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Abstract- Parent-centric real-parameter crossover
operators create the offspring in the neighborhood of
one of the parents, the female parent, using a
probability distribution. The other parent, the male
one, defines the range of this probability distribution.
The female and male differentiation process determines
the individuals in the population that may become
female or/and male parents. An important property of
this process is that it makes possible the design of two
kinds of real-coded genetic algorithms: ones that
promote global search and ones that are effective local
searchers. In this paper, we study the performance of a
hybridization of these real-coded genetic algorithms
when tackling the test problems proposed for the
Special Session on Real-Parameter Optimization of the
IEEE Congress on Evolutionary Computation 2005.

1 Introduction

The crossover operator has always been regarded as one
of the main search operator in GAs, because it exploits the
available information in previous samples to influence
future searches. This is why most real-coded genetic
algorithm (RCGA) research has been focused on
developing effective real-parameter crossover operators,
and as a result, many different possibilities have been
proposed ([DebOl, Her98, HerO3]). Parent-centric
crossover operators (PCCOs) is a family of real-parameter
crossover operators that has currently received special
attention. In general, these operators use a probability
distribution for creating offspring in a restricted search
space around the region marked by one of the parent, the
female parent. The range of this probability distribution
depends on the distance between the female parent and the
other parent involved in the crossover, the male parent.

So far, PCCO practitioners have assumed that every
chromosome in the population may become either a
female parent or a male parent. However, it is very
important to emphasize that female and male parents have
two differentiated roles:

* Female parents point at the search areas that will
receive sampling points, whereas,

* Male parents are used to determine the extent of these
areas.
At this point, it is reasonable to think that some

chromosomes may be well-suited to act either as female
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parents or as male parents. Thus, a promising way to
improve the behavior of PCCOs involves the introduction
of a female and male differentiation (FMD) process for
the application of these operators. A such process was
proposed in [GarO5]:

* The population of the RCGA contains two different
groups: 1) GF with NF chromosomes that can be
female parents, and 2) GM with NM male parents (NF
and NM are tunable parameters).

* The RCGA uses a specific selection mechanism in
order to select the female parents from GF.

* A different selection mechanism is performed to
choose the male parents from GM.
In [GarO5], it is indicated that adjusting NF and NM we

may design local RCGAs, which offer accuracy, and
global RCGAs, which provide reliability. Furthermore, in
order to obtain robust behavior, in [GarO5], the authors
combined a global RCGA and a local RCGA, producing a
hybrid RCGA.

In this paper, this hybrid RCGA is tested on the test
suite proposed for the Real-Parameter Optimization
Session of the IEEE Congress on Evolutionary
Computation ([SugO5]) (using the Java version provided
to all participants).

We set up the paper as follows. In Section 2, we
describe the pseudo-code of the hybrid RCGA. In Section
3, we presents the results obtained by this algorithm on the
test suite when Dimension=10. The results with
Dimension=30 appear in Section 4. In Section 5, we study
the computational costs of the algorithm, and, in Section
6, we list its associated parameters. In Section 7, we
analyze the results obtained. Finally, we draw some
conclusions in Section 8.

2 The Hybrid RCGA with the FMD Process

This section is aimed to introduce the hybrid RCGA. It
consists on the hybridization of a global RCGA and a
local RGGA. They are steady-state RCGAs based on a
FMD process and that apply the replace worst strategy. In
addition, the global RCGA uses the PBX-a crossover
operator ([LozO4]) and the local RCGA uses the PCX
crossover operator ([DebO2]).

In section 2.1, we describe the two PCCOs used by the
algorithm. In section 2.2, the FMD process is introduced.
Global and local RCGAs are presented in section 2.3.
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Finally, the final algorithm will be described in section
2.4.

2.1 Parent-Centric Crossover Operators
1) PBX-a. Let assume that X =(x ...x) and

y= (y ...y) with xi,yi E[a,bi]c9,i=...n are

two chromosomes that have been selected to apply the
crossover operator to them. X is the female parent,
whereas Y is the male parent. Then, PBX generates the
offspring Z = (z, Z) where zi is a randomly
(uniformly) chosen number from the interval [1, ui],
where li=max{ai,xi-I.a}, u =minfbi,xi+I.a},
I = x, - y I, and a is a parameter associated with this

operator.
2) PCX. It is a multiparent crossover operator because it

uses ,u > 2 chromosomes for generating the offspring.
Initially, it computes the centroid G of the chosen ,u
parents. Then, one parent, XF, is chosen with equal
probability as female parent, and the direction vector
D = XF-G is calculated. Thereafter, from each of the
other (u - 1) parents, the male ones, perpendicular
distances di to the line D are computed and their
average d is found. Finally, the offspring is created as

follows:

Z = XF + wJDJ + E wdE,
i=1

i*F

where Ei are the (u - 1) orthonormal bases that span
the subspace perpendicular to D. The parameters w;

and wq are zero-mean normally distributed variables

with variance o2 and cr2, respectively.

2.2 The Female and Male Differentiation Process
In this section, we describe the FMD process proposed

in [GarO5]. It requires two parameters, NF and NM, with NF
< N and NM < N (N is the population size) and maintains
two groups of chromosomes:

* GF consists of the NF best individuals in the
population, and

* GM is made of the NM best individuals in the
population.
Thus, it should be ensured that either NF =N or NM =N

is fulfilled. Next, we provide two remarks derived form
this definition:

* In the case NF = NM, then, GF = GM, and,
* GEf) GM. 0
Another important feature of this FMD process is that

it uses the uniform fertility selection (UFS) to select the
female parent from GF, and a variation of the negative
assortative mating (NAM) ([FerO1, Mat99]) to choose the
male parent from GM:

* UFS attempts to assign a fair number of offspring to
the chromosomes that visit the population, with the
aim of providing a widespread search. In order to do
this, it selects, as female parent, the individual in GF

with the lowest number of offspring generated (see
pseudo-code in Figure 1).

