
A MapReduce-based k-Nearest Neighbor Approach
for Big Data Classification

Jesús Maillo
Department of Computer Science

and Artificial Intelligence,

University of Granada, 18071

Granada, Spain

Email: jesusmh@correo.ugr.es

Isaac Triguero
Department of Respiratory Medicine,

Ghent University, 9000

Gent, Belgium

VIB Inflammation Research Center,

9052 Zwijnaarde, Belgium

Email: Isaac.Triguero@irc.vib-UGent.be

Francisco Herrera
Department of Computer Science

and Artificial Intelligence,

University of Granada, 18071

Granada, Spain

Email: herrera@decsai.ugr.es

Abstract—The k-Nearest Neighbor classifier is one of the most
well known methods in data mining because of its effectiveness
and simplicity. Due to its way of working, the application of
this classifier may be restricted to problems with a certain
number of examples, especially, when the runtime matters.
However, the classification of large amounts of data is becoming
a necessary task in a great number of real-world applications.
This topic is known as big data classification, in which standard
data mining techniques normally fail to tackle such volume
of data. In this contribution we propose a MapReduce-based
approach for k-Nearest neighbor classification. This model allows
us to simultaneously classify large amounts of unseen cases (test
examples) against a big (training) dataset. To do so, the map phase
will determine the k-nearest neighbors in different splits of the
data. Afterwards, the reduce stage will compute the definitive
neighbors from the list obtained in the map phase. The designed
model allows the k-Nearest neighbor classifier to scale to datasets
of arbitrary size, just by simply adding more computing nodes
if necessary. Moreover, this parallel implementation provides
the exact classification rate as the original k-NN model. The
conducted experiments, using a dataset with up to 1 million
instances, show the promising scalability capabilities of the
proposed approach.

I. INTRODUCTION

The classification of big data is becoming an essential
task in a wide variety of fields such as biomedicine, social
media, marketing, etc. The recent advances in data gathering
in many of these fields has resulted in an inexorable increment
of the data that we have to manage. The volume, diversity
and complexity that bring big data may hinder the analysis
and knowledge extraction processes [1]. Under this scenario,
standard data mining models need to be re-designed or adapted
to deal with this data.

The k-Nearest Neighbor algorithm (k-NN) [2] is considered
one of the ten most influential data mining algorithms [3]. It
belongs to the lazy learning family of methods that do not
need of an explicit training phase. This method requires that
all of the data instances are stored and unseen cases classified
by finding the class labels of the k closest instances to them.
To determine how close two instances are, several distances or
similarity measures can be computed. This operation has to be
performed for all the input examples against the whole training
dataset. Thus, the response time may become compromised
when applying it in the big data context.

Recent cloud-based technologies fortunately offer an ideal
environment to handle this issue. The MapReduce framework
[4] highlights as a simple and robust programming paradigm
to tackle large-scale datasets within a cluster of nodes. Its
application is very appropriate for data mining because of its
fault-tolerant mechanism (recommendable for time-consuming
tasks) and its ease of use [5] as opposed to other parallelization
schemes such as Message Passing Interface [6]. In recent
years, several data mining techniques have been successfully
implemented by using this paradigm, such as [7], [8]. Some
related works utilize MapReduce for similar k-NN searches.
For example, in [9] and [10] the authors apply kNN-join
queries within a MapReduce process.

In this work we design a new parallel k-NN algorithm
based on MapReduce for big data classification. In our par-
ticular implementation, the map phase consists of deploying
the computation of similarity between test examples and splits
of the training set through a cluster of computing nodes. As
a result of each map, the k nearest neighbors together with
their computed distance values will be emitted to the reduce
stage. The reduce phase will determine which are the final k
nearest neighbors from the list provided by the maps. Through
the text, we will denote this approach as MR-kNN.

To test the performance of this model, we have carried
experiments on a big dataset with up to 1 million instances.
The experimental study includes an analysis of test accuracy,
runtime and speed up. Moreover, several values of k and
number of mappers will be investigated.

The paper is structured as follows. Section II pro-
vides background information about the k-NN algorithm and
MapReduce. Section III describes the proposal. Section IV
analyzes the empirical results. Finally, Section V summarizes
the conclusions.

