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Abstract—The astonishing rate of data generation on the
Internet nowadays has caused that many classical knowledge
extraction techniques have become obsolete. Data reduction tech-
niques are required in order to reduce the complexity order held
by these techniques. Among reduction techniques, discretization
is one of the most important tasks in data mining process,
aimed at simplifying and reducing continuous-valued data in
large datasets. In spite of the great interest in this reduction
mechanism, only a few simple discretization techniques have been
implemented in the literature for Big Data.

Thereby we propose a distributed implementation of the
entropy minimization discretizer proposed by Fayyad and Irani
using Apache Spark platform. Our solution goes beyond a simple
parallelization, transforming the iterativity yielded by the original
proposal in a single-step computation. Experimental results on
two large-scale datasets show that our solution is able to improve
the classification accuracy as well as boosting the underlying
learning process.

I. INTRODUCTION

Many real-world areas from science and industry are gen-

erating massive amounts of data nowadays, thanks to the fast

development of data storage and networking. Only within the

period between 2010 and 2012, 90 percent of the data in the

world were produced at a rate of 2.5 quintillion of bytes per

day according to the estimations of IBM [1]. This phenomenon

has led to the pressing needs for new technologies and meth-

ods, capable of dealing with this emerging era of humongous

data. Big Data can be defined as data beyond the storing

and processing capacity of traditional systems [2]. Extracting

valuable knowledge from such data is taking great interest in

data analytics research as it supposed a gain of critical insights

for companies and institutions.

Many knowledge extraction techniques have become ob-

solete since they were not conceived for dealing with such

amounts of data. Data reduction techniques can be applied in

order to decrease the original data and even to improve the

learning performance of many algorithms [3]. Discretization,

as an important part of data reduction, has received increasing

attention in recent years [4], [5]. The objective in discretization

is to simplify and reduce data by transforming continuous-

valued attributes into discrete ones using a finite number

of intervals or discrete values [6], [7]. Among its main

benefits, discretization causes in learning methods remarkable

improvements in learning speed and accuracy. Although most

of real-world problems often imply numerical attributes, many

algorithms can only handle categorical attributes, for example

some feature selection methods (which are relevant in the Big

Data picture). Besides, some decision trees-based algorithms

produce shorter, more compact, and accurate results using

discrete values [6], [8].

Common data reduction methods are not expected to scale

well when managing huge data -both in terms of features and

instances- so that its execution can be undermined or even

become impracticable. Distributed techniques and frameworks

have appeared along with the issue of Big Data. MapRe-

duce [9] and its open-source version Apache Hadoop [10],

[11] were the first distributed programming techniques to face

this problem. Recently, several distributed tools have emerged

as consequence of the advent of Big Data. Apache Spark [12],

[13] is one of these new frameworks, designed as a fast and

general engine for large-scale data processing based on in-

memory computation. Through this Spark’s ability, it is pos-

sible to speed up iterative processes present in many Machine

Learning (ML) problems. Because of that, this tool has become

especially popular among Machine Learning researchers and

business experts.

Similarly, several ML libraries for Big Data have appeared

as support for this task. The first one was Mahout [14] (as

part of Hadoop), subsequently followed by MLlib [15] which

is part of Spark project [13]. In spite of many state-of-the-art

ML algorithms have been implemented in MLlib, is not the

case of discretization algorithms yet.

In order to fill this gap, we propose a distributed version

of the entropy minimization discretizer proposed by Fayyad

and Irani in [16] using Apache Spark, which is based on the

Minimum Description Length Principle (MDLP). Our main

goal is to prove that well-knowm discretization algorithms

as MDL-based discretizer (henceforth called MDLP) can be

parallelized in these frameworks, providing good discretiza-

tion solutions for Big Data analytics. Moreover, we have

transformed the iterativity yielded by the original proposal in

a single-step computation. Notice that this new version for

distributed environments has involved a deep restructuring of

the original proposal and a challenge for the authors. Finally, to

2015 IEEE Trustcom/BigDataSE/ISPA

978-1-4673-7952-6/15 $31.00 © 2015 IEEE

DOI 10.1109/Trustcom-BigDataSe-ISPA.2015.559

33



demonstrate the effectiveness of our framework, we perform

an experimental evaluation with two large datasets, namely,

ECBDL14 and epsilon.