1) pf ~e Find the chromosome with less offsprings in
GF.

2) Increment the number of offsprings ofpf.
3) Retum pf.

Figure 1. Pseudo-code for UFS.

* NAM selects as male parent the most dissimilar
chromosome to the female parent from a set of nass
randomly chosen chromosomes (see pseudo-code in
Figure 2). We have used nass = 5.

Figure 2. Pseudo-code for NAM.

Figure 3 presents a steady-state RCGA model that
performs the FMD process. It uses the replace worst (RW)
replacement strategy, which replaces the worst individual
in the population only if the new individual is better.

Figure 3. RCGA model based on the FMD process

2.3 Global RCGAs and Local RCGAs
An important conclusion obtained from [GarO5] is that the
FMD process allows us to design two different kinds of
specialized RCGAs:
* Local RCGAs that reach accurate solutions when

they deal with unimodal problems. They use low NF
values.

* Global RCGAs that offer reliable solutions when they
attempt to solve multimodal and complex problems.
They use high NF values.

2.4 Combining Global RCGAs and Local RCGAs
Global and local RCGAs may be hybridized in order to
achieve a robust operation for problems with different
characteristics. The hybridization method follows the
same ideas exposed in [CheO3]. Firstly, we run the global
RCGA during the PG% of the available evaluations, and then,
we perform the local RCGA. The best individuals in the
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1) L 4- Set of na,s randomly chosen chromosomes
from GM.

2) PM e- Find the chromosome in L that is the most
dissimilar from the female parent pf.

3) ReturnPM.

1) Initialize P withN randomly chromosomes.
2) Repeat until the stopCriterion is fulfilled.

a. Select a female parent according to UFS from GF.
b. Select (,u - 1) male parents according to NAM

from GM.
c. Apply the crossover operator to the parents in

order to produce A offspring.
d. Insert the offspring in P by using the RW

strategy.

I
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final population of the global RCGA become the elements
of the initial population of the local RCGA.

We have implemented an instance of the hybrid
RCGA, which is called GL-50. It considers PG = 50%.
The features of its components are:
* The global RCGA uses the PBX-a crossover

operator with a = 0.8, ,t=2, and X =1. In addition, NF
= 100 and NM= 400.

* The local RCGA apply the PCX crossover operator
with a 2=O.1, cr2 = 0.1, ,u= 3, and A= 2. In

addition, NF = 1 and NM= 200.

3 Results with Dimension = 10

In this section, we present the empirical results obtained
by the GL-50 algorithm when tackling the 25 problems of
[SugO5] with Dimension D = 10. The maximum number
of fitness evaluations (FEs) for this Dimension is le5.

3.1 Achieved Error Values
The error values, (f(x) - f (x$)) with x* the optimum, are

presented in Tables 1-3. Each column corresponds to a
problem [SugO5], and the error value has been recorded
after le3, le4, le5 FEs for each one of the 25 runs. The
values of the 25 runs have been sorted and the tables

present the following ones: Is (Best), 7th 13th (Median),
91th, 25th (Worst), Mean and Standard Deviation (Std).

Sometimes, the cells present the character 'T' after the
fitness value. That indicates that the algorithm stopped the
run before reaching the maximum number of FEs because
it has obtained an error inferior to le-8.

3.2 Number of FEs to achieve the desired accuracy
levels

The number of FEs needed in each run to achieve the
fixed accuracy level proposed in [SugO5] is presented in
Table 4. For each problem and run (25), the numbers of
FEs have been sorted and the table presents the following
ones: 1st (Best), 7th 13th (Median), 19th, 25th (Worst),
Mean and Standard Deviation (Std). In addition, the table
shows the success rate for each problem and the success
performance, which is defined as the mean of FEs for the
successful runs multiplied by the number of runs and
divided by the number of successful runs.

4 Results with Dimension = 30

In this section, we present the empirical results obtained
by the GL-50 algorithm when tackling the 25 problems of
[SugO5] with Dimension D = 30. The maximum number

__ ~ ~ ~ ~ ~~~~~~~123 -- 4 5 6 7 8
1" (Best) i 1,5460E+3 | 4,3087E+3 1,0895E+7 | 2,9042E+3 3,7378E+3 | 7,8887E+7 3,9776E+2 | 2,0286E+ I

7th 3,1248E+3 6,3212E+3 4,0881E+7 6,6412E+3 6,4663E+3 1,7394E+8 5,5991E+2 2,061 1E+1
13' (Median) 3,8836E+3 8,2181E+3 4,9823E+7 8,6263E+3 7,1309E+3 2,3401E+8 6,8789E+2 2,0737E+1

1e3 1 g9h 4,7396E+3 9,7125E+3 5,7347E+7 1,1607E+4 8,0754E+3 3,5873E+8 8,2039E+2 2,0821 E+1
25' (Worst) 6,8764E+3 1,2052E+4 7,9516E+7 1,5056E+4 9,0027E+3 5,1725E+8 1,0403E+3 2,0889E+1

Mean 4,0250E+3 8,2986E+3 4,9109E+7 8,8377E+3 7,0796E+3 2,6994E+8 6,9915E+2 2,0694E+1
Std 1,2049E+3 2,3480E+3 1,6323E+7 3,0213E+3 1,2369E+3 1,2828E+8 1,6520E+2 1,7609E-1

i -ct - I In .-n 1AR I "IXN7 I 1 .1nP C O'7-A CT- A OC 1 1 1s,s, in-1 I 7Qs71n- L Q,7 -1.

