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Abstract- This paper presents a performance study of
a Real-parameter Genetic Algorithm (SPC-PNX) on a
new benchmark of Real-parameter Optimisation prob-
lems. This benchmark provides a systematic way to
compare different optimisation methods on exactly the
same test problems. These problems were designed to be
hard as they incorporate features that have been shown
to pose great difficulty to many optimisation methods.

1 Introduction

Many Evolutionary Algorithms (EAs) have been devised to
tackle Real-parameter Optimisation problems. It is com-
mon practice to assess the suitability of the EA by optimis-
ing a set of analytical test problems and comparing its per-
formance with the known solutions. However, it has been
argued elsewhere that commonly used test problems may
contain symmetries (e.g. symmetric initialisation around the
global minimum [1]) which are unlikely to be present in a
real world problem. Consequently, an EA exploiting these
symmetries, and thus obtaining a good performance of such
test problems, is likely to perform worse when applied to
real world optimisation problems. Clearly, there is a need
for a new benchmark with test problems designed to avoid
symmetries that could be exploited by EAs. The organisers
of the IEEE CEC-2005 Special Session on Real-parameter
Optimisation have designed such a benchmark and have in-
vited researchers to test their optimisation methods on it.
The benchmark's problem definition files, codes and evalu-
ation criteria are available online1.

Genetic Algorithms (GAs) have been used extensively
for Real-parameter Optimisation (an introductory review is
by Deb [2]). GAs are a class of search and optimisation
techniques inspired by ideas from Darwinian Evolution and
Natural Genetics. Information that describes a candidate so-
lution is encoded into a data structure (the genome), which
in Real-parameter GAs corresponds to an array of real num-
bers. Using operations, analogous to those in nature, new
offspring solutions are bred from parent solutions. After
a number of generations (iterations), an ensemble of im-
proved solutions is obtained. In minimisation, the mea-
sure of the solution quality (fitness) is given by how low
is the objective function value. A reference text for Real-
parameter GAs (also known as Real-coded GAs) is by Her-
rera et al. [3].

1Download Evaluation-Criteria-10-Mar-05.pdf and Intro-2-funs-09-
Mar-05.pdf following the route 'Shared Documents' -- 'CEC2005' at

http://staffx.webstore.ntu.edu.sg/MySite/Public.aspx?accountname=epnsugar

The aim of this paper is to carry out a performance study
of a Real-parameter GA known as SPC-PNX on the CEC-
2005 benchmark. The rest of the paper is organised as fol-
lows. Section 2 briefly describes SPC-PNX. In Section 3,
the experimental setup is presented. The results of the
performance study are discussed in Section 4. Lastly, we
present our conclusions in Section 5.

2 SPC-PNX

The adopted optimisation method is a steady-state Real-
parameter GA called SPC-PNX [ 1 ]. It has been successfully
applied to several nonlinear parameter estimation problems
arising in Earth Sciences [4].

In SPC-PNX, two parents are selected from the cur-
rent population of size N to produce A children (offspring)
through the crossover operator. The objective function value
associated with each child is thereafter evaluated. Offspring
and current population are then combined so that the pop-
ulation remains at a constant size through the replacement
operator. These four steps (selection, crossover, fitness eval-
uation and replacement) form one GA generation. Details of
SPC-PNX's selection, crossover and replacement schemes
are explained next.

2.1 Selection

Uniform random selection, without replacement, is used to
select two parents from the current population. Unusually
for a GA, fitness is not taken into account during the se-
lection process. This can help exploit the information con-
tained in diverse, low fitness solutions.

2.2 Crossover

In this work, the PNX crossover operator [1] is used. This
parent-centric crossover is self-adaptive in the sense that the
spread of the possible offspring solutions depends on the
distance between the parents, which decreases as the pop-
ulation converges. In addition, PNX is an isotropic oper-
ator as it does not preferentially search along any particu-
lar direction. Another beneficial feature is that PNX has a
non-zero probability of generating offspring over the whole
search space. These features contribute to a broader explo-
ration of the search space (see [1] for a discussion on this
issue).

In PNX, for each of the A offspring, we proceed as fol-
lows to determine its jth gene (yj). First, we draw a single
random number w e [0, 1], we use the form (1) if w < 0.5
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Figure 1: Offspring bred from parents i(l) = (1,1) and
x(2)= (3,3) for PNX withi = 2.

and y(2) if w > 0.5. Once this choice is made, the same
selected form is used for every component j. The forms are

(1) - N(x(1), IX(2)-X(1) In)

(2) - (1)i/)
N(2)= N(x(2), IX(2) -X(1) 71)

where N(.,uo) is a random number drawn from a gaussian
distribution with mean p and standard deviation a, x(t) is
the jth component of the ith parent and r is a tunable pa-
rameter. The larger is the value of Tj the more concentrated
is the search around the parents. In Fig. 1, a large num-
ber of offspring are bred from two fixed parents in order to
illustrate how PNX operates.
A constrained version of PNX was also implemented so

that the resulting algorithm concentrates the search within
the initialisation region. This was carried out by introducing
the following modification: accept the calculated offspring
component yj if it is within the initialisation bounds, oth-
erwise use the corresponding parent component xj instead
(i.e. yj = xj).

2.3 Replacement

The scaled probabilistic crowding scheme [1] is used as the
replacement operator. This an improvement of the proba-
bilistic crowding scheme [5], where the closest of the two
preselected individuals (7cst) enters a probabilistic tour-
nament with the offspring (YofP), with culling likelihoods
given by

p(YofP) f (YofP)
f (xofP) + f(xcs)

p(jj?cst) = fGFcst)
f(X°fP) + f( C )

where f() is the objective function value for an individ-
ual S. If the differences in function values across the pop-
ulation are small with respect to their absolute values, the
likelihoods would be very similar in all cases.

