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The interest in multimodal optimization methods is increasing in the last years. The objective is to
find multiple solutions that allow the expert to choose the solution that better adapts to the actual
conditions.

Niching methods extend genetic algorithms to domains that require the identification of multiple
solutions. There are different niching genetic algorithms: sharing, clearing, crowding and sequential,
etc.

The aim of this study is to study the applicability and the behavior of several niching genetic
algorithms in solving job shop scheduling problems, by establishing a criterion in the use of different
methods according to the needs of the expert. We will experiment with different instances of this
problem, analyzing the behavior of the algorithms from the efficacy and diversity points of view.
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1. Introduction

The objective of the scheduling problem is to settle
the sequence of jobs for each machine, by defining the
time intervals in which the operations have to be
processed. It has to be accomplished in such a way
that each machine can only perform one operation at a
time, and also the technological constraints must be
respected.

The complexity of this problem comes from the
large number of constraints. This problem belongs to
the NP-Hard problems (Garey and Johnson, 1979), for
which, are no known algorithms that assure to find an
optimal solution in polynomial time. This is the main
reason for the great interest in this topic as well as its
high applicability in the industry.

In the last few years, studies have not only been
focused on solving the problem with the highest

efficacy, but also to sort it out with the highest
efficiency to adapt the studies to the new needs in the
optimization process. A common optimization pro-
blem is the simplification of a real world problem
because of its high complexity or the impossibility of
defining all parameters (unknown, stochastic or non-
quantifiable). Thus, it is desirable to offer different
optimal solutions to be judged later by the expert, or to
allow him/her to know some characteristics of the
search space by exploitation or exploration (Harik,
1995).

Optimization methods that work with one solution
at a time (tabu search, simulated annealing or iterated
local search) need to restart the process to find
multiple final solutions, but there are no mechanisms
to guarantee multiple different solutions. Although,
there is a modification in the iterated local search
which uses a population of solutions (Stiitzle, 1998),
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there are very few studies about finding multiple
different solutions.

The capability of genetic algorithms (GAs) to work
on a set of solutions allows that the evolution process
obtains different optimal solutions (Goldberg, 1989).
Nevertheless, the simple GA is not able to maintain
different solutions. The research studies based on the
preservation of the diversity by niching techniques in
GAs have provided very promising results. These
techniques permit not only to obtain multiple different
solutions, but also to preserve useful diversity against
a premature convergence that guides us to poor (local
optimal) solutions (Sareni and Krahenbuhl, 1998).

The aim of this work is to study the applicability
and the behavior of niching techniques in solving job
shop scheduling problems, by establishing a criterion
in the use of different methods according to the needs
of the expert. This study is developed according to the
following perspectives:

(1) We compare four different systems of niching
methods (sharing, clearing, crowding and sequential)
with some modifications for a better adaption to the
needs of the search.

(2) We establish the most appropriate system
parameters for different search needs.

(3) We determine which technique is the most
efficient and generates the maximum number of
different solutions.

(4) We analyze what method performs a highest
exploration in the search space by finding optimal that
belong to different areas, or a highest exploitation of
some characteristic of the problem with optimal very
similar.

We must remark that the job shop scheduling
problem is strongly multimodal, that is, it has different
global and local optima. This characteristic can be
considered as a search space typified by hills, valleys
and mountainous areas, which makes it the perfect
testing-ground.

This paper starts with a description of the
scheduling theory, including the problem definition
and the main techniques that have been used to solve
it. In Section 3 we introduce GAs and review the
different niching methods that will be analyzed. In
Section 4 we establish a comparison among niching
GAs from the efficacy, number of different found
solutions, and the exploration or exploitation of search
space points of view. Finally, some concluding results
will be pointed out.
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2. Scheduling theory

The scheduling theory is characterized by a large
number of different types of problems. However, each
of these scheduling problems can be characterized by
four-dimensions (a,b,A,B) (Conway et al., 1967):
where « is the number of jobs (J;), b the number of
machines (M,), A the type of technological constraints
and B the cost function.

Each job (/;) consists of a set of operations (or
tasks) (0;;), each of which has to be processed by a
machine (M) for a certain period of time (7};). The
order of operations is defined by the technological
constraints (A), where A = {P,F,J}:

(1) P (permutational flow shop) represents that the
jobs have the same movement on all machines in the
shop, and the machines have the same sequence of
jobs (Fig. 1(a)).

(2) F (flow shop) is similar to the permutational
one, but in this case each machine has its own
sequence of jobs (Fig. 1(b)).

