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Abstract- One natural question when testing perfor-
mance of global optimization algorithm is: how perfor-
mances compare to a restart local search algorithm. One
purpose of this paper is to provide results for such com-
parisons. To this end, the performances of a restart (ad-
vanced) local-search strategy, the CMA-ES with small
initial step-size, are investigated on the 25 functions of
the CEC 2005 real-parameter optimization test suit. The
second aim is to clarify the theoretical background of the
performance criterion proposed to quantitatively com-
pare the search algorithms. The theoretical analysis al-
lows us to generalize the criterion proposed and to define
a new criterion that can be applied more appropriate in
a different context.

1 Introduction

This paper introduces the restart version of the so-called
([w, )-CMA-ES (referred to as LR-CMA-ES) and ap-
plies it to the CEC 2005 real-parameter optimization bench-
mark function suit [7]. The LR-CMA-ES is a quasi param-
eter free, comparatively simple global optimization algo-
rithm exploiting the advanced local search properties of the
(lw, )-CMA-ES. Beyond the interest of the LR-CMA-ES
as a global optimization algorithm, the purpose of investi-
gating a restart strategy of a competitive local search evolu-
tionary algorithm is to provide baseline results for the CEC
2005 real-parameter optimization benchmark function suit.
The second contribution of this paper is the theoretical anal-
ysis of the (success) performance criterion proposed for re-
porting the results [7]. This analysis allows us to clarify and
generalize the criterion.

The CMA-ES was originally introduced to improve the
local search performances of evolution strategies [5]. It
reduces the number of function evaluations to solve badly
scaled quadratic problems by several orders of magnidute
[6]. Compared to other evolutionary algorithms, an impor-
tant property of the CMA-ES is its invariance against lin-
ear transformations of the search space. Surprisingly, also
global search properties can be improved by the CMA [6],
and, depending on the population size, the CMA-ES even
reveals competitive global search performances [4].

In order to stress the local search characteristics of the
CMA-ES, we use a hundred times smaller initial step-size
than is recommended as default. Moreover we stick to the
default population size (between 10 and 15 for the search
space dimensions in this paper), which leads to competi-
tive local search performances. The resulting algorithm can
be then regarded as an advanced local search, because (a)
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the complete covariance matrix of the search distribution is
efficiently adapted to the local topography of the objective
function and (2) step-size adaptation can result in compar-
atively large steps even when the initial step-size is chosen
to be small.

The remainder of this paper is organized as follows: Sec-
tion 2 analyzes and generalizes the success performance cri-
terion given in [7], Section 3 presents the bottom line of the
algorithm, Section 4 explains the experimental procedure
and Section 5 presents the experimental results.

2 Success performances

Comparing the performances of different algorithms on
multi-modal problems implies to take into account that
some algorithms may have a small probability of success
but converge fast whereas others may have a larger proba-
bility of success but be slower. Thereby, one way to mea-
sure (success) performance of an Algorithm A is to inves-
tigate the expected number of function evaluations to reach
a certain function value (the success criterion) by conduct-
ing independent restarts of A. We consider that A has a
probability of success Ps E (0, 1] (or success rate) and de-
fine TAS as the random variable measuring the running time
(here, number of function evaluations) for unsuccessful runs
of A stopped after a reasonable stopping criterion and TA
the number of evaluations for a successful run of A. Let T
be the random variable measuring the overall running time
(here: overall number of function evaluations) until the suc-
cess criterion is met by independent restarts of A,

N-1

T=E(TiS)k + TS
k=l

(1)

where (TAI5)k are independent random variables with the
same distribution as TAS and N the random variable mea-
suring the number of runs of A (N - 1 unsuccessful, and 1
successful run). The random variable N follows a geomet-
ric distribution with parameter Ps. To compute the expecta-
tion E(T) of T, we first take the conditional expectation of
Eq. 1 with respect to the random variableN and use the fact
that (TAS )k are i.i.d as TAS

E(TjN) = (N - 1)E(TA,) + E(TA)
Taking now the expectation again, we obtain the general ex-
pression for the expectation of T

E(T) = (E(N)-1)E(TAs) + E(TA)
= ( 1 Ps)E(TAs) + E(TA') (2)
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where we have used the property that the expectation of a
geometric distribution of parameter p, is equal to i/Ps.
We can in the same way derive the variance of T starting

from Eq. 1. We omit the intermediate steps and give the
final expression:

var(T) = (1 Ps)var(Tus)

+ (1 Ps)E((TAs)2) +var(TA) (3)

where we use the notation var to denote the variance of a
random variable.

From the general expression Eq. 2 for the expectation of
T we now derive two specific (success) performance criteria
for stochastic search algorithms. Moreover from Eq. 3 we
will derive the variance of the second success performance
criterion.

First, making the assumption that the expected number
of evaluations for successful and unsuccessful runs is the
same, i.e E(TAI) = E(TI), the RHS of Eq. 2 simplifies
to the following expression that corresponds to the perfor-
mance criterion defined in [7] (already proposed in [4])

EPE(TA8SI= (4)
Ps

Second, we use the facts that the algorithmA investigated in
this paper is a restart strategy, and that the maximum num-
ber of function evaluations is given as FEmax = n x 104 [7].
Then, because A proceeds with a restart whenever a stop-
ping criterion is met, any unsuccessful run of A reaches the
maximum number of function evaluations allowed. There-
fore, E(TAs) = FEmax and var(TAu) = 0 where var de-
notes the variance of a random variable. These expressions
lead to a different simplification of Eq. 2, and to the defini-
tion of the second success performance:

SP2 (l PS)FEmax+E(TA) (5)
Ps

with its variance

var(SP2)= ( Ps)(FEmax )2 +var(TA) (6)

derived from Eq. 3.

Estimating the success performances The estimator of
SPI proposed in [7] can be derived by first estimating the
probability of success Ps as

Nbr. successful runs
Ps = Nbr. runs

This estimator is a maximum likelihood estimator forp, and
is unbiased. Second the estimation of the expected number
of function evaluations for successful runs is

Nbr. of evaluations for successful runs
A(T) ~Nbr. successful runs

When Pi 54 0, an estimator SP1 for SPI is then

S=E (T)
Ps

(7)

This estimator is asymptotically convergent.
Asymptotically convergent estimators for SP2 and

var(SP2) can be derived using as well -Ps:

SP2 = (-1ps FEmax + E(TI)

var(SP2) = (1 P )(FEmax)2 +var(TI)
Ps

(8)

(9)

with var(TA) the classical unbiased estimator for the vari-
ance of the number of successful runs.
A more natural estimator for E(N) = p consists in

Ps
sampling a fixed number of geometric random variables of
parameter Ps and computing the empirical mean. In par-
ticular this estimator is unbiased. As sampling a geometric
random variable of parameter p5 means restarting the al-
gorithm A until success, sampling Nsuccess geometric ran-
dom variables implies doing runs ofA until a fixed number
of successes Nsuccess is reached. Therefore the number of
runs ofA performed is not a fixed number (like for SP1 and
SP2) but a random variable. This random variable depends
on the probability of success and will increase in expecta-
tion for decreasing probability of success. The drawback
of such an estimator in practice is that the number of runs
performed is not fixed. However, since such an estimator
is the empirical mean of independent identically distributed
random variables, asymptotic confidence intervals can be
derived from the Central Limit Theorem. Let SP2 denote
the estimator, with a probability of 0.95 we have asymptot-

ically that SP2 e SP2 1 96var(SP2) where Nsucces iS/Nsuccess
the number of geometric random variables sampled (cor-
responding to doing runs of A until Nsuccess success are
reached). This confidence interval suggests that confidence
intervals for SP1 and SP2 scale like 1

f,/P x Nbr. runs

3 The restart CMA-ES

The (,tw, )-CMA-ES In this paper we use the ([uw, )-
CMA-ES thoroughly described in [4]. We outline the gen-
eral principle of the algorithm in short and refer to [4] for
the details.

