strategy and parameter settings are gradually self-
adapted according to the learning experience. The
performance of the SaDE is reported on the set of 25
benchmark functions provided by CEC2005 special
session on real parameter optimization

1 Introduction

Differential evolution (DE) algorithm, proposed by Storn
and Price [1], is a simple but powerful population-based
stochastic search technique for solving global
optimization problems. Its effectiveness and efficiency
has been successfully demonstrated in many application
fields such as pattern recognition [1], communication [2]
and mechanical engineering [3]. However, the control
parameters and learning strategies involved in DE are
highly dependent on the problems under consideration.
For a specific task, we may have to spend a huge amount
of time to try through various strategies and fine-tune the
corresponding parameters. This dilemma motivates us to
develop a Self-adaptive DE algorithm (SaDE) to solve
general problems more efficiently.

In the proposed SaDE algorithm, two DE's learning
strategies are selected as candidates due to their good
performance on problems with different characteristics.
These two learning strategies are chosen to be applied to
individuals in the current population with probability
proportional to their previous success rates to generate
potentially good new solutions. Two out of three critical
parameters associated with the original DE algorithm
namely, CR and F are adaptively changed instead of
taking fixed values to deal with different classes of
problems. Another critical parameter of DE, the
population size NP remains a user-specified variable to
tackle problems with different complexity.

2 Differential Evolution Algorithm

The original DE algorithm is described in detail as
follows: Let S c 9V be the n-dimensional search space
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of the problem under consideration. The DE evolves a
population of NP n-dimensional individual vectors, i.e.
solution candidates, X, = (xi,l...x) E S, i = 1,...,NP,
from one generation to the next. The initial population
should ideally cover the entire parameter space by
randomly distributing each parameter of an individual
vector with uniform distribution between the prescribed
upper and lower parameter bounds x; and x,.

At each generation G, DE employs the mutation and
crossover operations to produce a trial vector UiG for

each individual vector XiG, also called target vector, in
the current population.

a) Mutation operation
For each target vector XiG at generation G , an

associated mutant vector Vi G = {VIi,G V2,GI...IViG } can

usually be generated by using one of the following 5
strategies as shown in the online availbe codes []

"DE/randl/ ": ViG -Xrl,G + F* (Xr2,G Xr3,G)
"DE/best/ ": ViEG -Xbest,G + F *(Xr ,G - Xr2,G)
"DE/current to best/l ":

Vi,G = Xi,G + F- (XbeStG - Xi,G)+ F* (XIG - Xr2GG)
"DE/best/2":
Vi,G = Xbes,G + F .(Xrl,G - Xr2,G)+ F (X3 ,G - Xr4,G)
"DE/rand/2":
Vi,G = XrlG + F * (Xr2,G -Xr3,G)+ F (Xr4,G - XrsG)

where indices rt, r2, r3, r4, r5 are random and mutually
different integers generated in the range [1, NP], which
should also be different from the current trial vector's
index i . F is a factor in [0,2] for scaling differential
vectors and XbesitG is the individual vector with best
fitness value in the population at generation G.

b) Crossover operation
After the mutation phase, the "binominal" crossover

operation is applied to each pair of the generated mutant
vector ViG and its corresponding target vector XiG to

generate a trial vector: Ui,G = (u1iG,G U2i,G .**. Uni,G)

X1j,,G = {Vj:i' , if (rand*[0,1] < CR)or (j = jrnd) nj-1,2
'ji,=' Xi otherwVise
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where CR is a user-specified crossover constant in the
range [0, 1) and irand is a randomly chosen integer in the
range [1, NP] to ensure that the trial vector UiG will

differ from its corresponding target vector XiG by at
least one parameter.

c) Selection operation
If the values of some parameters of a newly generated

trial vector exceed the corresponding upper and lower
bounds, we randomly and uniformly reinitialize it within
the search range. Then the fitness values of all trial
vectors are evaluated. After that, a selection operation is
performed. The fitness value of each trial vector f(UiJG)
is com ared to that of its corresponding target vector
f(XG) in the current population. If the trial vector has

smaller or equal fitness value (for minimization problem)
than the corresponding target vector, the trial vector will
replace the target vector and enter the population of the
next generation. Otherwise, the target vector will remain
in the population for the next generation. The operation is
expressed as follows:

X =_ Ui,G if f(Ui,G) < f(Xi,G)i,G+l-X otherwise

The above 3 steps are repeated generation after
generation until some specific stopping criteria are
satisfied.