(3) J (job shop) is the most general and complex
case where each job has its own movement on the
machines, and each machine has its own sequence of
jobs (Fig. 1(c)).

— -—3
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Technological constraints  Operation order

Fig. 1. Types of scheduling problems.
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The cost function can define termination times
(makespan or Cmax), delay times (Tmax) or total flow
time (Fmax), among others. An extensive review of
this classification can be obtained in Brucker (1997).

At the beginning, attempts were directed towards
the definition of the easiest problems (French, 1982)
and their resolution by mathematical methods
(Greenberg, 1968; Carlier and Pinson, 1989).
However, due to the limitation of these methods that
are computationally prohibitive for real-word pro-
blems, the heuristic approaches emerged (Panwalkar
and Iskander, 1977; Adams et al., 1988). Using them,
it is possible to solve problems of larger size but with
a loss of precision. In this case, to solve the problem is
more important than to find the optimal solution.

The academic community was slow to accept this
approach. But the best results obtained in high
complexity problems soon permitted its evolution
towards meta-heuristic methods like tabu search (TS)
(Glover and Laguna, 1997; Nowicki and Smutnicki,
1996), simulated annealing (SA) (Kirkpatrick et al.,
1983; Van er al., 1992), GAs (Mattfeld, 1995), neural
networks (Yang and Wang, 2000), ILS (Stiitzle, 1998;
Ramalhinho et al., 2000), and hybrid optimization
strategies (Wang and Zheng, 2001), among others.

Because this is a very well studied problem by
different techniques, it has a large number of
benchmarks for which the optimal value or an upper
bound are known. The most important benchmarks for
a lot of different problems are available in the web site
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http://mscmga.ms.ic.ac.ukl/jebljeb.html. In Table 1,
some of these results are showed for different
techniques for the job shop scheduling problem.
Each entry indicates the result found in the
corresponding paper for every instance: mt06, la0l,
mtl10 and mt20.

We have selected the mr06 and la0l benchmarks
because of their size, since they are sufficiently small
to know the landscape of the search space.
Furthermore, the mt/0 and mt20 instances will allow
us to know the efficacy of the methods to find the
optima. The definition of these instances is shown in
Appendix A.

As we can observe, the number of optima found is
never detailed in this type of tables, because efficacy
has only been the traditional objective pursued.
However, the new production needs involve having
different possibilities from which we can choose the
most adequate for a variable manufacturing environ-
ment.

3. Genetic algorithms

3.1. Introduction

GAs are global search algorithms with a general
purpose that use principles inspired by natural
population genetics. The GAs appeared in the 1960s
(see a good collection of the first proposals in Fogel,

Table 1. Optima, methods and authors for the job shop problem (the optima are in bold type)

Method Reference mt06 la0l mtl0 mt20
Branch & Bound (Balas, 1969) 55 1177 1231
(McMahon and Florian, 1975) 55 972 1165
(Baker and McMahon, 1985) 55 960 1303
(Carlier and Pinson, 1989) 55 930 1165
Shifting Bottleneck (Adams et al., 1988) 55 666 930 1178
GA (Nakano and Yamada, 1991) 55 965 1215
(Yamada and Nakano, 1992) 55 930 1184
(Fang et al., 1993) 55 939 1165
(Della et al., 1995) 55 666 946 1178
(Mattfeld, 1995) 55 666 930 1165
TS (Dell’ Amico and Trubian, 1993) 55 666 930 1165
Hybrid GA + SA (Wang and Zheng, 2001) 55 666 930 1165
SA (Van et al., 1992) 55 666 930 1165
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1998), but it is not until the 1970s when researchers
began to use them as a useful optimization and search
tool. In a GA, each individual in the population
represents a candidate solution to the problem and has
an associated fitness to determine which individuals
are used to form new ones in the process of com-
petition. The new individuals are created by using
genetic operators, such as crossover and mutation
(Goldberg, 1989; Michalewicz, 1995).

The main parts inside of a GA are the following
ones:

e FEvaluation. Value of objective function for each
solution.
o Coding. Critical decision in the design of the
algorithm. It allows us to handle the potential
solutions in a simple manner.
o Genetic operators. The heart of the algorithm.
They allow us to explore and exploit search
areas. The classical operators in the GA are:
— Crossover operator. It allows the exchange of
the genetic material of the parents selected for
reproduction.

— Mutation operator. It incorporates diversity
to the search process.

