
Knowledge-Based Systems 117 (2017) 3–15

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors

classifier for big data

Jesus Maillo

a , ∗, Sergio Ramírez

a , Isaac Triguero

c , d , e , Francisco Herrera

a , b

a Department of Computer Science and Artificial Intelligence, University of Granada, CITIC-UGR, Granada, 18071, Spain
b Faculty of Computing and Information Technology, University of Jeddah, Jeddah, 21589, Saudi Arabia
c Department of Internal Medicine, Ghent University, Ghent, 90 0 0, Belgium

d Data Mining and Modelling for Biomedicine group, VIB Inflammation Research Center, Zwijnaarde, 9052, Belgium

e School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, United Kingdom

a r t i c l e i n f o

Article history:

Received 31 January 2016

Revised 10 June 2016

Accepted 12 June 2016

Available online 14 June 2016

Keywords:

K-nearest neighbors

Big data

Apache Hadoop

Apache Spark

MapReduce

a b s t r a c t

The k-Nearest Neighbors classifier is a simple yet effective widely renowned method in data mining. The

actual application of this model in the big data domain is not feasible due to time and memory restric-

tions. Several distributed alternatives based on MapReduce have been proposed to enable this method to

handle large-scale data. However, their performance can be further improved with new designs that fit

with newly arising technologies.

In this work we provide a new solution to perform an exact k-nearest neighbor classification based on

Spark. We take advantage of its in-memory operations to classify big amounts of unseen cases against

a big training dataset. The map phase computes the k-nearest neighbors in different training data splits.

Afterwards, multiple reducers process the definitive neighbors from the list obtained in the map phase.

The key point of this proposal lies on the management of the test set, keeping it in memory when possi-

ble. Otherwise, it is split into a minimum number of pieces, applying a MapReduce per chunk, using the

caching skills of Spark to reuse the previously partitioned training set. In our experiments we study the

differences between Hadoop and Spark implementations with datasets up to 11 million instances, show-

ing the scaling-up capabilities of the proposed approach. As a result of this work an open-source Spark

package is available.

© 2016 Elsevier B.V. All rights reserved.

1

a

o

a

j

e

t

p

s

d

i

w

R

H

e

g

t

f

r

e

w

s

b

i

i

t

h

0

. Introduction

Over the last few years, gathering information has become

n automatic and relatively inexpensive task, thanks to technol-

gy improvements. This has resulted in a severe increment of the

mount of available data. Social media, biomedicine or physics are

ust a few examples of areas that are producing tons of data ev-

ry day [1] . This data is useless without a proper knowledge ex-

raction process that can somehow take advantage of it. This fact

oses a significant challenge to the research community because

tandard machine learning methods can not deal with the volume,

iversity and complexity that this data brings [2] . Therefore, exist-

ng learning techniques need to be remodeled and updated to deal
ith such volume of data.

∗ Corresponding author. Fax: + 34 958 243317.

E-mail addresses: jesusmh@decsai.ugr.es (J. Maillo), sramirez@decsai.ugr.es (S.

amírez), Isaac.Triguero@nottingham.ac.uk (I. Triguero), herrera@decsai.ugr.es (F.

errera).

a

t

o

t

s

ttp://dx.doi.org/10.1016/j.knosys.2016.06.012

950-7051/© 2016 Elsevier B.V. All rights reserved.
The k-Nearest Neighbor algorithm (kNN) [3] is an intuitive and

ffective nonparametric model used for both classification and re-

ression purposes. In [4] , the kNN was claimed to be one of the

en most influential data mining algorithms. In this work, we are

ocused on classification tasks. As a lazy learning model, the kNN

equires that all the training data instances are stored. Then, for

ach unseen case and every training instance, it performs a pair-

ise computation of a certain distance or similarity measure [5,6] ,

electing the k closest instances to them. This operation has to

e repeated for all the input examples against the whole train-

ng dataset. Thus, the application of this technique may become

mpractical in the big data context. In what follows, we refer to

his original algorithm as the exact kNN method, w.r.t. partial and

pproximate variants of the kNN model that reduce the computa-

ional time, assuming that distances are computed using any class

f approximation error bound [7] .

Recent cloud-based technologies offer us an ideal environment

o handle this issue. The MapReduce framework [8] , and its open-

ource implementation in Hadoop [9] , were the precursor tools to

http://dx.doi.org/10.1016/j.knosys.2016.06.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.06.012&domain=pdf
mailto:jesusmh@decsai.ugr.es
mailto:sramirez@decsai.ugr.es
mailto:Isaac.Triguero@nottingham.ac.uk
mailto:herrera@decsai.ugr.es
http://dx.doi.org/10.1016/j.knosys.2016.06.012

4 J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15

t

s

d

w

i

d

M

o

h

S

w

T

s

a

d

w

2

m

c

S

t

a

2

S

p

t

i

p

M

o

a

t

M

m

t

s

F

d

t

t

a

p

a

c

s
tackle data-intensive applications [10] based on the principle of

data locality [11] , which is implemented through its distributed

file system. Its application in data mining has been widely spread

[12–14] , to the detriment of other parallelization schemes such as

Message Passing Interface [15] , because of its fault-tolerant mech-

anism (recommendable for time-consuming tasks) and its ease

of use [16] . Despite its unquestionable breakthrough, researchers

have found several limitations in Hadoop Mapreduce to design

scalable machine learning tools [17] . MapReduce is inefficient for

applications that share data across multiple steps, including it-

erative algorithms or interactive queries. Multiple platforms for

large-scale processing have recently emerged to overcome the is-

sues presented by Hadoop MapReduce [18,19] . Among them, Spark

[20] highlights as one of the most flexible and powerful engines

to performed faster distributed computing in big data by using

in-memory primitives. This platform allows user programs to load

data into memory and query it repeatedly, making it more suitable

for online, iterative or data streams algorithms [21] .

The use of the kNN algorithm and similar approaches has been

already considered in the big data context. On the one hand, some

works incorporate a kNN classifier in a MapReduce process [22] ,

but their purpose is not to carry out an exact kNN classification,

but use a partial kNN (kNN is applied over subsets of the train-

ing data) as part of a larger pipeline of experiments. In [23] the

authors proposed a novel approach for clustering in large datasets

by adding kNN and Principal Component Analysis as part of the

technique proposed. The method proposed in [24] have two dif-

ferent stages. The first stage used a k-means in order to separate

the whole dataset in different parts. The second stage computes

a kNN in each split providing approximate results. On the other

hand, without aiming at classification or regression tasks, several

approaches have been proposed to perform a distributed computa-

tion of kNN join queries in MapReduce. For example, in [25] the

authors apply kNN-join (exact or approximate) queries within a

two-stage MapReduce process. In [26] the authors proposed Spit-

fire , an efficient and scalable kNN queries model composed of

multiple distributed stages. We further discuss these methods in

Section 2.2 . When focused on pure classification, the MapReduce

process can be greatly simplified because it is not necessary to pro-

vide the k nearest neighbors themselves, but rather their classes. In

[27] , an iterative Hadoop MapReduce process (iHMR-kNN) was pre-

sented for kNN based image classification. This approach iteratively

performs MapReduce for every single test instance, with the con-

sequent time consumption of Hadoop-based systems for iterations.

In [28] , however, we proposed a single Hadoop MapReduce pro-

cess that can simultaneously classify large amounts of test samples

against a big training dataset, avoiding start-up costs of Hadoop. To

do so, we read the test set line by line from the Hadoop File Sys-

tem, which make this model fully scalable but its performance can

be further improved by in-memory solutions.

In this paper, we propose an iterative MapReduce-based ap-

proach for kNN algorithm implemented under Apache Spark. In

our implementation, we aim to exploit the flexibility provided

by Spark, by using other in-memory operations that alleviate the

consumption costs of existing MapReduce alternatives. To manage

enormous test sets as well, this method will iteratively address

chunks of this set, if necessary. The maximum number of possi-

ble test examples, depending on memory limitations, will be used

to minimize the number of iterations. In each iteration, a kNN

MapReduce process will be applied. The map phase consists of de-

ploying the computation of similarity between a subset of the test

examples and splits of the training set through a cluster of com-

puting nodes. As a result of each map, the class label of the k near-

est neighbors together with their computed distance values will

be emitted to the reduce stage. Multiple reducers will determine

which are the final k nearest neighbors from the list provided by
he maps. This process is repeated until the whole test set is clas-

ified. Through the text, we will denote this approach as a kNN

esign based on Spark (kNN-IS).