le4

le5

I" (Best) 8.2384E-3

2,0521E+11,7505E+ 11,8268E+1

2,0676E+11,4385E+05,3034E+03,7602E+1
9,9102E-12,0874E+11,9864E+1

1,1 153E-11,6094E+17,2360E+0
4,4230E-9T 7,2804E-9T 2,0157E+1
8,3825E-9T 9,8573E-3 2,0313E+17,3706E-9T

1,2316E-29,6229E-9T8,5682E-9T

2,0477E+12,2156E-29,8989E-9T9,9908E-9T
8,3177E-9T 8,9375E-9T 8,8737E-9T 1,1723E-2 2,0354E+1
1,4172E-9T 1,0046E-9T [ 1,4790E-9T 7,6974E-3 [ 8,0547E-2

7th 2;9892E-2 I1;2033E+1 6,1068E+5 1,4183E+l I 2,9902E+0 1,5709E+l I 8,8298E-1 2,0436E+1
136 (Median)

7"'
13'h (Median)

1gth
25' (Worst)

Mean
Std

3,8442E-2 1,8028E+1 1,1243E+6 3,4640E+O 9,3957E-1
4,9787E-2 2,0482E+l 1,8825E+6 2,5042E+l 3,7015E+0 1,9806E+1 1,0595E+0 I 2,0568E+1
6,8802E-2 3,3093E+1

1,7086E+1
6,65 10E+0

E-9T

2,4896E+6
1,2306E+6
7,0188E+5
1,08 12E+ 1
3,0830E+1

5,1550E-9T

3,4043E+0
7,0768E-1

9,3005E-9T

9,6214E+1

1,6493E- 1
2,0504E+ 1

2,0365E+1
E+2 [ 9,2953E-9T 9,5606E-9T 9,8593E-9T 1,7241E-2 2,041 OE+1

Table 1: Error Values Achieved for Problems 1-8 with D = 10

9,9910E-9T

1" (Best)
9

5,4306E+1
10

6,2407E+1
11

9,9650E+0
7th 6,6477E+1 8,6668E+1 1,1292E+1I

13"h (Median) 7,3870E+1 9,0750E+1 - 1,1463E+1
19th 7,7927E+1 9,6683E+ I 1,2076E+ 1

25' (Worst) 8,8959E+1 1,0868E+2 1,2603E+1 _L
Mean
Std

Ii' (Best)

7,1658E+1
9,3589E+0
2,3915E+0

8,9899E+1
1,0229E+ 1
1,6769E+1

1,1539E+1
6,4190E-1
7,9186E+0

12
1,8289E+4
3,8739E+4
4,4290E+4
5,5491E+4
8,3762E+4
4,6266E+4
1,5532E+4
9,8155E+07" 41 5,69040+0 ] 3 6 I.7

7t 5,6904E+0 3,1203E+ 1 19,6051E+0 7,5635E+l
13"h (Median) 9,1165E+0 3,3518E+1 9,9735E+0 1,8199E+2

1" 1 3_88040+
-

1i gth 1 ,5542E+l 3,8804E+l I 1,0537E+lI I 1,2802E+3 I_
25"' (Worst)

Mean
Std

1" (Best)
7th

13"h (Median)
19't t

25"' (Worst)
Mean

2,9654E+1
1,1008E+1
7, 172 1E+0
6,7539E-9T
9,9496E- 1
9,9496E-1
9,9496E- 1
3,9798E+0
1,1542E+0
7 9597E-1

4,2588E+1
3,4098E+1
5,7953E+0
9,9496E-1
2,9849E+0
4,9748E+0
5,9698E+0
1, 1939E+1
4,9748E+0
2.7698E+0

1, 1036E+ 1

2,55 18E+0
3,3545E+0
6,7778E+0
2,3340E+0
1 .6064E+0

3,0618E+3
7,6142E+2
9,6472E+2
9,3660E-9T
9,9010E-9T
9,9936E-9T
5,6710E+1
2,9749E+3
4,0691E+2
8889 1E+2_LU_,,,,,7. ''----I,' .1 -''-'--I-*- .---- - _________

Table 2: Error Values Achieved for Problems 9-17 with D = 10

le3

le4

le5

13
5,6383E+l1
3,0925E+2
4,392 1E+2
7,1486E+2
3,4260E+3
6,4679E+2
7,1429E+2
1,5419E+0
2,8455E+0
2,9851E0+0
3,3067E+0
3,6937E+0
2,9483E+0
5,3507E-1
3,6741E-1
5,9359E-1

15
4,9883E+2
7,0393E+2
7,3466E+2
7,5470E+2
7,9648E+2
7,2335E+2
5,8152E+l1
4,0087E+2
4,0131E+2
4,0152E+2
4,0194E+2
4,3350E+2
4,0308E+2
6,4302E+0

14
3,7298E+0
4,2132E+0
4,3245E+0
4,4212E+0
4,4826E+0
4,2900E+0
1,7823E-1
3,3107E+0
3,7723E+0
3,8546E+0
3,9518E+0
4,1328E+0
3,8495E+0
1,5954E-1.
1,3779E+0
1,8933E+0
2,2243E+0