3 SaDE: Strategy and Parameter Adaptation

To achieve good performance on a specific problem by
using the original DE algorithm, we need to try all
available (usually 5) learning strategies in the mutation
phase and fine-tune the corresponding critical control
parameters CR, F and NP. Many literatures [4], [6]
have pointed out that the performance of the original DE
algorithm is highly dependent on the strategies and
parameter settings. Although we may find the most
suitable strategy and the corresponding control
parameters for a specific problem, it may require a huge
amount of computation time. Also, during different
evolution stages, different strategies and corresponding
parameter settings with different global and local search
capability might be preferred. Therefore, we attempt to
develop a new DE algorithm that can automatically adapt
the learning strategies and the parameters settings during
evolution. Some related works on parameter or strategy
adapation in evolutionary algorithms have been done in
literatures [7], [8].

The idea behind our proposed learning strategy
adaptation is to probabilistically select one out of several
available learning strategies and apply to the current
population. Hence, we should have several candidate
learning strategies available to be chosen and also we

need to develop a procedure to determine the probability
of applying each learning strategy. In our current
implementation, we select two learning strategies as
candidates: "rand/l/bin" and "current to best/2/bin" that
are respectively expressed as:

Vi,G = Xr,,G + F*(Xr2,G Xr3GG)
Vi,G =-XG + F - (Xbest,G -Xi,G)+FF(XrF,G Xr2GG)

The reason for our choice is that these two strategies have
been commonly used in many DE literatures [] and
reported to perform well on problems with distinct
characteristics. Among them, "rand/i/bin" strategy
usually demonstrates good diversity while the "current to
best/2/bin" strategy shows good convergence property,
which we also observe in our trial experiments.

Since here we have two candidate strategies, assuming
that the probability of applying strategy "rand/l/bin" to
each individual in the current population is p1 , the
probability of applying another strategy should be
P2 = 1-p1 . The initial probabilities are set to be equal 0.5,
i.e., p1 = p2 = 0.5. Therefore, both strategies have equal
probability to be applied to each individual in the initial
population. For the population of size NP , we can
randomly generate a vector of size NP with uniform
distribution in the range [0, 1] for each element. If the 1th
element value of the vector is smaller than or equal to p1,
the strategy "rand/l/bin" will be applied to the jP
individual in the current population. Otherwise the
strategy "current to best/2/bin" will be applied. After
evaluation of all newly generated trial vectors, the number
of trial vectors successfully entering the next generation
while generated by the strategy "rand/i/bin" and the
strategy "current to best/2/bin" are recorded as ns, and
ns2, respectively, and the numbers of trial vectors
discarded while generated by the strategy "rand/l/bin"
and the strategy "current to best/2/bin" are recorded as
nfi and nf2 . Those two numbers are accumulated within
a specified number of generations (50 in our experiments),
called the "learning period". Then, the probability of p1
is updated as:

nsl (ns2 + nf2)
1 ns2 (nsl + nfl) + nsl (ns2 + nf2) "2 =

The above expression represents the percentage of the
success rate of trial vectors generated by strategy
"'rand/l/bin" in the summation of it and the successful
rate of trial vectors generated by strategy "current to
best/2/bin" during the learnng period. Therefore, the
probability of applying those two strategies is updated,
after the learning period. Also we will reset all the
counters ns , ns2, nf1 and nf2 once updating to avoid
the possible side-effect accumulated in the previous
learning stage. This adaptation procedure can gradually
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evolve the most suitable learning strategy at different
learning stages for the problem under consideration.