The scaled probabilistic crowding replacement is intro-
duced to avoid this situation. First, for each offspring,

NREP individuals from the current population are selected
at random. These individuals then compete with the off-
spring for a place in the population according to the follow-
ing culling likelihoods

p(Qofp) f(XofP) - fbest

f (ofP) + f (jcst) 2fbest
cst) f (XCSt) - fbest

f(7ofP) + fQ(Ycst) - 2fbest
where fbest is the function value of the best individual in the
offspring and selected group of NREP individuals.

This replacement scheme has several beneficial features.
The fittest individual in the replacement competition does
not always win (unless it is also the best individual found so
far). This helps to prevent premature convergence. Crowd-
ing schemes such as this promote the creation of subpop-
ulations that explore different regions of the search space.
This has been shown (e.g. [6]) to be beneficial for creating
diverse optimal solutions and to increase the effectiveness
in finding the global minimum. Also, it implements elitism
in an implicit way. If the best individual in either offspring
or current parent population enters this replacement compe-
tition will have probability zero of being culled.

3 Experimental Setup

The CEC-2005 benchmark contains 25 generic test prob-
lems. Each of them presents a real-valued function to op-
timise and specifies the initialisation region as well as the
required accuracy level. These functions are available for
three dimensionalities: D=10, D=30 and D=502. The op-
timisation process is restricted to a maximum number of
function evaluations (Max-FES), which are 105 (D=10) and
3. 105 (D=30). The participants in the Special Session have
been asked to comment on a number of issues including
how we tuned the algorithm, make comparisons between
selected subsets of problems, give an estimation of the al-
gorithm complexity and present convergence graphs of the
30-variable functions. Further details about the benchmark
and evaluation criteria can be found in the problem defini-
tion and evaluation criteria documents. The codes of the test
problems were downloaded from the same web address as
these documents (see Section 1).

SPC-PNX is implemented in two languages: C and Mat-
lab 7.0. These codes will be made available to facilitate the
reproducibility of our results as well as for their use in other
problems. The numerical experiments were carried out on
several platforms (SUN UltraSparc5 workstations, PCs with
Windows 2000 and PCs with Linux Red Hat).

SPC-PNX contains four tunable parameters: N, A,
NREP and q. In this study, we fix rj = 2.0, A = 1
and NREP=2. Therefore, the only control parameter to
adjust is the population size N. This is done to simplify
the tuning of the algorithm, although we expect that tun-
ing the remaining control parameters would result in sig-
nificant performance improvements. For the two problems

2The Special Session organisers ultimately recommended not to include
the 50-variable functions because of the page limit.
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with the global minimum outside the initialisation region
(f7 and f25), the unconstrained version of the algorithm is
used. The rest of problems use the constrained version.
The approach to constrain the search within the initialisa-
tion bounds is introduced at the crossover level, as explained
in Section 2.2. Note that the differences between both ver-

sions (constrained and unconstrained) are minimal in terms
of complexity.

4 Results

The first performance study is carried out on the 10-variable
test problems (D=10). The only control parameter to adjust
is the population size N. The procedure to adjust this pa-

rameter was broadly as follows. The unimodal problems
(fl-f5) were allowed seven different settings for N, each of
them run with three different initial populations. Therefore,
the cost of the tuning was roughly 1.8 106 function evalu-
ations (FES=1.8e+6). The basic multimodal functions (f6-
f14) were allowed about ten different settings of N, each of
them run three times. Thus, this requires 3. 106 FES. Lastly,
the hybrid functions (f15-f25) were permitted six different
settings of N, each of them run three times. This results
in a total of 2.1 106 FES. Table 1 shows the values of N
that were finally used to provide the results reported in Ta-
ble 2, 3, 4 and 8. For each problem, these results show the
error (difference between the obtained function value and
the actual global minimum) at three checkpoints (103, 104
and 105 FES). Among the 25 runs of each problem, only the
error value for the Ist (Best), 7th, 13th (Median), 19th and
25th (Worst) are reported.

The second performance study is on the 30-variable test
problems. The cost of the tuning process was considerably
lower than in the D=10 case. This is because we directly set
the same values ofN that were finally used in the D=10 case.

Subsequently, we set a higher value of N for each problem
and make several runs to check whether the results were bet-
ter that the initial setting. Three of these runs were made on

the unimodal (fl-f5) and basic multimodal (f6-f14). Only
one tuning run for each hybrid problem (fI5-f25) could be
afforded because of the large amount of computation that
these problems require. The values for N in the D=30 case

are shown in Table 1. These values were used to provide the
results reported in Table 5, 6, 7 and 9. The results are pre-
sented in the same format as in D= 10, but with an additional
checkpoint at 3 * 105 FES. The convergence rate for each of
these problems is shown in Figs. 2, 3, 4, 5 and 6.

The results allow us to study how the different problem
features affect the performance of the adopted optimisation
method. However, a word of caution is needed here, as this
performance does not depend exclusively on the problem
features. The algorithm may also have bad performance
because of poor tuning of its control parameters. The lat-
ter is more likely to happen with the hybrid functions, as

very few settings were tested in those cases. The first com-
parison is between problems 1, 2 and 3, from which it is
clear that a high condition number strongly deteriorates the
algorithm's performance. Secondly, noise does not seem

x 105

Figure 2: Convergence graphs for problems 1 to 5 in D=30.