II. PRELIMINARIES

In this section we introduce some background information
about the main components used in this paper. Section II-A
presents the k-NN algorithm as well as its weaknesses to deal
with big data classification. Section II-B provides the descrip-
tion of the MapReduce paradigm and the implementation used
in this work.

2015 IEEE Trustcom/BigDataSE/ISPA

978-1-4673-7952-6/15 $31.00 © 2015 IEEE

DOI 10.1109/Trustcom-BigDataSe-ISPA.2015.577

167

Fig. 1. The MapReduce workflow

A. k-NN and weaknesses to deal with big data

The k-NN algorithm is a non-parametric method that can be
used for either classification and regression tasks. This section
defines the k-NN problem, its current trends and the drawbacks
to manage big data. A formal notation for the k-NN algorithm
is the following:

Let TR be a training dataset and TS a test set, they
are formed by a determined number n and t of samples,
respectively. Each sample xp is a tuple (xp1, xp2, ..., xpD, ω),
where, xpf is the value of the f -th feature of the p-th sample.
This sample belongs to a class ω, given by xω

p , and a D-
dimensional space. For the TR set the class ω is known, while
it is unknown for TS. For each sample xtest contained in the
TS set, the k-NN model looks for the k closest samples in
the TR set. To do this, it computes the distances between
xtest and all the samples of TR. The Euclidean distance
is commonly used for this purpose. The k closest samples
(neigh1, neigh2, ...,neighk) are obtained by ranking (ascend-
ing order) the training samples according to the computed
distance. By using the k closest neighbors, a majority vote
is conducted to determine which class is predominant among
the neighbors. The selected value of k may influence the
performance and the noise tolerance of this technique.

Despite the promising results shown by the k-NN in a wide
variety of problems, it lacks of scalability to address big TR
datasets. The main problems found to deal with large-scale
data are:

• Runtime: The complexity of the traditional k-NN
algorithm is O((n · D)), where n is the number of
instances and D the number of features.

• Memory consumption: For a rapid computation of the
distances, the k-NN model may normally require to
store the training data in memory. When TR is too
big, it could easily exceed the available RAM memory.

These drawbacks motivate the use of big data technologies
to distribute the processing of k-NN over a cluster a nodes.
In this work, we will focus on the reduction of the runtime
according to the number of instances.

B. MapReduce

MapReduce is a very popular parallel programming
paradigm [4] that was developed to process and/or generate big

datasets that do not fit into a physical memory. Characterized
by its transparency for programmers, this framework enables
the processing of huge amounts of data on top of a computer
cluster regardless the underlying hardware or software. This is
based on functional programming and works in two main steps:
the map phase and the reduce phase. Each one has key-value
(< key, value >) pairs as input and output. These phases are
the only thing that the programmer must implement. The map
phase takes each < key, value > pair and generates a set of
intermediate < key, value > pairs. Then, MapReduce merges
all the values associated with the same intermediate key as a
list (shuffle phase). The reduce phase takes that list as input
for producing the final values.

Figure 1 presents a flowchart of the MapReduce frame-
work. In a MapReduce program, all map and reduce operations
run in parallel. First of all, all map functions are independently
run. Meanwhile, reduce operations wait until the map phase
has finished. Then, they process different keys concurrently
and independently. Note that inputs and outputs of a MapRe-
duce job are stored in an associated distributed file system that
is accessible from any computer of the used cluster.

Different implementations of the MapReduce framework
are possible, depending on the available cluster architecture.
In this paper we will use the Hadoop implementation [11]
because of its performance, open source nature, installation
facilities and its distributed file system (Hadoop Distributed
File System, HDFS).

From a programmer’s point of view, the Hadoop imple-
mentation of MapReduce divides the lifecycle of a map/reduce
task as: (1) setup, (2) operation itself (map or reduce) and
(3) cleanup. The setup procedure is normally devoted to read
parameters from the configuration object. The cleanup method
can be used to clean up any resources you may have allocated,
but also, to flush out any accumulation of aggregate results.

A Hadoop cluster is formed by a master-slave architecture,
where one master node manages an arbitrary number of slave
nodes. The HDFS replicates file data in multiple storage nodes
that can concurrently access to the data. As such cluster, a
certain percentage of these slave nodes may be out of order
temporarily. For this reason, Hadoop provides a fault-tolerant
mechanism, so that, when one node fails, Hadoop restarts
automatically the task on another node.