In the original DE, the 3 critical control parameters
CR, F and NP are closely related to the problem under
consideration. Here, we keep NP as a user-specified
value as in the original DE, so as to deal with problems
with different dimensionalities. Between the two
parameters CR and F , CR is much more sensitive to
the problem's property and complexity such as the multi-
modality, while F is more related to the convergence
speed. According to our initial experiments, the choice of
F has a larger flexibility, although most of the time the
values between (0, 1] are preferred. Here, we consider
allowing F to take different random values in the range
(0, 2] with normal distributions of mean 0.5 and standard
deviation 0.3 for different individuals in the current
population. This scheme can keep both local (with samll
F values) and global (with large F values) search
ability to generate the potential good mutant vector
throughout the evolution process. The control parameter
CR, plays an essential role in the original DE algorithm.
The proper choice of CR may lead to good performance
under several learning strategies while a wrong choice
may result in performance deterioration under any
learning strategy. Also, the good CR parameter value
usually falls within a small range, with which the
algorithm can perform consistently well on a complex
problem. Therefore, we consider accumulating the
previous learning experience within a certain generation
interval so as to dynamically adapt the value of CR to a
suitable range. We assume CR normally distributed in a
range with mean CRm and standard deviation 0.1.
Initially, CRm is set at 0.5 and different CR values
conforming this normal distribution are generated for
each individual in the current population. These CR
values for all individuals remain for several generations
(5 in our experiments) and then a new set of CR values is
generated under the same normal distribution. During
every generation, the CR values associated with trial
vectors successfully entering the next generation are
recorded. After a specified number of generations (25 in
our experiments), CR has been changed for several times
(25/5=5 times in our experiments) under the same normal
distribution with center CRm and standard deviation 0.1,
and we recalculate the mean of normal distribution of CR
according to all the recorded CR values corresponding to
successful trial vectors during this period. With this new
normal distribution's mean and the standard devidation
0.1, we repeat the above procedure. As a result, the proper
CR value range for the current problem can be learned to
suit the particular problem and. Note that we will empty
the record of the successful CR values once we
recalculate the normal distribution mean to avoid the
possible inappropriate long-term accumulation effects.
We introduce the above learning strategy and

parameter adaptation schemes into the original DE
algorithm and develop a new Self-adaptive Differential

Evolution algorithm (SaDE). The SaDE does not require
the choice of a certain learning strategy and the setting of
specific values to critical control parameters CR and F.
The learning strategy and control parameter CR, which
are highly dependent on the problem's characteristic and
complexity, are self-adapted by using the previous
learning experience. Therefore, the SaDE algorithm can
demonstrate consistently good performance on problems
with different properties, such as unimodal and
multimodal problems. The influence on the performance
of SaDE by the number of generations during which
previous learning information is collected is not
significant. We further investigate this now.

To speed up the convergence of the SaDE algorithm,
we apply the local search procedure after a specified
number of generations which is 200 generations in our
experiments, on 5% individuals including the best
individual found so far and the randomly selected
individuals out of the best 50% individuals in the current
population. Here, we employ the Quasi-Newton method
as the local search method. A local search operator is
required as the prespecified MAX_FES are too small to
reach the required level accuracy.

4 Experimental Results

We evaluate the performance of the proposed SaDE
algorithm on a new set of test problems includes 25
functions with different complexity, where 5 of them are
unimodal problems and other 20 are multimodal problems.
Experiments are conducted on all 25 10-D functions and
the former 15 30D problems. We choose the population
size to be 50 and 100 for lOD and 30D problems,
respectively.

For each function, the SaDE is run 25 runs. Best
functions error values achieved when FES=le+2,
FES=le+3, FES=le+4 for the 25 test functions are listed
in Tables 1-5 for lOD and Tables 6-8 for 30D,
respectively. Successful FES & Success Performance are
listed in Tables 9 and 10 for 1 OD and 30D, respectively.

Table 1. Error Values Achieved for Functions 1-5 (1D)0
IOD 1 2 3 4 5

1A 814.1681 3.1353e+003 6.0649e+006 2.7817e+003 6.6495e+003
______ 1.4865e+003 6.0024e+003 2.2955e+007 6.2917e+003 8.4444e+003

1 13t 2.0310e+003 7.3835e+003 3.401 Oe+007 7.8418e+003 9.1522e+003
e 19t' 2.4178e+003 9.1189e+003 5.3783e+007 9.5946e+003 9.4916e+003

