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Abstract

A study on the steps to follow in linguistic decision analysis is presented in a context of multi-criteria=multi-person
decision making. Three steps are established for solving a multi-criteria decision making problem under linguistic information:
(i) the choice of the linguistic term set with its semantic in order to express the linguistic performance values according
to all the criteria, (ii) the choice of the aggregation operator of linguistic information in order to aggregate the linguistic
performance values, and (iii) the choice of the best alternatives, which is made up by two phases: (a) the aggregation of
linguistic information for obtaining a collective linguistic performance value on the alternatives, and (b) the exploitation of
the collective linguistic performance value in order to establish a rank ordering among the alternatives for choosing the best
alternatives. Finally, an example is shown. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

There are decision situations in which the infor-
mation cannot be assessed precisely in a quantitative
form but may be in a qualitative one, and thus, the
use of a linguistic approach is necessary. For exam-
ple, when attempting to qualify phenomena related to
human perception, we are often led to use words in
natural language instead of numerical values. As was
pointed out in [8], this may arise for di�erent rea-
sons. There are some situations in which the informa-
tion may be unquanti�able due to its nature, and thus,
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it may be stated only in linguistic terms (e.g., when
evaluating the “comfort” or “design” of a car [36],
terms like “good”, “medium”, “bad” can be used). In
other cases, precise quantitative information may not
be stated because either it is unavailable or the cost of
its computation is too high, so an “approximate value”
may be tolerated (e.g., when evaluating the speed of
a car, linguistic terms like “fast”, “very fast”, “slow”
may be used instead of numerical values).
The linguistic approach is an approximate tech-

nique which represents qualitative aspects as linguistic
values by means of linguistic variables [56], that is,
variables whose values are not numbers but words or
sentences in a natural or arti�cial language. Each lin-
guistic value is characterized by a syntactic value or
label and a semantic value or meaning. The label is
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a word or sentence belonging to a linguistic term set
and the meaning is a fuzzy subset in a universe of
discourse. Since words are less precise than numbers,
the concept of a linguistic variable serves the pur-
pose of providing a measure of an approximate char-
acterization of the phenomena which are too complex
or ill-de�ned to be amenable to their description by
conventional quantitative terms.
Linguistic decision analysis is based on the use of

the linguistic approach and it is applied for solving
decision making problems under linguistic informa-
tion. Its application in the development of the theory
and methods in decision analysis is very bene�cial be-
cause it introduces a more exible framework which
allows us to represent the information in a more di-
rect and adequate way when we are unable to express
it precisely. In this way, the burden of quantifying a
qualitative concept is eliminated.
In the literature, we may �nd many applications of

linguistic decision analysis to solve real-world activi-
ties, e.g., group decision making [4,22], multi-criteria
decision making [5,7,52], consensus [4,18,25,37],
marketing [53], software development [35], education
[34], subjective assessment of car evaluation [36],
vine pruning [42], material selection [9], personel
management [30], etc.
The main aim of this paper is to present a study on

the steps to follow in linguistic decision analysis, that
is, the steps to follow for solving a decision making
problem under linguistic information. Usually, in all
real-world decision making processes there are vari-
ous actors (experts or decision makers) who are called
to express their performance values on a prede�ned
set of options (alternatives) in order to select the best
one(s). We do not distinguish between “experts” and
“criteria” and interpret linguistic decision analysis in
a contex of multi-criteria decision making (MCDM)
[10,21]. In a classical fuzzy decision analysis, the so-
lution scheme of an MCDM problem basically con-
sists of two phases [33,41]: (i) an aggregation phase
of the performance values with respect to all the crite-
ria for obtaining a collective performance value for the
alternatives, followed by an (ii) exploitation phase of
the collective performance value for obtaining a rank
ordering, sorting or choice among the alternatives. In
the linguistic decision analysis of an MCDM problem,
the solution scheme must be formed by the following
three steps:

1. The Choice of the linguistic term set with its
semantic. It consists of establishing the linguistic
expression domain used to provide the linguistic
performance values about alternatives according to
the di�erent criteria. To do so, we have to choose
the granularity of the linguistic term set, its labels
and its semantic.

2. The Choice of the aggregation operator of lin-
guistic information. It consists of establishing an
appropriate aggregation operator of linguistic infor-
mation for aggregating and combining the linguis-
tic performance values provided.

3. The Choice of the best alternatives. It consists of
choosing the best alternatives according to the lin-
guistic performance values provided. It is carried
out in two phases:
(a) Aggregation phase of linguistic information:

It consists of obtaining a collective linguistic
performance value on the alternatives by aggre-
gating the linguistic performance values pro-
vided according to all the criteria by means of
the chosen aggregation operator of linguistic
information.

(b) Exploitation phase: It consists of establishing a
rank ordering among the alternatives according
to the collective linguistic performance value
for choosing the best alternatives.

With the objective of analyzing these three steps, the
paper is structured as follows. Section 2 presents the
�rst step of the linguistic decision analysis; Section 3
studies the second one showing di�erent approaches
on aggregation operators of linguistic information;
Section 4 analyzes the third one according to its two
phases; Section 5 shows an example of the applica-
tion of the linguistic decision analysis in an MCDM
problem, and �nally, some conclusions are pointed
out.