The remainder of this paper is organized as follows: Sec-

tion II outlines the main concepts about MDLP discretizer

and Big Data solutions. Section III explains our distributed

approach based on entropy minimization for Big Data. Sec-

tion IV describes the experiments carried out to demonstrate

the effectiveness of this proposal. Finally, Section V estab-

lishes the main conclusions of the work carried out.

II. BACKGROUND

In this section we briefly explain the MDLP algorithm used

as reference in our distributed adaptation, as well as basic

concepts about discretization. Finally, we present the topic

of Big Data and distributed frameworks that cope with this

problem.

A. Discretization: An Entropy Minimization Approach

In supervised learning, and specifically in classification,

the problem of discretization can be defined as follows.

Assuming a data set S consisting of N examples, M at-

tributes and c class labels, a discretization scheme DA

would exist on the continuous attribute A ∈ M , which

partitions this attribute into k discrete and disjoint intervals:

{[d0, d1], (d1, d2], . . . , (dkA−1, dkA
]}, where d0 and dkA

, re-

spectively, are the minimum and maximal value, and PA =
{d1, d2, . . . , dkA−1} represents the set of cut points of A in

ascending order.

The discretization problem consists of finding a set bound-

ary points that yield the best result according to a given evalua-

tion measure (e.g.: inconsistency or information gain). Achiev-

ing the optimal discretization scheme is NP-complete [17],

where the search space of this problem is determined by the

number of candidate cut points, namely, all distinct values in

the dataset for each attribute. As this problem can become

truly expensive when the number of candidates increases, a

possible optimization would be to use a reduced subset of

points, only formed by the boundary points in the whole set.

This assumption is also supported by the fact that boundary

points typically form the optimal intervals for most of the

evaluation measures used in the literature [18].

Let A(e) denote the value for attribute A in the example e. A

boundary point b ∈ Dom(A) can be defined as the midpoint

value between A(u) and A(v), assuming that in the sorted

collection of points in A, there exist two examples u, v ∈ S
with different class labels, such that A(u) < b < A(v); and

there does not exist other example w ∈ S such that A(u) <
A(w) < A(v). The set of boundary points for attribute A is

defined as BA.

MDLP discretizer [16] implements this optimization so as

to speed up the underlying discretization process. However,

this method also introduces other important improvements.

One of them is related to the number of cut points to derive

in each iteration. In contrast to discretizers like ID3 [19],

the authors proposed a multi-interval extraction of points

demonstrating that better classification models -both in error

rate and simplicity- are yielded by using these schemes.

As quality measure, MDLP discretizer computes the class

entropy of the partitioning schemes. The objective is to min-

imize this measure to obtain the best cut decision. Let bα
be a boundary point to evaluate, S1 ⊂ S be a subset where

∀a′ ∈ S1, A(a′) ≤ bα, and S2 be equal to S − S1. The class

information entropy yielded by a given binary partitioning can

be expressed as:

EP (A, bα, S) =
|S1|
|S| E(S1) +

|S2|
|S| E(S2), (1)

where E represents the class entropy 1 of a given subset

following the Shannon’s definitions [20].

Finally, a decision criterion is defined in order to control

when to stop the partitioning process. The use of MDLP is

a inference method that provides a criterion for the selection

of models avoiding overfitting. This is based on the idea of

the more the model is able to compress the data, the more

regularities it has found and thus, the more the model is

capable of learning. For discretization, this principle is used

as decision criterion that allows us to decide whether or not

to partition. Thus, a cut point bα will be applied iff:

G(A, bα, S) >
log2(N − 1)

N
+

Δ(A, bα, S)

N
, (2)

where Δ(A, bα, S) = log2(3
c)−[cE(S)−c1E(S1)−c2E(S2)],

c1 and c2 the number of class labels in S1 and S2, respectively;

and G(A, bα, S) = E(S)− EP (A, bα, S)

B. Big Data: Distributed Models and Frameworks

The ever-growing generation of data on the Internet is

heading us to managing huge collections of data using classical

data analytics solutions. Exceptional paradigms and algorithms

are thus needed to efficiently process these collections of data

so as to obtain valuable information, becoming this problem

one of the most challenging tasks in Big Data analytics.