3 25" 3.2049e+003 1.1484e+004 8.4690e+007 1.5253e+004 1.0831e+004
M l.9758e+003 7.3545e+003 3.9124e+007 8.0915e+003 8.9202e+003
Std 651.2718 2.4077e+003 2.1059e+007 3.1272e+003 999.5368
1I 1. 1915e-005 7.9389 2.3266e+005 29.7687 126.9805
77th 2.6208e-005 14.1250 7.7086e+005 57.3773 165.452913" 3.2409e-005 19.6960 1.0878e+006 70.3737 184.6404

e 19" 4.9557e-005 30.4271 1.7304e+006 91.9872 228.7035
4 25" 9.9352e-005 45.1573 2.9366e+006 187.8363 437.7502

M 3.8254e-005 23.2716 1.2350e+006 83.1323 203.5592
Std 2.0194e-005 10.7838 6.8592e+005 43.7055 66.1114

_ 1" T 0 0 0 1.1133e-006
7th 0 0 0 0 0.0028

1 13" 0 0 j 0 0 0.0073
e 19" 0 0 9.9142e-006 0 0.0168+ th+

25 h 0 2.5580e-012 1.0309e-004 3.5456e-004 0.0626
M 0 1 .0459e-013 1 .6720e-005 1.4182e-005 0.0123
Std 0 5.1124e-013 3.1196e-005 7.0912e-005 0.0146
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Table 2. Error Values Achieved for Functions 6-10 (1OD)
10D r 6 77 1

1St 1.7079e+007 113.7969 20.3848 36.9348 45.2123

7th 3.5636e+007 191,6213 20.5603 49.4287 69.0149
1 137- 4.9869e+007 206.4133 20.7566 53.2327 77.9215
e 1 7.6773e+007 235.1666 20.8557 60.5725 82.2402

3 25" 1.4553e+008 421.4129 20.9579 70.0434 94.8549

M 5.6299e+007 227.6164 20.7176 54.3968 75.7973
Std 3,4546e+007 82.5769 0.1696 7.5835 11.6957
I.t 10.2070 0.2876 20.3282 3.8698 24.1745
7 15.5318 0.6445 20.4420 5.8920 26.9199

1 IT_ _ 23.6585 0.6998 20.5083 6.5883 32.2517
e 19= 31.4704 0.7328 20.5607 7.2996 36.3790
4 25" 93.9778 0.7749 20.6977 9.3280 42.5940

M 29.7719 0.6696 20.5059 6.6853 32.2302
Std 23.5266 0.1072 0.0954 1.2652 5.4082
1St 8 4.6700e-010 20.0000 0 1.9899
7h 4.3190e-009 0.0148 20.0000 8 3.9798
13t 5.1631e-009 0.0197 20.0000 0 4.9748

e 19* 9.1734e-009 0.0271 20.0000 0 5.9698

5 25i 8.0479e-008 0.0369 20.0000 0 9.9496
M 1.1987e-008 0.0199 20.0000 0 4.9685
Std 1.9282e-008 0.0107 5.3901e-008 0 1.6918

Table 3. Error Values Achieved for Functions 1 1-15 (1OD)
lOD 11 12 13 14 15

1st 8.9358 1.4861e+004 4.4831 3.7675 437.7188

7th 11.1173 3.9307e+004 6.3099 4.1824 612.0006

13th 11.5523 6.2646e+004 6.9095 4.2771 659.7280
+ 19th 12.0657 6.9730e+004 7.5819 4.3973 685.5215

3 25th 12.7319 8.1039e+004 9.3805 4.4404 758.4222
M 11.4084 5.6920e+004 6.9224 4.2598 647.6461
Std 0.9536 1.8450e+004 1.1116 0.1676 65.1235
1st 5.7757 2.5908e+003 0.9800 3.1891 133.4582
7th 7.3877 7.34 18e+003 1.2205 3.7346 159.2004