2. The choice of the linguistic term set
with its semantic

The choice of the linguistic term set with its seman-
tic is the �rst goal to satisfy in any linguistic approach
for solving a problem. It consists of establishing the
linguistic variable [56] or linguistic expression do-
main with a view to provide the linguistic performance
values.
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De�nition 1 (Zadeh [56]). A linguistic variable is
characterized by a quintuple (L,H(L),U,G,M) in
which L is the name of the variable; H(L) (or simply
H) denotes the term set of L, i.e., the set of names of
linguistic values of L, with each value being a fuzzy
variable denoted generically by X and ranging across
a universe of discourse U which is associated with
the base variable u; G is a syntactic rule (which usu-
ally takes the form of a grammar) for generating the
names of values of L; and M is a semantic rule for
associating its meaning with each L,M(X ), which is
a fuzzy subset of U.

From a practical point of view, we can �nd two pos-
sibilities to choose the appropriate linguistic descrip-
tors of the term set and their semantic:
• The �rst possibility de�nes the linguistic term set
by means of a context-free grammar, and the se-
mantic of linguistic terms is represented by fuzzy
numbers described by membership functions based
on parameters and a semantic rule [1,3,56].

• The second one de�nes the linguistic term set by
means of an ordered structure of linguistic terms,
and the semantic of linguistic terms is derived from
their own ordered structure which may be either
symmetrically distributed on the [0, 1] interval or
not [4,13,25,45,52,55].

In the following subsections, �rstly, we study the
two possibilities to obtain the linguistic descriptors of
the term set, and then we present the possibilities for
de�ning their semantic.

2.1. The choice of the linguistic term set

The main aim of establishing the linguistic descrip-
tors of a linguistic variable is to supply the user with
a few words by which he can naturally express his
information. In order to accomplish this objective,
an important aspect to analyze is the granularity of
uncertainty, i.e., the level of discrimination among
di�erent countings of uncertainty, i.e., the cardi-
nality of the linguistic term set used to express the
information.
The cardinality of the term set must be small enough

so as not to impose useless precision on the users,
and it must be rich enough in order to allow a dis-
crimination of the assessments in a limited number of
degrees.

Typical values of cardinality used in the linguistic
models are odd ones, such as 7 or 9, with an upper limit
of granularity of 11 or no more than 13, where the mid
term represents an assessment of “approximately 0.5”,
and with the rest of the terms being placed symmetri-
cally around it [2]. These classical cardinality values
seems to fall in line with Miller’s observation about
the fact that human beings can reasonably manage to
bear in mind seven or so items [38].
When the cardinality of the linguistic term set is

established, then we have to provide a mechanism for
generating the linguistic descriptors. Two approaches
are known: one de�nes them by means of a context-
free grammar and another de�nes them by means of a
total order de�ned on the linguistic term set. Both are
analyzed in the following subsections.

2.1.1. Approach based on a context-free grammar
One possibility for generating the linguistic term

set consists of supplying it using a context-free
grammar G, i.e., the term set is a set of sentences
belonging to the language generated by G [1,3,56].
A generative grammar G is a 4-tuple (VN; VT; I; P);
where VN is the set of non-terminals, VT is the set of
terminals, I is the starting symbol and P the produc-
tion rules. Thus, the choice of these elements will de-
termine the cardinality and form of the linguistic term
set. Obviously, this will be problem dependent, but
the generated language should be large enough such
that any possible situation of the problem involved
can be described.
According to Miller’s observations [38], the gener-

ated language does not have to be in�nite. Moreover,
it must be easily understandable. Thus, complex syn-
tactic structures, such as the unlimited recursive use
of the same production rule by means of a cyclic non-
terminal (which yields an in�nite language) should be
avoided [1].
For example, among the terminals and non-

terminals of G we can �nd primary terms
(e.g. high, medium, low), hedges (e.g. not, much,
very, rather, more or less), relations (e.g. higher
than, lower than), and connectives (e.g. and, but, or).
Then, making as I any term, the linguistic term set
H = {high; very high; not high; high or medium; : : :}
is generated by means of P. P may be de�ned in an
extended Backus Naur Form (see [3] as an example).
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2.1.2. Approach based on an ordered structure
of linguistic terms
An alternative possibility for reducing the complex-

ity of de�ning a grammar consists of directly supply-
ing the term set by considering all terms as primary
ones and distributed on a scale on which a total order
is de�ned [4,13,25,52,55]. For example, a set of seven
terms S could be given as follows:

S = {s0 = none; s1 = very low; s2 = low;
s3 =medium; s4 = high; s5 = very high;

s6 = perfect};
in which sa¡sb i� a¡b. Usually, in these cases, it is
often required that the linguistic term set satis�es the
following additional characteristics:
(1) There is a negation operator, e.g., Neg(si)= sj;

j=T − i (T + 1 is the cardinality).
(2) Maximization operator: Max(si; sj)= si if si¿sj.
(3) Minimization operator: Min(si; sj)= si if si6sj.
In most cases, as is shown in the following subsec-
tion, the semantic of the ordered terms is de�ned in
a special way, by using as the basis some of these
requested properties and the total order established in
the linguistic term set.

2.2. The semantic of the linguistic term set

In the literature, we can mainly �nd three possibil-
ities for de�ning the semantic of the linguistic term
set: semantic based on membership functions and a
semantic rule; semantic based on the ordered struc-
ture of the linguistic term set; mixed semantic. These
are analyzed in the following subsections.

2.2.1. Semantic based on fuzzy sets and a semantic
rule
This semantic approach assumes that the meaning of

each linguistic term is given by means of a fuzzy sub-
set de�ned in the [0, 1] interval, which are usually de-
scribed by membership functions [2,3,7,14,35,43]. A
computationally e�cient way to characterize a fuzzy
number is to use a representation based on parameters
of its membership function [1]. Because the linguistic
assessments given by the users are just approximate
ones, some authors consider that linear trapezoidal
membership functions are good enough to capture the

vagueness of those linguistic assessments, since it may
be impossible and unnecessary to obtain more accurate
values [2,14,43,44]. This parametric representation is
achieved by the 4-tuple (ai; bi; �i; �i). The �rst two
parameters indicate the interval in which the mem-
bership value is 1; the third and fourth parameters
indicate the left and right width [1]. For example, in
[2] the following semantic is proposed for the set of
nine terms (see Fig. 1).