For generation g + 1, offspring are sampled indepen-
dently according to

K(g+1) A((x) (9(g))2C()) fork= 1,...

where J\(mr, C) denotes a normally distributed random
vector with mean mr and covariance matrix C. The , best
offspring are recombined into (x)w+1) = i=1 Xi:(g1)
where the positive weights wi EC R sum to one. The equa-
tions for updating the remaining parameters of the normal
distribution are given in [4]: Eqs. 2 and 3 for the covariance
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matrix C, Eqs. 4 and 5 for the step-size (cumulative path
length control).' On convex quadratic functions, the adap-
tation mechanisms for and C allow to achieve log-linear
convergence2 after an adaptation time which can scale be-
tween 0 and n2.

The default parameters for the strategy are given in [4],
Eqs. 6-8. The default population size grows with log n and
equals to = 10, 14, 15 for n = 10, 30, 50. Only (x)(°)
and (0) have to be set depending on the problem.

The local restart (biw, )-CMA-ES (LR-CMA-ES) For
the restart strategy the (,uw, )-CMA-ES is stopped when-
ever a stopping criterion is met, and a restart is launched.
The new run uses the same strategy parameters and the same
initialization procedure, and it is independent of all other
runs.

To decide when to restart, the following stopping criteria
are used.3

* Stop if the range of the best objective function val-
ues of the last 10 + [30n/ 1 generations is zero
(equalfunvalhist), or the range of these func-
tion values and all function values of the last genera-
tion is below Tolfun= 10-12

* Stop if the standard deviation of the normal distribu-
tion is smaller than TolX in all coordinates and if fPc
(the evolution path from Eq. 2 in [4]) is smaller than
TolX in all components. We set TolX= 10-12 (°).

* Stop if adding a 0.1-standard deviation vector in
a principal axis direction of C(g) does not change
()(g) (noeffectaxis). More formally, stop if
()(g) equals to (x)(g)$+0.1 (9)`Vi4, wherei = (g
mod n) + 1, and i and ui are respectively the ith
eigenvalue and eigenvector of C with IIu* = 1.

* Stop if adding 0.2-standard deviation in each coordi-
nate does change (x)(g) (noeffectcoord).

* Stop if the condition number of the covariance matrix
exceeds 1014 (conditioncov).

The distribution of the starting points (x) (°) and the ini-
tial step-size (0) are problem dependent and their setting is
described in the next section, as well as the overall stopping
criteria for the LR-CMA-ES.

4 Experimental procedure

The LR-CMA-ES has been investigated on the 25 test func-
tions described in [7] for dimension 10, 30 and 50. For each
function a bounded subset [A, B]n of R' is prescribed. The

1A more elaborated algorithm description can be accessed via
http://www.bionik.tu-berlin.de/user/niko/cmatutorial.pdf.

20n a log scale the performance is linear with respect to the number of
function evaluations.

3These stopping criteria were developed before the benchmark function
suit used in this paper was assembled.

Table 1: Measured CPU-seconds, according to [7], using
MATLAB 7.0.1, Red Hat Linux 2.4, 1GByte RAM, Pen-
tium 4 3GHz processor. Time T2 is the CPU-time for run-
ning the restart CMA-ES until 2 x 105 function evaluations
on function 3. The smaller number for T2 for n = 30 com-
pared to n = 10 is caused by the 1.4 times larger population
size for n = 30. Because each population is evaluated (se-
rially) within a single function call the number of function
calls to reach 2 x 105 function evaluations is smaller

TO Ti T2
n= 10 0.4s 32s 51s
n = 30 0.4s 41s 45s
n= 50 0.4s 49s 68s

initial starting points (x) (°) for each restart are sampled uni-
formly within this subset and the initial step-size (0) for
each restart is equal to 10-2(B - A)/2. The overall stop-
ping criteria for the algorithm prescribed in [7] are: stop
before n - 104 function evaluations or stop if the error in
the function values is below 10-8. The boundary handling
is done according to the standard implementation of CMA-
ES and consists in penalizing the individuals in the infeasi-
ble region.4 For each test function, 25 runs are performed.
All performance criteria were evaluated based on the same
runs. In particular, the times when to measure the objective
function error value (namely at 103, 104, 05 function eval-
uations) were not used as input parameter to the algorithm
(e.g., to set the maximum number of function evaluations to
adjust an annealing rate).

Test functions The complete definition of the test suit is
available in [7]. The definition of functions 1 to 12 is based
on classical benchmark functions, that we will refer in the
sequel also by their name. Functions 1 to 5 are unimodal
and functions 6 to 12 are multi-modal. Functions 13 to 25
result from the composition of several functions. To pre-
vent exploitation of symmetry of the search space and of
the typical zero value associated with the global optimum,
the local optimum is shifted to a value different from zero
and the function values of the global optima are non zero.

5 Results

Figure 1 presents the convergence graphs of objective func-
tion error values. The steps in the graphs are caused by
the restarts that improve the performance on the noisy func-
tion 4 and on the multi-modal functions 11-13, and 15-17.

According to the requirements, Table 1 reports CPU-
time measurements, Table 2 gives the number of function
evaluations to reach the success criterion (if successful), the
success rate, and the success performances as defined in
Section 2. The objective function error values after 103,
104, 105 and n x 104 function evaluations are presented in
Table 3, 4, and 5.

4For details refer to the used MATLAB code, cmaes.m, Version 2.35,
see http://www.bionik.tu-berlin.de/user/niko/formersoftwareversions.html
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Figure 1: Best objective function error value (log scale) versus number of function evaluations for the 25 benchmark
functions in dimension n = 30. For each run the best individual found until the current generation is considered and shown
is the median value of 25 runs at each generation. The respective problem number is given in the legend.

In some cases (function 13, n = 10; function 21, n =
10, 50, and function 23, n = 50), the LR-CMA-ES sig-
nificantly outperforms IPOP-CMA-ES [1], a strategy with
successively increased population size.5 Furthermore, the
diversity between the runs is often larger for the LR-CMA-
ES, and the best of 25 runs is (sligthly) better in most cases
on functions 15, 18-23, and 25.

The performance on functions 1-3, and 5-7 is highly
competitive (besides n = 50 for function 5). Even on the
multi-modal Griewank function 7 the success rate is 100%
(see Table 2). Here we observe an initial increase of the
step-size by about two orders of magnitude almost up to a
step-size that is typically used as initial step-size. If the up-
per bound for the step-size is set to the initial step-size, re-
sults on the Griewank function become significantly worse
(not shown). This clearly indicates that, due to its step-
size adaptation, the LR-CMA-ES allows yet to search more
globally than a pure local search method.