16
2,8487E+2
3,2690E+2
3,4145E+2
3,5019E+2
3,9924E+2
3,3992E+2
3,2185E+ 1

1,7302E+
1,3255E+l
7,2278E+l
9,1099E+l

17
2,9128E+2
3,6345E+2
3,9741E+2

2 4,1850E+2
4,7239E+2

2 3,9192E+2
4,5628E+ 1

2 1,6790E+2
2 1,9717E+2
2 2,0494E+2
2 2,1128E+2
_ 2,2225E+2

2 2,0281E+2
1 1,2668E+1

9,7154E+1
1 1,0126E+2
1 1,0895E+2
1 1,1573E+2
2 1,2114E+2
1 1,0902E+2
0 7,8033E+0

7,9050E-1

4,0000E+2

8,682 1E-1

4,0000E+2

1, 1239E+0
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2,5162E+0

7

4,0000E+2
4

2

I .-,-- .1 -i-II ----- -

~~~~~~ ~~~~~~~~~~~~~~~~
.-I_------- I- -

._ 1- -

I _ II -

_

. . _

.T--T-W~~~~~~~~~~~~~ . . -- _
.1 _- I

.--I I,--, _- _

- -
- . I_

-,..-- _

-

- -- -

___
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..- _
- -I----- - --

i~~ ~_ _ _- _:

7.7537E+O 1,2078E+5 8,2645E+v l1,851 7E+O 1,1702E+l 7,78678-1 2,0286h+ 1

I
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18 19 20 21 22 23 24 25~

1I, (Best) 3,OOOOE+2 3,OOOOE+2 3,OOOOE+2 5,OOOOE+2 7,3509E+2 5,5947E+2 2,0000E+2 3,9340E+2
7t 3,0000E+2 3,0000E+2 3,0000E+2 5,0000E+2 7,4208E+2 5,5947E+2 2,0000E+2 4,0097E+2

13th (Median) 3,OOOOE+2 3,OOOOE+2 3,OOOOE+2 5,OOOOE+2 7,4535E+2 5,5947E+2 2,OOOOE+2 4,0541E+2
1 eS 1i9t 3,OOOOE+2 8,OOOOE+2 8,OOOOE+2 8,OOOOE+2 7,5650E+2 5,5947E+2 2,OOOOE+2 4,0719E+2

25th (Worst) 8,0046E+2 1,0263E+3 9,4983E+2 1,2343E+3 8,2802E+2 1,2686E+3 2,OOOOE+2 4,0849E+2
Mean 4,2002E+2 4,4905E+2 4,4599E+2 6,8933E+2 7,5865E+2 6,3887E+2 2,OOOOE+2 4,0357E+2
Std 2,1798E+2 2,4767E+2 2,4061E+2 2,9841E+2 2,8614E+1 2,0620E+2 O,OOOOE+O 4,6781E+O

Table 3: Error Values Achieved for Problems 18-25 with D = 10

Problem ISt 7th 13'h 1 9th 25h Mean Std Success Rate Success Performance
1 17950 18257 18527 18807 19319 18547,24 391,5847375 100%0 18547,24
2 36140 39811 40521 41487 43357 40584,56 1437,267288 100% 40584,56
3 0%
4 39168 40251 41702 42766 44171 41561,84 1506,329415 100% 41561,84
5 26912 27890 28156 28338 29226 28153,76 514,5927419 100% 28153,76
6 51803 51953 52100 52175 52286 52070,48 136,6473929 100% 52070,48
7 17456 24162 - - - 20803,22 3789,685666 36% 57786,7284
8 - - -_ - - - 0 _______________0%__________
9 19371 20465,33 976,5420285 12% 170544,4444

10-11 0%
12 50399 51530 52970 51536 669,6006272 52/ 99107,69231

13-25 _- 0%
TAt_11 A . 'KT-.__ .rU1C! 1̂.1: , .1T T 11'\I able 4: Number ot ten to acnteve tte cesirec accuracy levels (1) IU)

of fitness evaluations (FEs) for this Dimension is 3e5.

4.1 Convergence Graphs
The graphs show the mean performance of 25 runs for

each problem. In addition, they present the success rate
versus FEs.

The convergence graph and the success rate of the
same problem are represented, in the same figure, by the
same symbol. In order to differentiate these different
graphs, notice that the convergence graph tends to -oo,
whereas the success rate tends to 100 from 0.

Finally, the success rate graph will be shown only
when it is greater than 0 due to the graphs are represented
using logarithmic scale. In this way, most figures do not
present this kind of graphs.

4 - , t Fu~~~~~~~~~~~~~~~~~~~~~RodlonL4i 5! -'+- F-$c41sA~~~~~~~/1

Fu0-oo n

0>

FFs

Figure 5: Convergence Graphs for Problems 6-10
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Figure 4: Convergence Graphs for Problems 1-5
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Figure 6: Convergence Graphs for Problems 11-15
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Figure 7: Convergence Graphs for Problems 16-20