In summary, the contributions of this work are as follows:

• We extend the MapReduce scheme proposed in [28] by using

multiples reducers to speed up the processing when the num-

ber of maps needed is very high.

• A fully parallel implementation of the kNN classifier that makes

use of in-memory Spark operations to accelerate all the stages

of the method, including normalization of the data, processing

of big test datasets, and computation of pairwise similarities,

without incurring in Hadoop startup costs.

To test the performance of the proposed classification model,

e will conduct experiments on big datasets with up to 11 millions

nstances. We investigate the influence of number of maps and re-

ucers and we will establish a comparison among existing Hadoop

apReduce alternatives and the proposed approach. A repository

f code with the implementation of this technique can be found at

ttps://github.com/JMailloH/kNN _ IS .

The remainder of this paper is organized as follows.

ection 2 introduces the big data technologies used in this

ork and the current state-of-art in kNN big data classification.

hen, Section 3 details the proposed kNN-IS model. Section 4 de-

cribes the experimental setup and Section 5 includes multiple

nalyses of results. Finally, Section 6 outlines the conclusions

rawn in this work. The Appendix provides a quick start guide

ith the developed Spark package.

. Preliminaries

This section provides the necessary background for the re-

ainder of the paper. First, Section 2.1 introduces the con-

ept of MapReduce and the platforms Hadoop and Spark. Then,

ection 2.2 formally defines the kNN algorithm and its weaknesses

o tackle big data problems, presenting the current alternatives to

lleviate them.

.1. MapReduce programming model and frameworks: Hadoop and

park

The MapReduce programming paradigm [8] is a scale-out data

rocessing tool for Big Data, designed by Google in 2003. This was

hought to be the most powerful search-engine on the Internet, but

t rapidly became one of the most effective techniques for general-

urpose data parallelization.

MapReduce is based on two separate user-defined primitives:

ap and Reduce. The Map function reads the raw data in form

f key-value (< key, value >) pairs, and transforms them into

 set of intermediate < key, value > pairs, conceivably of different

ypes. Both key and value types must be defined by the user. Then,

apReduce merges all the values associated with the same inter-

ediate key as a list (shuffle phase). Finally, the Reduce function

akes the grouped output from the maps and aggregates it into a

maller set of pairs. This process can be schematized as shown in

ig. 1 .

This transparent and scalable platform automatically processes

ata in a distributed cluster, relieving the user from technical de-

ails, such as: data partitioning, fault-tolerance or job communica-

ion. We refer to [16] for an exhaustive review of this framework

nd other distributed paradigms.

Apache Hadoop [29,30] is the most popular open-source im-

lementation of MapReduce for large-scale processing and stor-

ge on commodity clusters. The use of this framework has be-

ome widespread in many fields because of its performance, open

ource nature, installation facilities and its distributed file system

https://github.com/JMailloH/kNN_IS

J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15 5

Fig. 1. Data flow overview of MapReduce.

(

u

m

r

H

w

S

i

t

p

c

f

c

t

r

p

i

u

t

c

o

m

a

p

f

c

f

a

2

u

t

b

b

s

o

c

t

x

e

b

i

s

d

T

b

n

w

T

d

d

f

b

e

d

s

t

p

r

g

c

i

a

d

i

r

t

s

c

a

g

i

d
Hadoop Distributed File System, HDFS). In spite of its great pop-

larity, Hadoop and MapReduce have shown not to fit well in

any cases, like online or iterative computing [31] . Its inability to

euse data through in-memory primitives makes the application of

adoop for many machine learning algorithms unfeasible.

Apache Spark, a novel solution for large-scale data processing,

as thought to be able to solve the Hadoop’s drawbacks [32,33] .

park was introduced as part of the Hadoop Ecosystem and it

s designed to cooperate with Hadoop, specially by using its dis-

ributed file system. This framework proposes a set of in-memory

rimitives, beyond the standard MapReduce, with the aim of pro-

essing data more rapidly on distributed environments, up to 100x

aster than Hadoop.

Spark is based on Resilient Distributed Datasets (RDDs), a spe-

ial type of data structure used to parallelize the computations in a

ransparent way. These parallel structures let us persist and reuse

esults, cached in memory. Moreover, they also let us manage the

artitioning to optimize data placement, and manipulate data us-

ng a wide set of transparent primitives. All these features allow

sers to easily design new data processing pipelines.

A scalable machine learning library (MLlib) [34] was built on

op of Spark, thanks to its implicit suitability for iterative pro-

esses. The current version of MLlib (v1.6.0) contains a large set

f standard learning algorithms and statistic tools, which covers

any important fields in the knowledge discovery process, such

s: classification, regression, clustering, optimization or data pre-

rocessing. The MLlib is a key component of the MLbase [35] plat-

orm. It provides a high-level API that makes easier for the user to

onnect multiple machine learning algorithms. However, this plat-

orm does not include lazy learning algorithms such as the kNN

lgorithm.

.2. The kNN classifier and big data

The kNN algorithm is a non-parametric method that can be

sed for either classification and regression tasks. Here, we define

he kNN problem, its current trends and the drawbacks to manage

ig data. A formal notation for the kNN algorithm is the following:

Let TR be a training dataset and TS a test set, they are formed

y a determined number n and t of samples, respectively. Each

ample x p is a tuple (x p1 , x p2 , ..., x pD , ω) , where, x p f is the value

f the f -th feature of the p -th sample. This sample belongs to a

lass ω, given by x ω p , and a D -dimensional space. For the TR set

he class ω is known, while it is unknown for TS . For each sample

 test included in the TS set, the kNN algorithm searches the k clos-

st samples in the TR set. Thus, the kNN calculates the distances

etween x test and all the samples of TR . The Euclidean distance

s the most widely-used measure for this purpose. The training
amples are ranked in ascending order according to the computed

istance, taking the k nearest samples (neigh 1 , neigh 2 , ..., neigh k).

hen, they are used to compute the most predominant class la-

el. The chosen value of k may influence the performance and the

oise tolerance of this technique.

Although the kNN has shown outstanding performance in a

ide variety of problems, it lacks the scalability to manage big

R datasets. The main problems found for dealing with large-scale

ata are:

• Runtime: The complexity to find the nearest neighbor train-

ing example of a single test instance is O ((n · D)), where n

is the number of training instances and D the number of fea-

tures. This becomes computationally more expensive when it

involves finding the k closets neighbors, since it requires the

sorting of the computed distances, so that, an extra complexity

O (n · log (n)). Finally, this process needs to be repeated for every

test example.

• Memory consumption: For a rapid computation of the dis-

tances, the kNN model requires the training data to be stored in

memory. When TR and the TS sets are too big, they may easily

exceed the available RAM memory.

These drawbacks motivate the use of big data technologies to

istribute the processing of kNN over a cluster of nodes.

In the literature, we can find a family of approaches that per-

orm kNN joins with MapReduce. A recent review on this topic can

e found in [36] . The kNN joins differs from kNN classifier in the

xpected output. While the kNN classifier aims to provide the pre-

icted class, the kNN join outputs the neighbors themselves for a

ingle test. Thus, these methods cannot be applied for classifica-

ion.

For an exact kNN join, two main alternatives have been pro-

osed in [25] . The first one, named H-BkNNJ, consists of a single

ound of MapReduce in which TR and TS sets are partitioned to-

ether, so that, every map task processes a pair TS i and TR i , and

arries out the pairwise distance comparison between each train-

ng and test splits. Let m the number of used partitions, it cre-

tes m

2 blocks by performing a linear scan on both sets. The re-

uce task then processes all computed distances for a given test

nstance and sorts them in ascending order to output the top k

esults. A second alternative called H-BNLJ is proposed, by using

wo MapReduce processes, in order to reduce the complexity of the

ort phase. However, it still requires m

2 tasks. The main deficien-

ies of these approaches are: (1) they generate extra blocks of data,

nd therefore, they make the size of the problem tackled even big-

er; (2) they square the complexity of the solution (m

2 tasks); (3)

t relied on Hadoop MapReduce, so that, the two-stage MapRe-

uce model needs to serialize intermediate data into disk, with its

6 J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15

d

m

a

o

a

3

m

o

p

f

i

m

s

a

e

n

n

p

a

r

3

s

R

i

E

1

s

s

T

e

t

a

i

t

e

A

R

<

d

t

a

C

s

t

p

(

p
consequent cost. Some other models, such as PGBJ [37] , perform a

preprocessing phase and distance based partitioning strategy to re-

duce the number of task to m . Nevertheless, it adds an extra com-

putational cost to carry out this phase. More recently, a new alter-

native called Spitfire was proposed in [26] . Following its own dis-

tributed procedure (i.e. not a MapReduce model), it calculates the

k nearest neighbors of all the elements of a single set. To do so, it

first partitions the search space, and then, calculates and replicates

the k nearest neighbors in each split. The last phase computes a

local kNN to provide the final result.