C =Certain=(1; 1; 0; 0);

EL=Extremely−Likely=(0:98; 0:99; 0:05; 0:01);

ML=Most−Likely=(0:78; 0:92; 0:06; 0:05);

MC =Meaningful−Chance=(0:63; 0:80; 0:05; 0:06);

IM = It−May=(0:41; 0:58; 0:09; 0:07);

SC = Small−Chance=(0:22; 0:36; 0:05; 0:06);

VLC =Very−Low−Chance=(0:1; 0:18; 0:06; 0:05);

EU =Extremely−Unlikely=(0:01; 0:02; 0:01; 0:05):

I = Impossible=(0; 0; 0; 0):

Other authors use a non-trapezoidal representation,
e.g., Gaussian functions [3].
Usually, this semantic approach is used when we

generate the descriptors of the linguistic term set by
means of a generative grammar. Thus, it is established
by means of two elements: (i) the primary fuzzy sets
associated to the primary linguistic terms and (ii) a
semantic rule M for generating the fuzzy sets of the
non-primary linguistic terms from primary fuzzy sets.
Then, while the primary terms are labels of primary
fuzzy sets, the rest may be seen as labels of di�erent
kinds of operators which act on the primary fuzzy sets,
modifying their original membership distributions
[1,3,56]. Therefore, while the semantic for the pri-
mary terms is both subjective and context dependent,
the semantic for the non-primary terms is deduced by
applying the semantic rule M . M deals with hedges,
connectives and relations, as operators which modify
the meaning of the primary terms. However, this ap-
proach implies �rst establishing the primary fuzzy sets
associated with each term and the semantic rule that
modi�es them, and these tasks present two problems:
1. In the representations of primary fuzzy sets based
on parameters, the problem is how to determine
the parameters according to all users’ attitudes.
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Fig. 1. A set of nine terms with its semantic.

Fig. 2. Di�erent distribution concepts.

Formally speaking, it seems di�cult to accept that
all users should agree to the same membership
functions associated with primary linguistic terms,
and therefore, there is no universal distribution of
concepts. For example, in Fig. 2 two close percep-
tions of the same evaluation are shown. Therefore,
we can �nd some situations where primary linguis-
tic term sets with a similar syntax and di�erent se-
mantic are used to evaluate them [21]. Furthermore,
it is not always possible for the user to de�ne a
fuzzy set for each primary linguistic term because it
requires an excess of accuracy that the user cannot
always supply. Hence, many times an environment
is considered where users can perfectly discrim-
inate the same linguistic term set under a similar
conception, taking into account that the concept of
a linguistic variable serves the purpose of provid-
ing a measure of an approximated characterization
of information for an imprecise preference [22].

2. As in our decision framework, we deal with pref-
erences, the semantic rule must be de�ned in such

a way that its application modi�es the supports of
the primary fuzzy sets.

2.2.2. Semantic based on the ordered structure of
the linguistic term set
An alternative possibility, which does not use fuzzy

sets, introduces the semantic from the structure de�ned
over the linguistic term set. In particular, this happens
when the users provide their assessments by using an
ordered linguistic term set [4,5,45,52,55]. Under this
semantic approach, depending on the distribution of
the linguistic terms on a scale ([0, 1]), there are two
possibilites for de�ning the semantic of the linguistic
term set:
1. Assuming symmetrically distributed terms. It
assumes ordered linguistic term sets which are
distributed on a scale, as was mentioned, with an
odd cardinal and the mid term representing an as-
sessment of “approximately 0.5” and with the rest
of the terms being placed symmetrically around
it. Then, the semantic of the linguistic term set is
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Fig. 3. A symmetrically distributed ordered set of seven linguistic
terms.

Fig. 4. A non-symmetrically distributed ordered set of seven lin-
guistic terms.

established from the ordered structure of the term
set by considering that each linguistic term for
the pair (si; sT−i) is equally informative [45]. This
proposal may be explicitly de�ned by assigning a
subdomain of the reference domain [0, 1] to each
linguistic term [4,5,52,55] (see Fig. 3).

2. Assuming non-symmetrically distributed terms. It
assumes that a subdomain of the reference domain
may be more informative than the rest of the do-
main [45]. In this case, the density of linguistic la-
bels in that subdomain would be greater than the
density in the rest of the reference domain, i.e., the
ordered linguistic term set would not be symmet-
rically distributed. For instance, suppose that we
require a temperature control system with a very
precise behavior when the temperature is “Low”.
Therefore, the linguistic term set would have a dis-
tribution over the reference domain similar to that
in Fig. 4, (in Fig. 4, AN=Almost-Nil and QL=
Quite-Low).
For these situations, in [45] a method was proposed

that induces the semantic (the subdomains) by using
a negation function de�ned from the linguistic term
set to parts of it. This method is able to establish a se-
mantic for the linguistic term set if the user gives the
values of a negation function for each linguistic term.
For instance, for the linguistic term set given in Fig. 4,
the following negation function may be de�ned
[45]:

Neg(AN ) = Neg(VL) = {VH};
Neg(QL) = Neg(L) = {H};
Neg(M) = {M};

Fig. 5. An uniformly distributed ordered set of seven terms with
its semantic.