® The replacement process. The offspring popula-
tion will be the initial population for the next
generation.

3.2. Niching genetic algorithms

Before presenting different niching techniques, we
will explain the main concept on which niching GAs
are based, i.e., the distance as a measure of proximity
between individuals, d(i, ).

The concept of closeness or remoteness (similarity)
requires the calculation of the distance between
solutions, which is problem-dependant. For example,
in the real coding it is possible to define the metric
distance. In our job shop problem, we can define the
distance as the number of operations situated in
different places for each machine. An example is
shown in Table 2, with three machines and three jobs.

Table 2. Example of distances for scheduling problem

Solutions Phenotypic distance

(132231321 5
B21)(132) 321

Perez, Herrera and Herndndez

In the following subsections we introduce the
different niching techniques analized in this paper.

3.2.1. Sharing fitness methods

The classical sharing method is based on the sharing
fitness function, which decreases the fitness of
individuals in accordance with the number of similar
individuals in the population. The sharing fitness
of individual j (f;") is the original fitness (f;) divided
by the sharing function (Sh(d(i,j))) (see Equation 1):

f
S Sh(d(i,j)) M

where the sharing function depends on the distance
between the individuals i and j(d(i,j)) in line with
Equation 2.

dij)\* ..
Sh(d(i,j)):{“(muui) It d(i,)) < Ogare

f =

0 otherwise
(2)

The necessary parameters for this method are the
maximum distance that defines a niche (og,,.), and
the slope of the sharing fitness function (o) whose
most frequently used value is 1.

Nevertheless, later studies have shown some
limitations (Sareni and Krahenbuhl, 1998). The fitness
sharing must be implemented with the least biased
selection methods. For this, a possible improvement is
to combine the tournament with a modified fitness
sharing called continuously updated sharing (Oei et
al., 1991), as it is described below:

(1) The shared fitness is calculated by considering
each selected individual as a father. That is, the
feedback is used immediately in the next shared
fitness calculation.

(2) To implement this method, authors proposed to
introduce a niche size parameter (n*), which is used in
the tournament process. When both individuals
belong to niches whose members are less than n*,
then the individual with higher fitness will gain,
otherwise the individual that belongs to the niche with
less members will gain.

Figure 2 shows the flowchart of the developed
algorithm for this method, where the sharing value of
a chromosome j is updated when its distance with the
selected parent is less than oy, ,..
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Fitness of individuals f;
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Sh( j)=(1-(d(parent i, j)/share)) + Sh( j)
Niche size j++

Fig. 2. Flowchart of continuously updated sharing.

3.2.2. Clearing method

The clearing method is very similar to fitness sharing
but is based on the concept of limited resources of the
environment (Pétrowski, 1996). This process is
applied after the evaluation process and before the
selection. The population is ordered according to their
fitness, from the best to the worst. The first individual
is called dominant (there are no individuals better than
it), and it is compared with the (n —1) remaining
individuals of the population. By this comparison, we
will obtain those individuals belonging to the same
niche. Only the & best individuals of each niche will
survive. The fitness of the rest of individuals will be
reset to zero. The process will be repeated, but only
with individuals whose fitness is greater than zero.

3.2.3. Crowding methods

In this group of methods the process of replacement is
modified to allow the formation of niches in the
population. In the traditional (generational) GA, the
new individuals created in the reproduction process
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replace the whole population in each generation.
However, in a steady state GA, each new created
individual replaces one in the population (generally
the worst). When this replacement is performed
considering the distance, then we are dealing with
crowding methods.

Mahfoud randomly grouped the individuals of the
population in pairs in order to apply the crossover and
mutation operators. Then, each child competes in a
tournament versus the father most similar to it
(Fig. 3). The winner, i.e., the survivor, is the one
with the best quality (Mahfoud, 1992).

Since this method was developed, different ver-
sions have arisen (Cedeno et al., 1995; Harik, 1994).
In the present study, we have also analyzed the
modification made by the Cedeo ef al. (1995). In order
to form couples for the reproduction process, an
individual is selected by its quality and the other one
is randomly selected. On the replacement process, CF
groups with CS individuals are randomly chosen. The
individual with the smallest quality among the most
similar of each group is replaced by this new created
individual (Cedeo et al., 1995).

3.2.4. Sequential niche method

This method is based on multiple independent runs,
but trying to eliminate the problem of searching in
space zones that have already been explored in
previous runs.