Focusing on classification tasks (also valid for regression), ex-

isting methods are simpler than kNN join approaches, since they

do not need to provide the neighbors themselves (or reference to

them to search for them later), only their classes. Two main ap-

proaches have been presented so far, and they are both focused on

using the Map phase to split the training data in m disjoint parts.

The former was presented in [27] , and it proposes iteratively re-

peating a MapReduce process (without an explicitly defined reduce

function) for each single test example, which is very time consum-

ing in both Hadoop and also in Spark (as we will discuss further

in the experiment section). The latter was proposed in [28] , de-

noted as MR-kNN, in which a single MapReduce process manages

the classification of the (big) test set. To do that, Hadoop primitives

are used to read line by line the test data within the map phase.

As such, this model is scalable but its performance can be further

improved by in-memory solutions.

3. kNN-IS: An Iterative Spark-based design of the kNN classifier

for Big Data

In this section we present an alternative distributed kNN model

for big data classification using Spark. We will denote our method

as kNN-IS. We focus on the reduction of the runtime of the kNN

classifier, when both training and test sets are big datasets. As

stated in [36] , when computing kNN within a parallel framework,

many additional factors may impact the execution time, such as

number of MapReduce jobs j or number of Map m and Reduce r

tasks required. Therefore, writing an efficient exact kNN in Spark

is challenging, and multiple key-points must be taken into account

to obtain an efficient and scalable model.

Aiming to alleviate the main issues presented by previously

MapReduce solutions for kNN, we introduce the following ideas in

our proposal:

• As in [28] and [27] , a MapReduce process will split the train-

ing dataset, as it is usually the biggest dataset, into m tasks. In

contradistinction to kNN-join approaches that need m

2 tasks,

we reduce the complexity of kNN to m tasks without requiring

any preprocessing in advanced.

• To tackle large test datasets, we rely on Spark to reuse the pre-

viously split training set with different chunks of the test set.

The use of multiple MapReduce jobs over the same data does

not imply significant extra costs in Spark, but we keep this

number to a minimum. The MR-kNN approach only performs

m tasks independently of the test data size, by reading line-

by-line the test set within the maps. Here we show how in-

memory operations highly reduce the cost of every task.

• It is also noteworthy that none of the alternatives proposed for

pure kNN classification (e.g. [27,28]) discuss the influence of the

number of reducers, which can be determinant when the size

of the dataset becomes very big (See Section 5.3).

• In addition, every single operation will be performed within the

RDD objects provided by Spark. It means that even simple op-

erations such as normalization, are also efficient and fully scal-
able. t
This is the reasoning behind our model. In what follows, we

etail its main components. First of all, we will present the

ain MapReduce process that classifies a subset of the test set

gainst the whole training set (Section 3.1). Then, we give a global

verview of the method, showing the details to carry out the iter-

tive computation over the test data (Section 3.2).

.1. MapReduce for kNN classification within Spark

This subsection introduces the MapReduce process that will

anage the classification of subsets of test data that fit in mem-

ry. As such, this MapReduce process is based on our previously

roposed alternative MR-kNN, with the distinction that it allows

or multiple reducers, checks the iterations required to run avoid-

ng memory swap, and is implemented under Spark.

As a MapReduce model, this divides the computation into two

ain phases: the map and the reduce operations. The map phase

plits the training data and calculates for each chunk the distances

nd the corresponding classes of the k nearest neighbors for ev-

ry test sample. The reduce stage aggregates the distances of the k

earest neighbors from each map and makes a definitive list of k

earest neighbors. Ultimately, it conducts the usual majority voting

rocedure of the kNN algorithm to predict the resulting class. Map

nd reduce functions are now defined in Sections 3.1.1 and 3.1.2 ,

espectively.

.1.1. Map phase

Let us assume that the training set TR and the corresponding

ubset of test samples TS i have been previously read from HDFS as

DD objects. Hence, the training dataset TR has already been split

nto a user-defined number m of disjoint subsets when it was read.

ach map task (Map 1 , Map 2 , ..., Map m

) tackles a subset TR j , where

 ≤ j ≤ m , with the samples of each chunk in which the training

et file is divided. Therefore, each map approximately processes a

imilar number of training instances.

To obtain an exact implementation of kNN, the input test set

S i is not split together with the training set, but it is read in

ach map in order to compare every test sample against the whole

raining set. It implies that both TS i and TR j are supposed to fit

ltogether in memory.

Algorithm 1 contains the pseudo-code of this function. In our

mplementation in Spark we make use of the mapPartitions(func)

ransformation, which runs the function defined in Algorithm 1 on

ach block of the RDD separately.

lgorithm 1 Map function

equire: T R j T S i ; k

1: for t = 0 to size (T S i) do

2: CD t, j ← Compute kNN (T R j , T S i (x) , k)

3: result j ← (< key : t, v alue : CD t, j >)

4: EMIT(result j)

5: end for

Every map j will constitute a class-distance vector CD t, j of pairs

 class, distance > of dimension k for each test sample t in TS i . To

o so, Instruction 2 computes for each test sample the class and

he distance to its k nearest neighbors. To accelerate the posterior

ctualization of the nearest neighbors in the reducers, every vector

D t, j is sorted in ascending order regarding the distance to the test

ample, so that, Dist (neigh 1) < Dist (neigh 2) < < Dist (neigh k).

Unlike the MapReduce proposed in [28] , every map sends mul-

iple outputs, e.g. one per test instance. The vector CD t, j is out-

utted as value together with an identifier of test instance t as key

Instruction 3). In this way, we allow this method to use multi-

le reducers. Having more reducers may be useful when the used

raining and test datasets are very big.

J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15 7

3

n

e

w

l

o

a

t

d

T

t

t

b

t

i

w

r

A

R

t

f

m

t

3

t

h

t

w

t

S

t

A

R

ect

t

d

f

b

w

t

t

b

t

a

a

d

n

t

l

p

e

m

s

T

(

t

s

s

m

s

f

w

p

t

c

b

t

n

r

s

e

t

s

r

m

4

e

S

t

p

w

4

.1.2. Reduce phase

The reduce phase consists of collecting, from the tentative k

earest neighbors provided by the maps, the closest ones for the

xamples contained in TS i . After the map phase, all the elements

ith the same key have been grouped. A reducer is run over a

ist(CD t , 0 , CD t , 1 , .., CD t, m

) and determines the k nearest neighbors

f this test example t .

This function will process every element of such list one after

nother. Instructions 2 to 7 update a resulting list results reducer with

he k neighbors. Since the vectors coming from the maps are or-

ered according to the distance, the update process becomes faster.

his consists of merging two sorted lists up to get k values, so

hat, the complexity in the worst case is O(k). Therefore, this func-

ion compares every distance value of each of the neighbors one

y one, starting with the closest neighbor. If the distance is lesser

han the current value, the class and the distance of this position

s updated with the corresponding values, otherwise we proceed

ith the following value. Algorithm 2 provides the details of the

educe operation.

lgorithm 2 Reduce by key operation

equire: result key , k

1: cont=0

2: for i = 0 to k do

3: if r esult key (cont) .Dist < r esult reducer (i) .Dist then

4: result reducer (i) = result key (cont)

5: cont++

6: end if

7: end for

In summary, for every instance in the test set, the reduce func-

ion will aggregate the values according to function described be-

ore. To ease the implementation of this idea, we use the transfor-

ation ReduceByKey(func) from Spark. Algorithm 2 corresponds to

he function required in Spark.