As we commented above, the MapReduce approach and

168

TABLE I. ENCODING THE RESULTING k NEAREST NEIGHBORS (CLASSES AND DISTANCES) FOR A CERTAIN MAPPER Mapj

Neighbor 1 Neighbor 2 ... Neighbor k

xtest,1 < Class(neigh1), Dist(neigh1) >1 < Class(neigh2), Dist(neigh2) >1 ... < Class(neighk), Dist(neighk) >1

xtest,2 < Class(neigh1), Dist(neigh1) >2 < Class(neigh2), Dist(neigh2) >2 ... < Class(neighk), Dist(neighk) >2

...

xtest,t < Class(neigh1), Dist(neigh1) >t < Class(neigh2), Dist(neigh2) >t ... < Class(neighk), Dist(neighk) >t

its derivatives can be useful for many different tasks. In
terms of data mining, it offers a propitious environment to
successfully speed up these kinds of techniques. In fact,
projects like Apache Mahout [12] and the MLlib library from
Apache Spark [13] collect distributed and scalable machine
learning algorithms implemented with MapReduce and further
extensions (mainly, iterative MapReduce).

III. MR-KNN: A MAPREDUCE IMPLEMENTATION FOR

K-NN

In this section we explain how to paralellize the k-NN
algorithm based on MapReduce. As a MapReduce model,
it organizes the computation into two main operations: the
map and the reduce phases. The map phase will compute the
classes and the distances to the k nearest neighbors of each
test example in different splits of the training data. The reduce
stage will process the distances of the k nearest neighbors from
each map and will create a definitive list of k nearest neighbors
by taking those with minimum distance. Afterwards, it will
carry out the majority voting procedure as usual in the k-NN
model to predict the resulting class. In what follows, we will
detail the map and reduce phases, separately (Sections III-A
and III-B, respectively). At the end of the section, Figure 2
illustrates a high level scheme of the proposed parallel system.

A. Map phase

Let TR a training set and TS a test set of a arbitrary
sizes that are stored in the HDFS as single files. The map
phase starts diving the TR set into a given number of
disjoint subsets. In Hadoop, files are formed by h HDFS
blocks that can be accessed from any computer of the cluster
independently of its size. Let m be the number of map
processes that will be defined by the end-user. Each map
task (Map1,Map2, ...,Mapm) will create an associated TRj ,
where 1 ≤ j ≤ m, with the sample of each chunk in
which the training set file is divided. It is noteworthy that
this partitioning process is sequentially performed, so that, the
Mapj corresponds to the j data chunk of h/m HDFS blocks.
As a result, each map analyze approximately a similar number
of training instances.

Note that splitting the data into several subsets, and analyze
them individually, fits better with the MapReduce philosophy
than with other parallelization schemes because of two reasons:
Firstly, each subset is individually processed, so that it does not
need any data exchange between nodes to proceed. Secondly,
the computational cost of each chunk could be so high that a
fault-tolerant mechanism is mandatory.

Since our goal is to obtain an exact implementation of the
original k-NN algorithm, the TS file will not be split because
we will need to have access to every single test sample in

all the maps. In this way, when each map has formed its
corresponding TRj set, we will compute the distance of each
xt against the instances of TRj . The class label of the closest
k neighbors (minimum distance), for each test example, and
the their distance will be saved. As a result, we will obtain
a matrix CDj of pairs < class, distance > with dimension
n · k. Therefore, at row i, we will have the distance and the
class of the k nearest neighbors. It is noteworthy that every row
will be ordered in ascending order regarding the distance to
the neighbor, so that, Dist(neigh1) < Dist(neigh2) < <
Dist(neighk). For sake of clarity, Table I formally defines
how this matrix is formed.

It is important to point out that to avoid memory restriction
problems, the test file is accessed line by line, so that, we do
not load in memory the whole test file. Hadoop’s primitive
functions allows us to make this with no efficiency losses.
Algorithm 1 contains the pseudo-code of the map function.

As each map finishes its processing the results are for-
warded to a single reduce task. The output key in every map
is established according to an identifier value of the mapper.