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4.2 Achieved Error Values
The Tables 5-7 shows the same information than Tables 1-
3 but with D = 30. In addition, they record the error values
at termination at 3e5 FEs. As before, when the character
'T' is presented next to the value, it indicates that the
algorithm stopped the run before reaching the 3e5 FEs.

4.3 Number of FEs to achieve the desired accuracy

levels
Table 8 presents the same information than Table 4,

butwithD = 30.

5 Computational Costs

The Table 9 presents computational costs associated with
the GL-50 algorithm, the computing system and the
programming language. They have been obtained by using
a Pentiumg 4, 2.40GHz with 256MB as RAM and
Microsoft X Windows XP. The used programming
language was Java 1.5.0_01.

TO is the time of the test program described in
[SugO5]. TO does not depend on the dimension. TI
corresponds to the computing time for 200000 evaluations
of the function 3 of [SugOS]. It is calculated for every

dimension. Finally, T2 is the complete computing time of
the algorithm with 200000 evaluations as stopping
criterion when tackling benchmark function 3. T2 is
recorded 5 times and T2 is the mean of the five values.

Figure 8: Convergence Graphs for Problems 21-25

1 2 3 4 5 6 7 8
1st (Best) 3,0257E+4 6,3291E+4 4,6627E+8 7,9578E+4 1,9577E+4 8,8659E+9 4,6243E+3 2,1 124E+1

7th 4,0830E+4 7,7729E+4 6,1969E+8 9,0174E+4 2,6079E+4 1,6125E+10 5,7717E+3 2,1 189E+l
13th (Median) 4,8394E+4 8,2459E+4 7,548 1E+8 1,0273E+5 2,7278E+4 1,9125E+10 6,1206E+3 2,1214E+1

1e3 Igth 5,5460E+4 9,2064E+4 8,5731 E+8 1,1919E+5 3,0342E+4 2,3049E+10 6,3596E+3 2,1253E+1
25th (Worst) 6,3160E+4 1,1175E+5 1,0368E+9 1,4672E+5 3,1741E+4 3,1442E+10 7,2251E+3 2,1323E+l

Mean 4,7991E+4 8,5830E+4 7,4707E+8 1,0667E+5 2,7794E+4 2,0037E+10 6,0673E+3 2,1223E+1
Std 9,6471E+3 1,3656E+4 1,6578E+8 1,8261E+4 2,9202E+3 5,6230E+9 6,8086E+2 4,9099E-2

1s (Best) 2,3109E+2 1,5213E+4 7,8047E+7 1,7161E+4 3,2455E+3 7,8207E+5 1,4677E+2 2,0920E+1
7th 3,4515E+2 1,8434E+4 1,1 1146E+8 2,2439E+4 3,9103E+3 1,0130E+6 2,3737E+2 2,1060E+1

13th (Median) 3,7022E+2 2,1727E+4 1,2833E+8 2,5307E+4 4,3413E+3 1,3947E+6 2,6428E+2 2,1108E+1
1 e4 9gth 4,0729E+2 2,4065E+4 1,5241E+8 2,9367E+4 5,0650E+3 1,5264E+6 2,9268E+2 2,1 138E+1

25th (Worst) 5,5559E+2 2,7088E+4 2,4202E+8 4,6392E+4 6,3446E+3 2,5006E+6 3,4889E+2 2,1195E+1
Mean 3,8227E+2 2,1513E+4 1,3615E+8 2,6619E+4 4,4801E+3 1,3875E+6 2,6450E+2 2,1093E+1
Std 6,5406E+1 3,5654E+3 3,8237E+7 6,3904E+3 7,9494E+2 4,7416E+5 4,7198E+1 7,2922E-2

1't (Best) 6,2906E-9T 6,7936E+1 2,2516E+6 1,2212E+2 7,0536E+1 2,3785E+1 2,5040E-7 2,0832E+1
7th 8,4591E-9T 8,041 1E+ I 3,3235E+6 2,1829E+2 2,1 125E+2 2,3925E+1 1,0026E-6 2,0961E+1

13 (Median) 9,0668E-9T 1,2650E+2 5,4922E+6 2,6196E+2 2,7657E+2 2,3971E+1 1,6991E-6 2,0999E+1
leS 19 9,6491E-9T 1,4456E+2 7,7759E+6 3,3684E+2 5,4295E+2 2,4029E+ 1 2,6141E-6 2,1042E+1

25th (Worst) 9,9909E-9T 2,0777E+2 1,5160E+7 4,0837E+2 1,1600E+3 2,4228E+1 7,2652E-6 2,1099E+1
Mean 8,8775E-9T 1,2138E+2 6,0390E+6 2,7300E+2 3,791 1E+2 2,3980E+1 1,8589E-6 2,0996E+1
Std 9,8507E-10 3,7976E+1 3,341 1E+6 8,3686E+1 2,4864E+2 9,0809E-2 1,4339E-6 6,4292E-2

I1St (Best) 6,2906E-9T 9,3444E-9T 5,8348E+2 5,3470E+0 5,2094E+1 9,4041E-9T 6,8700E-9T 2,0815E+1
7 8,4591E-9T 9,8014E-9T 1,8738E+3 1,1357E+1 1,5475E+2 9,9895E-9T 8,8605E-9T 2,0920E+1