On the remaining multi-modal functions LR-CMA-ES
fails to locate the global optimum. While on Rastrigin func-
tion 9 and 10 the CMA-ES with large population size is able
to locate the global optimum [4, 1], for the composite func-
tions 13-25 the feasibility of locating the global optimum
has yet to be shown. The failure on the noisy function 4
can be explained by the small initial step-size. In a highly
noisy environment, the cumulative step-size adaptation of
the CMA fails to enlarge the step-size [2].

5The statistical test tables for the non-parametric Wilcoxon rank sum
test for different median values are given in [1]. To judge the significance
level, we apply the (most conservative) Bonferroni correction for multiple
testing.

6 Summary and conclusions

In this paper empirical results on the CEC 2005 real param-
eter optimization benchmark function suit are presented for
the LR-CMA-ES, a local restart strategy of a competitive
local search evolutionary algorithm. The purpose of the re-
sults is to be a baseline for comparison. On the non-noisy
unimodal and on few multi-modal functions the LR-CMA-
ES reveals competitive performance. The results on the re-
maining multi-modal functions serve as a benchmark that
any ambitious global search algorithm has to beat.

Second, we have introduced a general performance cri-
terion based on the success rate and the running times of
successful and unsuccessful runs (e.g. in terms of number
of function evaluations). This criterion reveals a meaning-
ful single number that can be used to quantitatively com-
pare search algorithms on functions, where at least one
run reaches a given success criterion (e.g. a given function
value).

Finally we emphasize two important aspects that have
to be taken into account when judging the performance of
search algorithms. First, the LR-CMA-ES is quasi parame-
ter free:6 in the presented experiments only the initial search

6Remark that the number of parameters in the description of an algo-
rithm is somewhat arbitrary: the more general the description, the more pa-
rameters appear. Therefore, the existence or absence of parameters in the
algorithm description cannot have influence on the assessment of the num-
ber of parameters that need to be (empirically or heuristically) determined
each time the algorithm is applied. For the CMA-ES, strategy parameters
have been chosen in advance, based on principle algorithmic considera-
tions and in-depth empirical investigations on a few simple test functions.
To our experience the strategy parameters (e.g. a leaming rate, a time hori-
zon, or a damping factor) mostly depend on algorithmic internal consider-
ations and on the search space dimension, and to a much lesser extend on
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Table 2: Performance measures for successfully optimized problems. Prob.: Problem number; Tol: success criterion on
function value error; 3rd-9th column: number of function evaluations (minimal, 7th, median, l9th, maximal, mean and
standard deviation) to reach the success criterion Tol; lOth-14th column: Empirical estimators for the success probability
Ps, for the success performance criteria SP1 and SP2, and for std(SP2)

Prob. Tol min 7th median 19th max mean std P SPi SP2jjaar(
1 le-6 1.60e+3 1.65e+3 1.71e+3 1.82e+3 1.91e+3 1.74e+3 1.02e+2 1.00 1.74e+3 1.74e+3 1.02e+2
2 le-6 2.35e+3 2.50e+3 2.61e+3 2.71e+3 2.83e+3 2.61e+3 1.36e+2 1.00 2.61e+3 2.61e+3 1.36e+2
3 le-6 6.46e+3 6.62e+3 6.82e+3 7.08e+3 7.46e+3 6.84e+3 2.64e+2 1.00 6.84e+3 6.84e+3 2.64e+2
4 le-6 6.10e+3 9.99e+4 - - - 5.39e+4 4.23e+4 0.28 1.93e+5 3.11e+5 3.06e+5
5 le-6 5.30e+3 5.67e+3 5.80e+3 5.95e+3 6.79e+3 5.86e+3 3.68e+2 1.00 5.86e+3 5.86e+3 3.68e+2
6 le-2 5.43e+3 6.55e+3 7.80e+3 9.45e+3 1.80e+4 9.13e+3 3.63e+3 1.00 9.13e+3 9.13e+3 3.63e+3
7 le-2 1.55e+3 2.00e+3 2.12e+3 6.25e+3 2.17e+4 5.50e+3 5.55e+3 1.00 5.50e+3 5.50e+3 5.55e+3
8 le-2 - - - - - - 0.00 - 0.OOe+0 -

9 le-2 - - - - - - 0.00 - 0.OOe+0 -

10 le-2 - - - - - - - 0.00 - 0.OOe+0 -

11 le-2 - - - - - - 0.00 - 0.OOe+0 -

12 le-2 2.99e+3 4.26e+4 - - - 4.53e+4 2.89e+4 0.48 9.45e+4 1.54e+5 1.53e+5

Prob. Tol min 7th median 19th max mean std Ps ThS iPi2iIiar(Sii
1 le-6 4.50e+3 4.69e+3 4.75e+3 4.85e+3 5.05e+3 4.78e+3 1.40e+2 1.00 4.78e+3 4.78e+3 1.40e+2
2 le-6 1.29e+4 1.32e+4 1.35e+4 1.39e+4 1.43e+4 1.36e+4 4.37e+2 1.00 1.36e+4 1.36e+4 4.37e+2
3 le-6 4.23e+4 4.30e+4 4.34e+4 4.38e+4 4.50e+4 4.34e+4 6.52e+2 1.00 4.34e+4 4.34e+4 6.52e+2
4 le-6 - 0.00 0.00e+0
5 le-6 4.72e+4 6.22e+4 7.20e+4 7.74e+4 9.90e+4 7.10e+4 1.lOe+4 1.00 7.10e+4 7.10e+4 1.lOe+4
6 le-2 4.25e+4 4.90e+4 5.28e+4 7.11e+4 1.30e+5 6.41e+4 2.52e+4 1.00 6.41e+4 6.41e+4 2.52e+4
7 le-2 5.08e+3 5.31e+3 5.61e+3 5.80e+3 1.83e+4 7.00e+3 4.07e+3 1.00 7.00e+3 7.00e+3 4.07e+3
8 le-2 - - - - - - 0.00 - 0.OOe+0 -

9 1e-2 - - - - - - - 0.00 - 0.OOe+0 -

10 le-2 - - - - - - - 0.00 - 0.OOe+0 -

11 le-2 - - - - - - - 0.00 - 0.OOe+0 -

12 le-2 - - - - - - - 0.00 - 0.OOe+0 -

Prob. Tol min 7th median 19th max mean std SPi SP2jvar(SP2)
1 le-6 7.Ole+3 7.18e+3 7.30e+3 7.38e+3 7.70e+3 7.30e+3 1.57e+2 1.00 7.30e+3 7.30e+3 1.57e+2
2 le-6 3.10e+4 3.21e+4 3.23e+4 3.33e+4 3.43e+4 3.26e+4 7.64e+2 1.00 3.26e+4 3.26e+4 7.64e+2
3 le-6 1.15e+5 1.17e+5 1.18e+5 1.18e+5 1.19e+5 1.17e+5 1.05e+3 1.00 1.17e+5 1.17e+5 1.05e+3
4 le-6 0.00 0.OOe+0
5 le-6 4.72e+5 - - - - 4.84e+5 1.70e+4 0.08 6.04e+6 6.23e+6 5.99e+6
6 le-2 1.lle+5 1.28e+5 1.36e+5 1.47e+5 4.27e+5 1.66e+5 7.41e+4 1.00 1.66e+5 1.66e+5 7.41e+4
7 le-2 7.86e+3 8.36e+3 8.56e+3 8.71e+3 9.18e+3 8.54e+3 3.50e+2 1.00 8.54e+3 8.54e+3 3.50e+2
8 le-2 0.00 0.OOe+0
9 le-2 0.00 0.OOe+0
10 le-2 0.00 0.OOe+0
11 le-2
12 le-2

0.00

0.00

0.OOe+O
0.OOe+O

region was defined problem dependent and no (further) pa-
rameter tuning was performed. Second, the LR-CMA-ES
has several invariance properties [3], like invariance against
order preserving transformations of the objective function
values and invariance against linear transformations of the
search space [6]. Invariance properties are highly desirable,
because they imply uniform performance on classes of func-
tions and therefore allow for generalization of the empirical
results.