Gartner [21] introduced the popular denomination of Big

Data and the 3Vs terms that define it as high volume, velocity

and variety information that require a new large-scale process-

ing. This list was then extended with 2 additional terms. All

of them are described in the followings:

• Volume: the massive amount of data that is produced

every day is still exponentially growing (from terabytes

to exabytes).

• Velocity: data needs to be loaded, analyzed and stored as

quickly as possible.

• Variety: data come in many formats and representations.

The sources are also highly different between them: text,

image, multimedia, etc.

• Veracity: the quality of data to process is also an

important factor. The Internet is fulfilled of missing,

incomplete, ambiguous, and sparse data.

1Logarithm in base 2 is used in this function
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• Value: extracting value from data is also established as a

relevant objective in big analytics. Not only is important

the performance, but also to extract valuable information

from data.

The unsuitability of many knowledge extraction algorithms

in the Big Data field has made that new methods are developed

to manage such amounts of data effectively and in tolerable

speed.

1) MapReduce Model and Other Distributed Frameworks:
The MapReduce framework [9], designed by Google in 2003,

is currently one of the most relevant tools in Big Data ana-

lytics. It was aimed at processing and generating large-scale

datasets, automatically processed in an extremely distributed

fashion through several machines. This framework is in charge

of partitioning and distributing the data, fault-tolerance, job

scheduling and networking; only leaving the responsibility of

launching their tasks to the final users2.

The MapReduce model defines two primitives to work with

distributed data: Map and Reduce. These two primitives imply

two stages in the distributed process, which we describe below.

In the beginning, the master node breaks up the dataset into

several splits, distributing them across the cluster for a parallel

processing. Each node then hosts several Map threads that

transform the generated key-value pairs in a set of intermediate

pairs. After all Map tasks have finished, these notify its ending

to the master node, starting the Reduce phase. Here, the

master node distributes the matching pairs across the nodes

according to a key-based partitioning scheme, combining those

coincident pairs so as to form the final output.

Briefly, the Map function takes <key, value> pairs as input

and outputs a collection of intermediate <key, value> pairs.

The user-defined Map function needs to be specified following

the key-value scheme specified below:

Map(< key1, value1 >) → list(< key2, value2 >) (3)

The combined result (grouped by key) is then distributed

across the cluster and processed by the Reduce phase. Here,

a Reduction function is applied to each list value, producing

a single output value as follows:

Reduce(< key2, list(val2) >) → < key2, val3 > (4)

Apache Hadoop [10], [11] is presented as the most popular

open-source implementation of MapReduce for large-scale

processing. Despite its popularity, Hadoop presents some

important weaknesses, such as a poor performance on iterative

and online computing, a poor inter-communication capability

or inadequacy for in-memory computation, among others [23].

In the Hadoop Ecosystem appears Apache Spark [12],

[13]. This novel framework is presented as a revolutionary

tool capable of performing even faster large-scale processing

than Hadoop through in-memory primitives, demonstrating to

2For a complete description of this model and other distributed models,
please review [22].

perform 100 times faster than Hadoop for certain cases. Spark

allows users to persist data into memory and to load them

rapidly, making this framework a leading tool for iterative and

online processing.

Spark is built on distributed data structures called Resilient

Distributed Datasets (RDDs), which were designed as fault-

tolerant collection of elements that can be operated in parallel

by means of data partitioning. RDDs defines two types of

operations: transformations, which transform existing data

into a new dataset, and actions, which return a value to the

driver program (hosted in the master node) after doing some

computations. Furthermore, this tool provides a thorough set

of programming primitives that allow the users to implement

much more complex distributed programs than those imple-

mented in Hadoop. Thanks to its generality capability, Spark is

able to implement several distributed models like MapReduce

or Pregel.

III. DISTRIBUTED MDLP DISCRETIZATION

In [16], a discretization algorithm based on an information

entropy minimization heuristic is presented. In this work, the

authors prove that multi-interval extraction of points and the

use of boundary points can improve the discretization process,

both in efficiency and error rate. Here, we adapt this well-

known algorithm for distributed environments, proving its

discretization capability against real-world large problems.