1 t3th 7.8938 9.8042e+003 1.4449 3.8886 193.2431
e

19th 8.8545 1.0432e+004 1.5457 4.0240 227.7915

4 25th 9.5742 1.2947e+004 1.8841 4.0966 444.3964
M 8.0249- 8.8181 e+003 1.4318 3.8438 210.5349
Std 1.0255 _ 2.7996e+003 0.2541 0.2161 80.0138
1st 3.2352 1.4120e-010 0.1201 2.5765 0
7th 4.5129 1 .7250e-008 0.1957 2.7576 0
13th 4.7649 8.1600e-008 0.2170 2.8923 0

e 19th 5.3023 3.8878e-007 0.2500 3.0258 2.9559e-012

5 25th 5.9546 3.3794e-006 0.3117 3.3373 400
M 4.8909 4.501 le-007 0.2202 2.9153 32.0000
Std 0.6619 8.5062e-007 0.0411 0.2063 110.7550

Table 4. Error Values Achieved for Functions 16-20 (1OD)
IOD 16 17 18 19 20

1 st 235.2350 307.4325 1.0327e+003 1.0629e+003 1.0183e+003

I 7th 281.7288 330.9715 1.0964e+003 1.0936e+003 1.0930e+003
e 13th 304.0599 348.7749 1.1120e+003 1.1069e+003 1.1086e+003
+ 19th 333.1548 405.0067 1.1337e+003 1.1147e+003 1.1347e+003
3 25th 367.0937 467.2421 1.1793e+003 1.1524e+003 1.1570e+003

M 306.5995 366.3721 1.1124e+003 1.1075e+003 1.1l108e+003
Std 36.3082 45.2002 31.4597 23.6555 31,9689
1st 142.4128 171.5105 561.9794 543.2119 510.3079
7th 161.4197 183.9739 800.8610 804.0210 801.3788
13th 169.3572 200.6682 809.4465 822.0176 815.1567

+ 19th 173.9672 211.5187 854.3151 850.2155 837.9725

4 25th 188.7826 241.7007 970.1451 985.6591 974.6514
M 168.3112 200.1827 817.4287 832.3296 813.2161
Std 11.2174 18.7424 97.8982 101.2925 102.1561
1st 86.3059 99.0400 300 300 300
7th 98.5482 106.7286 800.0000 653.5664 800.0000
13th 101.4533 113.6242 800.0000 800.0000 800.0000

+ 19th 104.9396 119.2813 800.0000 800.0000 800.0000
5 25th 111.9003 135.5105 900.8377 930.7288 907.0822

M 101.2093 114.0600 719.3861 704.9373 713.0240
Std 6.1686 9.9679 208.5161 190.3959 201.3396

25th 1.3429e+003

M .953e+00

200.0016
[ 25th 1.0735e+003 800.1401 1.1207e+003 200.1128 395.6858

Std 203.8093 74.5398 212.1329 0.0224 3.9586
1st 300 300.0000 559.4683 200 370.91 12
7th 300.0000 750.6537 559.4683 200 373 .0349

e1 3th 500.0000 752.4286 _ 559.4683 200 = 375.4904
e 19th 500.0000 756.9808 721.2327 200 378.1761

25th 800.0000 800 970.5031 200 381.5455
M 464.0000 734.9044 664.0557 200 375.8646
Std 157.7973 91.5229 152.6608 0 3.1453

Table 6. Error Values Achieved for Functions 1-5 (30D)
30D 1 2 3 4 5

1stO 4.2730e+004 4.8595e+004 6.5006e+008 5.4125e+004 2.6615e+004
7th 4.8645e+004 7.7846e+004 7.7457e+008 8.8156e+004 3.1265e+004
13th 5.3467e+004 8.3764e+004 9.2200e+008 1.0266e+005 3.2998e+004

e 19th 5.6481e+004 8.931Ie+004 1.0911e+009 1.1412e+005 3.4256e+004

3 25th 6.5195e+004 1.0850e+005 1.3928e+009 1.2596e+005 3.5876e+004

M 5.3182e+004 8.1192e+004 9.6475e+008 9.8651e+004 3.2320e+004
Std 5.9527e+003 1.4020e+004 2.1207e+008 1.9938e+004 2.5184e+003
1st 5.7649e+002 2.3977e+004 7.5955e+007 2.6202e+004 1.0918e+004
7th 9.2574e+002 3.0457e+004 1.1061e+008 3.4788e+004 1.1863e+004