Invariances and the procedure to adjust parameters need
to be carefully regarded for a conclusive performance eval-
uation of search algorithms.
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Table 3: Best objective function error value reached after 103, 104 and 105 function evaluations (FES) respectively (rows)
on the 25 test problems (columns) in dimension n = 10. Given are minimum, 7th, median, 19th, and maximum value from
25 runs, as well as mean and standard deviation. A run is stopped whenever the objective function error value drops below
10-8 and its final value is used for all larger FES

FES Prob. 1 2 3 4 5 6 7 8 9 10 11 12
min 1.35e-2 1.78e+1 7.59e+5 1.07e+7 1.66e+1 3.18e+1 8.65e -1 2.04e+1 3.40e+1 4.78e+1 4.83e+0 1.75e+1
7th 3.41e -2 7.08e+1 1.44e+6 1.68e+7 6.27e+1 7.97e+2 1.04e+0 2.07e+1 8.76e+1 2.02e+2 9.23e1+0 6.15e+3
med. 6.39e -2 1.15e+2 2.28e+6 1.77e+7 2.18e+2 3.83e+3 1.16e+0 2.08e+1 1.46e+2 2.75e+2 1.18e+1 1.35e+4

1e3 l9th 1.49e-1 2.38e+2 1.19e+7 1.94e+7 3.60e+2 5.82e+3 1.36e+0 2.09e+1 1.57e+2 3.30e+2 1.30e+1 3.67e+4
max 7.71e -1 1.80e+3 6.44e+7 2.34e+7 3.05e+3 1.69e+4 2.07e+0 2.09e+1 2.57e+2 5.59e+2 1.86e+1 1.34e+5
mean 1.45e-1 2.60e+2 9.33e+6 1.74e+7 4.74e+2 4.37e+3 1.26e+0 2.07e+1 1.31e+2 2.76e+2 1.15e+1 2.96e+4
std 1.94e-1 3.96e+2 1.41e+7 3.19et6 7.02e+2 4.08e+3 3.06e -1 1.43e-1 5.81e+1 1.29e+2 3.45e+0 3.71e-+4
min 1.81e -9 2.41e -9 1.35e-9 7.35e -9 3.35e -9 2.31e -9 2.46e -9 2.00e+1 3.40e+1 2.29e+1 2.56e+0 3.79e -9
7th 3.83e -9 3.80e -9 4.30e -9 4.22e+4 5.19e -9 4.69e -9 3.79e -9 2.00e+1 5.57e+1 1.03e+2 7.53e-0 4.22e+2
med. 5.39e -9 4.99e -9 5.58e -9 1.46e+7 6.83e -9 6.59e -9 7.65e -9 2.05e+1 8.16e+1 1.48e+2 8.71e+0 1.lle+4

1e4 lgth 6.58e -9 6.48e-9 5.97e -9 1.81e+7 7.61te -9 1.44e -4 9.86te -3 2.06e+1 1.04e+2 2.39e+2 1.lOe+1 2.72et4
max 8.59e -9 8.76e -9 7.01e-9 2.24e+7 9.83e -9 4.38e+0 1.72e-2 2.07e+1 1.70e+2 3.03e+2 1.38e+1 1.32e+5
mean 5.14e -9 5.31e -9 4.94e -9 1.05e+7 6.57e-9 9.62e -1 4.84e -3 2.04e+1 8.60e+1 1.68e+2 8.61e+0 2.41et4
std 1.82e-9 1.77e-9 1.45e -9 8.93e+6 1.88e-9 1.75e+0 6.06e -3 2.56e -1 3.84e+1 8.13e+1 3.08e+0 3.60e+4
mnm 1.81e -9 2.41e-9 1.35e-9 3.99e -9 3.35e -9 2.31e -9 2.32e-9 2.00e+1 1.69e+1 6.96e+0 1.30e-1 1.88e-9
7th 3.83e-9 3.80e -9 4.30e -9 2.12e -7 5.19e -9 4.22e -9 3.71e -9 2.00e+1 3.58e+1 1.39e+1 2.56e+0 5.12e -9
med. 5.39e-9 4.99e -9 5.58e -9 2.45e+4 6.83e -9 4.77e -9 4.79e -9 2.00e+1 4.78e+1 2.29e+1 3.42e+0 1.OOe+1

1e5 l9th 6.58e -9 6.48e -9 5.97e -9 2.25e+5 7.61e -9 6.84e -9 6.22e -9 2.00e+1 5.27e+1 7.59e+1 4.80e-+0 3.55e+1
max 8.59e -9 8.76e -9 7.01e-9 1.65e+7 9.83e -9 9.65e -9 7.83e -9 2.00e+1 6.27e+1 1.04e+2 6.77e+0 1.56e+3
mean 5.14e -9 5.31e -9 4.94e -9 1.79e+6 6.57e -9 5.41e -9 4.91e -9 2.00e+1 4.49e+1 4.08e+1 3.65etf0 2.09e+2
std 1.82e-9 1.77e-9 1.45e-9 4.66e+6 1.88e -9 1.81e-9 1.68e-9 0.OOe+0 1.36e+1 3.35e+1 1.66e+0 4.69e+2

FESProb. 13 14 15 16 17 18 19 20 21 22 23 24 25
mnm 2.61e+0 4.lle+0 2.48e+2 1.68e+2 2.72e+2 4.07e+2 3.94e+2 3.22e+2 4.11e+2 7.13e+2 5.54e+2 2.00e+2 4.12e+2
7th 3.38e+0 4.48e+0 5.23e+2 2.04e+2 1.12e+3 9.42e+2 8.31e+2 8.01e+2 5.06e+2 8.18e+2 1.13e+3 1.05e+3 4.51e+2
med. 3.70e+0 4.84e+0 9.07e+2 2.71e+2 1.43e+3 1.OOe+3 9.76e+2 9.69e+2 1.23e+3 8.97e+2 1.26e+3 1.56e+3 5.06e+2