Neg(H) = {QL; L};
Neg(VH) = {AN; VL}:

2.2.3. Mixed semantic
In this semantic approach all linguistic terms are

considered primary. It assumes elements from the
aforementioned semantic approaches, i.e., an ordered
structure of the primary linguistic terms and fuzzy
sets for the semantic of the linguistic terms. On the
one hand, as in Section 2.2.2, ordered linguistic term
sets are assumed which are distributed on a scale,
with an odd cardinal and the mid-term representing
an assessment of “approximately 0.5”, with the rest
of the terms being placed symmetrically around it,
and assuming that each linguistic term for the pair
(si; sT−i) is equally informative. On the other hand,
as in Section 2.2.1, it de�nes the semantic of the pri-
mary linguistic terms by means of the fuzzy sets
represented by trapezoidal or triangular membership
functions [13,23,21,25–28]. These membership func-
tions may be uniformly distributed [21] (see Fig. 5)
or not [23] (see Fig. 1).

P=Perfect=(1; 1; 0:16; 0);

VH =Very High=(0:84; 0:84; 0:18; 0:16);

H =High=(0:66; 0:66; 0:16; 0:18);

M =Medium=(0:5; 0:5; 0:16; 0:16);

L=Low=(0:34; 0:34; 0:18; 0:16);

VL=Very−Low=(0:16; 0:16; 0:16; 0:18):

N =None=(0; 0; 0; 0:16):
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3. The choice of the aggregation operator
of linguistic information

In this section, we analyze some linguistic aggre-
gation methods, with their advantages and drawbacks,
and present di�erent kinds of linguistic aggregation
operators to solve the problem of choosing of a lin-
guistic aggregation operator.
There are two main approaches for carrying out the

aggregation of linguistic information. The �rst one,
called the approximation approach, uses the mem-
bership functions associated with the linguistic terms
[1,12,14,16,43,44,56] whereas the second one, called
the symbolic approach, acts by direct computation on
linguistic terms [6,15,19,31,46,50,51]:
1. Approximation approach. The use of the
linguistic opertors based on the associated mem-
bership functions presents two major problems,
namely [1]:
(a) How to perform arithmetic operations with

fuzzy sets? Fuzzy Sets Theory provides the
logical operators (or, and, not, →) used to
build the linguistic model together with the
Extension Principle that provides the mathe-
matical tool to perform any arithmetic [1,56].
However, the implementation of the Extension
Principle generates computational problems in
any case, e.g., it enables any non-fuzzy func-
tion to accept fuzzy sets as arguments and the
resulting function value is also a fuzzy set with
a single membership function [1]. The clas-
sical solution to this problem consists of us-
ing a representation based on parameters for
the fuzzy set, and then, de�ning the arithmetic
operations on the basis of these parameters
without using the Extension Principle. For ex-
ample, in this sense, a table of basic arithmetic
operations is given in [1].

(b) How to associate a linguistic term with an un-
labeled fuzzy set on the basis of the semantic
similarity (“linguistic approximation”)? On
the other hand, it is well known that by using
extended arithmetic operations to handle fuzzy
sets the vagueness of the results increases step
by step, and the shape of the membership func-
tions does not hold when the linguistic vari-
ables are interactive. Thus, the �nal results of
those methods are fuzzy sets which do not

correspond to any label in the original lin-
guistic term set. If we desire to have a label
�nally, a linguistic approximation is needed
[12,43]. This linguistic approximation consists
of �nding a label whose meaning is the same
or the closest (according to some metric) to the
meaning of the unlabeled fuzzy set generated
by the linguistic computational model. There is
no general method for associating a label with
a fuzzy set, so speci�c problems may require
speci�cally developed methods. A review of
some methods for the linguistic approximation
may be found in [12].

2. Symbolic approach. It acts by direct compu-
tation on labels by taking into account the mean-
ing and features of such linguistic assessments. It
works assuming that the linguistic term set is an
ordered structure uniformly distributed on a scale.
These methods seem natural when the linguistic
approach is used, because the linguistic assess-
ments are just approximations which are given
and handled when it is impossible or unnecessary
to obtain of more accurate values. Thus, in this
case, the use of membership functions associated
to the linguistic terms is unnecessary. Further-
more, they are computationally simple and quick
[15].
Of course, in this approach as in the one above,

there is a lack of precision in the results obtained,
but it is accepted insofar as these approaches
are tools to model non-numerically precise
situations.
In the following subsection, we review the kinds

of aggregation operators of linguistic information
existing in the literature.

3.1. Aggregation operators of linguistic information

In the literature, we can �nd four kinds of ag-
gregation operators of linguistic information: (i)
aggregation operators of linguistic non-weighted in-
formation, (ii) aggregation operators of linguistic
weighted information, (iii) aggregation operators
of multi-granularity linguistic information, (iv) ag-
gregation operators of numeric and linguistic infor-
mation. They are briey analyzed in the following
subsections.
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3.1.1. Aggregation operators of linguistic
non-weighted information
These operators aggregate linguistic information

provided for di�erent criteria with equal importance
or relevance, i.e., all criteria are considered equally
valuable in the aggregation process.
An example of the aggregation operator of lin-

guistic non-weighted information can be found in
[15,24,31,46,50,51]. Among them, we show one of
them, the Linguistic Ordered Weighted Averaging
(LOWA) [31] operator. The LOWA operator is a
symbolic operator, it presents very good properties
(e.g. it is increasingly monotonous, commutative and
an “or-and” operator) and has multiple applications
[22,25,30].