13th (Median) 9,0668E-9T 9,9146E-9T 2,2072E+3 1,4229E+1 2,3747E+2 4,5148E-8 9,2913E-9T 2,0961 E+1
3e5 19th 9,6491E-9T 9,9441E-9T 4,2402E+3 2,1453E+1 5,0078E+2 2,6251E-7 9,6609E-9T 2,0979E+1

25th (Worst) 9,9909E-9T 9,9939E-9T 1,2467E+4 5,5222E+1 1,0975E+3 1,5521E-6 9,8770E-9T 2,1036E+1
Mean 8,8775E-9T 9,8351E-9T 3,11 17E+3 1,6844E+1 3,3256E+2 2,5982E-7 9,0730E-9T 2,0946E+1
Std 9,8507E-10 1,7465E-10 2,3263E+3 9,9601E+0 2,4743E+2 4,3227E-7 7,8752E-10 5,7488E-2

Table 5: Error Values Achieved for Problems 1-8 with D 30
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9 10 11 12 13 14 15 16 17
1"(Best) 3,473 1E+2 4,8688E+2 4,2496E+1 1,0610OE+6 9,2820E+4 1,3941E+1 7,7218E+2 5,3425E+2 5,8864E+2
7' 3,6612E+2 5,1978E+2 4,5369E+1 1,1I820E+6 1,2007E+5 1,4162E+1I 9,7651E+2 6,7377E+2 7,3336E+2

13th(Medan) 3,8552E+2 5,4583E+2 4,5907E+1 1,3540E+6 2,0601E+5 1,4191E+1 1,0322E+3 7,2084E+2 7,8887E+2
1e3 19gt 3,9753E+2 5,7443E+2 4,6599E+1I 1,4133E+6 2,8608E+5 1,4306E+1 1,0617E+3 7,6996E+2 8,6142E+2

25th (Worst) 4,1857E+2 6,3429E+2 4,7913E+1 1,6737E+6 4,6700E+5 1,4362E+1 1,1065E+3 8,6347E+2 9,8758E+2
Mean 3,8372E+2 5,5056E+2 4,5750E+l 1,3245E+6 2,2942E+5 1,4213E+1 1,0017E+3 7,0630E+2 7,9761E+2

______ ~~~Std 2,0306E+1 3,9332E+1 1,2190E+O 1,6041E+5 1,1I196E+5 1,0666E-1I 8,7600E+1 9,0711E+1I 8,6351E+1
1' (Best) 1,5871E+2 1,9835E+2 4,0603E+1 9,8644E+4 3,0639E+1I 1,3497E+1 3,8121E+2 2,3359E+2 2,4349E+2

7th 1,8462E+2 2,0940E+2 4,1815E+1 1,4823E+5 4,0191E+1 1,3782E+1 4,7876E+2 2,4309E+2 2,7654E+2
13'h (Median) 1,9505E+2 2,2194E+2 4,2496E+1 1,7556E+5 5,0749E+1 1,3850E+1 4,91 12E+2 2,4836E+2 2,8824E+2

1 e4 19gt 2,0322E+2 2,3016E+2 4,3243E+1 2,1255E+5 5,9355E+1 1,3936E+1 5,1209E+2 2,5782E+2 3,4046E+2
25th(Worst) 2,1375E+2 2,4188E+2 4,4331E+1 3,6658E+5 6,9898E+1 1,4035E+1 5,8552E+2 4,3609E+2 4,762t1E+2

Mean 1,9126E+2 2,1989E+2 4,2489E+1I i,8526E+5 4,9496E+1 1,3852E+t 4,8381E+2 2,6874E+2 3,1445E±2
St___ Sd i,4628E+1 1,2789E+1 1,1096E+0 5,6659E+4 i,1074E+1I 1,1I802E-I 5,1166E+1I 5,5234E+1 6,8314E+1

Q~s) 6,9647E+0 1,511i6E+2 3,8959E+I 2,3632E+2 1,2504E+1 1,2983E+1 2,0000E+2 i,7040E+2 1,8384E+2
7th 1,0945E+1 1,6835E+2 4,0060E+i 4,5085E+3 1,3841E+1 1,3324E+1 3,00000+2 1,91 I10E+2 2,1834E±2

13'h(edian) 1,52420+1 1,76350+2 4,0570E+1 1,073i1E+4 1,4347E+i 1,3393E+1 3,OOOOE+2 1,9853E+2 2,2639E+2
1e5 19gt 1,8Oli1E+1I i,7957E+2 4,0935E+1 1,5811IE+4 1,5170E+1 1,3529E+1 3,0000E+2 2,0650E+2 2,9627E+2

25"' (Worst) 2,6769E+1I i,8890E+2 4,2179E+1I 3,4880E+4 1,5838E+1 1,3698E+1I 5,OOOOE+2 4,OOOOE+2 4,3533E+2
Mean 1,5105E+1 1,7403E+2 4,0575E+1 1,0664E+4 t,4382E+1 1,3393E+1 3,0400E+2 2,17600+2 2,5872E+2

______ ~~~Std 5,03850+0 9,2439E+0 7,52580-1 7,8890E+3 9,9250E-1I 1,6105E-i 7,3484E+1I 6,0457E+i 7,2964E+1
1" (Best) 6,9647E+0 1,79090+1 1,8917E+i 5,9142E+t 1,8666E+0 1,04630+1 2,00000+2 3,7547E+1 4,7562E+1

7"'h 1,09450+1 2,6864E+1 2,17340+1 2,97180+3 2,86230+0 1,1711E+I 3,OOOOE+2 4,5912E+1 7,2139E+1
13th(edian) 1,5242E+1 3,2834E+1 2,4105E+1 8,06750+3 3,1779E+0 1,2320E+1 3,00000+2 5,8650E+1 8,33680+1

3e5 19gt 1,80110E+1I 4,2245E+1 2,7982E+1 1,4577E+4 4,6446E+0 1,2589E+1 3,00000E+2 7,0040E+1 1,7988E+2
25"h (Worst) 2,6769E+1 5,5150E+1I 3,2275E+1 3,4880E+4 1,3949E+1 1,3339E+1 5,OOOOE+2 4,OOOOE+2 4,1 194E+2

Mean 1,51050+1 3,5199E+1 2,4741E+1I 9,5208E+3 5,15150+0 1,2120E+1I 3,0400E+2 8,8672E+1I 1,34960+2
______ ~~~Std 5,0385E+0 1,03210+1 3,5303E+0 t-8,0700E+3 I4,0209E+0 6,6871E-1 7,3485E+1 9,6921E+1 1,1I247E+2

Table 6: Error Values Achieved for Problems 9-17 with D = 30