le3 lgth 4.11e+0 4.97etO 1.25e+3 6.43e+2 1.71e+3 1.04e+3 1.05e+3 1.04e+3 1.45e+3 9.97e+2 1.77e+3 1.79e+3 2.16e+3
max 5.92e+0 5.00e+0 2.22e+3 2.27e+3 2.47e+3 2.14e+3 2.16e+3 2.24e+3 2.37e+3 2.26e+3 2.17e+3 2.34e+3 2.78e+3
mean 3.87e+0 4.73e+0 9.43e+2 4.98e+2 1.46e+3 9.92e+2 9.81e+2 9.88e+2 1.lOe+3 1.lle+3 1.36e+3 1.39e+3 1.13e+3
std 7.95e-1 2.75e -1 4.73e+2 4.66e+2 5.69e+2 3.09e+2 2.94e+2 3.66e+2 5.70e+2 4.94e+2 4.91e+2 6.29e+2 8.99e+2
nun 5.08e -1 3.84e+0 1.17e+2 9.39e+1 1.39e+2 3.00e+2 3.00e+2 3.00e+2 3.00e+2 5.00e+2 5.54e+2 2.00e+2 3.71e+2
7th 6.87e-1 4.39e+0 4.00e+2 1.19e+2 6.59e+2 8.00e+2 8.00e+2 7.86e+2 4.10e+2 7.92e+2 8.34e+2 5.00e+2 3.81e+2
med. 8.24e -1 4.50e+0 4.00e+2 1.29e+2 1.05e+3 9.21e+2 8.40e+2 8.00e+2 8.00e+2 8.00e+2 1.13e+3 1.51e+3 3.83e+2

le4 l1th 9.16e -1 4.84e+0 8.75e+2 1.40e+2 1.36e+3 9.77e+2 9.80e+2 9.34e+2 1.17e+3 8.88e+2 1.57e+3 1.78e+3 3.93e+2
max 1.60e+0 4.98e+0 1.35e+3 5.00e+2 2.31e+3 1.lOe+3 1.45e+3 1.17e+3 1.85e+3 2.08e+3 2.17e+3 2.30e+3 2.52e+3
mean 8.79e -1 4.57e+0 6.06e+2 1.49e+2 1.08e+3 8.40e+2 8.16e+2 7.75e+2 8.32e+2 9.12e+2 1.22e+3 1.22e+3 7.16e+2
std 3.23e -1 3.28e -1 3.81e+2 8.Ole+1 6.59e+2 2.17e+2 2.74e+2 2.60e+2 4.53e+2 3.33e+2 5.16e+2 7.14e+2 7.11e+2
inm 1.88e-1 3.36e+0 7.35e+1 6.14e+1 1.23e+2 3.00e+2 3.00e+2 3.00e+2 2.00e+2 5.00e+2 4.25e+2 2.00e+2 2.00e+2
7th 4.16e-1 3.67e+0 1.42e+2 9.82e+1 2.14e+2 3.00e+2 3.00e+2 3.00e+2 3.00e+2 7.38e+2 5.59e+2 2.00e+2 3.75e+2
med. 4.79e -1 4.05e-+0 2.00e+2 1.06e+2 4.91e+2 3.78e+2 4.19e+2 3.55e+2 4.10e+2 7.43e+2 5.60e+2 5.00e+2 3.77e+2

le5 l9th 5.60e -1 4.25e+0 2.12e+2 1.14e+2 8.11e+2 8.00e+2 8.00e+2 5.00e+2 4.10e+2 7.48e+2 1.09e+3 1.50e+3 3.82e+2
max 8.17e-1 4.43e+0 4.42e+2 1.21e+2 1.33e+3 8.00e+2 9.76e+2 9.07e+2 8.00e+2 9.00e+2 1.26e+3 2.18e+3 2.15e+3
mean 4.94e -1 4.0le+0 2.11e+2 1.05e+2 5.49e+2 4.97e+2 5.16e+2 4.42e+2 4.04e+2 7.40e+2 7.91e+2 8.65e+2 4.42e+2
std 1.38e-1 3.14e -1 1.02e+2 1.26e+1 3.49e+2 2.18e+2 2.34e+2 2.03e+2 1.23e+2 5.94e+1 2.79e+2 6.39e+2 3.58e+2
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Table 4: Best objective function error values reached in dimension n = 30, see caption of Table 3 for details
FES Prob. 1 2 3 4 5 6 7 8 9 10 11 12

min 1.06e+3 3.99e+4 6.89e+7 3.33e+8 1.23e+4 6.06e+7 5.32e+2 2.11e+1 2.62e+2 6.76e+2 3.19e+1 1.91e+5
7th 3.49e+3 5.04e+4 1.77e+8 3.93e+8 1.61e+4 1.89e+8 6.89e+2 2.11e+1 4.01e+2 9.14e+2 3.60e+1 3.16e+5
med. 4.74e+3 6.21e+4 2.19e+8 4.30e+8 1.92e+4 2.74e+8 7.99e+2 2.12e+1 4.44e+2 1.lOe+3 4.01e+1 4.67e+5

le3 l9th 5.43e+3 7.67e+4 3.01e+8 4.41e+8 2.20e+4 4.90e+8 9.07e+2 2.12e+1 5.78e+2 1.29e+3 4.39e+1 5.56e+5
max 9.11e+3 9.69e+4 4.24e+8 4.82e+8 2.43e+4 2.05e+9 1.26e+3 2.13e+1 7.29e+2 1.99e+3 4.94e+1 7.69e+5
mean 4.54e+3 6.38e+4 2.36e+8 4.20e+8 1.89e+4 4.88e+8 8.24e+2 2.12e+1 4.74e+2 1.14e+3 4.01e+1 4.54e+5
std 1.83e+3 1.81e+4 9.82e+7 3.95e+7 3.32e+3 5.29e+8 1.89e+2 6.51e-2 1.19e+2 3.20e+2 4.65e-+0 1.57e+5
min 2.98e-9 6.69e-3 3.42e+5 9.21e+4 7.06e+2 2.17e+1 4.87e-9 2.09e+1 2.59e+2 6.56e+2 1.34e+1 3.97e+3
7th 4.81e-9 3.41e-2 7.71e+5 3.48e+8 1.22e+3 2.59e+1 5.95e-9 2.11e+1 3.44e+2 8.39e+2 2.46e+1 1.51e+4
med. 5.40e-9 5.10e-2 1.10e+6 4.03e+8 1.81e+3 5.73e+1 7.06e-9 2.11e+1 4.15e+2 9.25e+2 3.00e+1 3.74e+4

le4 I9th 5.82e-9 1.27e-1 1.79e+6 4.35e+8 2.15e+3 2.40e+2 8.79e-9 2.12e+1 4.70e+2 1.lOe+3 3.59e+1 9.02e+4
max 7.06e-9 2.80e-1 3.17e+6 4.71e+8 3.46e+3 1.22e+3 1.48e-2 2.12e+1 6.49e+2 1.45e+3 4.07e+1 3.14e+5
mean 5.28e-9 9.47e-2 1.28e+6 3.50e4-8 1.75e+3 1.96e+2 2.46e -3 2.11e+1 4.19e+2 9.73e+2 2.91e+1 7.55e+4
std 9.82e-10 8.76e-2 7.13e+5 1.44e+8 6.88e+2 3.05e+2 4.72e-3 6.69e-2 1.02e+2 2.12e+2 7.54e+-0 8.78e+4
min 2.98e-9 4.90e-9 2.98e-9 2.31e+1 5.23e-9 4.28e-9 4.46e -9 2.00e+1 2.53e+2 5.44e+2 9.84e+0 1.15e+3
7th 4.81e-9 6.49e-9 4.55e-9 1.94e+5 7.39e-9 5.55e-9 5.56e-9 2.00e+1 2.96e+2 7.15e+2 1.73e+1 5.50e+3
med. 5.40e-9 6.91e-9 5.24e -9 1.09e+6 8.65e-9 6.71e-9 6.44e-9 2.00e+1 3.26e+2 7.73e+2 2.26e+1 1.90e+4