De�nition 2. Let A= {a1; : : : ; am} be a set of labels
to be aggregated, then the LOWA operator, �, is
de�ned as

�(a1; : : : ; am) =W · BT =Cm{wk; bk ; k =1; : : : ; m}

=w1 � b1 ⊕ (1− w1)

�Cm−1{�h; bh; h=2; : : : ; m};

where W = [w1; : : : ; wm], is a weighting vector,
such that, (i) wi ∈ [0; 1] and, (ii)

∑
i wi=1, �h=

wh=
∑m

2 wk , h=2; : : : ; m, and B= {b1; : : : ; bm} is a
vector associated to A, such that,

B= �(A)= {a�(1); : : : ; a�(n)}

in which, a�( j)6a�(i) ∀i6j; with � being a permu-
tation over the set of labels A. Cm is the convex
combination operator of m labels and if m=2, then
it is de�ned as

C2{wi; bi; i=1; 2}=w1 � sj ⊕ (1− w1)� si= sk ;

sj; si ∈ S (j¿i)

such that, k =min{T; i+ round(w1 · (j − i))}; where
“round” is the usual round operation, and b1 = sj,
b2 = si:
If wj =1 and wi=0 with i 6= j ∀i, then the convex

combination is de�ned as

Cm{wi; bi; i=1; : : : ; m}= bj:

How to calculate the weighting vector of LOWA
operator, W , is a basic question to be solved. A possi-
ble solution is that the weights represent the concept
of fuzzy majority [32] in the aggregation of LOWA
operator using fuzzy linguistic quanti�er [57]. Yager
proposed an interesting way to compute the weights
by means of a fuzzy linguistic quanti�er, which, in the
case of a non-decreasing proportional fuzzy linguistic
quanti�er Q is given by this expression [49]:

wi=Q(i=n)− Q((i − 1)=n); i=1; : : : ; n;

being the membership function of Q, as follows:

Q(r)=



0 if r ¡ a;
r − a
b− a if a6r6b;

1 if r ¿ b

with a; b; r ∈ [0; 1]. Some examples of non-decreasing
proportional fuzzy linguistic quanti�ers are: “most”
(0:3; 0:8), “at least half” (0; 0:5) and “as many as pos-
sible” (0:5; 1). When a fuzzy linguistic quanti�er, Q,
is used to compute the weights of LOWA operator, �,
it is symbolized by �Q.

3.1.2. Aggregation operators of linguistic weighted
information
These operators aggregate linguistic information

provided for di�erent criteria which are not equally
important. Usually, in order to design an aggregation
operator of linguistic weighted information, we have
to de�ne two aggregations [11]:
• the aggregation of linguistic importance degrees of
linguistic weighted information, and

• the aggregation of linguistic weighted information
combined with the linguistic importance degrees.

The �rst aggregation consists of obtaining a collective
importance degree from individual importance de-
grees which characterizes the �nal result of the ag-
gregation operator [19]. On the other hand, in order
to achieve the second aggregation linguistic, we have
to combine linguistic weighted information with the
linguistic importance degrees, i.e., it involves the
transformation of the linguistic weighted information
under the linguistic importance degrees by means of
a transformation function g.
The transformation function depends upon the type

of aggregation of weighted information which is going
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to be performed [54]. In [47,48] Yager discussed the
e�ect of the importance degrees on the types of aggre-
gation “MAX” and “MIN” and suggested a class of
functions for importance transformation in both types
of aggregation. For theMIN aggregation, he suggested
a family of t-conorms acting on the weighted infor-
mation and the negation of the importance degree,
which presents the non-increasing monotonic prop-
erty in these importance degrees. For the MAX ag-
gregation, he suggested a family of t-norms acting
on weighted information and the importance degree,
which presents the non-decreasing monotonic prop-
erty in these importance degrees.
A general speci�cation of the requirements that any

importance transformation function g must satisfy
for any type of the aggregation operator is also pro-
posed in [54]. The function g must have the following
properties:
1. if a ¿ b then g(v; a)¿g(v; b),
2. g(v; a) is monotone in v,
3. g(0; a)= ID,
4. g(1; a)= a
with a; b∈ [0; 1] expressing the satisfaction with re-
gard to a criterion, v∈ [0; 1] the importance degree
associated with the criterion, and “ID” an identity
element, which is such that if we add it to our ag-
gregations it does not change the aggregated value.
The �rst condition means that the function g is
monotonically non-decreasing in the second argu-
ment, that is, if the satisfaction with regard to the
criteria increases the overall satisfaction should not
decrease. The second condition may be viewed as a
requirement of the e�ect of the importance of being
consistent. It does not specify whether g is monoton-
ically non-increasing or non-decreasing in the �rst
argument. It should be noted that conditions three
and four actually determine the type of monotonicity
obtained from two. If a¿ID, then g(v; a) is monoton-
ically non-decreasing in v, while if a¡ID, then it is
monotonically non-increasing. The third condition is
a manifestation of the imperative that zero importance
items do not a�ect the aggregation process. The �nal
condition is essentially a boundary condition which
states that the assumption of all importances equal to
one is e�ectively like not including importances at all
[54].
According to the aforementioned ideas, in [19]

we presented the Linguistic Weighted Averaging

(LWA) operator. Other proposals are to be found in
[4,6,46,50–52,54,55].

3.1.3. Aggregation operators of multi-granularity
linguistic information
These operators aggregate linguistic information

assessed in di�erent linguistic expression domains,
which present di�erent granularity and=or semantic.
The multi-granularity linguistic information is lin-
guistic information assessed in linguistic term sets
with a di�erent granularity and/or semantic. We �nd
this situation when the linguistic performance values
are not provided using the same linguistic term set. In
[21] a proposal was given to deal with these situations.
An aggregation operator of multi-granularity lin-

guistic information has to carry out two tasks [21]:
• making the multi-granularity linguistic information
uniform,

• computing the collective or aggregated linguistic
performance value from uniform linguistic informa-
tion.