With this idea Beasley et al. (1993) created a
method by which when the GA has explored a zone,
the search never returns there again. With a very
similar system to the sharing fitness method the
already explored peaks or zones are eliminated.
Thereby, the process incorporates the obtained
experience in previous runs by storing the found
optima.

In each run, the GA obtains a solution to the
problem. This solution will be considered as the
representative peak of the niche to which it belongs. In
the next runs, the GA uses this information to avoid
searching again and finding the same optimum. To do
so, the fitness of the each of the new individuals
generated by genetic operators will be diminished
according to the proximity to the optima found in
previous runs (see Equation 3).

My (x) = f(x)

My () = M,(3) x G, 5,) ®)
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Evaluating the children
population

Replacement process

Yes *’

Yes “

d(Father 1, Child 1) + d{Father 2, Child 2)
=d(Father 1, Child 2) + d(Father 2, Child 1

Yes * Yes *

Child 2 Father | Child 1 Father 2

Child 1 Father | Child 2 Father 2

Fig. 3. Replacement process in deterministic crowding method.

where S, is the optimal solution obtained in the
previous run, x is the new individual and G(x, S,) is
the function of the discount (or sharing). Considering
n iterations, it can be:

G(x,S,) = { (M) if d(x,S,) < Ouare  (4)
1 otherwise

3.3. Algorithm components and parameters

The algorithm that has been used in this study starts
with a randomly created initial population of 50
individuals and runs during 600 generations (except
for the largest problems in size where the number of
generations has been increased to 5000).

There are different possibilities to code the solution
of the job shop scheduling problem. There are the
direct (Bruns, 1993; Kobayashi et al., 1995), the
binary (Nakano and Yamada, 1991), the circular

(Fang et al., 1993), and the permutation with
repetition (Mattfeld, 1995). We have selected the
latter because with it the genetic operators always
obtain valid children.

The genetic operators must be adapted to the
problem. We have used the classical order crossover
but adapted it to the job shop (Fig. 4), and the order
based mutation (OBM) developed by Mattfeld (1995),
(Fig. 9).

The probabilities are 0.8 for crossover and 0.2 for
mutation. The latter is realized on the string not on each
element of the string. This is why its value is so high.

To simplify the tables of results we number each
method as follows:

(1) Classical sharing method (Goldberg and
Richardson, 1987)

(2) Continously updated sharing (Oei et al., 1991)

(3) Clearing (Pétrowski, 1996)

Fathcrl[32231123 32 203 1 1|2 3 1

Father 2 21 1|3 2 142 3 2013 za0233

Child 1 l / (31 ‘ ‘ 32 0 (3 1 1]2 32
1\

Child 2 \ 3 Al 23 1 3270 2 31

Fig. 4. Order crossover for the job shop.
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‘3223]I23I|
[%3231I’.’3I|

Fig. 5. Order based mutation.

(4) Deterministic crowding (Mahfoud, 1992)
(5) Multiniche crowding (Cedeo et al., 1995)
(6) Sequential niche method (Beasley et al., 1993)

The parameters for each method are detailed in
Table 3:

4. Experimental study

We study how the different niching schemes behave
by considering:

(1) The efficacy: The first objective for all
optimization methods,

(2) The diversity in convergence: The number of
different optima found, very important in multimodal
problems, and

(3) The exploration: The percentage of runs with
optima belonging to different areas of search space,
and the exploitation, percentage of runs with optima
in the same area.

To draw a comparison among them we have made
40 repetitions of each experiment. Before presenting
the results, we will previously describe the instances
and their landscapes.

Table 3. Characteristic of the niching methods
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4.1. Description of instances and their landscapes

We have selected four instances to compare the
different developed methods: two of small size (mt06
and la0l), and other two more difficult (mt/0 and
mt20). The smaller size of the former allows us to
know their landscapes. Their description is presented
in Appendix A.

For mt06 we have found three different types of
optima: two big mountainous areas, and one isolated
peak:

(1) The first (A) is formed by at least 19 different
optima. They have the same sequence of jobs in the
first machine (14 3 6 2 5) (first of the 19 solutions in
Table 4). The average distance among them is 5, being
the range values [2, 11].

(2) Within the second area (B) we have found 18
different optima. The sequence of jobs in the first
machine is (14 6 3 2 5) (the next 19 rows in Table 4).
The average distance is also 5, and the range values
[2,10].

(3) Likewise, there is another type of optima (C)
defined by the sequence in the first machine (1 64 3 2
5). There are four different optima of this type and the
average distance among them is 2.7 (one of them is
the last solution in Table 4).