.2. General scheme of kNN-IS

When the size of the test set is very large, we may exceed

he memory allowance of the map tasks. In this case, we also

ave to split the test dataset and carry out multiple iterations of

he MapReduce process defined above. Fig. 2 depicts the general

ork-flow of the method. Algorithm 3 shows the pseudo-code of

he whole method with precise details of the functions utilized in

park. In the following, we describe the most significant instruc-

ions, enumerated from 1 to 13.

lgorithm 3 kNN-IS

equire: T R ; T S; k ; # Maps ; # Reduces ; # MemAl l ow

1: T R − RDD raw

← textFile(T R , # Maps)

2: T S − RDD raw

← textFile(T S).zipWithIndex()

3: T R − RDD ← T R − RDD raw

.map(normalize).cache

4: T S − RDD ← T S − RDD raw

.map(normalize).cache

5: # Iter ← calIter(T R − RDD .weight(), T S − RDD .weight,

MemAl l ow)

6: T S − RDD .RangePartitioner(# Iter)

7: for i = 0 to # Iter do

8: T S i ← broadcast(T S − RDD .getSplit(i))

9: resultKNN ← T R − RDD .mapPartition(T R j → kNN(T R j , T S i ,

k))

10: result ← r esultKNN.r educeByKey (combineResult, #Reduces) .coll

11: right-predictedClasses[i] ← calculateRightPredicted(result)

12: end for

13: cm ← calculateConfusionMatrix(right-predictedClasses)

f

As input, we receive the path in the HDFS for both training and

est data as well as the number of maps m and reducers r . We also

ispose of the number of neighbors k and the memory allowance

or each map.

Firstly, we create an RDD object with the training set TR formed

y m blocks (Instruction 1). The test set TS is also read as an RDD

ithout specifying a number of partitions. As this is read, we es-

ablish the key of every single test instance according to its posi-

ion in the dataset (Instruction 2, function zipWithIndex() in Spark).

Since we will use Euclidean distance to compute the similarity

etween instances, normalizing both datasets becomes a manda-

ory task. Thus, Instructions 3 and 4 both perform a parallel oper-

tion to normalize the data into the range [0,1]. Both datasets are

lso cached for future reuse.

Even though Spark can be iteratively applied with the same

ata without incurring excessive time consumption, we reduce the

umber of iterations to a minimum because the fewer iterations

here are, the better the performance will be. Instruction 5 calcu-

ates the minimum number of iterations # Iter that we will have to

erform to manage the input data. To do so, it will use the size of

very chunk of the training dataset, the size of the test set and the

emory allowance for each map.

With the computed number of iterations # Iter, we can easily

plit the test dataset into subsets of a similar number of samples.

o do that, we make use of the previously established keys in TS

in Instruction 2). Instruction 6 will perform the partitioning of the

est dataset by using the function RangePartitioner .

Next, the algorithm enters into a loop in which we classify sub-

ets of the test set (Instructions 7-12). Instruction 7 firstly gets the

plit corresponding to the current iteration. We use the transfor-

ation filterByRange(lowKey, maxKey) to efficiently take the corre-

ponding subset. This function takes advantage of the split per-

ormed in Instruction 6, to only scan the matching elements. Then,

e broadcast this subset TS i into the main memory of all the com-

uting nodes involved. The broadcast function of Spark allows us

o keep a read-only variable cached on each machine rather than

opying it with the tasks.

After that, the main map phase starts in Instruction 9. As stated

efore, the mapPartition function computes the kNN for each par-

itions of TR j and TS i and emits a pair RDD with key equals to the

umber of instance and value equals to a list of class-distance . The

educe phase joins the results of each map grouping by key (In-

truction 9). As a result, we obtain the k neighbors with the small-

st distance and their classes for each test input in TS i . More de-

ails can be found in the previous section.

The last step in this loop collects the right and predicted classes

toring them as an array in every iteration (Instruction 11).

Finally, when the loop is done, Instruction 13 computes the

esulting confusion matrix and outputs the desired performance

easures.

. Experimental set-up

In this section, we show the factors and points related to the

xperimental study. We provide the performance measures used (

ection 4.1), the details of the problems chosen for the experimen-

ation (Section 4.2) and the involved methods with their respective

arameters (Section 4.3). Finally, we specify the hardware and soft-

are resources that support our experiments (Section 4.4).

.1. Performance measures

In this work we assess the performance and scalability with the

ollowing three measures:

8 J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15

Fig. 2. Flowchart of the proposed kNN-IS algorithm.

Table 1

Summary description of the used datasets.

Dataset #Examples #Features # ω

PokerHand 1,025,010 10 10

ECBDL’14 2,063,187 631 2

Susy 5,0 0 0,0 0 0 18 2

Higgs 11,0 0 0,0 0 0 28 2

4

t

U

d

h

k

s

d

s

s

s

(

f

l

• Accuracy: Represents the number of correct classifications

against the total number of classified instances. This is calcu-

lated from a resulting confusion matrix, dividing the sum of

the diagonal elements between the total of the elements of the

confusion matrix. This is the most commonly used metric for

assessing the performance of classifiers for years in standard

classification ([38] [39]).

• Runtime: We will collect the total time spent by the kNN clas-

sifier to classify a given test set against the training dataset.

Moreover, we will take intermediate times from the map phase

and the reduce phase to better analyze the behavior of our pro-

posal. The total runtime for the parallel approach includes read-

ing and distributing all the data, in addition to calculating k

nearest neighbors and majority vote.

• Speed up: Proves the efficiency of a parallel algorithm com-

paring against the sequential version of the algorithm. Thus, it

measures the relation between the runtime of sequential and

parallel versions. In a fully parallelism environment, the maxi-

mum theoretical speed up would be the same as the number

of used cores, according to the Amdahl’s Law [40] .

Speedup =

base _ line

paral l el _ time
(1)

where base _ line is the runtime spent with the sequential ver-

sion and paral l el _ time is the total runtime achieved with its
improved version. u
.2. Datasets

In this experimental study we will use four big data classifica-

ion problems. PokerHand, Susy and Higgs are extracted from the

CI machine learning repository [41] . Moreover, we take an extra

ataset that comes from the ECBDL’14 competition [42] . This is a

ighly imbalanced problem (Imbalanced ratio > 45), in which the

NN may be biased towards the negative class. Thus, we randomly

ample said dataset to obtain more balance. The point of using said

ataset, is that apart from containing a substantial number of in-

tances, it has a relatively high number of features, so that, we can

ee how this fact affects the proposed model.

Table 1 summarizes the characteristics of these datasets. We

how the number of examples (# Examples), number of features

 # F eatures), and the number of classes (# ω). Note that with a

ewer number of instances, the ECBLD’14 datasets become the

arger datasets in terms of size because of its number of features.

For the experimental study all datasets have been partitioned

sing a 5 fold cross-validation (5-fcv) scheme. It means that the

J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15 9

Table 2

Approximate number of instances in the training subset depending on the number of

mappers.

Number of maps

Dataset 32 64 128 256 512 1024 2048

PokerHand 25,626 12,813 6,406 3,203 1,602 800 400

ECBDL’14 51,580 25,790 12,895 6,448 3,224 1,612 806

Susy 62,468 31,234 15,617 7,809 3,905 1,953 976

Higgs 275,0 0 0 137,500 68,750 34,375 17,188 8,594 4,297

Table 3

Approximate number of instances in the test subset depend-

ing on the number of reducers.

Number of reducers

Dataset 1 32 64 128

PokerHand 205,002 102,501 51,250 25,625

ECBDL’14 412,637 12,895 6,448 3,224

Susy 1,0 0 0,0 0 0 31,250 15,625 7,813

Higgs 2,20 0,0 0 0 68,750 34,375 17,188

d

s

r

o

s

i

s

I

i

t

r

p

t

n

s

4

d

M

i

d

q

t

t

o

a

i

t

i

n

s

n

u

Table 4

Parameter settings for the used methods.

Method Parameter values

MR-kNN [28] k = 1,3,5,7; Number Of Maps = 32/64/128; Number Of Reducers:1

Implementation: Hadoop MapReduce; Euclidean Distance

kNN-IS k = 1,3,5,7; Number Of Maps = 32/64/128/256/512/1024/2048;

Number Of Reducers: 1/32/64/128

Implementation: Spark; Euclidean Distance

Memory allowance per Map: 2GB

Multiple iterations: Automatically determined or Fixed.

4

c

i

a

c

e

e

w

5

p

iterations (Section 5.4).
ataset is partitioned into 5 folds, each one including 80% training

amples and the rest test examples. For each fold, the kNN algo-

ithm computes the nearest neighbors from the TS against TR .