Figure 3: Convergence graphs for problems 6 to 10 in D=30.
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Table 1: Used values ofN on the D=10 and D=30 problems.
D=10 1 21 3 4 5 6 7 8 9 10 11 1 12
N 20 40 45 l 40 T 35 60 1 150 1000 225 T 200 l 100 T 200 l
D-30 1 2 3 4 5 6 7 8 9 10 11 12
N 40 T 40 45 40 1 100 1 60 T 150 I 1000 300 T 200 1 200 T 200

D=10 l 13 14 15 16 17 18 19 20 21 22 23 24 25
N 50 T 100 150 150 150 100 100 100 50 400 l 400 150 200
D=30 13 14 15 16 17 18 19 20 21 22 1 23 24 25
N 55 100 150 150 150 300 300 300 1300 T 300 300 l 150 T 300

Table 2: Error values achieved when FES=le3, FES=le4 and FES=le5 for Problems 1-8 (D=10).
1le3 1 3 4 1 5 1 6 7 1 8
ist 1.9542e+1 5.3942e+2 5.3646e+6 1.3117e+3 4.0088e+3 | 1.3332e+5 3.3102e+2 2.0939e+1
7th 7.1020e+1 2.3885e+3 7.4867e+6 2.4042e+3 5.2648e+3 1.2350e+6 8.6298e+2 2.1108e+1
13th 1.4973e+2 3.5740e+3 1.2201e+7 3.7942e+3 6.4504e+3 1.7182e+6 1.0154e+3 2.1189e+1
-gth 2.0043e+2 4.6847e+3 1.6604e+7 5.5116e+3 6.9951e+3 6.2229e+6 1.1791e+3 2.1228e+1
25thT 1.2874e+3 8.4256e+3 2.9709e+7 9.7532e+3 8.9238e+3 1.0758e+8 1.7425e+3 2.1288e+1
Mean 2.0162e+2 3.7366e+3 - 1.3406e+7 T 4.2884e+3 T 6.3654e+3 T 7.6545e+6 1.0316e+3 2.1171e+1
Std 2.4979e+2 1.8944e+3 - 6.7426e+6 T 2.3973e+3 1.1679e+3 - 2.1082e+7 3.1256e+2 8.7288e-2
I1e4 1 2 3 4 5 6 7 J 8
1st 6.4899e-9T 6.1474e-2 1.1 178e+5 8.4152e-2 1.7468e+0 1.2400e- I 1.2142e+0 2.0939e+1
7= 8.4223e-9T 5.4431e-1 3.541 le+5 4.0268e-1 6.4554e+0 4.2080e+0 2.0573e+0 2.1048e+1
l3th 9.0660e-9T 1.5391e+0 7.5638e+5 2.1300e+0 1.5149e+1 7.8263e+0 3.3062e+0 2.1095e+1
19th 9.8524e-9T 7.0763e+0 1.0712e+6 8.4987e+0 2.6237e+1 1.1994e+2 5.9570e+0 2.1117e+1
25th 4.9779e-8 2.2521e+1 2.4924e+6 2.3656e+1 1. 1099e+2 9.3645e+2 1.4951e+1 2.1184e+1
Mean 1. 1793e-8 4.4453e+0 8.5866e+5 5.4125e+0 2.6301e+1 1.4958e+2 4.7060e+0 2.1082e+1
Std 9.8954e-9 5.4351e+0 6.4215e+5 7.0855e+0- 2.9593e+ I 2.8172e+2 3.6406e+0 5.991Oe-2
leS [1 [2 3 4 65617 1 8
i st 6.4899e-9T 8.7414e-9T 7.7457e+2 7.6909e-9T 7.9417e-9T 1.8594e-2 9.8573e-3 2.0813e+ 1
7 t 8.3963e-9T 9.5342e-9T 5.6899e+4 9.1910e-9T 8.8876e-9T 8.7512e-1 3.6926e-2 2.0964e+1
13th 8.9819e-9T 9.7326e-9T 8.6585e+4 9.5550e-9T 9.2950e-9T 3.7770e+0 6.3961e-2 2.lOlOe+1
igth 9.8060e-9T 9.8336e-9T 1.3310e+5 9.8676e-9T 9.7643e-9T 4.8391e+0 1.1073e-1 2.1025e+1
25th 9.993 le-9T 9.995 le-9T 3.5216e+5 9.9807e-9T 9.8735e-9T 1 .4830e+2 2.4620e-1 2.1069e+1
Mean 8.8967e-9 9.6317e-9 1.0806e+5 9.3788e-9 9.1535e-9 1.8909e+1 8.2610e-2 2.0991 e+1
Std 9.3915e-10 3.2989e-10 8.7160e+4 6.3274e-10 6.3186e-10 3.9977e+1 6.2418e-2 5.7946e-2

Table 3: Error values achieved when FES=1e3, FES=1e4 and FES=1e5 for Problems 9-17 (D=10).
le3 [ 9 [ 10 1 1 [ 12 13 J 14 [ 15 16 ] 17

iT 5.5183e+1 6.1738e+1 | 8.0730e+0 2.7548e+4 8.9262e+0 | 3.9475e+0 | 5.0269e+2 2.8631e+2 | 3.1075e+2
7th [ 6.7238e+1 8.3257e+1 1.0631e+1 4.8239e+4 1.6386e+1 4.1324e+0 6.3492e+2 3.1663e+2 3.4365e+2
3 h 7.3823e+1 9.4737e+1 1.1205e+1 5.9316e+e4 1.9822e+1 4.2850e+0 6.9548e+2 3.2771e+2 3.5569e+2
1th 8.3476e+1 1.0400e+2 1.1756e+1 6.8485e+4 3.5296e+1 4.4159e+0 7.2325e+2 3.5594e+2 3.8632e+2

25th 9.0078e+1 1.1695e+2 1.2689e+1 9.3332e+4 9.4131e+1 4.4938e+0 7.6550e+2 4.0258e+2 4.3694e+2
Mean 7.4893e+ I 9.2626e+1 1.1142e+1 5.8626e+4 2.8000e+1 4.2671e+0 6.7571e+2 3.3340e+2 3.6186e+2
Std 1.0273e+1 1.5112e+1 9.9503e- I 1.7707e+4 1.9463e+1 1.658le-1 6.5686e+ I 3.1336e+1 3.401 le+l
1e4 [ 9 I 10 1 12 13 14 15 16 17
- s t 2.2931e+l 2.4935e+1 2.6192e+0 7.3944e+2 7.7266e-1 3.5647e+0 3.0709e+2 1.4953e+2 1.6229e+2
7th 2.9486e+1 4.0065e+1 4.1185e+0 1.7779e+3 9.5098e- 1 3.7598e+0 3.7041e+2 1.7970e+2 1.9504e+2
3th 3.1443e+1 4.2601e+1 5.1635e+0 2.9669e+3 1.4826e+0 3.8791e+0 4.5714e+2 1.8783e+2 2.0386e+2