1 13th 9.6939e+002 3.1 798e+004 I1.2346e+008 3.8316e+004 1 .2525e+004
e 19th 1.0161e+003 3.3950e+004 1.3413e+008 4.0290e+004 1.3515e+004

4 25th 1.2382e+003 4.4482e+004 1.7999e+008 5.3358e+004 1.4761e+004

M 9.7498e+002 3.1932e+002 2.2425e+004 3.2336e+008 3.2730e+003 4

Std 1.3684e+002 4.1549e+003 2.4947e+007 5.5137e+003 1.081le+003
25st 0 2.3302e-004 8.1709e+004 9.7790e+000 1.3264e+003
7th 0 8.0687e-003 1.3108e+005 7.799e+001 2.1156e+003

133th 5.6843e-014 06.968le-0082t 2.0066e+005 1.2005e+002 2.5316e+003

+ 19th 5.6843e-014 4.0714e-001 2.9315e+005 3.0624e+002 2.7938e+003
25th 5.6843e-014 3.5360e+001 3.1015e+006 1.1099e+003 3.8552e+003
M 3.1 832e-0 14 2.3574e+000 3.4760e+005 2.4542e+002 2.4449e+003

Std 2.8798e-014 7.3445e+000 5.8904e+005 2.7869e+002 5.9879e+002
1st 05.6843e-014 1.8184e+003 4.28044e-0I0 1.3484e+000
7th _ 0 5.6843e-014 7.7336e+003 1.4460e+007 1.7185e+001

3 13th 0 1.1369e-0 13 1.5935e+004 8.5699e-007 6.8808e+00 I

+ 19th 0 1 .1369e-013 2.9740e+004 4.0090e-006 2.1590e+003
5 25th 0 2.4298e-006 8.0315e+005 6.8315e-005 3.5975e+003

M _0 _ 9.719le-008 5.0521le+004 5.8160e-006 7.8803e+002
Std I .0 4.8596e-007 1.5754e+005 1.4479e-005 1.2439e+003

Table 7. Effor Values Achieved for Functions 6-10 (30I))
30D 6_ 9 10

1st 5.0916e+009 4.4818e+003 2.0991e+001 3.6522e+002 5.2034e+002
7th 6.2021e+009 5.5572e+003 2.1156e+001 3.8597e+002 5.7493e+002
13th 7.4284e+009 5.9274e+003 2.1188e+001 3.9171e+002 6.0359e+002

e 19th 8.4641e+009 6.5588e+003 2.1255e+001 4.0845e+002 6.2592e+002
25th 1.0602e+010 7.1445e+003 2.1302e+001 4.2017e+002 6.9889e+002
7M 7.4005e+009 5.9507e+003 2.1191e+001 3.9462e+002 6.0193e+002

Std 1.5005e1009 7.3502e+002 7.8238e-002 1.5638e+001 4.4696e+00
1

13st 3.3127e+006 1.7732e+002 2.0980e+001 41.5000e+002 2.3421e+002
17th 5.9023e+006 2.4483e+002 2.1069e+001 1.7987e+002 2.6193e+002
253th 7.3526e+006 2.7830e+002 2.1080+001 .89706e+002 2.7007e+002
M19th 9.6219e+006 3.0569e+002 2.1125e+001 1[.9524e+002 2.7940e+002
25th 1.510e+007 3.8775e+002 2.1209e+00 I 2.0492e+002 2.9881e+002
1t 37.7825e+006 2.7193e+002 2.1096e+001 1.85886e 02 2.6886e+002
Std 2.8737e+006 4.52e0007 5.5938e-002 13305e+00 1 1 1.4686e+001

1st 2.2i O 1 e+001 3.094 1 e-005 2.0 112e+00 1 2.0464e-0 1 2 2.6864e+00 1
7th 2.3734e+001 7.4335e-003 2.023 1e+00 1 1.51 1 le-002 3.8803e+001

I 1 3th 2.4372e+001 I1.0052e-002 2.0309e+00 1 4.7865e-002 4.5768e+001
e 1 9th 2.5451le+001 2.0582e-002 2.0362e+001 7.3677e-002 5.3728e+00I

5 25th 9.1 559e+00 1 5 .41 06e-002 2.0480e+001_ 2.8997e-00I 6.0693e+00 1
2.7283e+001 I1.4565e-002 2.0305e+001 5.8444e-002 4.5763e+001