In the presented MapReduce scheme, the number of instances

f a dataset and the number of maps used have a direct relation,

o that, the greater the number of maps is, the fewer number of

nstances there are in them. Table 2 presents the number of in-

tances in each training set according to the number of maps used.

n italics we represent the settings that are not used in our exper-

ments because there are either too few instances or too many.

The number of reducers also plays an important role in how

he test dataset is managed in kNN-IS. The larger the number of

educers, the smaller the number of test instances that have to be

rocessed for each reducer. Table 3 shows this relation, assuming

hat the test set is not split because of memory restrictions (so,

umber of iterations = 1). Once again, we point out in italics those

ettings that have not been explored.

.3. Methods and parameters

Among the existing distributed kNN models based on MapRe-

uce, we establish a comparison with the model proposed in [28] ,

R-kNN, as the most promising alternative proposed so far, which

s based in Hadoop MapReduce.

As stated in Section 2.2 , kNN-join methods [36] were originally

esigned for other purposes rather than classification. They also re-

uire the data size to increase and even a squared number of Map

asks. Therefore, their theoretical complexity is so much higher

han the proposed technique that we have discarded a comparison

f such models, as it would be very time consuming.

We have also conducted preliminary experiments in order to

pply the iterative method proposed iHMR-kNN [27] . However, the

terative processing becomes so slow that we have not been able

o apply it to any of the datasets considered in a timely manner.

This work is mainly devoted to testing the scalability capabil-

ties of the proposed model, showing how it palliates the weak-

esses of previously proposed models stated in Section 2.2 . To do

o, we will analyze the effect of the number of neighbors, and the

umber of maps and reducers. Table 4 summarizes the parameters

sed for both MR-kNN and kNN-IS models.
.4. Hardware and software used

All the experiments have been executed on a cluster which is

omposed of sixteen nodes: the master node and sixteen comput-

ng nodes. All the nodes have the following features:

• Processors: 2x Intel Xeon CPU E5-2620

• Cores: 6 cores (12 threads)

• Clock speed: 2 GHz

• Cache: 15 MB

• Network: Infiniband (40Gb/s)

• RAM: 64 GB

The specific details of the software used and its configuration

re the following:

• MapReduce implementations: Hadoop 2.6.0-cdh5.4.2 and Spark

1.5.1

• Maximum number of map tasks: 256

• Maximum number of reduce tasks: 128

• Maximum memory per task: 2GB.

• Operating System: Cent OS 6.5

Note that the total number of available cores is 192, which be-

omes 384 by using hyper-threading technology. Thus, when we

xplore a number of maps greater than 384, we cannot expect lin-

ar speedups, since there will be queued tasks. For these cases, we

ill focus on analyzing the map and reduce runtimes.

. Analysis of results

In this section, we study the results collected from different ex-

erimental studies. Specifically, we analyze the next four points:

• First, we establish a comparison between kNN-IS and MR-kNN

(Section 5.1).

• Second, we deeply analyze the influence of the number

of neighbors k value in the performance proposed model

(Section 5.2).

• Third, we check the impact of the number of reducers in rela-

tion to the number of maps when tackling very large datasets (

Section 5.3).

• Finally, we study the behavior of kNN-IS with huge test

datasets, in which the method is obliged to perform multiple

10 J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15

Table 5

Sequential kNN performance.

Dataset Number of

Neighbors

Runtime(s) AccTest

1 105475.0060 0.5019

PokerHand 3 105507.8470 0.4959

5 105677.1990 0.5280

7 107735.0380 0.5386

1 3258848.8114 0.6936

Susy 3 3259619.4959 0.7239

5 3265185.9036 0.7338

7 3325338.1457 0.7379

Table 6

Results obtained by MR-kNN and kNN-IS algorithms in PokerHand dataset.

MR-kNN kNN-IS

Dataset #Map AvgRunTime Speedup AvgRuntime Speedup

128 804.4560 131.1135 102.9380 1024.6460

PokerHand 64 1470.9524 71.7052 179.2381 588.4631

32 3003.3630 35.1190 327.5347 322.0270

256 12367.9657 263.4911 1900.0393 1715.1481

Susy 128 26438.5201 123.2614 3163.9710 1029.9869

64 50417.4493 64.6373 6332.8108 514.5975

Table 7

Results obtained with Susy dataset.

k #Map AvgMapTime AvgRedTime AvgTotalTime

1 512 730.3893 560.4334 2042.2533

256 1531.6145 345.5664 1900.0393

128 2975.3013 166.3976 3163.9710

64 6210.6177 92.8188 6332.8108

3 512 770.3924 736.8489 2298.3384

256 1553.4222 410.2235 2615.0150

128 3641.9363 253.5656 3921.3640

64 6405.3132 152.9890 6593.5531

5 512 781.3855 928.2620 2511.8909

256 1773.3579 479.0801 2273.6377

128 3685.3194 332.9783 4042.1755

64 6582.0373 194.7054 6802.8159

7 512 782.5756 930.5107 2516.5011

256 1827.9189 522.6219 2372.4100

128 3401.2547 414.2961 3838.2360

64 6637.8837 224.7191 6890.8242

5

f

t

n

(

e

m

t

a

I

1

v

l

b

m

5.1. Comparison with MR-kNN

This section compares kNN-IS with MR-kNN, as the potentially

fastest alternative proposed so far. To do this, we make use of Pok-

erHand and Susy datasets. We could not go further than these

datasets in order to obtain the results of the sequential kNN. In

these datasets, kNN-IS only needs to conduct one iteration, since

the test datasets fits in the memory in a every map. The number of

reducers in kNN-IS has been also fixed to 1, to establish a compar-

ison between very similar MapReduce alternatives under Hadoop

(MR-kNN) or Spark (kNN-IS).

First of all, we run the sequential version of kNN over these

datasets as a baseline. As in [28] , this sequential version reads the

test set line by line, as done by MR-kNN, as a straightforward solu-

tion to avoid memory problems. We understand that this scenario

corresponds to the worst possible case for the sequential version,

and better sequential versions could be designed. However, our

aim here is to compare with the simplest sequential version, as-

suming that large test sets do not fit in memory together with the

training set.

Table 5 shows the runtime (in seconds) and the average accu-

racy (AccTest) results obtained by the standard kNN algorithm, de-

pending on the number of neighbors.

Table 6 summarizes the results obtained with both methods

with k = 1. The next Section will detail the influence of the value

of k . It shows, for each number of maps (#Maps) the average total

time (AvgRuntime) and the speedup achieved against the sequen-

tial version. As stated before, both methods correspond to exact

implementation of the kNN, so that, we obtain exactly the same

average accuracy as presented in Table 5 .

Fig. 3 plots speed up comparisons of both approaches against

the sequential version as the number of maps is increased (k = 1).

According to all these tables and figures, we can make the fol-

lowing analysis:

• As we can observe in Table 5 , that the required runtime for this

sequential version of the kNN method is considerably high in

both datasets. However, Table 6 shows how this runtime can

be greatly reduced in both approaches as the number of maps

is increased. As stated above, both alternatives always provide

the same accuracy as the sequential version.
• According to Fig. 3 , a linear speed up for the hadoop-based

kNN model has been achieved since both models read the test

dataset set line-by-line, which is sometimes even superlinear

what is related to memory-consumption problems of the orig-

inal kNN model to manage the training set. However, kNN-IS

presents a faster speed up than a linear speed up in respect to

this sequential version. This is because of the use of in-memory

data structures that allowed us to avoid reading test data from

HDFS line-by-line.

• Comparing MR-kNN and kNN-IS, the results show how Spark

has allowed us to reduce the runtime needed almost 10-fold in

comparison to Hadoop.

.2. Influence of the number of neighbors

To deeply analyze the influence of the number of neighbors we

ocus on the Susy dataset, and we set the number of reducer tasks

o one again. We analyze its effect in both map and reduce phases.

Table 7 collects for each number of neighbors (#Neigh) and

umber of maps (#Maps), the average map execution time

AvgMapTime), the average reduce time (AvgRedTime) and the av-

rage total runtime (AvgTotalTime). Recall that in our cluster the

aximum number of map tasks is set to 256. Thus, the total run-

ime for 512 maps does not show a linear reduction, but it can be

ppreciated in the reduction of the map runtime.