1-th 3.3659e+1 4.7088e+1 5.9658e+0 4.5042e+3 1.9638e+0 3.9125e+0 4.9371e+2 1.9494e+2 2.1158e+2
- 25th 4.1104e+1 5.081Oe+1 7.9697e+0 5.9559e+3 2.8250e+0 4.0230e+0 5.3406e+2 2.0522e+2 2.2274e+2
Mean 3.1784e+1 4.231 le+l 5.2614e+0 3.0946e+3 1.5366e+0 3.8267e+0 4.3616e+2 1.8537e+2 2.0119e+2
Std 4.6675e+0 5.7163e+0 1.4767e+0 1.5770e+3 6.2352e-I 1.2352e-1 6.9424e+1 1.4360e+1 1.5586e+1
1e5 9 ] 10 ] 11 12 13 J 14 15 [ 16 17 ]

ist [ 9.9496e-1 1.9899e+0 2.9952e-4 3.9090e+0 3.4913e-1 1.3864e+0 6.3163e+1 9.1143e+1 9.8923e+1
7th 2.9849e+0 3.9798e+0 1.1 50e+0 1.4991e+01 7.0643e-1 2.9682e+0 1.0226e+2 1.0404e+2 1.1292e+2
13~- [3.9798e+0 5.9698e+0 1.6479e+0 3.0657e+1 8.1781e-1 3.0898e+0 2.0000e+2 1.lOlOe+2 [ 1.1950e+2
i9th 4.9748e+0 8.9546e+0 2.7251e+0 2.1249e+2 1.0153e+0 3.2952e+0 4.0000e+2 1.1606e+2 [ 1.2597e+2
______ [ 1.1940e+1 2.7390e+1 4.4945e+0 1.5583e+3 1.3242e+0 3.6135e+0 4.2541e+2 1.3953e+2 r 1.5144e+2
Mean 4.0196e+0 7.3044e+0 1.9098e+0 2.5951e+2 8.3793e-1 3.0456e+0 2.5376e+2 1.0962e+2 1.1898e+2
Std 2.2703e+0 5.2116e+0 1.1598e+0 4.8933e+2 2.6913e-1 | 4.3662e-1 1.5052e+2 9.8654e+0 1.0707e+1|
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Table 4: Error values achieved when FES=le3, FES=le4 and FES=le5 for Problems 18-25 (D=10).
1e3 [ 18 J 19 20 21 ] 22 23 [ 24 J 25
it 1.0121e+3 1.0506e+3 1.0506e+3 7.9274e+2 8.5281e+2 1.2654e+3 8.0569e+2 1.3870e+3
7th -

1.0903e+3 1 .1052e+3 1.1053e+3 1.2058e+3 1.0404e+3 1.3539e+3 1.2495e+3 1.4445e+3
1. 1249e+3 1.1295e+3 1. 1295e+3 1.2527e+3 1.0668e+3 1.3730e+3 1.2684e+3 1.4839e+3

-gth 1 1346e+3 1.1476e+3 1.1476e+3 1.2823e+3 1.1244e+3 1.3903e+3 1.2930e+3 1.5085e+3
2 1.1657e+3 1.1881e+3 1.2039e+3 1 .2987e+3 1.2105e+3 1.4332e+3 1.3513e+3 1.6306e+3

Mean 1. 1135e+3 1.1251e+3 1.1258e+3 1.2037e+3 1.0730e+3 1.3702e+3 1.2438e+3 1.4916e+3
Std - 3.5894e+1 3.5262e+1 3.6601e+1 1.2500e+2 7.5926e+1 3.7187e+1 1.0921e+2 6.1016e+ I

[1e4 [ 18 19 [ 20 21 J 22 [ 23 24 ] 25
3.0287e+2 3.2456e+2 3.2456e+2 3.0000e+2 8.1188e+2 7.5292e+2 2.0073e+2 4.1869e+2

7t h 3.9592e+2 3.8348e+2 3.9210e+2 5.0000e+2 8.2329e+2 8.9039e+2 2.0227e+2 4.2549e+2
3thh 4.9648e+2 4.5003e+2 4.7334e+2 5.OOOOe+2 8.3351e+2 9.6404e+2 2.0397e+2 4.3371e+2
1h_____- 7.3084e+2 5.5944e+2 8.0101e+2 8.4193e+2 8.3936e+2 1 1068e+3 2.0555e+2 4.3767e+2

- 25t- 9.3002e+2 8.0452e+2 8.1660e+2 1 1748e+3 9.0540e+2 1.191 e+3 2.1709e+2 4.6134e+2
Mean 5.4184e+2 4.9618e+2 5.3642e+2 6.8016e+2 8.3499e+2 9.8441e+2 2.0455e+2 4.3388e+2
Std 1.9745e+2 1.5924e+2 1.8134e+2 2.6890e+2 2.0192e+1 1.2289e+2 3.4880e+0 1.0079e+1
1e5 ] 18 J 19 [ 20 j 21 J 22 [ 23 24 ] 25
- t -h 3.0000e+O3e+23O000e+2 3.0000e+2 3.0000e+2 3.0001e+2 5.5947e+2 2.0000e+2 4.0557e+2
7 3.0000e+2 3O000e+2 30000e+2 5O.0 0 +2 5.5947e+2 2.0000e+2 4.0580e+2

-13h 3.0000e+2 3.0000e+2 3.0000e+2 5.0000e+2 7.6898e+2 5.5947e+2 2.0000e+2 4.0603e+2
l9th 5.7876e+2 3.0000e+2 8.0000e+2 8.4186e+2 7.7023e+2 5.5947e+2 2.0000e+2 4.0619e+2