Std 1 .3445e+001 1 .2971e-002 9.2049e-002 6.7432e-002 9.1881le+000
I 1st 3.9866e+000 2.8422e-0 14 2.0040e+00 1 0 2.5869e+00I

1
th l.8679e+00 1 4.1 056e-007 2.0096e+00 1 3.0844e+00I

13th 1.9057e+001 7.3960e-003 2.0127e+001 0 3.6813e+001

Table 8. Error Values Achieved for Functions 11-15 ( 30D)

5066e+001 I 1.6705e+006

13 14 15

6 8.6240e+001 1.3880e+001 9.0131 e+002
6 1.4490e+002 1.4076e+001 1.0109e+003

.9014e+002 1 .4208e+001 1.0498e+003

1.0483e+003 1

1788

Table 5. Error Values Achieved for Functions 21-25 (1OD)
IOD 21 22 23 24 25

1 Ist 1.0738e+003 903.5596 1.1912e+003 778.2495 452.5057
e 7th 1 2915e+003 970.4664 1.2867e+003 .0789e+003 608.3791

3 13th 1.3148e+003 985.8289 1.3152e+003 I 1.1394e+003 648.1046
19th 1.3239e+003 1.0 1 14e+003 I 1.3239e+003 I 1.2317e+003 727.7877

I

-

e

-

I I I 1 12
- -------- ---- ----I I St 4.0'

e 7th 4.4i
+ 13th 47
3 191th 4S

1 25th 4.7:
1 M 1 4.51

l9th 898.561 5 786.8441 970.503 1 1 393.5933

e
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Std 1.4916e+000 2.0222e+005 5.8095e+001 1.3066e-001 6.6584e+001
Ist 3.9526e+001 6.9444e+005 1.8333e+001 1.3331e+001 5.1 155e+002
7th 4.0650e+001 8.4099e+005 1.9443e+001 1.3731e+OO1 5.7146e+002
13th 4.1464e+001 9.0247e+005 2.0457e+001 1.3837e+)01 6.0739e+002

+ 19th 4.3054e+001 9.7931e+005 2.1555e+001 1.3914e+001 6.6392e+002
4 25th 43636e+001 1.1349e+006 2.3133e+001 1.4049e+001 7.7397e+002

M 4.1743e+001 9.2214e+005 2.0497e+001 1.3790e+001 6.2072e+002
Std 1.2503e+000 1.1142e+005 1.3309e+000 1.8812e-tOOI 7.0309e+001
Ist 2.6526e+001 4.5250e+002 1.5148e+000 1.2497e+001 1.3978e+002
7th 2.9945e+001 2.9058e+003 1.9457e+000 1.2704e+001 3.0006e+002
13th 3.1010e+001 5.1056e+003 2.0321e+O00 1.2894e+001 3.7037e+002

e
19th 3.1861e+001 7.7071e+003 2.1967e+000 1.3015e+001 4.0000e+002

5 25th 3.3046e+001 1.4132e+004 2.7691e+000 1.3222e+001 5.0000e+002
M 3.0807e+001 5.8477e+003 2.0607e+000 1.2870e+001 3.4588e+002
Std 1.5169e+000 3.9301e+003 3.1533e-001 2.1536e-001 7.7823e+001
I st 2.4079e+001 4.3242e+001 9.5408e-001 1.1662e+001 3.6818e+001

e

7th I 2.5989e+001 1.6940e+002 1. 1129e+000 1.2267e+001 3.0000e+002

Table 9. Best Error Functions Values Achieved in the
MAX FES & Success Perfortmance (IOD)
F (Ml) 7' 13d 19, 25I Mean Std Success Success Perf.