One important point in this adaption is how to distribute

the complexity of this algorithm across the cluster. This is

mainly determined by two time-consuming operations: on the

one hand, the sorting of candidate points, and, on the other

hand, the evaluation of these points. The sorting operation

conveys a O(|A|log(|A|)) complexity (assuming that all points

in A are distinct), whereas the evaluation conveys a O(|BA|2)
complexity. In the worst case, it implies a complete evaluation

of entropy for all points.

Note that the previous complexity is bounded for a single

attribute. To avoid repeating the previous process on all

attributes, we have designed our algorithm to sort and evaluate

all points in a single step. Only when the number of boundary

points in an attribute is higher than the maximum per partition,

computation by feature is necessary (which is extremely rare

according to our experiments).

In order to implement our method, we have used some

extra primitives from Spark API. Spark primitives extend the

idea of MapReduce to implement more complex operations on

distributed data. Here, we outline those more relevant for our

method 3:

• map partitions: Similar to Map, this runs a function

independently on each partition. For each partition, an

iterator of tuples is fetched.

• coalesce: Reduce the number of partitions in a RDD to

a given value.

3For a complete description of Spark’s operations, please refer to Spark’s
API: https://spark.apache.org/docs/latest/api/scala/index.html
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• sort by key: A distributed version of sequential sorting.

It sorts by key the values in each partition and then sorts

the partitions.

Our proposal is divided in six algorithms and three sections

as follows: Section III-A explains the main procedure, includ-

ing most operations. Section III-B describes the selection of

boundary points. Finally, Section III-C details the evaluation

of final points using the MDLP criterion.

A. Main discretization procedure

Algorithm 1 explains the main procedure in our discretiza-

tion algorithm. The algorithm calculates the minimum-entropy

cut points by feature according to the MDLP criterion. It

defines as input parameters the followings: the dataset, the

indexes of features to discretize and the maximum number of

points per partition.

Algorithm 1 Main discretization procedure

Input: S Data set
Input: M Feature indexes to discretize
Input: maxcand Maximum number of candidates per partition
Output: Cut points by feature

1: comb ←
2: map s ∈ S
3: v ← zeros(k)
4: v(c) ← 1
5: for all A ∈ M do
6: EMIT < (A,A(s)), v >
7: end for
8: end map
9: distinct ← reduce(comb, sum vectors)

10: sorted ← sort by key(distinct)
11: first ← first by part(sorted)
12: boundaries ← get boundary points(sorted, first)
13: boundaries ←
14: map b ∈ boundaries
15: < (att, point, )q >← b
16: EMIT < (att, (point, q)) >
17: end map
18: (small, big) ← divide attributes(boundaries,maxcand)
19: sthresholds ← select thresholds(small,maxbins,maxcand)
20: for all att ∈ keys(big) do
21: bthresholds ← bthresholds +

select thresholds(big(att),maxbins,maxcand)
22: end for
23: return(union(bthresholds, sthresholds))

The first step creates combinations from instances through a

Map function in order to separate values by feature. It gener-

ates tuples with the value and the index for each feature as key

and a class counter as value (< (a, a(s)), v >). Afterwards,

the tuples are reduced using a function that aggregates all

subsequent vectors with the same key, obtaining the class

frequency for each distinct value in the dataset. The resulting

tuples are sorted by key so that we obtain the complete list

of distinct values ordered by feature index and feature value.

This structure will be used later to evaluate all these points

in a single step. The first point by partition is also calculated

(line 11) for this process. Once such information is saved, the

process of evaluating the boundary points can be started.

Fig. 1. Distributed MDLP flowchart

B. Boundary points selection

Algorithm 2 (get boundary points) describes the function

in charge of selecting those points falling in the class borders.

It executes an independent function on each partition in order

to parallelize the selection process as much as possible so that

a subset of tuples is fetched in each thread. The evaluation

process is described as follows: for each instance, it evaluates

if the feature index is distinct from the index of the previous

point; if it is so, this emits a tuple with the last point as key

and the accumulated class counter as value. This means that

a new feature has appeared, saving the last point from the

current feature as its last threshold. If the previous condition

is not satisfied, the algorithm checks whether the current points

is a boundary with respect to the previous point or not. If it is

so, this emits a tuple with the midpoint between these points

as key and the accumulated counter as value.