Fig. 4 presents how the value of k influences in map runtimes.

t depicts the map runtimes in terms of number of maps for k =
 , 3 , 5 and 7. Fig. 5 plots the reduce runtime in relation to the k

alue and number of maps.

According to these tables and plots, we can conclude that:

• Even though larger values of k imply that the data transferred

from the maps to the reducers is bigger, this value does not

drastically affect the total runtimes. In Table 7 , we can appreci-

ate that, in general, the total runtime slightly increments.

• Comparing Figs. 4 and 5 , we can see that the number of neigh-

bors seem to have more influence on the reduce runtime than

on the map phase. This is because the number of neighbors

does not affect the main computation cost (computing the dis-

tances between test and training instances) of the map phase,

while it may affect the updating process performed in the re-

ducers since its complexity is O (k).

Finally, as a general appreciation, Fig. 5 reveals that when a

arger number of maps is used, which is clearly necessary to deal

ig datasets, the reduce runtimes increase considerably. This has

otivated the study carried out in the next Section.

J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15 11

0

130

320

590

1024

32 64 128

S
pe

ed
 U

p

Number of Maps

MR−kNN
kNN−IS

(a) Poker-Hand

0

130

320

590

1024

2000

64 128 256

S
pe

ed
 U

p

Number of Maps

MR−kNN
kNN−IS

(b) Susy

Fig. 3. Speedup comparisons between MR-kNN and kNN-IS against the sequential kNN.

700

1500

3500

6500

64 128 256 512

M
ap

 R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Maps

1
3
5
7

Fig. 4. Influence of parameter k in the map phase: Susy dataset.

150

300

550

800

64 128 256 512

R
ed

uc
e

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Maps

1
3
5
7

Fig. 5. Influence of parameter k in the reduce phase. Susy dataset.

5

g

o

v

o

t

E

t

s

.3. Influence of the number of reducers

As we just saw in the previous section, a high number of maps

reatly increases the load of the reduce phase. However, the use

f a large number of maps may be absolutely necessary to tackle

ery big datasets. This section investigates how the proposed idea
f managing different test instances in multiple reducers may help

o alleviate such an issue.

In this experiment, we involve the three biggest datasets:

CBLD’14, Susy, Higgs. Once again, kNN-IS does not require mul-

iple iterations for these test datasets’ sizes. To be concise, in this

tudy we only focus on k = 1.

12 J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15

60
550

1200

2500

8000

64 128 256 512 1024 2048

R
ed

uc
e

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Maps

ECBDL14
SUSY

HIGGS

Fig. 6. Reduce runtime required against the number of map tasks, k = 1, Number of

reducers = 1.

100
500

1000

2500

5000

7500

13000

128 256 512 1024 2048 4096

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Maps

Map − 1 reduce
Reduce − 1 reduce

Map − 64 reduce
Reduce − 64 reduce

Fig. 7. Map and Reduce runtimes required according to the number of maps -

ECBDL.

100
500

1000

2500

6000

64 128 256 512 1024 2048

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Maps

Map − 1 reduce
Reduce − 1 reduce

Map − 64 reduce
Reduce − 64 reduce

Fig. 8. Map and Reduce runtimes required according to the number of maps - SUSY.

100500

2000

5000

10000

15000

20000

128 256 512 1024 2048

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Maps

Map − 1 reduce
Reduce − 1 reduce

Map − 64 reduce
Reduce − 64 reduce

Fig. 9. Map and Reduce runtimes required according to the number of maps -

HIGGS.

Table 8

Results obtained with more than one iteration.

Dataset #Iter AvgMapTime AvgRedTime AvgTotalTime

ECBDL’14 3 7309.7122 8.8911 28673.7015

#Red = 64 5 4303.7106 5.2520 28918.2992

10 2027.5685 2.8076 29121.0583

SUSY 2 2385.6183 34.2682 6723.7762

#Red = 64 5 1156.9453 14.1350 9493.5098

10 649.7218 5.9823 10278.2612

HIGGS 2 16835.6982 144.3371 4 4 414.1423

#Red = 128 5 7145.7838 59.3202 46806.8294

10 3668.4418 29.7266 51836.9468

r

i

n

d

5

o

t

i

v

t

a

i
Fig. 6 plots the reduce time required with a single reducer for

all these problems. It confirms, as pointed out in the previous sec-

tion, the drastic increment when the number of maps is very high.

It is actually even more accentuated as Higgs and ECBLD’14 are

larger datasets that require a greater number of maps.

For sake of clarity, we do not present the associated tables of

results for the three considered problems, but we visually present

such results in Figs. 7 , 8 and 9 . These figures plot the map and
educe runtimes spent in ECBLD’14, Susy and Higgs, respectively,

n terms of the number of maps and reduces utilized.

These figures reveal that:

• Using multiple reducers effectively softens the runtime spent

in the reduce phase when it is necessary to use a larger num-

ber of maps. In the previous plots, we can see how the version

with a single reducer rapidly increases its computational cost

in comparison to the version with more reducers.

• The reduction in the required time is not linear in respect to

the number of reducers. As pointed out in [43] , an excessive

number of reducers can also lead to a MapReduce overhead in

the network. As we can see, for example in Figure 10 , there are

no great differences when using 32 or 64 reducers.

• The use of multiple reducers is devised to use with a high num-

ber of maps. Otherwise, its behavior may damage the efficiency.

For example, for the Susy dataset, it is not convenient to use

more than 32 reducers unless we have more than 512 maps.

In conclusion, it is important to find a trade-off between the

umber of maps and reducers according to the cluster and the

ataset that we dispose.

.4. Dealing with large amounts of test data

To test the behavior of the full model presented here, we carry

ut a study in which both training and test sets are composed of

he same number of instances. In this way, we ensure that kNN-IS

s obliged to perform multiple iterations. To do so, we test training

ersus training datasets.

Table 8 presents the results of the three datasets with more

han one iteration (#Iter), average reduce runtime (AvgRedTime)

nd the average total runtime (AvgTotalTime). To study the

nfluence of test size, we focus on k = 1, with 256 maps, 64 reduces

J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15 13

2

8

32

128

512

2048

64 128
256

512
1024

2048

R
ed

uc
e

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Maps

1
32
64

Fig. 10. Reduce Runtime vs. number of maps and reducers — SUSY.

500

2000

4000

7000

16000

2 3 5 10

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Iterations

ECBDL14
Susy

Higgs

(a) Map Runtime

2
10

40

140

2 3 5 10

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Iterations

ECBDL14
Susy

Higgs

(b) Reduce Runtime

6000

10000

30000

40000

50000

2 3 5 10

R
un

ti
m

e
(i

n
se

co
nd

s)

Number of Iterations

ECBDL14
Susy

Higgs

(c) Total Runtime

Fig. 11. Runtimes vs number of iterations.

f

d

E

o

w

F

d

b

or Susy and ECBDL’14 datasets and 128 reduce tasks for the Higgs

ataset (#Red).

Fig. 11 presents the influence of the number of iterations. The

CBDL’14 dataset needs 3 iterations to fit the main memory. The

ther datasets only need 2 iterations. Fig. 11 a shows the map time

ith a different number of iterations for the three datasets used.

ig. 11 b presents how the number of iterations influences the re-

uce runtimes and Fig. 11 c plots the total runtime versus the num-

er of iterations.

Analyzing these tables and plots, we can observe that:
• As Fig. 11 shows and as we can expected, when more

than one iteration is used, the map and reduce run-

times decrease. This occurs because the number of in-

stances to be calculated on each core are less than a simple

iteration.

• However, Fig. 11 c shows how it slightly increases the total run-

time. This behavior could be caused by a network saturation

of the cluster. For ECBDL’14 dataset, the total runtime increases

less than other two datasets. This happens because it has fewer

samples as shown in Table 1 . Thus, it produces less network
traffic in spite of having more features.

14 J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15

T

3

c

T

.

a

0

.

h

r

R

h

R

In conclusion, the iterative functionality of kNN-IS has to be

used when the size of datasets exceeds the available memory of

a core of the cluster because it becomes slower in total runtimes

and network traffic is increased.

6. Conclusions and further work

In this paper we have developed a Iterative MapReduce solution

for the k-Nearest Neighbors algorithm based on Spark. It is denom-

inated as kNN-IS. The proposed scheme is an exact model of the

kNN algorithm that we have enabled to apply with large-datasets.