1e5 l9th 5.82e -9 7.24e-9 5.74e-9 4.08e+8 9.55e-9 7.68e-9 7.13e-9 2.05e+1 3.64e+2 8.37e+2 2.56e+1 3.55e+4
max 7.06e-9 8.77e-9 7.57e-9 4.57e+8 5.85e-7 3.99e+0 8.79e-9 2.11e+1 4.30e+2 9.96e+2 2.82e+1 2.50e+5
mean 5.28e-9 6.93e-9 5.18e -9 1.93e+8 3.13e-8 3.64e-1 6.48e-9 2.03e+1 3.28e+2 7.81e+2 2.15e+1 3.39e+4
std 9.82e-10 8.27e-10 1.03e-9 2.08e+8 1.15e-7 1.04e+-0 1.14e-9 4.14e-1 4.46e+1 1.13e+2 5.12e+0 5.08e+4
min 2.98e-9 4.90e-9 2.98e -9 2.31e+1 5.23e-9 4.28e -9 4.46e-9 2.00e+1 2.43e+2 4.20e+1 6.85e-+-0 1.29e+0
7th 4.81e-9 6.49e-9 4.55e-9 1.85e+5 7.39e-9 5.55e-9 5.56e-9 2.00e+1 2.60e+2 5.80e+2 1.31e+1 3.67e+3
med. 5.40e-9 6.91e-9 5.24e-9 7.84e+5 8.65e-9 6.35e-9 6.44e-9 2.00e+1 2.86e+2 6.56e+2 1.55e+1 9.91e+3

3e5 I9th 5.82e-9 7.24e-9 5.74e-9 3.36e+-6 9.34e-9 7.38e-9 7.13e -9 2.00e+1 3.13e+2 7.42e+2 1.75e+1 1.87e+4
max 7.06e-9 8.77e-9 7.57e-9 4.48e+8 9.99e-9 8.44e-9 8.79e -9 2.00e+1 3.66e+2 7.92e+2 2.26e+1 3.50e+4
mean 5.28e-9 6.93e-9 5.18e-9 9.26e+7 8.30e-9 6.31e-9 6.48e-9 2.00e+1 2.91e+2 5.63e+2 1.52e+1 1.32e+4
std 9.82e-10 8.27e-10 1.03e-9 1.68e+8 1.38e-9 1.14e-9 1.14e-9 9.62e-15 3.54e+1 2.48e+2 3.51e+0 1.15e+4

FES Prob. 13 14 15 16 17 18 19 20 21 22 23 24 25
min 2.98e+1 1.41e+1 5.24e+2 3.25e+2 1.51e+3 1.02e+3 1.01e+3 1.04e+3 1.02e+3 1.08e+3 1.06e+3 1.36e+3 1.99e+3
7th 6.37e+1 1.45e+1 7.18e+2 3.97e+2 1.76e+3 1.08e+3 1.08e+3 1.09e+3 1.13e+3 1.23e+3 1.26e+3 1.63e+3 2.05e+3
med. 1.32e+2 1.48e+1 8.40e+2 4.81e+2 1.96e+3 1.15e+3 1.17e+3 1.15e+3 1.19e+3 1.31e+3 1.34e+3 1.69e+3 2.09e+3

1e3 19th 2.15e+2 1.49e+1 9.65e+2 6.09e+2 2.14e+3 1.30e+3 1.38e+3 1.19e+3 1.22e+3 1.51e+3 1.47e+3 1.80e+3 2.17e+3
max 1.19e+3 1.50e+1 1.36e+3 1.56e+3 2.36e+3 1.74e+3 1.78e+3 1.49e+3 1.25e+3 2.51e+3 1.93e+3 1.91e+3 2.41e+3
mean 2.06e+2 1.47e+1 8.60e+2 5.96e+2 1.94e+3 1.22e+3 1.27e+3 1.17e+3 1.17e+3 1.41e+3 1.40e+3 1.70e+3 2.12e+3
std 2.54e+2 2.60e-1 2.35e+2 2.90e+2 2.37e+2 1.87e+2 2.29e+2 1.29e+2 6.26e+1 3.17e+2 2.26e+2 1.29e+2 9.93e+1
min 2.61e+0 1.36e+1 2.40e+2 5.77e+1 4.33e+2 9.10e+2 9.11e+2 9.09e+2 5.00e+2 8.79e+2 5.34e+2 2.00e+2 2.10e+2
7th 3.05e+-0 1.40e+1 4.00e+2 8.19e+1 1.54e+3 9.16e+2 9.16e+2 9.20e+2 5.00e+2 9.27e+2 5.34e+2 1.54e+3 2.12e+2
med. 3.67e4-0 1.44e+1 4.69e+2 1.56e+2 1.88e+3 9.22e+2 9.20e+2 9.23e+2 5.00e+2 9.43e+2 5.41e+2 1.63e+3 2.14e+2

1e4 19th 4.19e+40 1.45e+1 8.00e+2 4.00e+2 1.93e+3 9.27e+2 9.36e+2 9.28e+2 5.00e+2 9.83e+2 9.44e+2 1.69e+3 1.87e+3
max 5.02e+0 1.49e+1 1.34e+3 8.02e+2 2.28e+3 1.49e+3 1.73e+3 9.42e+2 1.16e+3 1.21e+3 1.78e+3 1.87e+3 2.07e+3
mean 3.64e+0 1.43e+1 6.07e+2 2.52e+2 1.71e+3 9.64e+2 1.03e+3 9.24e+2 6.18e+2 9.63e+2 7.51e+2 1.42e+3 7.25e+2
std 7.27e-1 3.45e-1 3.23e+2 2.08e+2 4.42e+2 1.46e+2 2.41e+2 7.64e+0 2.28e+2 7.04e+1 3.30e+2 5.49e+2 8.09e+2
min 2.09e-+0 1.35e+1 1.20e+2 5.05e+1 2.68e+2 8.00e+2 9.07e+2 8.00e+2 4.09e+2 8.51e+2 5.34e+2 2.00e+2 2.10e+2
7th 2.52e+0 1.39e+1 2.10e+2 5.84e+1 6.40e+2 9.14e+2 9.10e+2 9.11e+2 5.00e+2 8.71e+2 5.34e+2 1.52e+3 2.11e+2
med. 2.82e+0 1.42e+1 3.06e+2 6.40e+1 1.17e+3 9.15e+2 9.15e+2 9.13e+2 5.00e+2 8.85e+2 5.34e+2 1.62e+3 2.12e+2

le5 l9th 3.01e+0 1.45e+1 3.52e+2 7.65e+1 1.57e+3 9.18e+2 9.19e+2 9.17e+2 5.00e+2 8.96e+2 5.41e+2 1.67e+3 1.84e+3
max 3.82e+0 1.47e+1 5.00e+2 1.68e+2 2.17e+3 9.22e+2 9.30e+2 9.22e+2 5.00e+2 9.34e+2 1.56e+3 1.86e+3 2.05e+3
mean 2.84e+0 1.42e+1 2.86e+2 7.41e+1 1.13e+3 9.07e+2 9.15e+2 9.05e+2 4.96e+2 8.85e+2 6.44e+2 1.41e+3 7.03e+2
std 4.69e-1 3.76e-1 9.95e+1 2.84e+1 5.58e+2 3.22e+1 5.58e+0 3.19e+1 1.81e+1 2.08e+1 2.68e+2 5.45e+2 8.05e+2
min 1.48e+0 1.28e+1 1.08e+2 4.34e+1 2.66e+2 8.00e+2 8.00e+2 8.00e+2 4.09e+2 8.25e+2 5.34e+2 2.00e+2 2.10e+2
7th 2.10e+0 1.36e+1 1.41e+2 5.42e+1 6.39e+2 9.10e+2 9.09e+2 9.09e+2 5.00e+2 8.58e+2 5.34e+2 1.52e+3 2.11e+2
med. 2.24e+0 1.40e+1 2.05e+2 5.77e+1 1.08e+3 9.12e+2 9.11e+2 9.10e+2 5.00e+2 8.71e+2 5.34e+2 1.61e+3 2.12e+2