Algorithm 1 Map function

Require: TS; k
1: Constitute TRj with the instances of split j.
2: for i = 0 to i < size(TS) do
3: Compute k-NN (xtest,i,TRj ,k)
4: for n = 0 to n < k do
5: CDj(i, n) =< Class(neighn), Dist(neighn) >i

6: end for
7: end for
8: key = idMapper
9: EMIT(< key, CDj >)

B. Reduce phase

The reduce phase consists of determining which of the
tentative k nearest neighbors from the maps are the closest
ones for the complete TS. Given that we aim to design a
model that can scale to arbitrary size training sets and that it is
independent of the selected number of neighbors, we carefully
implemented this operation by taking advantage of the setup,
reduce, and cleanup procedures of the reduce task (introduced
in Section II-B). Algorithm 2 describes the reduce operation
and Algorithm 3 the cleanup phase. A detailed explanation of
all of them is as follows:

• Setup: apart from reading the parameters from the
Hadoop configuration object, the setup operation will
allocate a class-distance matrix CDreducer of fixed
size (size(TS) · kneighbors). As requirement, this
function will need to know the size of TS, but it

169

Fig. 2. Flowchart of the proposed MR-kNN algorithm

does not need to read the set itself. This matrix will
be initialized with random values for the classes and
positive infinitive value for the distances. Note that
this operation is only run the first time that the reduce
phase takes place. In MapReduce the reducer may start
receiving data as the first mapper is finished.

• Reduce: when the map phase finishes, the class-
distance matrix CDreducer is updated by comparing
its current distances values with the matrix that comes
from every Mapj , that is, CDj . Since the matrices
coming from the maps are ordered according to the
distance, the update process becomes faster. It consists
of the merging process of two sorted lists up to
have k values (complexity O(k)). Thus, for each test
example xtest, we compare every distance value of the
neighbors one by one, starting from the closets neigh-
bor. If the distance is lesser than the current value,
the class and the distance of this matrix position is
updated with the corresponding values, otherwise we
proceed with the following value (See Instructions 3-6
in Algorithm 2 for more details). In contradistinction
to the setup operation, this is run every time a map is
finished. Thus, it could be interpreted as an iterative
procedure that aggregate the results provided by the
maps. As such, this operation does not need to send
any < key, value > pairs. It will be performed in the
next procedure.

• Cleanup: after all the maps’ inputs have been pro-
cessed by the previous reduce procedure, the cleanup
phase carries out its processing. At this point, the
CDreducer will contain the definitive list of neighbors
(class and distance) for all the examples of TS. There-
fore, the cleanup is devoted to perform the majority
voting of the k-NN model and determine the predicted
classes for TS. As a result, the predicted classes for

all the TS set are provided as the final output of the
reduce phase. The key is established as the number of
instance in the TS set (See Instruction 3 in Algorithm
3).

As we have claimed before, MR-kNN only uses one single
reducer. The use of a single reducer results in a computa-
tionally less expensive process in comparison to use more
than one. Concretely, it helps us to reduce the network-related
Mapreduce overhead. It also allows us to obtain a single output
file.

Algorithm 2 Reduce operation

Require: size(TS), k, CDj

Require: Setup procedure has been launched.
1: for i = 0 to i < size(TS) do
2: cont=0
3: for n = 0 to k do
4: if CDj(i, cont).Dist < CDreducer(i, n).Dist then
5: CDreducer(i, n) = CDj(i, cont)
6: cont++
7: end if
8: end for
9: end for

Algorithm 3 Reduce cleanup process

Require: size(TS), k
Require: Reduce operation has finished.

1: for i = 0 to i < size(TS) do
2: PredClassi = MajorityV oting(Classes(CDreduce))
3: key = i
4: EMIT(< key, PredClassi >)
5: end for

As summary, Figure 2 depicts a flowchart containing the
main steps of the proposed model.

170

IV. EXPERIMENTAL STUDY

In this section we present all the questions raised with the
experimental study. Section IV-A establishes the experimental
framework and Section IV-B presents and discusses the results
achieved.

A. Experimental Framework

The following measures will be considered to assess the
performance of the proposed technique:

• Accuracy: It counts the number of correct classifica-
tions regarding the total number of instances.