Finally, some evaluations are performed over the last point

in the partition. This point is compared with the first point in

the next partition to check whether there is a change in the

feature index -emitting a tuple with the last point saved-, or

not -emitting a tuple with the midpoint- (as described above).

All tuples generated by the partition are then joined into a new

mixed RDD of boundary points, which is returned to the main

algorithm as boundaries.

In Algorithm 1 (line 14), the boundaries variable is

transformed by using a Map function, changing the previous

key to a new key with a single value: the feature index

(< (att, (point, q)) >). This is done to group the tuples by

feature so that we can divide them in two groups according
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Algorithm 2 Function to generate the boundary

points (get boundary points)
Input: points An RDD of tuples (< (att, point), q >), where att

represents the feature index, point the point to consider and q
the class counter.

Input: first A vector with all first elements by partition
Output: An RDD of points.

1: boundaries ←
2: map partitions part ∈ points
3: < (la, lp), lq >← next(part)
4: accq ← lq
5: for all < (a, p), q >∈ part do
6: if a <> la then
7: EMIT < (la, lp), accq >
8: accq ← ()
9: else if is boundary(q, lq) then

10: EMIT < (la, (p+ lp)/2), accq >
11: accq ← ()
12: end if
13: < (la, lp), lq >←< (a, p), q >
14: accq ← accq + q
15: end for
16: index ← get index(part)
17: if index < npartitions(points) then
18: < (a, p), q >← first(index+ 1)
19: if a <> la then
20: EMIT < (la, lp), accq >
21: else
22: EMIT < (la, (pt.point+ lp)/2), accq >
23: end if
24: else
25: EMIT < (la, lp), accq >
26: end if
27: end map
28: return(boundaries)

to the total number of candidate points by feature. The

divide attributes function is then aimed to divide the tuples

in two groups (big and small) depending on the number

of candidate points by feature. Features in each group will

be treated differently. The previous function performs this

separation according to whether the total number of points

by feature exceeds a threshold (maxcand) or not. The tuples

are now re-formatted as follows: (< point, q >).

C. MDLP evaluation

Features in each group are evaluated differently from we

mentioned before. Small features are evaluated in a single

step where each feature corresponds with a single partition,

whereas big features are evaluated iteratively since each fea-

ture corresponds with a complete RDD with several partitions.

The first option is obviously more efficient, however, the

second case is less frequent due to the default value of

maxcand is rarely exceeded. Therefore, maxcand value can

affect the final performance of the algorithm. It is defined to a

value of 10,000 points. In case of low performance (iterativity),

it can be increased to 100,000 or even more.

In both cases, the select thresholds function is applied

to evaluate and select the most relevant cut points by fea-

ture. For small features, a Map function is applied inde-

pendently to each partition (each one represents a feature)

(arr select thresholds). In case of big features, the process

is more complex and each feature needs a complete iteration

over a distributed set of points (rdd select thresholds).

Algorithm 3 (arr select thresholds) evaluates and selects

the most promising cut points grouped by feature according

to the MDLP criterion (single-step version).

Algorithm 3 Function to select the best cut points for a given

feature (select thresholds)
Input: candidates A RDD/array of tuples (< point, q >), where

point represents a candidate point to evaluate and q the class
counter.

Input: maxbins Maximum number of intervals or bins to select
Input: maxcand Maximum number of candidates to eval in a

partition
Output: An array of thresholds for a given feature

1: stack ← enqueue(stack, (candidates, ()))
2: result ← ()
3: while |stack| > 0 & |result| < maxbins do
4: (subset, lth) ← dequeue(stack)
5: if |subset| > 0 then
6: if type(subset) = ′array′ then
7: bound ← arr select thresholds(subset, lth)
8: else
9: bound ← rdd select thresholds(subset, lth,maxcand)

10: end if
11: if bound <> () then
12: result ← result+ bound
13: (left, right) ← divide partitions(subset, bound)
14: stack ← enqueue(stack, (left, bound))
15: stack ← enqueue(stack, (right, bound))
16: end if
17: end if
18: end while
19: return(sort(result))

This algorithm starts by selecting the best cut point in the

whole set. If the criterion accepts this selection, the point is

added to the result list and the current subset is divided into

two new partitions using this cut point. Both partitions are

then evaluated, repeating the previous process. This process

finishes when there is no partition to evaluate or the number

of selected points is fulfilled.