-25t 9.0146e+2 8.0000e+2 8.0000e+2 1 1736e+3 7.7737e+2 9.7050e+2 2.0000e+2 4.0641e+2
Mean 4.3956e+2 3.8000e+2 4.4000e+2 6.8006e+2 7.4927e+2 5.7591e+2 2.0000e+2 4.0601e+2
Std 2.2494e+2 1.8708e+2 2.2913e+2 2.6873e+2 9.3700e+1 8.2207e+1 0.0000e+O 2.3848e-1

Table 5: Error values achieved when FES=1e3, FES=1e4 and FES=1e5 for Problems 1-8 (D=30).
Ile3[ 1 2 4 5 6 7 8

1st 1.2321e+4 3.9519e+4 2.6446e+8 4.6265e+4 2.7106e+4 2.9524e+9 6.2550e+3 2.1037e+1
7th | 1.8129e+4 5.0788e+4 3.5126e+8 5.9459e+4 3.3815e+4 7.0694e+9 7.4070e+3 2.1145e+1
13tth 1.9365e+4 5.9728e+4 4.1869e+8 6.9924e+4 3.5219e+4 8.421 le+9 7.6841e+3 2.1182e+1
lgth 2.1243e+4 7.4415e+4 4.9017e+8 8.7118e+4 3.6821e+4 1.3035e+10 8.2983e+3 2.1252e+ 1
25th 3.0846e+4 9.5391e+4 7.2114e+8 1.1168e+5 4.1746e+4 2.5846e+10 9.3840e+3 2.1334e+1
Mean 1.9950e+4 6.2814e+4 4.3580e+8 7.3537e+4 3.4990e+4 9.9212e+9 7.7513e+3 2.1186e+1
Std 4.2139e+3 1.5693e+4 1.1527e+8 1.8372e+4 3.2974e+3 4.9599e+9 7.8 100e+2 7.3620e-2

1e41 1 2 3 4 5 T 6 1 7 81
-St 1.8254e+0 6.5707e+3 8.2420e+6 7.6925e+3 9.6113e+3 1.5865e+5 6.8264e+2 2.0908e+1

7th 4.4636e+O 9.0131e+3 2.2593e+7 1.0552e+4 1.1661e+4 3.761 le+5 9.7361e+2 2.1060e+l
l3th 8.9665e+O 1.2589e+4 3.0410e+7 1.4738e+4 1.2899e+4 9.1982e+5 1.1 835e+3 2.1093e+1
igth 1.2707e+1 1.6074e+4 4.1480e+7 1.8818e+4 1.4772e+4 1.3160e+6 1.3107e+3 2.1124e+ 1

25th 4.5770e+1 2.1604e+4 7.0255e+7 2.5292e+4 1.9917e+4 3.2307e+6 1.6241e+3 2.1149e+1
Mean 1.1 109e+ I 1.2889e+4 3.4025e+7 1.5089e+4 1.3641e+4 9.7136e+5 1 1640e+3 2.1081e+1
Std 9.9506e+0 4.2099e+3 1.5162e+7 4.9285e+3 2.8938e+3 6.9875e+5 2.4770e+2 6.1144e-2

|1e5 1 2 1 3 1 4 E 5 6 j 7 8j
i 8 t 8.5813e-9T 8.3688e-1 1.1156e+6 9.7974e-1 2.2095e+3 2.6576e+0 5.3781e-1 2.0843e+1
7th 9.0664e-9T 2.3396e+O 2.2875e+6 2.7390e+0 3.4995e+3 1.9547e+l 8.9207e-1 2.0966e+I
13th 9.6205e-9T 4.0097e+O 3.3781e+6 4.6942e+0 4.2513e+3 2.5913e+1 1.0301e+0 2.101 le+1
19th 9.6205e-9T 7.2522e+O 4.2688e+6 8.4902e+O 5.0532e+3 7.3452e+1 1.0507e+0 2.1040e+1
25th 9.9339e-9T 2.7212e+1 5.9713e+6 3.1857e+1 7.2539e+3 9.2739e+2 1.1204e+0 2.1077e+1
Mean 9.3524e-9 25.753e+0 3.3175e+6 6O783e+U 4.3366e+3 18.4980e+I 9.5537e-I 2.1000e+1
Std 4.6327e-10 5.7666e+0 14010e+6 6.7510e+__ 1.3666e+3 1.9291e+2 14952e- I 6.0768e-2
3e5 1 1 2 3 J 4 [ 5 1 6 7 [ 8
is [ 8.5813e-9T 1.1045e-8 4.1124e+5 1.2931e-8 2.1916e+3 2.2823e-3 1.3911e-6 2.0837e+1
7th 9.0664e-9T j 7.1554e-8 j 7.6192e+5 8.2507e-8 3.2448e+3 4.1282e+0 7.4778e-3 2.0908e+1
3th 9.6205e-9T j 1.6077e-7 ]1.1241e+6 18822e-7 4.1725e+3 1.6889e+l 9.8946e-3 2.0925e+1
ith J 9.6205e-9T j4.7296e-7 J1.4380e+6 5.5370e-7 4.9204e+3 {1.9966e+l 1.4809e-2 2.0952e-i-1
25th } 9.9339e-9T 7.1024e-6 ] 2.0430e+6 8.3149e-6 7.0869e+3 7.4378e+1 5.1686e-2 2.1030e+1
Mean 9.3524e-9 6.9482e-7 1.1020e+6 8.1320e-7 4.2374e+3 1.5197e+1 1.4598e-2 2.0932e+1
Std 4.6327e-10 1.4911e-6 4.2081e+5 1.7457e-6 1.3752e+3 1.4903e+1 1.2391e-2 4.5876e-2
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Table 6: Error values achieved when FES=1e3, FES=1e4 and FES=1e5 for Problems 9-17 (D=30).
le3 I 9 1 10 1 11 12 [ 13 14 ] 15 J 16 T 17
ist 4.0959e+2 5.9174e+2 4.1466e+1 9.7568e+5 3.4718e+5 1.3979e+1 7.7041e+2 5.3557e+2 6.8908e+2
7th 4.8025e+2 6.1442e+2 4.4290e+1 1.3438e+6 6.5253e+5 1.41 15e+1 9.4001e+2 7.1847e+2 7.8705e+2
3th - 4.9067e+2 6.3015e+2 4.5277e+1 1.4387e+6 8.3781e+5 1.4191e+1 1.0158e+3 7.6192e+2 8.6097e+2