3.1.4. Aggregation operators of numerical
and linguistic information
These operators aggregate linguistic information

with numerical ones. They are applied when some
performance values are given in a numerical domain,
and others in a linguistic one. In [13] a �rst approach
was presented for dealing with these situations. We
de�ned a fusion operator of linguistic (assessed in the
same linguistic term set) and numerical information
(assessed in the interval [0, 1]) using the concept of
characteristic values associated to a fuzzy number.
The characteristic values are crisp ones that sum-

marize the information given by a fuzzy number, i.e.,
they support its meaning. They allow us to de�ne
some transformation functions between di�erent ex-
pression domains, i.e., linguistic-numerical transfor-
mation functions, which obtain a numerical value from
a linguistic term, and numerical-linguistic transforma-
tion functions, which obtain a label from a numerical
value. Using these transformation functions, in [13]
a fusion operator was presented which acts in three
steps:
1. it transforms all inputs into a usual linguistic
intermediate domain by means of a particular
numerical-linguistic transformation function,
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2. the transformed information is aggregated by
means of a concrete linguistic aggregation opera-
tor, and �nally,

3. the output information is expressed in each user’s
expression domain, using an appropriate linguistic-
numerical transformation function.

4. The choice of the best alternatives

Assuming a linguistic framework, in an MCDM
problem we have linguistic performance values
{V1; : : : ; Vm} about a set of alternativesX = {x1; : : : ; xn}
provided according to a group of criteria {P1; : : : ; Pm}:
Then, the goal consists of �nding the best alternatives
from the linguistic performance values. This task
is achieved by means of a choice process between
the alternatives [29]. As is known, basically two ap-
proaches may be considered to carry out a choice
process [22,32]. A direct approach

{V1; : : : ; Vm} → the best alternatives

according to which, on the basis of the individual pref-
erences, a solution with the best alternatives is derived,
and an indirect approach

{V1; : : : ; Vm} → V c → the best alternatives

providing the best alternatives on the basis of a
collective preference, V c, which is a preference of
the group of criteria as a whole. Here, we assume an
indirect approach.
As was aforementioned earlier, the proposed choice

process is carried out in two phases: (i) aggregation
phase of linguistic information and (ii) the exploitation
phase for the aggregated linguistic information. In the
following subsections, we analyze both phases.

4.1. Aggregation phase

The goal of the aggregation phase in the linguistic
decision analysis of an MCDM problem is to obtain
a collective linguistic performance value V c from the
individual ones {V1; : : : ; Vm}, provided for the criteria,
using the aggregation operator chosen in the previous
step.
At the beginning of linguistic decision analysis, we

should establish what kind of representation to use

for providing the linguistic performance values. Tra-
ditionally, the linguistic preferences can be provided
in either of these two ways [24]:
• Linguistic preference relation. In this case, for a
criterion a linguistic preference relation is supplied
over the set of alternatives Vk = vkij, reecting each
element of the relation vkij, the linguistic degree
to which an alternative xi is prefered to another
xj [22,26].

• Linguistic utility function. In this case, for each
criterion a utility function Vk = [vk1 ; : : : ; v

k
n] is sup-

plied that associates each alternative xj with a lin-
guistic value vkj indicating the performance of that
alternative [4,18,52,55].

Thus, if the linguistic performance values {V1; : : : ; Vm}
are linguistic utility functions then V c will be a col-
lective linguistic utility function and if {V1; : : : ; Vm}
are linguistic preference relations then V c will be a
collective linguistic preference relation.

4.2. Exploitation phase

The goal of the exploitation phase is to choose the
best alternatives from V c. Usually, the exploitation
is modeled using choice functions which allow us to
characterize the alternatives and to separate the best
alternatives [20,39,40]. Each alternative is character-
ized by means of a choice degree calculated from a
collective performance value and, in such a way, a
rank ordering among the alternatives is de�ned. Later,
the alternatives with the maximum choice degree are
chosen. Therefore, assuming a linguistic framework,
the exploitation step consists of two tasks:
1. Obtain a rank ordering among the alternatives by
means of a linguistic choice function de�ned from
the collective linguistic performance value V c. In
such a way, a linguistic choice set of alternatives
is obtained:

X c = {(xj; �X c (xj)); j=1; : : : ; n}
and

�X c : X → S:

2. Choose the best alternatives according to the es-
tablished rank ordering. Here, a solution set of
alternatives is obtained as follows:

X s =
{
xi ∈X | �X c (xi)= Max

xj∈X
{�X c (xj)}

}
:
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The de�nition of a linguistic choice function de-
pends on the type of representation chosen initially to
provide the linguistic performance values. If the lin-
guistic performance values are linguistic utility func-
tions, then V c will be a collective linguistic utility
function and to establish a rank ordering is a direct
and easy process since V c is itself a linguistic choice
function [4,18,52,55], i.e., V c =X c. Then, the solution
set of alternatives is obtained as follows:

X s =
{
xi; xi ∈X |V c(xi)= Max

xj∈X
{V c(xj)}

}
:

However, if linguistic performance values are linguis-
tic preference relations then V c will be a collective lin-
guistic preference relation, i.e., V c = [vcij]; ∀xi; xj ∈X;
and, in this case, to establish a rank ordering is not
an easy and direct task. Mainly, we �nd two prob-
lems [20]:
• on the one hand, we have to de�ne a linguistic
choice function for a linguistic preference relation
and there are di�erent approaches to do so, and

• on the other hand, di�erent solution sets of al-
ternatives can be derived from di�erent linguistic
choice functions and we have to achieve a consen-
sus among them.