3e5 l9th 2.52e+0 1.43e+1 2.90e+2 6.18e+1 1.43e+3 9.13e+2 9.13e+2 9.13e+2 5.00e+2 8.81e+2 5.34e+2 1.67e+3 1.71e+3
max 2.98e+0 1.45e+1 4.00e+2 7.65e+1 2.17e+3 9.18e+2 9.23e+2 9.16e+2 5.00e+2 9.20e+2 5.41e+2 1.86e+3 2.05e+3
mean 2.32e+0 1.40e+1 2.16e+2 5.84e+1 1.07e+3 8.90e+2 9.03e+2 8.89e+2 4.85e+2 8.71e+2 5.35e+2 1.41e+3 6.91e+2
std 3.46e -1 4.04e-1 8.29e+1 7.28e+0 5.13e+2 4.60e+1 3.11e+1 4.55e+1 3.39e+1 2.15e+1 1.53e+-0 5.44e+2 7.87e+2
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Table 5: Best objective function error values reached in dimension n = 50, see caption of Table 3 for details
FES Prob. 1 2 3 4 5 6 7 8 9 10 11 12

min 2.02e+4 1.lle+5 2.63e+8 1.67e+9 2.78e+4 2.82e+9 2.70e+3 2.11e+1 6.50e+2 1.46e+3 6.14e+1 1.49e+6
7th 3.25e+4 1.38e+5 8.13e+8 1.83e+9 3.17e+4 7.49e+9 3.62e+3 2.13e+1 7.35e+2 1.89e+3 7.20e+1 2.62e+6
med. 3.57e+4 1.60e+5 1.02e+9 1.94e+9 3.59e-+4 9.11e+9 4.20e+3 2.13e+1 8.21e+2 2.08e+3 7.51e+1 3.29e+6

1e3 19th 4.09e+4 1.95e+5 1.20e+9 2.03e+9 4.0le+4 1.08e+10 4.69e+3 2.14e+1 1.03e+3 2.24e+3 7.72e+1 4.12e+6
max 7.02e+4 2.92e+5 1.75e+9 2.20e+9 4.29e+4 3.06e+10 6.09e+3 2.14e+1 1.18e+3 3.00e+3 8.62e+1 5.55e+6
mean 3.82e+4 1.76e+5 9.97e+8 1.93e+9 3.58e+4 9.75e+9 4.21e+3 2.13e+1 8.60e+2 2.09e+3 7.43e+1 3.32e+6
std 1.02e+4 4.97e+4 3.25e+8 1.43e+8 4.62e+3 5.37e+9 8.94e+2 6.85e-2 1.52e+2 3.45e+2 6.16e+0 1.06e+6
min 4.34e-9 2.00e+3 4.88e+6 1.63e+9 2.77e+3 4.46e+1 1.02e-4 2.11e+1 6.20e+2 1.43e+3 2.84e+1 1.97e+4
7th 5.71e-9 3.06e+3 8.49e+6 1.82e+9 5.24e+3 1.61e+2 4.53e-4 2.12e+1 7.14e+2 1.86e+3 4.80e+1 2.10e+5
med. 6.23e-9 3.91e+3 1.19e+7 1.89e+9 5.97e+3 1.04e+3 6.93e-4 2.12e+1 7.85e+2 2.05e+3 5.46e+1 2.80e+5

le4 l9th 6.74e -9 6.25e+3 1.58e+7 1.98e+9 6.33e+3 7.14e+3 1.60e-3 2.13e+1 9.85e+2 2.20e+3 5.87e+1 4.30e+5
max 7.50e-9 1.06e+4 2.24e+7 2.19e+9 7.61e+3 1.42e+4 7.93e-3 2.13e+1 1.15e+3 2.93e+3 6.29e+1 1.31e+6
mean 6.20e-9 4.89e+3 1.26e+7 1.90e+9 5.78e+3 3.48e+3 1.69e-3 2.13e+1 8.32e+2 2.06e+3 5.24e+1 4.00e+5
std 8.04e -10 2.51e+3 5.12e+6 1.45e+8 1.09e+3 4.37e+3 2.34e-3 4.65e-2 1.50e+2 3.38e+2 8.53e+0 3.33e+5
min 4.34e-9 5.38e-9 2.49e-1 1.42e+5 5.51e+2 1.60e+0 6.50e-9 2.00e+1 4.35e+2 1.35e+3 2.83e+1 7.27e+3
7th 5.71e-9 7.48e-9 3.42e+0 1.13e+6 1.15e+3 8.24e+0 7.06e-9 2.12e+1 5.96e+2 1.51e+3 4.05e+1 1.33e+5
med. 6.23e-9 8.04e-9 4.71e+0 3.59e+8 1.35e+3 1.18e+1 7.53e-9 2.12e+1 6.27e+2 1.69e+3 4.22e+1 2.51e+5

1e5 l9th 6.74e-9 8.66e-9 1.06e+1 1.82e+9 1.85e+3 1.33e+1 7.81e-9 2.12e+1 6.83e+2 1.95e+3 4.70e+1 3.31e-+5
max 7.50e-9 9.31e-9 3.83e+1 2.06e+9 2.99e+3 2.44e+1 8.26e -9 2.13e+1 7.63e+2 2.93e+3 5.20e+1 1.Oleje+6
mean 6.20e-9 7.96e-9 7.88e+0 8.51e+8 1.48e+3 1.16e+1 7.49e-9 2.11e+1 6.36e+2 1.79e+3 4.26e+1 3.13e+5
std 8.04e-10 8.32e-10 8.24e-+0 9.00e+8 6.19e+2 5.65e+0 5.25e-10 2.80e-1 7.35e+1 3.71e+2 6.05e+0 2.61e+5
min 4.34e-9 5.38e-9 4.87e-9 1.42e+5 9.40e-8 6.04e-9 6.50e-9 2.00e+1 4.20e+2 1.27e+3 2.65e+1 3.72e+3
7th 5.71e-9 7.48e-9 5.48e--9 4.87e+5 4.46e-3 6.64e-9 7.06e-9 2.00e+1 5.34e+2 1.39e+3 2.97e+1 3.37e-+4
med. 6.23e-9 8.04e-9 5.90e-9 9.96e+5 7.08e -2 7.12e-9 7.53e-9 2.00e+1 5.79e+2 1.43e+3 3.47e+1 7.26e+4