~~~~~~ ~~~~~~~181920 21 22 23 24 25
I' (Best) 1,1226E+3 1,1283E+3 1,1255E+3 1,3136E+3 i,2858E+3 1,30230+3 1,2882E+3 1,5292E+3

7'h 1,1710E+3 i,1688E+3 1,1752E+3 1,35380+3 i,3657E+3 1,3391E+3 1,3824E+3 1,5867E+3
13th (Median) 1,19820+3 1,1986E+3 1,21030+3 1,36830+3 1,3988E+3 1,35530+3 1,40200+3 1,61210E+3

1e3 19gl 1,2305E+3 1,22390+3 1,22730+3 1,38840+3 1,4640E+3 1,37060+3 1,42370+3 1,63430+3
25"h (Worst) 1,26760+3 1,25940+3 1,28200+3 1,41640+3 1,67240+3 1,3993E+3 1,46260+3 1,71580+3

Mean 1,20060+3 1,19540+3 1,1I9900+3 1,37030+3 1,42660+3 1,3545E+3 1,39920+3 1,61430+3
______ ~~~Std 4,0812E+1 3,71980+1 3,94440+1 2,7620E+1 9,15090+1 2,4530E+1 4,02700+1 4,5252E+1I

1' (Best) 9,00830+2 9,09360+2 9,09260+2 5,8036E+2 8,92810E+2 6,10330+2 3,4404E+2 2,6776E+2
7th 9,10250+2 9,1041E+2 9,09920+2 5,9902E+2 9,09280+2 6,61250+2 9,8674E+2 2,94620+2

13" (Median) 9,10750+2 9,10710E+2 9,10760+2 6,09450+2 9,20880+2 6,7554E+2 9,94610+2 3,08090+2
1e4 1911 9,10970+2 9,11300+2 9,11020+2 6,23560+2 9,26360+2 7,03430+2 9,98210E+2 3,24380+2

25th (Worst) 9,13370+2 9,12510+2 9,13390+2 6,59760+2 9,363 10+2 9,62860+2 1,00830+3 3,66090+2
Mean 9,10890+2 9,10800+2 9,10770+2 6,13180+2 9,17540+2 6,93750+2 9,26650+2 3,10900+2
Std 8,89170-1 7,45090-1I 1,0854E+0 2,00600+1I 1,13120+1 6,82590+1 1,90210E+2 2,41080+1I

1"s (Best) 9,03200+2 9,03090+2 9,03120+2 5,00000+2 8,51350+2 5,34160+2 2,00000+2 2,10320+2
7"h 9,03360+2 9,03430+2 9,03300+2 5,00000+2 8,61080+2 5,52810+2 9,75160+2 2,11060+2

13"h (Median) 9,03510+2 9,03500+2 9,03380+2 5,00000+2 8,78930+2 5,70400+2 9,80540+2 2,11230+2
le5 19"'h 9,03680+2 9,03650+2 9,03600+2 5,00000+2 8,93950+2 5,88650+2 9,87970+2 2,11400+2

25h(Worst) 9,06270+2 9,05840+2 9,04280+2 5,00000+2 9,07360+2 9,17150+2 9,94040+2 2,12040+2
Mean 9,03640+2 9,03640+2 9,03470+2 5,00000+2 8,78280+2 5,8714E+2 8,8850E+2 2,11250+2
Std 5,94900-1I 5,12140-1I 2,44220-1I 8,12220-14 1,74570+1 7,70160+1I 2,59550+2 3,38030-1I

1' (Best) 9,03200+2 9,03090+2 9,03120+2 5,00000+2 8,42010E+2 5,34160+2 2,00000+2 2,09980+2
7"' 9,03360+2 9,03420+2 9,03300+2 5,00000+2 8,56770+2 5,52810+2 9,59710E+2 2,10490+2
13thMedan) 9,03500+2 9,03490+2 9,03370+2 5,00000+2 8,77030+2 5,70400+2 9,68380+2 2,10600+2

3e5 19t 9,03680+2 9,03640+2 9,03590+2 5,00000+2 8,9136E+2 5,88650+2 9,73950+2 2,10650+2
25th (Worst) 9,0626E+2 9,0584E+2 9,0427E+2 5,00000+2 9,0098E+2 9,1715E+2 9,8885E+2 2,1 1110+2

Mean 9,03630+2 9,03630+2 9,03460+2 5,00000+2 8,73500+2 5,87140+2 8,76940+2 2,10600+2
Sd5,95430-1 5,12630-1 2,43870-1 8,76020-14 1,82480+1 7,70150+1I 2,55280+2 2,14930-1I

Table 7: Error Values Achieved for Problems 18-25 with D = 30

Problem 1''t 7"'h 13th I9th 25"t Mean Std Success rate Success Performance
1 56877 57524 58024 58587 60735 58161,48 936,4059002 100's 58161,48
2 158448 159129 159381 159840 161355 159556,92 636,1756125 100% 159556,92
3-5 - - - - - - 0% -

6 209763 211425 213630 216948 229524 215126,4 4921,165487 i00'o 215126,4
7 55310 60353 61643 62726 66109 61543,24 2357,956465 t00'% 61543,24

8-25 - - - - - - O'% -

Table 8: Number of FES to achieve the fixed accuracy (D = 30)
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TO Ti T2 (T2 -Tl)/TO
D = 10 909193766,2 ns 2231674587 ns 11950379113 ns 10,68936555
D = 30 9 8298123266 ns 20646053674 ns 13,58118684

Table 9: Algorithm Complexity
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Parameter Dynamic Range Cost of Parameter Tuning (FEs) Actual Parameter Value

NG
NE [ 100, 200] 1 e4 D 100

NG [300, 450] le4 D 400

NF [1, 5] le4 D I

NML [100, 250] 2e4 D 200

PG [0.25, 0.80] 6e4 D 0.5
Table 10: Parameters

6 Parameters

Table 10 presents the different parameters that modify the
behavior of the algorithm, their ranges, estimated cost of
the parameter tuning and the value used in the
experiments. The algorithm has other parameters that have
taken the suggested values from other authors (see section
2.4).