-1th 5.1228e+2 6.6555e+2 4.6351e+l 1.6173e+6 1. 1916e+6 1.4301e+1 1.0444e+3 8.3701e+2 9.1227e+2

-25th 5.7472e+2 7.4853e+2 4.7265e+ 1 1.7981e+6 1.3577e+6 1.4392e+1 1.0951e+3 9.6594e+2 1.0683e+3
Mean 4.9469e+2 6.4635e+2 4.5209e+ I 1.4567e+6 8.7739e+5 1.4200e+ 1 9.9871e+2 7.6863e+2 8.6124e+2
Std 3.3390e+1 4.1053e+1 1.4137e+0 2.0081e+5 3.2676e+5 1 1488e- I 7.3895e+1 9.9673e+ I 9.0985e+1
1e4 J 9 [ 10 11 12 [ 13 14 ] 15 J 16 [ 17
ist 2.9169e+2 2.3374e+2 3.8995e+1 3.5344e+5 2.1061e+2 1.3483e+1 4.9671e+2 2.465 1e+2 2.6755e+2

- 7th - 3.1765e+2 2.5527e+2 4.1271e+1 4.5059e+5 9.9414e+2 1.3723e+1 4.9861e+2 2.7859e+2 3.0237e+2
th - 3.351Oe+2 2.6445e+2 4.2421e+1 4.8573e+5 1.9140e+3 1.3831e+1 5.0651e+2 2.9349e+2 3.1439e+2

1gth 3.4688e+2 2.7433e+2 4.3007e+1 5.2876e+5 3.0058e+3 1.3886e+1 5.2299e+2 3.2983e+2 3.3300e+2

-25t -
3.7683e+2 3.0806e+2 4.4345e+1 6.3387e+5 5.9685e+3 1.4020e+1 6.4874e+2 3.8484e+2 3.8675e+2

Mean 3.3363e+2 2.6621e+2 4.2021e+ I 4.8183e+5 2.1727e+3 1.3806e+1 5.2658e+2 3.0138e+2 3.2399e+2
Std 2.1535e+1 1.7864e+1 1.4841e+0 6.3260e+4 1.5450e+3 1.416le-1 4.4745e+1 3.6060e+1 3.3869e+1
1e5 J 9 [ 10 11 ] 12 [ 13 14 ] 15 J 16 [ 17

ist 7.4473e+1 3.7038e+1 7.8829e+0 4.8504e+3 2.2540e+0 1.3184e+1 2.0022e+2 5.0957e+1 4.8301e+1
7th 1.2795e+2 1.6910e+2 1.5555e+1 1.3474e+4 2.8454e+0 1.3354e+1 4.0000e+2 5.9653e+1 7.6854e+1
13th 1.4708e+2 1.8809e+2 1.6890e+1 1.7666e+4 3.5583e+0 1.3452e+1 4.0000e+2 7.9569e+1 9.8080e+1
1gth 1.7220e+2 2.0321e+2 2.1633e+1 2.9530e+4 4.5371e+O 1.3530e+1 4.0000e+2 1.4716e+2 1.5693e+2

25th 1.8982e+2 2.1039e+2 3.9599e+1 7.0803e+4 6.4643e+0 1.3752e+1 5.0000e+2 2.9838e+2 3.2384e+2
Mean 1.4338e+2 1.7061e+2 1.8380e+1 2.3408e+4 3.7176e+0 1.3452e+1 3.6829e+2 1.1432e+2 1.2414e+2
Std 3.4255e+1 4.7067e+1 6.2538e+0 1.5971e+4 1.0849e+0 1.4500e- I 9.4486e+1 7.1239e+1 7.3865e+1
3e5 ] 9 J 10 11 ] 12 13 14 ] 15 16 [ 17

ilst [ 1.0945e+1 1.5919e+1 5.0042e+0 1.4259e+3 [ 1.8774e+0 1.2270e+1 2.0000e+2 J 4.0800e+1 4.4283e+1
|7 ] 1.9899e+1 3.5819e+1 9.4190e+0 6.1867e+3 2.6942e+0 1.3093e+1 4.0000e+2 5.1773e+1 5.8038e+1
13th ] 2.3879e+1 5.1738e+1 1.1169e+1 9.9526e+3 3.4020e+0 1.3152e+1 4.0000e+2 J 5.8747e+1 7.1284e+1
19th ] 2.6864e+1 6.1687e+1 1.2643e+1 1.6045e+4 f4.3430e+0 1.3265e+1 4.0000e+2 7.8984e+1 9.6722e+1
25th 1 3.6813e+1 1.8395e+2 2.0265e+1 6.8650e+4 6.4165e+0 1.3481e+1 5.0000e+2 J 1.5971e+2 1.5997e+2
Mean ] 2.3934e+1 6.0297e+1 1 1255e+1 -1.3134e+4 3.5881e+0 1.3131e+1 3.6822e+2 j 7.4683e+1 8.5361e+1
Std 6.2477e+0 4.0576e+1 3.2979e+0 1.3346e+4 1.0857e+0 2.6887e-1 9.4598e+1 3.6143e+1 3.9099e+1

Table 7: Error values achieved when FES=1e3, FES= 1e4 and FES=1e5 for Problems 18-25 (D=30).
1e3 J 18 [ 19 [ 20 J 21 22 23 ] 24 25
1is 1.2081e+3 1.2287e+3 1.2073e+3 1.3417e+3 1.3829e+3 1.3083e+3 1.3637e+3 1.4497e+3
7th 1.2643e+3 1.2661e+3 1.2598e+3 1.3946e+3 1.4536e+3 1.3832e+3 1.4049e+3 1.5325e+3
13th 1.2739e+3 1.2895e+3 1.2735e+3 1.4045e+3 1.5102e+3 1.4109e+3 1.4239e+3 1.6723e+3
gth 1.2962e+3 1.3002e+3 1.2956e+3 1.4292e+3 1.6155e+3 1.4225e+3 1.4440e+3 1.7986e+3