Algorithm 4 (arr select thresholds) explains the process

that accumulates frequencies and then selects the minimum-

entropy candidate. This version is more straightforward than

RDD version as it only needs to accumulate frequencies

sequentially. Firstly, it obtains the total class counter vector by

aggregating all candidate vectors. Afterwards, a new iteration

is necessary to obtain the accumulated counters for the two

partitions generated by each point. This is done by aggregating

the vectors from the most-left point to the current one, and

from the current point to the right-most point. Once the accu-

mulated counters for each candidate point are calculated (in

form of < point, q, leftq, rightq >), the algorithm evaluates

the candidates using the select best cut function.

Algorithm 5 (rdd select thresholds) explains the selec-

tion process but for “big” features (more than one partition).

This process needs to be performed in a distributed manner
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Algorithm 4 Function to select the best cut point according to

MDLP criterion (single-step version) (arr select thresholds)
Input: candidates An array of tuples (< point, q >), where point

represents a candidate point to evaluate and q the class counter.
Input: lth Last threshold selected.
Output: The minimum-entropy cut point

1: total ← sum freqs(candidates)
2: leftacc ← ()
3: for < point, q >∈ candidates do
4: leftacc ← leftacc+ q
5: freqs ← freqs+ (point, q, leftacc, total − leftacc)
6: end for
7: return(select best cut(candidates, freqs))

since the number of candidate points exceeds the maximum

size defined. For each feature, the subset of points is hence

re-distributed in a better partition scheme to homogenize the

quantity of points by partition and node (coalesce function,

line 1-2). After that, a new parallel function is started to

compute the accumulated counter by partition. The results (by

partition) are then aggregated to obtain the total accumulated

frequency for the whole subset. In line 9, it is started a new

distributed process with the aim of computing the accumu-

lated frequencies by point from both sides (as explained in

Algorithm 4). In this procedure, the process accumulates the

counter from all previous partitions to the current one to

obtain the first accumulated value (left one). Then the function

computes the accumulated values for each inner point using

the counter for points in the current partition, the left value

and the total ones (line 7). Once these values are calculated

(< point, q, leftq, rightq >), the algorithm evaluates all

candidate points and their associated accumulators using the

select best cut function (as above).

Algorithm 6 evaluates the discretization schemes yielded

by each point by computing the entropy for each partition

generated, also taking into account the MDLP criterion. Thus,

for all points4, it is calculated the entropy for the two generated

partitions (line 8) as well as the total entropy for the whole set

(lines 1-2). Using these values, the entropy gain for each point

is computed and its MDLP condition, according to Equation 2.

If the point is accepted by MDLP, the algorithm emits a tuple

with the weighted entropy average of partition and the point

itself. From the set of accepted points, the algorithm selects

the one with the minimum class information entropy.

The results produced by both groups (Algorithm 1, line 19-

22) are joined into the final point set of cut points.

Figure 1 outlines the most important steps in our method.

The first phase computes all distinct points from the original

data, and then distributed in several partitions. These points

are sorted by feature and value in the second phase. Before

this phase, the first points in each partition5 are sent to the next

one, so that each node has the node to the right to decide if

generating a midpoint or not. In the third phase, the boundary

4If the set is an array, it is used a loop structure else it is used a distributed
map function

5Those in the second row in the second phase

Algorithm 5 Function that selects the best cut points according

to MDLP criterion (RDD version) (rdd select thresholds)
Input: candidates An RDD of tuples (< point, q >), where point

represents a candidate point to evaluate and q the class counter.
Input: lth Last threshold selected
Input: maxcand Maximum number of candidates to eval in a

partition
Output: The minimum-entropy cut point

1: npart ← round(|candidates|/maxcand)
2: candidates ← coalesce(candidates, npart)
3: totalpart ←
4: map partitions partition ∈ candidates
5: return(sum(partition))
6: end map
7: total ← sum(totalpart)
8: freqs ←
9: map partitions partition ∈ candidates