• Runtime: We will quantify the time spent by MR-kNN
in map and reduce phases as well as the global time
to classify the whole TS set. The global time includes
all the computations performed by the MapReduce
framework (communications).

• Speed up: It checks the efficiency of a parallel al-
gorithm in comparison with a slower version. In our
experiments we will compute the speed up achieved
depending on the number of mappers.

Speedup =
reference time

parallel time
(1)

where reference time is the runtime spent with the
sequential version and parallel time is the runtime
achieved with its improved version.

In our experiments, global times (including all MapReduce
computations) are compared to those obtained with the sequen-
tial version to compute the speed up.

This experimental study is focused on analyzing the effect
of the number of mappers (16, 32, 64, 128, and 256) and
number of neighbors (1, 3, 5, and 7) in the proposed MR-
kNN model. We will test its performance over the PokerHand
dataset, taken from the UCI repository [14]. It contains a total
of 1025010 instances, 10 features and 10 different classes. This
dataset has been partitioned using a 5 fold cross-validation (5-
fcv) scheme.

The experiments have been carried out on sixteen nodes in
a cluster: a master node and fifteen compute nodes. Each one
of these compute nodes has an Intel Core i7 4930 processor, 6
cores per processor, 3.4 GHz and 64GB of RAM. The network
is Ethernet 1Gbps. In terms of software, we have used the
Cloudera’s open-source Apache Hadoop distribution (Hadoop
2.5.0-cdh5.3.2). Please note that the maximum number of map
functions concurrently running for this cluster is setup to 128,
so that, for experiments with 256 maps we cannot expect a
linear speedup.

B. Results and discussion

This section presents and analyzes the results obtained in
the experimental study. First, we focus on the results of the
sequential version of k-NN as our baseline. Table II collects
the average accuracy (AccTest) in the test partitions and the
runtime (in seconds) results obtained by the standard k-NN
algorithm, according to the number of neighbors.

Table III summarizes the results obtained by the proposed
approach. It shows, for each number of neighbors and num-
ber of maps, the average time needed by the map phase
(AvgMapTime), the average time spent by the reduce phase
(AvgRedTime), the average total time (AvgTotalTime), the
obtained average accuracy (AccTest) and the speed up achieved
(Speedup).

TABLE II. SEQUENTIAL K-NN PERFORMANCE

Number of Neighbors AccTest Runtime(s)

1 0.5019 105475.0060

3 0.4959 105507.8470

5 0.5280 105677.1990

7 0.5386 107735.0380

Fig. 3. Speedup

From these tables and figure we can highlight several
factors:

• As we can observe in Table II, the required run-
time for the sequential k-NN method is quite high.
However, by using the proposed approach, a great
reduction of the consumed computation time is shown
when the number of mappers is increased. Because of
the implementation performed, our proposal always
provides the same accuracy than the original k-NN
model, independently of the number of mappers. Nev-
ertheless, even though the reduce phase is not very
time-consuming, a higher number of mappers implies
a slightly higher computation in the reduce phase
because it is aggregating more results that come from
the maps.

• For the considered problem, higher values of k yield
better accuracy for both the original and the pro-
posed parallel version. In terms of runtime, larger
k values slightly increase the computation time in
either parallel and sequential versions being that more
computations have to be performed. In our particular

171

TABLE III. RESULTS OBTAINED BY THE MR-KNN ALGORITHM

#Neighbors #Maps AvgMapTime AvgRedTime AvgTotalTime AccTest SpeedUp

1 256 356.3501 9.5156 709.4164 0.5019 149.1014
128 646.9981 5.2700 804.4560 0.5019 131.4864
64 1294.7913 3.1796 1470.9524 0.5019 71.9092
32 2684.3909 2.1978 3003.3630 0.5019 35.2189
16 5932.6652 1.6526 6559.5666 0.5019 16.1253

3 256 351.6059 20.3856 735.8026 0.4959 130.2356
128 646.4311 11.0798 894.9308 0.4959 107.0783
64 1294.3999 6.3078 1509.5010 0.4959 63.4830
32 2684.9437 3.9628 3007.3770 0.4959 31.8642
16 5957.9582 2.4302 6547.3316 0.4959 14.6361