In the following subsection, we briey analyze the
exploitation phase for a linguistic preference relation
assessed in an ordered linguistic term set S.

4.2.1. Exploitation for a linguistic preference
relation
Four classical linguistic choice sets of alternatives

can be de�ned for a linguistic preference relation V c

[20]:
1. A linguistic choice set of greatest alternatives
which assigns a linguistic choice degree of “great-
estness” to each alternative xj ∈X with respect to
V c, according to the following expression:

�X c : X → S; �X c (xj)=∇(vcji; i=1; : : : ; n);

where, traditionally, ∇ is an aggregation operator
modeling the linguistic conjunctions.

2. A linguistic choice set of non-dominated alter-
natives which assigns a linguistic choice degree
of “non-domination” to each alternative xj ∈X
with respect to V c, according to the following

expression:

�X c : X → S;

�X c (xj)=∇(Neg(vcij); i=1; : : : ; n):
3. A linguistic choice set of strictly greatest alter-
natives which assigns a linguistic choice degree of
“strict greatestness” to each alternative xj ∈X with
respect to V c and depending on some linguistic
conjunction operator, according to the following
expression:

�X c : X → S;

�X c (xj)=∇(LC→(Neg(vcij); v
c
ji); i=1; : : : ; n):

Some examples of LC→ are [19]:
(a) The classical Min linguistic conjunction

function:

LC→
1 (w; a)=Min(w; a):

(b) The nilpotent Min linguistic conjunction
function:
LC→

2 (w; a)

=

{
Min(w; a) if w ¿ Neg(a);

s0 otherwise.

(c) The weakest linguistic conjunction function:
LC→

3 (w; a)

=
{
Min(w; a) if Max(w; a)= sT ;
s0 otherwise.

4. A linguistic choice set of maximal alternatives
which assigns a linguistic choice degree of “max-
imality” to each alternative xj ∈X with respect
to V c and depending on some linguistic impli-
cation operator LI→; according to the following
expression:

�X c : X → S;

�X c (xj)=∇(LI→(vcij ; vcji); i=1; : : : ; n):
Some examples of LI→ are [19]:
(a) Kleene–Dienes’s linguistic implication

function:

LI→1 (w; a)=Max(Neg(w); a):

(b) G�odel’s linguistic implication function:

LI→2 (w; a)=
{
sT if w6a;
a otherwise.
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(c) Fodor’s linguistic implication function:

LI→3 (w; a)=
{
sT if w6a;
Max(Neg(w); a) otherwise.

(d) Lukasiewicz’s linguistic implication function:

LI→4 (w; a)=
{
sT if w ¡ a;
Neg(w − a) otherwise,

where w − a= sh ∈ S with w= sl; a= st and
l= t+ h.

A linguistic choice function for a linguistic prefer-
ence relation V c in X is a fuzzy set in X de�ned as

C(X; V c)= {(xi; �C(X;V c)(xi))};
where �C(X;V c) : Sn→ S is a linguistic membership
function that assigns a linguistic choice degree to
each alternative xi ∈X with respect to V c; according
to an expression. Therefore, a linguistic choice func-
tion is a generalization of the linguistic choice sets of
alternatives, and obviously �C(X;V c) = �X c . In [20] we
may �nd a complete set of linguistic choice functions.
In many cases, we �nd that the choice and solu-

tion sets of alternatives provided by di�erent linguis-
tic choice functions are very general and di�erent, i.e.,
we may �nd a problem of speci�cness and consensus
among the solutions provided by di�erent linguistic
choice functions. We propose to solve this problem by
means of the distinction between two types of linguis-
tic choice mechanisms or ways for applying choice
functions [20]:
1. Simple linguistic choice mechanisms. They use
only one linguistic choice function to obtain the
solution set of alternatives. Therefore, this method
obtains the solution as

X s =
{
xj ∈X | �X c (xj)= Max

xi∈X
�X c (xi)

}
;

i.e., those alternatives with the maximum linguistic
choice degree.

2. Composite linguistic choice mechanisms. They
use various linguistic choice functions to obtain
the solution set of alternatives. They are applied
when the solution obtained by the application of
a simple mechanisms is not precise or speci�c
enough. Futhermore, they also are useful when
di�erent simple mechanisms provide very di�erent
solutions. Therefore, we may say that a com-
posite mechanism performs a consensus process

between di�erent choice functions with a view to
achieving more speci�c solutions. Then, given a
set of linguistic choice functions, {X c1 ; : : : ; X cT },
a composite linguistic choice mechanism obtains
the solution set of alternatives, X s; by the com-
bined application of all linguistic choice functions.
Usually, the combined application can be done
following two di�erent policies:
(a) Conjunctive policy: This policy consists of ap-

plying, in a parallel way, all the simple choice
mechanisms from each choice function [29],
i.e., it obtains the total solution as the intersec-
tion of the partial solutions according to the
following expression:

X s =
T⋂
t=1

X st :

We should point out the existence of a prob-
lem, i.e., when it is veri�ed that

⋂T
t=1 X

s
t = ∅.

In such a situation, it is necessary to apply an-
other choice policy like the following one.

(b) Sequential policy: This policy consists of
applying each one of the simple choice mech-
anisms of each choice function in sequence
according to a previously established order
[22]. Therefore, suppose that we have T sim-
ple linguistic choice mechanisms, then the
total solution is obtained according to the
following expression:

X s =
{
xj ∈X sT−1 | �X cT (xj)

= Max
xi∈X sT−1

{�X cT (xi)}
}
;

X sT−1 =
{
xj ∈X sT−2 | �X cT−1

(xj)

= Max
xi∈X sT−2

{�X cT−1
(xi)}

}
;

...