10: index ← get index(partition)
11: lefttotal ← ()
12: freqs ← ()
13: for i = 0 until index do
14: lefttotal ← lefttotal + totalpart(i)
15: end for
16: for all < point, q >∈ partition do
17: freqs ← freqs+(point, q, leftotal+q, total−leftotal)
18: end for
19: return(freqs)
20: end map
21: return(select best cut(candidates, freqs))

Algorithm 6 Function that calculates class entropy values and

selects the minimum-entropy cut point (select best cut)
Input: freqs An array/RDD of tuples (<

point, q, leftq, rightq >), where point represents a candidate
point to evaluate, leftq the left accumulated frequency, rightq the
right accumulated frequency and q the class frequency counter.

Input: total Class frequency counter for all the elements
Output: The minimum-entropy cut point

1: n ← sum(total)
2: totalent ← ent(total, n)
3: k ← |total|
4: accepted ←
5: map < point, q, leftq, rightq >∈ freqs
6: k1 ← |leftq|; k2 ← |rightq|
7: s1 ← sum(leftq); s2 ← sum(rightq);
8: ent1 ← ent(s1, k1); ent2 ← ent(s2, k2)
9: partent ← (s1 ∗ ent1 + s2 ∗ ent2)/s

10: gain ← totalent− partent
11: delta ← log2(3

k − 2)− (k ∗ hs− k1 ∗ ent1− k2 ∗ ent2)
12: accepted ← gain > ((log2(s− 1)) + delta)/n
13: if accepted = true then
14: EMIT < partent, point >
15: end if
16: end map
17: return(min(accepted))

points are generated. For instance, we can see as a midpoint

([1, 3.5]) is generated between point (1,2) and point (1,4) due

to their class vectors have elements of both class (there is

a limit between classes). In contrast, points (2,1) and (2,3)

have only elements for the same class, not generating any

point. Finally, other points are added in spite of not forming
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limits. Last points in the partitions are added to pool in order

to isolate the selection process between partitions. The last

phase consists of grouping the candidate points by feature

and evaluating each feature independently using the MDLP

criterion (as explained above).

IV. EXPERIMENTAL FRAMEWORK AND ANALYSIS

This section describes the experiments carried out to demon-

strate the usefulness and performance of our discretization

solution over two Big Data problems.

A. Experimental Framework

Two huge classification datasets are employed as bench-

marks in our experiments. The first one (hereinafter called

ECBDL14) was used as a reference at the ML competition of

the Evolutionary Computation for Big Data and Big Learning

held on July 14, 2014, under the international conference

GECCO-2014. This consists of 631 characteristics (including

both numerical and categorical attributes) and 32 million

instances. It is a binary classification problem where the class

distribution is highly imbalanced: 2% of positive instances.

For this problem, the MapReduce version of the Random

OverSampling (ROS) algorithm presented in [24] was applied

in order to replicate the minority class instances from the

original dataset until the number of instances for both classes

was equalized.

As a second dataset, we have used epsilon, which consists of

500 000 instances with 2000 numerical features. This dataset

was artificially created for the Pascal Large Scale Learning

Challenge in 2008. It was further pre-processed and included

in the LibSVM dataset repository [25].

Table I gives a brief description of these datasets. For each

one, the number of examples for training and test (#Train Ex.)

(#Test Ex.), the total number of attributes (#Atts.), the total

number of training data (#Total), and the number classes (#Cl)

are shown.

TABLE I
SUMMARY DESCRIPTION FOR CLASSIFICATION DATASETS

Data Set #Train Ex. #Test Ex. #Atts. #Total #Cl.
epsilon 400 000 100 000 2000 800 000 000 2

ECBDL14 (ROS) 65 003 913 2 897 917 631 41 017 469 103 2

For our algorithm, we have established a maximum number

of 50 intervals and a maximum number of candidates per par-

tition of 100,000. For evaluation purposes, Naive Bayes [26]

has been chosen as reference in classification, using the

implementation included in MLlib library [15]. The default

values for the classifier are: λ = 1.0, iterations = 100.