Thus, kNN-IS obtains the same accuracy as kNN. However, the kNN

algorithm has two main issues when dealing with large-scale data:

Runtime and Memory consumption. The use of Apache Spark has

provided us with a simple, transparent and efficient environment

to parallelize the kNN algorithm as an iterative MapReduce pro-

cess.

The experimental study carried out has shown that kNN-IS ob-

tains a very competitive runtime. We have tested its behavior with

datasets of different sizes (different number of features and differ-

ent number of samples).

The main achievements obtained are the following:

• kNN-IS is an exact parallel approach and obtains the same ac-

curacy and very good achievements on runtimes.

• kNN-IS (Spark) has allowed us to reduce the runtime needed

by almost 10 times in comparison to MR-kNN (Hadoop).

• Despite producing more transfer from the map to reduce, the

number of neighbors (k) does not drastically affect to the total

runtime.

• We can optimize the runtime with a trade-off between the

number of maps and reducers according to the cluster and the

dataset used

• When datasets are enormous and it exceed the memory capac-

ity of the cluster, kNN-IS calculates the solution with more than

one iteration by splitting the test set. Therefore, it has allowed

us to apply the kNN algorithm in large-scale problems.

• The software of this contribution can be found as a spark-

package at http://spark-packages.org/package/JMailloH/kNN _ IS .

The source code of this technique can be found in the next

repository https://github.com/JMailloH/kNN _ IS

As future work, we aim to tackle big datasets that contain miss-

ing values [44] by using kNN-IS to impute them, and datasets with

a very large number of features by using multi-view approaches.

We are planning to extend the use of kNN-IS to instance selec-

tion techniques for big data [45] , where it reports good results. An-

other direction for future work is to extend the application of the

presented kNN-IS approach to a big data semi-supervised learning

[46] context.

Acknowledgments

This work has been supported by the Spanish National Research

Project TIN2014-57251-P and the Andalusian Research Plan P11-

IC-7765. J. Maillo and S. Ramírez hold FPU scholarships from the

Spanish Ministry of Education. I. Triguero held a BOF postdoctoral

fellowship from Ghent University during part of the development

of this work.

Appendix

As consequence of this work, we have developed a Spark pack-

age with the kNN-IS implementation. It has all the functionalities

exposed in this study. In addition, we have developed kNN-IS for

the machine learning library on Spark, as part of the MLlib library

and the MLbase platform.
Prerequisites: You must have Spark 1.5.1, Scala 2.10 and Maven

.3.3 or higher installed. Java Virtual Machine 1.7.0 is necessary be-

ause Scala runs over it.

The implementation allows us to determine the:

• Number of Cores to be used: Number of cores to compute the

MapReduce approach.

• Number of neighbors: Number of neighbors. The value of k.

• Number of maps: Number of map tasks.

• Number of reduces: Number of reduce tasks.

• Number of iterations: Number of iterations. Setting to -1 to

auto-setting the iterations. We give optional parameter (Max-

imum memory per node) limit on GB for each map task. This

selects the minimum number of iterations within the limit pro-

vided.

The input data is expected to be in KEEL Dataset format [47] .

he datasets are previously stored in HDFS.

The output will be stored in HDFS in the following format:

/ outputPath /Predictions.txt/part-0 0 0 0 0 contains the predicted

nd right class in two column. ./ outputPath /Result.txt/part-

 0 0 0 0 shows confusion matrix, accuracy and total runtime.

/ outputPath /Times.txt/part-0 0 0 0 0 presents higher map time,

igher reduce time, average iterative time and total runtime.

For more details, please refer to the README in the GitHub

epository: https://github.com/JMailloH/kNN _ IS/blob/master/

EADME.md

The proposed kNN-IS is now available as a Spark Package at

ttp://spark-packages.org/package/JMailloH/kNN _ IS

eferences

[1] C. Lynch, Big data: how do your data grow? Nature 455 (7209) (2008) 28–29,
doi: 10.1038/455028a .

[2] M. Minelli , M. Chambers , A. Dhiraj , Big Data, Big Analytics: Emerging Busi-

ness Intelligence and Analytic Trends for Today’s Businesses (Wiley CIO), 1st
edition, Wiley Publishing, 2013 .

[3] T.M. Cover , P.E. Hart , Nearest neighbor pattern classification, IEEE Trans. Inf.
Theory 13 (1) (1967) 21–27 .

[4] X. Wu , V. Kumar (Eds.) , The Top Ten Algorithms in Data Mining, Chapman &
Hall/CRC Data Mining and Knowledge Discovery, 2009 .

[5] Y. Chen , E.K. Garcia , M.R. Gupta , A. Rahimi , L. Cazzanti , Similarity-based classi-

fication: concepts and algorithms, J. Mach. Learn. Res. 10 (2009) 747–776 .
[6] K.Q. Weinberger , L.K. Saul , Distance metric learning for large margin nearest

neighbor classification, J. Mach. Learn. Res. 10 (2009) 207–244 .
[7] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A.Y. Wu, An optimal algo-

rithm for approximate nearest neighbor searching fixed dimensions, J. ACM 45
(6) (1998) 891–923, doi: 10.1145/293347.293348 .

[8] J. Dean , S. Ghemawat , Mapreduce: simplified data processing on large clusters,

Commun. ACM 51 (1) (2008) 107–113 .
[9] S. Ghemawat , H. Gobioff, S.-T. Leung , The google file system, in: Proceedings

of the nineteenth ACM symposium on Operating systems principles, SOSP ’03,
2003, pp. 29–43 .

[10] C.P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and
technologies: a survey on big data, Inf. Sci. 275 (2014) 314–347, doi: 10.1016/j.

ins.2014.01.015 .

[11] Z. Guo, G. Fox, M. Zhou, Investigation of data locality in mapreduce, in: Cluster,
Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Sym-

posium on, 2012, pp. 419–426, doi: 10.1109/CCGrid.2012.42 .
[12] A. Srinivasan , T. Faruquie , S. Joshi , Data and task parallelism in ILP using

mapreduce, Mach. Learn. 86 (1) (2012) 141–168 .
[13] I. Triguero, S. del Río, V. López, J. Bacardit, J.M. Benítez, F. Herrera, ROSEFW-

RF: The winner algorithm for the ecbdl’14 big data competition: An extremely

imbalanced big data bioinformatics problem, Know. Based Syst. 87 (C) (2015)
69–79, doi: 10.1016/j.knosys.2015.05.027 .

[14] X. Yan, J. Zhang, Y. Xun, X. Qin, A parallel algorithm for mining constrained
frequent patterns using mapreduce, Soft Comput. (2015) 1–13, doi: 10.1007/

s0 050 0- 015- 1930- z .
[15] W. Gropp , E. Lusk , A. Skjellum , Using MPI: portable parallel programming with

the message-passing interface, 1, MIT press, 1999 .
[16] A. Fernández , S. Río , V. López , A. Bawakid , M. del Jesus , J. Benítez , F. Herrera ,

Big data with cloud computing: an insight on the computing environment,

mapreduce and programming frameworks, WIREs Data Min. Knowl. Discov. 4
(5) (2014) 380–409 .

[17] K. Grolinger, M. Hayes, W. Higashino, A. L’Heureux, D. Allison, M. Capretz,
Challenges for mapreduce in big data, in: Services (SERVICES), 2014 IEEE World

Congress on, 2014, pp. 182–189, doi: 10.1109/SERVICES.2014.41 .

http://spark-packages.org/package/JMailloH/kNN_IS
https://github.com/JMailloH/kNN_IS
https://github.com/JMailloH/kNN_IS/blob/master/README.md
http://spark-packages.org/package/JMailloH/kNN_IS
http://dx.doi.org/10.1038/455028a
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0006
http://dx.doi.org/10.1145/293347.293348
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0009
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1109/CCGrid.2012.42
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0012
http://dx.doi.org/10.1016/j.knosys.2015.05.027
http://dx.doi.org/10.1007/s00500-015-1930-z
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0016
http://dx.doi.org/10.1109/SERVICES.2014.41

J. Maillo et al. / Knowledge-Based Systems 117 (2017) 3–15 15

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[18] Y. Low , J. Gonzalez , A. Kyrola , D. Bickson , C. Guestrin , J.M. Hellerstein ,
Graphlab: a new parallel framework for machine learning, in: Conference on

Uncertainty in Artificial Intelligence (UAI), 2010 . Catalina Island, California
[19] Y. Bu, B. Howe, M. Balazinska, M.D. Ernst, Haloop: efficient iterative data pro-

cessing on large clusters, Proc. VLDB Endow. 3 (1-2) (2010) 285–296, doi: 10.
14778/1920841.1920881 .