It is important to remark that the parameters in Table
10 use the values suggested in [GarO5]. We have tried
other values, however the results were poorer. Thus, the
used values seem to perform well on most problems and it
is not necessary to expend so much effort tuning them.

At the other hand, we introduce some guidelines in
order to adjust the parameter values to other problems:

* N1:100 will usually perform well on most problems.
However, if the problem is so much complex, you can
try with 150 or 200.

* NM: 400 produce enough diversity in order to
perform adequately. You can try other values, but the
behavior of the algorithm will be similar.

* N.F: 1 is good in order to reach the local optimum
near the population, which have been optimized with
previous parameters. However, if the fitness
landscape is simplex (unimodal), it could be
preferable 5 (with a low value for PG).

* NM: 200 is good when the population have been
optimized with the previous values (NG and NG).
However, when the fitness landscape is simplex, you
can try with 100 (with a low value of PG)-

* PG: This parameter is the most preferable in order to
be modified. You can try with a higher value when
the fitness function is extremely complex. At the
other hand, if the fitness function is very simplex, you
can choose a smaller value.

7 Analysis of the results

These experiments let us to draw some characteristics of
the GL-50 algorithm. Firstly, the algorithm does not
usually reach the desired accuracy level proposed in
[SugO5]. It only achieves this level for test functions 1, 2,
4, 5 and 6 with D = 10 in every execution. When D = 30,
it achieves the fixed level for test functions 1, 2, 6 and 7.
It is known that the high performance on function 7 with

D = 30, when compared with D = 10, is due to that this
function becomes easier when the dimension grows up.

Another important characteristic is that the algorithm
gets trapped rapidly in a local optimum. This is easy to see
looking to the convergence graphs. This aspect incites us
to study the introduction of reinitialization techniques in
future works. However, we do not think that the local
optimal solutions, where the algorithm is trapped, were
very bad. This is due to we have tried other values for the
parameters in order to change the behavior of the
algorithm, and the results were poorer.

Finally, the different functions can be related
according to some characteristics. These relations let us to
analyze the behavior of the algorithm when tackling
problems with the same characteristics:

* Different Condition Number (Functions 1, 2 and 3):
The algorithm performs more or less well on
functions 1 and 2. However, when the functions is
highly conditioned, like function 3, GL-50 presents
poorer results. This problem becomes a little more
important when the dimension grows up.

* Function with Noise Vs without Noise (Functions 2, 4,
and 16, 17): When D = 10, the algorithm does not
present any problems when using function 4, but
some problems appear when tackling function 17.
However, when D = 30, the situation is the contrary.
GL-50 has problems with function 4 and none with
17. It could be due to that the ranges of possible
values of the fitness function 2 and 4 are wider than
those of functions 16 and 17, and not by the noise.

* Function without Rotation Vs with Rotation
(Functions 9, 10 and 15, 16): It seems that the rotation
of functions does not affect to the performance of the
algorithm. The results for function 10 are worse than
those for function 9, however they are similar. On the
other hand, the algorithm returns better results for
function 16 than for function 15. In addition, when D
= 30, the differences become smaller.

* Continuous Vs Non-continuous (Functions 21 and
23): The algorithm returns very similar results for
both functions.

* Global Optimum on Bounds Vs Narrow Global
Optimum Basin (Functions 18 and 19): It seems that
these properties do not affect to the performance of
the algorithm. However, the results of both functions
deteriorate when D = 30.

* Orthogonal Matrix Vs High Condition Number
Matrix (Functions 21 and 22): The results for function
22 are a little worse than for function 21. On the other
hand, when the dimension grows up, the results, of
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each function, seem similar to those ones when D =
10.

* Global Optimum in the Initialization Range Vs Global
Optimum outside of the Initialization Range
(Functions 24 and 25): When D = 10, the results for
both functions are similar. Curiously, when D = 30,
the results for function 24 deteriorate and those for
function 25 are improved. We think that the algorithm
is not affected by this characteristic.

* Unimodal Functions (Functions 1-5): When D = 10,
the performance of the algorithm seems good in every
function except for function 3. However, when D =
30, the performance deteriorates except for functions
I and 2. It could be due to that the range of values of
the fitness function 3, 4 and 5 is very wide.

* Multi-modal Functions (Functions 6-25): We think
that the algorithm perform well on this type of
problems, taking into account that other instances of
the algorithm returned poorer results. In addition, the
algorithm is not usually so much affect by the use of
higher dimensions.

* Functions with Global Optimum outside of the
Initialization Range (Functions 7 and 25): We think
that the algorithm is able to go through the fitness
landscape looking for the best regions. In [GarO5] the
algorithm shows good results when using this kind of
functions. In addition, it seems to perform well in the
functions 7 and 25.

* Functions with Global Optimum on Bounds
(Functions 5, 8 and 20): We think that function 8 is
not a good one in order to measure the quality of an
Evolutionary Algorithm, because, looking at the
fitness landscape, there is no relation between the
location of the global optimum and the information of
the location of other solutions and their fitness values.
So we will concentrate our comments on functions 5
and 20.
The algorithm seems to be not affected by the location
of the global optimum on bounds. The results for
function 5 when D = 10 are very good. And it seems
to perform well on function 20 when D = 10.
However, when D = 30, the results for both functions
deteriorate.

8 Conclusions

We have applied the hybrid RCGA presented in [GarO5]
to the test suite for the Special Session on Real-Parameter
Optimization of the IEEE Congress on Evolutionary
Computation 2005. The results have let us to draw some
characteristics of this algorithm when tackling problems
with different properties.

For future works, we will be interested on improving
this algorithm in order to increase the quality of its results
for some type of functions, such as high conditioned
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