As evaluation criteria, we use two well-known evaluation

metrics to assess the quality of the underlying discretization

schemes. First of all, classification accuracy is used to evalu-

ate the accuracy yielded by the classifiers -number of examples

correctly labeled as belonging to a given class divided by the

total number of elements belonging to the positive class-. On

the other hand, in order to prove the time benefits on using

discretization, we have employed the overall classification

runtime (in seconds) in training as well as the overall time in

discretization as additional measures.

For all experiments we have used a cluster composed of

twenty computing nodes and one master node. The computing

nodes hold the following characteristics: 2 processors x Intel

Xeon CPU E5-2620, 6 cores per processor, 2.00 GHz, 15 MB

cache, QDR InfiniBand Network (40 Gbps), 2 TB HDD, 64

GB RAM. Regarding software, we have used the following

configuration: Hadoop 2.5.0-cdh5.3.1 from Cloudera’s open-

source Apache Hadoop distribution6, Apache Spark and ML-

lib 1.2.0, 480 cores (24 cores/node), 1040 RAM GB (52

GB/node).

Spark implementation of the algorithm can be downloaded

from the Spark’s community repository7. The design of the

algorithm has been adapted to be integrated in MLlib Library

as a third-party package.

B. Experimental Results and Analysis

Table II shows the accuracy values in classification for

both datasets using our distributed discretization approach8.

According to these results, we can assert that our discretization

algorithm always outperforms the version without discretiza-

tion (both for training and test). It is specially important in

ECBDL14 where there is a improvement of 0.1.

TABLE II
CLASSIFICATION ACCURACY VALUES (DISTRIBUTED MDLP)

NB NB-disc
Dataset Train Test Train Test

ECBDL14 0.5260 0.6276 0.6659 0.7260
epsilon 0.6542 0.6550 0.7094 0.7065

Table III shows classification runtime values for both

datasets distinguishing between whether discretization is ap-

plied or not. As we can see, there is a slight improvement in

both cases.

TABLE III
CLASSIFICATION TIME VALUES (WITH DISCRETIZATION VS. W/O

DISCRETIZATION) IN SECONDS

Dataset NB NB-disc
ECBDL14 31.06 26.39
epsilon 5.72 4.99

Table IV shows discretization time values for two different

versions of MDLP discretizer, namely, sequential and dis-

tributed. For the sequential version, we have measured the

time employed by the original proposal on smaller subsets for

6http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-
0/CDH5-homepage.html

7http://spark-packages.org/package/sramirez/spark-MDLP-discretization
8In all tables, the best result by column (best by method) is highlighted in

bold.
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both datasets. The overall time value shown on the table was

estimated from the previous measurements. Comparing both

implementations, we can notice the advantage of using the

distributed version against the sequential one. For ECBDL14,

our version is almost 300 times faster than the sequential

one in the best case whereas for epsilon is 12 times faster.

This demonstrates that the bigger the dataset, the higher the

efficiency improvement.

TABLE IV
DISCRETIZATION TIME VALUES (SEQUENTIAL VS. DISTRIBUTED) IN

SECONDS

Dataset Sequential (estimation) Distributed
ECBDL14 295 508 1 087
epsilon 5 764 476

V. CONCLUSIONS

In this paper, we have presented the problem of large-

scale data processing, focusing on the process of discretization

of large datasets. We have proposed a sound multi-interval

discretization method based on entropy minimization and also

described the difficulty of adapting this to the new distributed

paradigms present in Big Data. In spite of the great interest

in this reduction mechanism, only few simple discretization

techniques have been implemented in the literature.

Thereby we propose a completely distributed version of

MDLP discretizer capable of transforming the iterativity

yielded by the original proposal in a single-step computa-

tion. To accomplish that, a complete redesign of the original

proposal has been necessary. Furthermore, with this work we

would like to contribute to MLlib library by adding a complex

discretization algorithm where only very simple discretizers

are available.

The experimental results have demonstrated the improve-

ment in both classification accuracy and time when using our

discretization solution for both datasets used. Additionally, our

algorithm has shown to perform 300 times faster than the

sequential version for the largest dataset.
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