20] M. Zaharia , M. Chowdhury , T. Das , A. Dave , J. Ma , M. McCauley , M.J. Franklin ,
S. Shenker , I. Stoica , Resilient distributed datasets: a fault-tolerant abstraction

for in-memory cluster computing, in: Proceedings of the 9th USENIX confer-

ence on Networked Systems Design and Implementation, USENIX Association,
2012, pp. 1–14 .

[21] M. Ghesmoune, M. Lebbah, H. Azzag, Micro-batching growing neural gas for
clustering data streams using spark streaming, Procedia Comput. Sci. 53 (2015)

158–166, doi: 10.1016/j.procs.2015.07.290 . INNS Conference on Big Data 2015
Program San Francisco, CA, USA 8-10 August 2015

22] I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera, MRPR: a mapreduce so-

lution for prototype reduction in big data classification, Neurocomputing 150,
Part A (0) (2015) 331–345, doi: 10.1016/j.neucom.2014.04.078 .

23] S. Ding, M. Du, H. Jia, Study on density peaks clustering based on k-nearest
neighbors and principal component analysis, Knowl. Based Syst. 99 (2016)

135–145, doi: 10.1016/j.knosys.2016.02.001 .
[24] D. Deng, X. Zhu, D. Cheng, M. Zong, S. Zhang, Efficient knn classification algo-

rithm for big data, Neurocomputing 195 (2016) 143–148, doi: 10.1016/j.neucom.

2015.08.112 . Learning for Medical Imaging
25] C. Zhang, F. Li, J. Jestes, Efficient parallel knn joins for large data in mapreduce,

in: Proceedings of the 15th International Conference on Extending Database
Technology, in: EDBT ’12, ACM, New York, NY, USA, 2012, pp. 38–49, doi: 10.

1145/2247596.2247602 .
26] G. Chatzimilioudis, C. Costa, D. Zeinalipour-Yazti, W.C. Lee, E. Pitoura, Dis-

tributed in-memory processing of all k nearest neighbor queries, IEEE Trans.

Knowl. Data Eng. 28 (4) (2016) 925–938, doi: 10.1109/TKDE.2015.2503768 .
[27] K. Sun, H. Kang, H.-H. Park, Tagging and classifying facial images in cloud en-

vironments based on kNN using mapreduce, Optik 126 (21) (2015) 3227–3233,
doi: 10.1016/j.ijleo.2015.07.080 .

28] J. Maillo , I. Triguero , F. Herrera , A mapreduce-based k-nearest neighbor ap-
proach for big data classification, in: 9th International Conference on Big Data

Science and Engineering (IEEE BigDataSE-15), 2015, pp. 167–172 .

29] T. White , Hadoop: The Definitive Guide, 3rd edition, O’Reilly Media, Inc., 2012 .
30] A.H. Project , Apache Hadoop, 2015 .

[31] J. Lin , Mapreduce is good enough? if all you have is a hammer, throw away
everything that’s not a nail!, Big Data 1:1 (2013) 28–37 .

32] H. Karau , A. Konwinski , P. Wendell , M. Zaharia , Learning Spark: Lightning-Fast
Big Data Analytics, O’Reilly Media, Incorporated, 2015 .
[33] A. Spark , Apache Spark: Lightning-fast cluster computing, 2015 . [Online; ac-
cessed July 2015].

34] A. Spark , Machine Learning Library (MLlib) for Spark, 2016 . [Online; accessed
May 2016].

[35] A. Spark , Machine Learning API (ML) for Spark, 2016 . [Online; accessed May
2016].

36] G. Song, J. Rochas, F. Huet, F. Magoules, Solutions for processing k nearest
neighbor joins for massive data on mapreduce, in: Parallel, Distributed and

Network-Based Processing (PDP), 2015 23rd Euromicro International Confer-

ence on, 2015, pp. 279–287, doi: 10.1109/PDP.2015.79 .
[37] W. Lu, Y. Shen, S. Chen, B.C. Ooi, Efficient processing of k nearest neighbor

joins using mapreduce, Proc. VLDB Endow. 5 (10) (2012) 1016–1027, doi: 10.
14778/2336664.2336674 .

38] E. Alpaydin , Introduction to Machine Learning, 2nd, The MIT Press, 2010 .
39] I.H. Witten , E. Frank , Data Mining: Practical Machine Learning Tools and Tech-

niques, Second Edition (Morgan Kaufmann Series in Data Management Sys-

tems), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005 .
40] G.M. Amdahl, Validity of the single processor approach to achieving large scale

computing capabilities, in: Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, in: AFIPS’67 (Spring), ACM, New York, NY, USA, 1967,

pp. 4 83–4 85, doi: 10.1145/1465482.1465560 .
[41] M. Lichman , UCI Machine Learning Repository, 2013 .

42] I. Arnaldo, K. Veeramachaneni, U. O’Reilly and J. Bacardit. ECBDL14 dataset:

Protein structure prediction and contact map for the ECBDL2014 big data com-
petition, 2014, http://cruncher.ncl.ac.uk/bdcomp/ .

43] C.-T. Chu , S. Kim , Y.-A. Lin , Y. Yu , G. Bradski , A. Ng , K. Olukotun , Map-reduce for
machine learning on multicore, in: Advances in Neural Information Processing

Systems, 2007, pp. 281–288 .
44] J. Luengo, S. García, F. Herrera, On the choice of the best imputation methods

for missing values considering three groups of classification methods, Knowl.

Inf. Syst. 32 (1) (2011) 77–108, doi: 10.1007/s10115-011-0424-2 .
45] Á. Arnaiz-González, J.F. Díez-Pastor, J.J. Rodríguez, C. García-Osorio, Instance

selection of linear complexity for big data, Knowl. Based Syst. (2016), doi: 10.
1016/j.knosys.2016.05.056 .

46] I. Triguero, S. García, F. Herrera, Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study, Knowl. Inf. Syst. 42 (2)

(2013) 245–284, doi: 10.1007/s10115- 013- 0706- y .

[47] J. Alcalá-Fdez , A. Fernandez , J. Luengo , J. Derrac , S. García , L. Sánchez , F. Her-
rera , KEEL data-mining software tool: data set repository, integration of algo-

rithms and experimental analysis framework, J. Mult. Valued Logic Soft Com-
put. 17 (2-3) (2011) 255–287 .

http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0018
http://dx.doi.org/10.14778/1920841.1920881
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0020
http://dx.doi.org/10.1016/j.procs.2015.07.290
http://dx.doi.org/10.1016/j.neucom.2014.04.078
http://dx.doi.org/10.1016/j.knosys.2016.02.001
http://dx.doi.org/10.1016/j.neucom.2015.08.112
http://dx.doi.org/10.1145/2247596.2247602
http://dx.doi.org/10.1109/TKDE.2015.2503768
http://dx.doi.org/10.1016/j.ijleo.2015.07.080
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0035
http://dx.doi.org/10.1109/PDP.2015.79
http://dx.doi.org/10.14778/2336664.2336674
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0039
http://dx.doi.org/10.1145/1465482.1465560
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0041
http://cruncher.ncl.ac.uk/bdcomp/
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0042
http://dx.doi.org/10.1007/s10115-011-0424-2
http://dx.doi.org/10.1016/j.knosys.2016.05.056
http://dx.doi.org/10.1007/s10115-013-0706-y
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30175-7/sbref0046

	kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data
	1 Introduction
	2 Preliminaries
	2.1 MapReduce programming model and frameworks: Hadoop and Spark
	2.2 The kNN classifier and big data

	3 kNN-IS: An Iterative Spark-based design of the kNN classifier for Big Data
	3.1 MapReduce for kNN classification within Spark
	3.1.1 Map phase
	3.1.2 Reduce phase

	3.2 General scheme of kNN-IS

	4 Experimental set-up
	4.1 Performance measures
	4.2 Datasets
	4.3 Methods and parameters
	4.4 Hardware and software used

	5 Analysis of results
	5.1 Comparison with MR-kNN
	5.2 Influence of the number of neighbors
	5.3 Influence of the number of reducers
	5.4 Dealing with large amounts of test data

	6 Conclusions and further work
	 Acknowledgments
	 Appendix
	 References