25th 1.3541e+3 1.3536e+3 1.3536e+3 1.4894e+3 1.7326e+3 1.4844e+3 1.4670e+3 1.8256e+3
Mean 1.2779e+3 1.2834e+3 1.2764e+3 1.4126e+3 1.5328e+3 1.4062e+3 1.4229e+3 1.6334e+3
Std 3.2191e+1 2.7784e+1 3.2297e+1 3.4285e+1 9.6156e+1 3.8029e+1 2.7450e+1 1.2968e+2
1e4 J 18 19 20 ] 21 J 22 23 ] 24 J 25
ist 9.7521e+2 9.7843e+2 9.7843e+2 1.0551e+3 1.0646e+3 1.0533e+3 6.3623e+2 7.9317e+2
7th 9.9441e+2 1.0023e+3 1.0023e+3 1.1168e+3 1.1193e+3 1.1293e+3 7.1032e+2 1.0695e+3

th 1.0024e+3 1.0099e+3 1.0086e+3 1 1436e+3 1 1414e+3 1.1438e+3 7.6989e+2 1.2389e+3
1gth 1.01 Ile+3 1.0171e+3 1.0177e+3 1.1563e+3 1.1536e+3 1.1652e+3 8.2148e+2 1.3807e+3
25th 1.0376e+3 1.0380e+3 1.0369e+3 1.2018e+3 1.1935e+3 1.1988e+3 9.2960e+2 1.4109e+3
Mean 1.0034e+3 1.0092e+3 1 .0087e+3 1.1341e+3 1.1349e+3 11435e+3 7.7696e+2 1.1798e+3
Std 1.5950e+1 1.4747e+ I 1.4072e+1 3.6469e+1 2.7479e+1 3.4655e+1 8.2622e+1 1.7585e+2
leS 18 19 20 21 1 22 [ 23 1 24 25
st 9.0582e+2 9.0540e+2 9.0540e+2 5.0002e+2 8.7640e+2 [ 5.3416e+2 2.0000e+2 2.2183e+2

7th 9.0656e+2 9.0637e+2 9.0637e+2 5.0003e+2 8.9802e+2 5.3416e+2 2.0000e+2 2.2439e+2
|3Th 9.0716e+2 9.0683e+2 9.0683e+2 5.0005e+2 9.0725e+2 5.3416e+2 2.0000e+2 2.2603e+2
19th 9.0901e+2 9.0855e+2 9.0853e+2 5.0006e+2 9.1293e+2 5.3417e+2 2.0000e+2 2.3081e+2
25th 1 9.1178e+2 9.0947e+2 9.0947e+2 5.0008e+2 9.3174e+2 5.3417e+2 2.0000e+2 2.3225e+2
Mean 9.0765e+2 9.0726e+2 9.0727e+2 5.0005e+2 9.0567e+2 5.3417e+2 2.0000e+2 2.2634e+2
Std 1.4784e+0 1.1702e+0 1.1669e+0 T 1.8460e-2 1.2731e+1 3.6134e-4 T .OOOOe+0 2.9873e+0

(3e5 J 18 I 19 [ 20 ] 21 J 22 [ 23 24 25
r St 9.0342e+2 9.0367e+2 9.0367e+2 5.0000e+2 8.6026e+2 53416e+2 [ 2.0000e+2 2.1206e+2
7th 9.0393e+2 9.0406e+2 9.0403e+2 5.0000e+2 8.6838e+2 5.3416e+2 2.0000e+2 2.1305e+2
13th 9.0450e+2 9.0430e+2 9.0421e+2 5.0000e+2 8.7263e+2 5.3416e+2 2.0000e+2 2.1348e+2
l9th 9.0634e+2 9.0603e+2 9.0503e+2 5.0000e+2 8.9865e+2 5.3416e+2 2.0000e+2 2.1379e+2
25th| 9.0904e+2 9.0691e+2 9.0714e+2 5.0000e+2 9.0826e+2 5.3417e+2 2.0000e+2 2.1413e+2
Mean 9.0504e+2 9.0482e+2 9.0477e+2 5.0000e+2 8.8125e+2 5.3416e+2 2.0000e+2 2.1321e+2
Std 1.4284e+0 1.0871e+0 1.0987e+0 0.OOOOe+0 1.6213e+1 3.4895e-4 0.OOOOe+0 6.2752e-1
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Table 8: Number of FES to achieve the required accuracy (D=10). SR and SP stand for Success Rate and Success Perfor-
mance, respectively.

Problem I st (Best) |7th 13th (Median) I lth 25th (Worst) Mean J Std SSR(%) _SP_
1 5,103 5,833 6,413 7,581 9,611 6.7252e+3 1.2411e+3 100 6.7252e+3
2 22,832 26,914 30,881 33,306 39,111 3.1012e+4 4.4070e+3 100 3.1012e+4
3 -------0-

4 24,935 27,185 30,045 33,702 38,140 3.0714e+4 3.9888e+3 100 3.0714e+4
5 31,786 36,143 39,477 45,930 50,137 4.0259e+4 5.8031e+3 100 4.0259e+4
6 0
7 72,134 7.2134e+4 0 4 1.8033e+6

8-10 0
1 1 43,773 - - - T 4.3773e+4 0 4 1.0943e+6

12-25 -------0 -

Table 9: Number of FES to achieve the required accuracy (D=30). SR and SP stand for Success Rate and Success Perfor-
mance, respectively.