______
Mn Md_ (Max) eate
10126 10126 10126 10126 10126 1 10126 0 1 1.0126e+004

0 i 2 3 4 $ a 7 a 6

Figure 1. Convergence Graph for Function 1-5

le~~~~~~~~~~~~~~~~~~~~~~~as
-se~~~~~~~~~~~~~~~~~1 "'s;..e;,

i
lo(,L--

0

Table 10. Best Error Functions Values Achieved in the
MAX-FES & Success Performance (30D)
F Mint 7Ih 13th 19", 25t' Mean Std rate Success Perf.(Mfin) (Med) (Max) rate

2.023 2.023 2.0234 2.0234 2.023 2.023 5.0662 1.00 2.0234e+004
1 3e+00 3e+00 e+004 e+004 4e+00 4e+00 e-001

4 4 4 4_ _
1.217 1.334 1.4174 1.4648 - 0.96 1.4883e+005

2 Se+00 4e+00 e+005 e+005
5 5

3 0 0

2.448 2.843 2.9639 0.52 5.3816e+005
4 2e+00 4e+00 e+005

5 5
5 - - - - 0 0

6 0 0

6.964 8.342 1.0162 1.6748 0.80 1.3477e+005
7 8e+00 2e+00 e+005 e+005

4 4
8 0 0

8.299 1.035 1 .0389 1.0395 1.039 9.893 9.0090
9 5e+00 le+00 e+005 e+005 6e+00 464+00 e+003

1.00 9.8934e4004

The lOD convergence maps of the SaDE algorithm on

functions 1-5 , functions 6-10, functions 1 1-15, functions
16-20, and functions 21-25 are plotted in Figures 1-5
respectively. The 30D convergence maps of the SaDE
algorithm on functions 1-5 , functions 6-10, functions 11-

15 are illustrated in Figures 6-8, respectively.

5-~~~~~~~~~~~-

I 2 t 4 5 6 I 8 0
Pt x IC'

Figure 2. Convergence Graph for Function 6-10

12

~~~~~~~~~~~~~~~~~~o13

1 4 5 71

Figure 3. Convergence Graph for Function 11I-15
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Figure 4. Convergence Graph for Function 16-20
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Figure 5. Convergence Graph for Function 21-25
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Figure 7. Convergence Graph for Function 6-10
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Figure 6. Convergence Graph for Function 1-5

From the results, we could observe that, for lOD
problems, the SaDE algorithm can find the global optimal

km 2r solution for functions 1, 2, 3, 4, 6, 7, 9, 12 and 15 with
success rate 1, 1, 0.64, 0.96, 1, 0.24, 1, 1 and 0.92,
respectively. For some functions, e.g. function 3, although

-_-r the success rate is not 1, the final obtained best solutions
4it are very close to the success level; For 30D problems, the

SaDE algorithm can find the global optimal solutions for
functions 1, 2, 4, 7 and 9 with success rate 1, 0.96, 0.52,
0.8 and 1, respectively. However, from function 16
throughout to 25, the SaDE algorithm cannot find any
global optimal solution for both 1 OD and 30D over the 25
runs due to the high multi-modality of those composite
functions and also the local search process asscociated

11 with the SaDE make the algorithm to prematurely
converge to a local optimal solution. Therefore, in our
paper, we do not list the 30D results for functions 16-25.
The algorithm complexity, which is defined on
http://www.ntu.edu.sg/home/EPNSugan/, is calculated on
10, 30, 50 dimensions on function 3, to show the
algorithm complexity's relationship with increasing
dimensions as in Table 9. We use the Matlab 6.1 to
implement the algorithm and the system configurations
are listed as follows:
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System Configurations [8] Bryant A. Julstrom, "What Have You Done for Me
Intel Pentiumg 4 CPU 3.00 GHZ Lately? Adapting Operator Probabilities in a Steady-

1 GB ofmemory State Genetic Algorithm" Proc. of the 6th
Windows XP Professional Version 2002 International Conference on Genetic Algorithms,

Language: Matlab pp.81-87,1995.

Table 9. Algorithm Complexity
TO TI T2 (T2-TI)/TO

D=10 40.0710 31.6860 68.8004 0.8264
D=30 40.0710 38.9190 74.2050 0.8806
D=50 40.0710 47.1940 85.4300 0.9542

5 Conclusions

In this paper, we proposed a Self-adaptive Differential
Evolution algorithm (SaDE), which can automatically
adapt its learning strategies and the asscociated
parameters during the evolving procedure. The
performance of the proposed SaDE algorithm are
evaluated on the newly proposed testbed for CEC2005
special session on real parameter optimization.
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