X s1 =
{
xj ∈X | �X c1 (xj)= Maxxi∈X

{�X c1 (xi)}
}
:

On the other hand, we should also point out that due
to the lack of a transitivity property in the collective
linguistic preference relation, sometimes a problem of
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consistency appears in the solution set of alternatives.
Then, a complete consistent linguistic choice mech-
anisms, based on the concept of linguistic covering
relation to �nd more precise and coherent solution
sets of alternatives, may be de�ned as:
1. Obtain a linguistic covering relation for V c, called
CC(V c); which is a transitive linguistic preference
relation.

∀(xi; xj)∈X 2
CC(V c)(xi; xj)

=Min{FC(V c)(xi; xj); BC(V c)(xi; xj)};
where FC(V c) and BC(V c) are the linguistic
forward and backward covering relations of V c

de�ned as

FC(V c)

=



sT if ∀xh ∈X; vcjh6vcih;

Min
{xh∈X | vcjh¿vcih}

{vcih} otherwise

and

BC(V c)

=



sT if ∀xh ∈X; vchi6vchj;

Min
{xh∈X | vchi¿vchj}

{vchj} otherwise;

respectively.
2. Choose various simple linguistic choice mecha-
nisms.

3. Apply a conjunction linguistic choice mechanism
on CC(V c).

4. If X s = ∅ then apply a sequential linguistic choice
mechanism on CC(V c). Otherwise, X s is the
solution.
In the following section, we study the application

of linguistic decision analysis in a particular MCDM
problem.

5. Example

Let us suppose an investment company, which
wants to invest a sum of money in the best option.
There is a panel with four possible options in which
to invest the money:
• x1 is a car company,

• x2 is a food company,
• x3 is a computer company,
• x4 is an arms company.
The investment company must make a decision ac-
cording to four criteria:
• P1 is the risk analysis,
• P2 is the growth analysis,
• P3 is the social–political impact analysis, and
• P4 is the environmental impact analysis.
Below, we show how to model this MCDM problem
following an indirect linguistic approach.

5.1. The choice of a linguistic term set
with its semantic

We consider the second possibility shown in
Section 2, which de�nes the linguistic expression
domain by means of an ordered set of linguistic
terms. Then, we characterize the linguistic expression
domain as follows:
• The value of granularity chosen is 7.
• We consider a linguistic term set on which a total
order is de�ned and distributed on the scale [0, 1],
with the mid term representing an assessment of
“approximately 0.5”, with the rest of the terms being
placed symmetrically around it.

• We de�ne the semantic by considering that each
linguistic term for the pair (si; s6−i) is equally in-
formative and by assigning triangular membership
functions to each linguistic term.

• Furthermore, we assume a negation operator, a
maximization one and a minimization one de�ned
in S, as was shown in Section 2.

For example, we can use the set of seven linguistic
terms shown in Fig. 1, i.e.,

S = {s6 =P; s5 =VH; s4 =H; s3 =M; s2 =L;
s1 =VL; s0 =N}:

On the other hand, we assume that for each crite-
rion, linguistic performance values about the alterna-
tives are provided by means of reciprocal linguistic
preference relations (vkij =Neg(v

k
ji) and v

k
ii =−) [22],

i.e.,

V1 =




− VL VH VL
VH − H H
VL L − VL
VH L VH −


;
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V2 =




− L H VL
H − VH L
L VL − VL
VH H VH −


;

V3 =




− M VH N
M − VH L
VL VL − VL
P H VH −


;

V4 =




− L VH VL
H − L VL
VL H − VL
VH VH VH −


:

5.2. The choice of aggregation operator
of linguistic information

An aggregation operator of linguistic non-weighted
information, in particular, the LOWA operator �Q
presented in Section 3.1.1, is used to aggregate the
individual linguistic performance values. It is an op-
erator guided by a fuzzy linguistic quanti�er, Q; rep-
resenting the concept of “fuzzy majority” [24]. We
propose to use the linguistic quanti�er “At least half ”
with the pair (0; 0:5). For the LOWA operator this
quanti�er establishes the following weighting vector:
W = [0:5; 0:5; 0; 0].

5.3. Choice process

5.3.1. Aggregation phase of linguistic information
Using this aggregation operator the collective lin-

guistic preference relation obtained is the following:

V c =




− L VH VL
H − VH M
VL M − VL
VH H VH −


:

5.3.2. Exploitation phase
Applying the following linguistic choice function

[20]:

�X c :X → S; �X c (xj)=Min(vcji; i=1; : : : ; n; i 6= j);
we obtain the following choice set of alternatives,
which is a choice set of greatest alternatives

X c = {(x1; VL); (x2; M); (x3; VL); (x4; H)}:

Then, the rank ordering among the alternatives is
(x4; x2; x1; x3), and thus, the alternative, x4; is the best
assessed one, i.e., the solution set of alternatives is

X s = {x4}:

6. Conclusions

In this paper, we have analyzed the steps to follow in
the linguistic decision analysis of an MCDM problem,
showing di�erent approaches to model this problem
linguistically.
The use of linguistic models in decision problems

is highly bene�cial when the performance values
cannot be expressed by means of numerical values.
The linguistic approach gives a more exible frame-
work to deal with decision problems using qualitative
information.
As we said at the beginning, an important aspect of

linguistic decision analysis is its applicability and use-
fulness in di�erent decision frameworks. Therefore, it
is an appropriate tool to model qualitative information
in multiple real-world decision situations.
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