Problem 1st (Best) 7th 13th (Median) 19ta 25[ (Worst) Mean Std SR (%) SP
1 27,406 29,128 30,235 30,758 40,417 3.0326e+4 2.4500e+3 100 3.0326e+4
2 251,785 268,550 279,721 295,207 300,000 2.8021e+5 1.4855e+4 88 3.1536e+5
3 - _ 0
4 253,291 269,795 280,851 296,291 300,000 2.8186e+5 1.4336e+4 76 3.6334e+5
5 0
6 208,212 - - - - 2.0821e+5 0 4 5.2053e+6
7 159,537 236,081 273,612 300,000 300,000 2.5981e+5 4.4696e+4 64 3.7063e+5

8-25 - - - - - 0

Figure 5:
D=30.

Convergence graphs for problems 16 to 20

0 0.5 1 1.5
FES

2 2.5

X 1 0

to have significant3 effect on the performance since the re-
sults from problem 2 and 16 are similar to those in prob-
lem 4 and 17, respectively. Thirdly, it seems that the ro-
tated problems posed a greater difficulty to SPC-PNX. This
is suggested by the better performance on problems 9 and
15 over problems 10 and 16, respectively, although this im-
provement is not significant. Also, the algorithm performed
worse on problem 23 than on problem 21, although the dif-
ference was not significant and thus it cannot concluded that
the non-continuous problem 23 introduces more difficulty.
With regard to the global optimum being inside or on the
initialisation bounds, no change ofperformance is perceived
(see the problem 18 and 20 pair). Likewise, the change of
performance is not significant when comparing problem 18
and 19 (this is consistent with the fact that the global min-
imum was not identified in either of the cases). Another

in factor that does not appear to have an influence on the SPC-
PNX's performance is how the rotation is made (i.e. with
an orthogonal matrix or with a moderately high condition
number matrix) as shown by comparing problem 21 and 22.
Lastly, having the global optimum outside the initialisation
range seems to have a detrimental effect on the performance
as shown by comparing problem 24 and 25.

Regarding the algorithm's complexity, all participants
were asked to run a test to estimate it. The details of this
calculation are in the evaluation criteria document (see Sec-
tion 1). The results of this test are presented in Table 10.

Finally, we have observed that SPC-PNX's performance
is generally better with large population sizes. However,
as N increases, a higher number of FES is needed to make
the population converge to a good solution. Therefore, it is
critical to allow a sufficiently high number of FES when op-

Figure 6: Convergence graphs for problems 21 to 25 in
D=30.

3We say that the results in two problems differ significantly if the cor-
responding intervals, formed by double the standard deviation centered at
the mean function value, do not overlap.
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Table 10: Estimation of the algorithm's complexity.
D To Ti 1 T2 (T2 -T1)1T
10 0.610 26.797 136.049 179.102
30 0.407 32.218 135.553 253.894
50 0.422 38.953 148.853 260.427

erating SPC-PNX. Otherwise, the potential for good SPC-
PNX's performance on some problems is wasted. Table 11
presents some results of running SPC-PNX with a higher
number of FES on several problems. These runs are com-
pared to the best function values found when using the re-
stricted number of FES tentatively proposed by the organ-
isers. These results make evident the need of allowing a
higher number of FES on some test problems.

Table 1 1: Results of the numerical experiments made with a
higher number of FES for different problems. These results
evidence that a restrictive number of FES hides SPC-PNX's
full potential for tackling real-parameter optimisation prob-
lems.

Problem M ] Max-FES N fbest
6 10 100,000 60 1.8594e-2 1

_ _6 10 500,000 60 5.8152e-6
9 10 100,000 225 9.9496e-1

I 9 1_ 0- 500,000 1,200 8.5663e-9
10 1[0 100,000 ] 200 T 1.9899e+0
10 101 1,000,000 ] 800 j 9.6457e-9
14 [ 10 ]- 100,000 ] 100 -1.3864e+0
14 1 0 ] 500,000 ] 100 ] 4.4034e-1

5 Conclusions

This paper has presented a performance study of a Real-
parameter GA (SPC-PNX) on a new benchmark of real-
parameter optimisation problems. These test problems were
designed to avoid symmetries that could be exploited by op-
timisation methods. Consequently, this benchmark is ex-
pected to challenge many good optimisation methods.

As we have still no access to the results obtained by other
participants, it is difficult to assess how well SPC-PNX per-
formed on the new benchmark. However, it is our belief
that the required accuracy levels to declare success are quite
optimistic in most of the problems, specially those involv-
ing hybrid functions and most 30-variable multimodal func-
tions.

Some insights into how the problem features affect SPC-
PNX's performance were obtained by comparing selected
subsets of problems. It was determined that a high condition
number strongly deteriorates the algorithm's performance.
Other problem features seem to pose greater difficulty such
as rotated function landscapes, discontinuities and having
the global optimum outside initialisation region. In the
cases of having the global optimum inside or on the initiali-
sation bounds as well as having the global optimum outside
the initialisation region, few conclusions can be reached as
the global optimum was not found. Lastly, problem features
such as noisy function landscapes and how the rotation is
made do not seem to have significant effect on SPC-PNX's
performance.

On the other hand, SPC-PNX's benchmark results could
be improved further in the following two ways. The first
way is to use large population sizes. We have presented
results suggesting that larger population sizes generally lead
to better results, at a cost of requiring a higher number of
function evaluations to converge. The second way is to test a
wider range of population sizes. This is specially advisable
on the 30-variable hybrid functions, since only two different
population sizes could be tested in these cases due to the
intensive computation required.

Besides, it is worth noting that SPC-PNX is a pure Real-
parameter GA and therefore it has a large margin for im-
provement. Some promising future research directions in-
clude: to make a hybrid algorithm combining SPC-PNX
with a faster local optimiser and to devise a restart strategy
intended to inject diversity into the population when needed.

Finally, we want to propose two improvements to the
benchmark. First and most important, it is essential to per-
mit a higher number of function evaluations so that all op-
timisation methods (not only the most efficient) can show
their full potential. Second, the requested numerical exper-
iments are many and very computer-intensive (specially in
the case of the hybrid functions). We propose to focus future
studies on a selected set of about 15 problems.
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