5 256 371.1801 33.9358 793.4166 0.5280 125.7262
128 647.6104 17.9874 842.3042 0.5280 118.4291
64 1294.6693 10.0790 1474.5290 0.5280 67.6509
32 2679.7405 5.6878 2977.1442 0.5280 33.5064
16 5925.3548 3.5698 6467.3044 0.5280 15.4242

7 256 388.0878 49.3472 746.2892 0.5386 156.3386
128 647.0609 23.6258 830.7192 0.5386 140.4492
64 1295.0035 12.8888 1475.3190 0.5386 79.0838
32 2689.1899 7.3508 3069.3328 0.5386 38.0128
16 5932.6652 1.6526 6559.5666 0.5386 17.7868

implementation, it means larger matrices CDj . How-
ever, due to the encoding we use, it does not result in
very large runtimes.

• According to Figure 3, the achieved speed up is linear
in most of the cases, except for the case with 256.
As stated before, this case overtakes the maximum
number of concurrent running map tasks. Moreover,
we sometimes appreciate some superlinear speed ups
that could be interpreted as memory-consumption
problems of the sequential version.

V. CONCLUDING REMARKS

In this contribution we have proposed a MapReduce ap-
proach to enable the k-Nearest neighbor technique to deal
with large-scale problems. Without such a parallelization, the
application of the k-NN algorithm would be limited to small
or medium data, especially when low runtimes are a need. The
proposed scheme is an exact parallelization of the k-NN model,
so that, the precision remains the same and the efficiency has
been largely improved. The experiments performed has shown
the reduction of computational time achieved by this proposal
compared to the utilization of the sequential version. As future
work, we plan to carry out more extensive experiments as well
as the use of more recent technologies such as Spark [13] to
make the computation process even faster by using operations
beyond the MapReduce philosophy.

ACKNOWLEDGMENT

This work was supported by the Research Projects
TIN2014-57251-P and P11-TIC-7765. J. Maillo holds a
research initialization scholarship from the University of
Granada. I. Triguero holds a BOF postdoctoral fellowship from
the Ghent University.

REFERENCES

[1] M. Minelli, M. Chambers, and A. Dhiraj, Big Data, Big Analytics:
Emerging Business Intelligence and Analytic Trends for Today’s Busi-
nesses (Wiley CIO), 1st ed. Wiley Publishing, 2013.

[2] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,
1967.

[3] X. Wu and V. Kumar, Eds., The Top Ten Algorithms in Data Mining.
Chapman & Hall/CRC Data Mining and Knowledge Discovery, 2009.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, Jan. 2008.

[5] A. Fernández, S. Rı́o, V. López, A. Bawakid, M. del Jesus, J. Benı́tez,
and F. Herrera, “Big data with cloud computing: An insight on the
computing environment, mapreduce and programming frameworks,”
WIREs Data Mining and Knowledge Discovery, vol. 4, no. 5, pp. 380–
409, 2014.

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. MIT press, 1999,
vol. 1.

[7] A. Srinivasan, T. Faruquie, and S. Joshi, “Data and task parallelism in
ILP using mapreduce,” Machine Learning, vol. 86, no. 1, pp. 141–168,
2012.

[8] I. Triguero, D. Peralta, J. Bacardit, S. Garcı́a, and F. Herrera, “MRPR:
A mapreduce solution for prototype reduction in big data classification,”
Neurocomputing, vol. 150, Part A, no. 0, pp. 331 – 345, 2015.

[9] T. Yokoyama, Y. Ishikawa, and Y. Suzuki, “Processing all k-nearest
neighbor queries in hadoop,” in Web-Age Information Management, ser.
Lecture Notes in Computer Science, H. Gao, L. Lim, W. Wang, C. Li,
and L. Chen, Eds. Springer Berlin Heidelberg, 2012, vol. 7418, pp.
346–351.

[10] C. Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for large data
in mapreduce,” in Proceedings of the 15th International Conference on
Extending Database Technology, ser. EDBT ’12. New York, NY, USA:
ACM, 2012, pp. 38–49.

[11] A. H. Project, “Apache hadoop,” 2015. [Online]. Available: http:
//hadoop.apache.org/

[12] A. M. Project, “Apache mahout,” 2015. [Online]. Available: http:
//mahout.apache.org/

[13] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 1–14.

[14] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

172