5e5 I9th 6.74e-9 8.66e-9 6.54e-9 3.39e+8 6.67e-1 7.43e-9 7.81e-9 2.00e+1 6.14e+2 1.56e+3 3.81e+1 1.15e+5
max 7.50e-9 9.31e-9 8.05e-9 2.06e+9 4.79e+1 8.87e-9 8.26e-9 2.12e+1 6.65e+2 1.89e+3 4.27e+1 3.21e+5
mean 6.20e -9 7.96e -9 6.04e -9 4.46e+8 3.27eH+0 7.12e -9 7.49e -9 2.00e+1 5.67e+2 1.48e+3 3.41e+1 8.93e+4
std 8.04e-10 8.32e-10 7.67e-10 7.93e+8 9.94e+0 7.08e-10 5.25e-10 2.34e -1 6.05e+1 1.37e+2 4.97e+0 7.86e+4

FES Prob. 13 14 15 16 17 18 19 20 21 22 23 24 25
min 2.01e+3 2.41e+1 5.45e+2 5.54e+2 1.43e+3 1.20e+3 1.16e+3 1.15e+3 1.29e+3 1.36e+3 1.62e+3 1.38e+3 2.08e+3
7th 1.08e+4 2.44e+1 6.87e+2 6.72e+2 1.72e+3 1.25e+3 1.24e+3 1.25e+3 1.36e+3 1.54e+3 1.76e+3 1.78e+3 2.25e+3
med. 1.88e+4 2.46e+1 8.46e+2 7.45e+2 1.81e+3 1.32e+3 1.32e+3 1.34e+3 1.40e+3 1.68e+3 1.79e+3 1.87e+3 2.29e+3

1e3 19th 2.59e+4 2.48e+1 1.17e+3 9.71e+2 1.98e+3 1.37e+3 1.40e+3 1.42e+3 1.50e+3 1.84e+3 1.85e+3 1.90e+3 2.33e+3
max 8.60e+4 2.50e+1 1.57e+3 1.91e+3 2.29e+3 1.64e+3 1.68e+3 1.73e+3 1.79e+3 2.71e+3 1.99e+3 2.08e+3 2.44e+3
mean 2.74e+4 2.46e+1 9.58e+2 8.79e+2 1.85e+3 1.34e+3 1.34e+3 1.35e+3 1.43e+3 1.74e+3 1.80e+3 1.83e+3 2.28e+3
std 2.55e+4 2.38e -1 3.24e+2 3.51e+2 2.27e+2 1.05e+2 1.28e+2 1.35e+2 1.04e+2 2.93e+2 8.32e+1 1.60e+2 8.54e+1
min 4.60e-+0 2.37e+1 3.05e+2 6.09e+1 1.lle+3 8.79e+2 8.93e+2 8.00e+2 5.00e+2 9.78e+2 5.39e+2 2.00e+2 2.24e+2
7th 6.53e+0 2.40e+1 4.00e+2 9.14e+1 1.56e+3 9.32e+2 9.33e+2 9.31e+2 5.00e+2 1.OOe+3 5.43e+2 2.00e+2 2.75e+2
med. 7.33eH+0 2.43e+1 4.00e+2 2.06e+2 1.72e+3 9.36e+2 9.40e+2 9.39e+2 5.00e+2 1.02e+3 8.93e+2 1.15e+3 5.87e+2

1e4 l1th 8.54e+0 2.44e+1 9.00e+2 4.00e+2 1.86e+3 9.46e+2 9.47e+2 9.52e+2 5.00e+2 1.03e+3 1.79e+3 1.71e+3 2.10e+3
max 2.01 e+1 2.50e+1 1.50e+3 1.33e+3 2.25e+3 9.66e+2 9.84e+2 9.65e+2 8.00e+2 1.07e+3 1.94e+3 1.87e+3 2.28e+3
mean 8.16e+0 2.43e+1 6.68e+2 3.34e+2 1.70e+3 9.36e+2 9.39e+2 9.32e+2 5.36e+2 1.02e+3 1.12e+3 9.44e+2 1.16e+3
std 3.08e+0 3.45e-1 4.31e+2 2.96e+2 2.83e+2 2.13e+1 1.62e+1 3.38e+1 9.95e+1 2.36e+1 6.20e+2 7.02e+2 8.98e+2
min 4.25e+0 2.31e+1 1.81e+2 6.09e+1 3.87e+2 8.79e+2 8.89e+2 8.00e+2 5.00e+2 8.88e+2 5.39e+2 2.00e+2 2.14e+2
7th 4.99e+0 2.39e+1 3.42e+2 7.22e+1 8.55e+2 9.16e+2 9.14e+2 9.28e+2 5.00e+2 9.12e+2 5.43e+2 2.00e+2 2.16e+2
med. 5.80e+0 2.42e+1 3.63e+2 7.96e+1 1.22e+3 9.32e+2 9.31e+2 9.32e+2 5.00e+2 9.22e+2 8.93e+2 2.00e+2 2.17e+2

1e5 lgth 6.47e+0 2.43e+1 4.00e+2 1.03e+2 1.66e+3 9.35e+2 9.35e+2 9.39e+2 5.00e+2 9.30e+2 1.79e+3 1.70e+3 2.18e+2
max 7.68e+0 2.48e+1 4.05e+2 2.13e+2 2.20e+3 9.46e+2 9.42e+2 9.60e+2 5.00e+2 9.57e+2 1.94e+3 1.85e+3 2.17e+3
mean 5.73e+-0 2.41e+1 3.53e+2 9.77e+1 1.26e+3 9.24e+2 9.25e+2 9.22e+2 5.00e+2 9.21e+2 1.12e+3 8.46e+2 5.60e+2
std 9.62e-1 4.50e-1 5.43e+1 3.97e+1 4.97e+2 1.94e+1 1.55e+1 3.75e+1 4.39e-13 1.61e+1 6.20e+2 7.18e+2 7.07e+2
min 3.76e+0 2.31e+1 1.15e+2 5.61e+1 3.81e+2 8.71e+2 8.63e+2 8.00e+2 5.00e+2 8.82e+2 5.39e+2 2.00e+2 2.14e+2
7th 4.37e+0 2.37e+1 1.88e+2 6.58e+1 7.73e+2 8.90e+2 9.03e+2 8.95e+2 5.00e+2 8.98e+2 5.40e+2 2.00e+2 2.16e+2
med. 4.56e+-0 2.40e+1 2.46e+2 7.22e+1 9.31e+2 9.04e+2 9.14e+2 9.20e+2 5.00e+2 9.10e+2 5.42e+2 2.00e+2 2.16e+2

5e5 l9th 5.05e+0 2.42e+1 3.13e+2 7.63e+1 1.19e+3 9.26e+2 9.26e+2 9.29e+2 5.00e+2 9.188e+2 5.46e+2 1.70e+3 2.18e+2
max 5.60e_+0 2.47e+1 3.55e+2 8.16e+1 2.20e+3 9.34e+2 9.30e+2 9.32e+2 5.00e+2 9.57e+2 1.84e+3 1.85e+3 2.17e+3
mean 4.70e+0 2.39e+1 2.50e+2 7.09e+1 1.05e+3 9.06e+2 9.11e+2 9.01e+2 5.00e+2 9.10e+2 6.37e+2 8.43e+2 4.77e+2
std 5.09e-1 3.97e-1 6.74e+1 6.99e+0 4.56e+2 2.05e+1 1.84e+1 3.93e+1 2.26e-13 1.72e+1 2.77e+2 7.15e+2 6.15e+2
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