The average distances between the different types
are shown in Table 5.

In accordance with these distances, two mountain-
ous areas (A and B) form the search space of the mt06
benchmark with big attraction basins. Because of this,
the optima found in most runs belong to one of them.
Furthermore, there also is an isolated peak (C) with a
little attraction basin. These characteristics make it

Method Parameters Selection Replacement
Sharing a=1 R =12,5 and 15 mt06 Binary Elitist
R =2,5,15 and 25 la01 tournament
Continuously a=1 R =125 and 15 mt06 n*=>5 Binary Elitist
updated sharing R =12,5,15 and 25 la01 tournament
Clearing a=1 R =12,5 and 15 mt06 k=1or5 RWS Elitist for
R =2,5,15 and 25 la0l clearing
Deterministic Non-parametric Non-parametric Own Own
crowding (Section 3) (Section 3)
Crowding G =25,10,50r2 Binary Own
tournament
Sequential o = 1 (linear) R=2 Binary Elitist

tournament
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Table 4. Distances between some optima of mt06 instance
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hard to find them. Figure 6 shows the four optima of
type C.

Regarding the la01, the landscape is similar. It has
two big mountainous areas (A,B), and two isolated
peaks (C,D).

The landscapes of mt06 and /a0l benchmarks make
them perfect to be studied:

(1) The number of different optima found for the
method.

(2) The possibility of directing the search by
varying the system parameters to explore the search
space by finding multiple optima of different types, or
exploit some characteristics by finding optima in the
same area.
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Table 5. Average distances between different optima types

A B C
A 5
B 12 5
C 19 13 2.7

4.2. Efficacy of niching methods

The efficacy can be measured by the percentage of
runs required to obtain the known optima. It is also
important to measure the average of the finally found
solutions and their variance.

To study this efficacy we will need first to set up the
following parameters:

(1) Niche radius for the sharing fitness techniques:
mt06 R = 2,5 and 15; la01, mt10 and mt20 R = 2, 5,
15 and 25.

(2) Number of dominant solutions for the clearing:
k=1orS5.

(3) Number of groups for the crowding: G = 25,
10, 5, 2.

In Appendix B, we show the analysis of variance
(ANOVA) results for each method while in Table 6 the
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results are summarized. The symbol & indicates that
the radius does not affect on the optimal value found.
In each case, we show the parameter that obtains the
best average value.

We have run the sequential technique enough times
to find a certain number of different solutions fixed
by the user. Consequently, its result is not the
average of 40 runs made. Thus, the comparison is
not possible.

If the ANOVA shows that parameters do not
influence, then this indicates that they produces the
same response to the system. In this case, all analyzed
methods have a robust behavior regardless the niche
radius or number of groups.

In the largest size instances (i.e., m¢10 and mt20),
we have used more generations. In Table 7, the
average results are shown for 5000 generations and 10
runs. In the sequential method, the process was
stopped in accordance with a time criterion without
any fitness value being less than 1050 and 1250 for
mtl0 and mt20, respectively. In this case, we have
used a niche radius of 2, k = 1 and G = 2 to ease the
study, since the methods are robust to these
parameters.

In this table we can see that the poor average results
correspond to deterministic crowding. Nevertheless,

Sequence Sequence Sequence Sequence
ML |1 |6]4]3[2]5 ML | 1|6[4]3]2]5 ML |16 [4[3]2]5 MI 1643215
M2 6021|453 M2 6W2 (114153 M2lo6d2 (1 [4]5]3 M2 6¥W2 (|1 |4]5]3
a3 2]safe] (M3 )25 a]e] M3 1)2]s54]e| M3 [D2]5]4]6
Ma o131 laf2]s|[mMalmrTlalal2ls|[Mafm 3| lala]s|[Ma[B3][1][4]2]5
Ms[2]6 |1 [sfal3][Ms|2feQusyal3l|ms|2le6f(5] a3 ][ms][2]e6][s5][1]4a]3
M6 |6 |31 ]2]5]4 Mo |6 |3 [1]2]5]4 M6 |6 |3 | 142|154 Mo |6 |31 ]2]5]4
|
Fig. 6. Optima of type C.
Table 6. Influence of niche radius on the optimal value found
Methods (1) (2) (3)
Influence & mt06 la01 X mt06 la01 &~ mt06 la01
R=2 R=5 R=5 R=2 R=5 R=15
56.3 702.1 55.5 684.5 k=1 k=5
55.1 670.5
Methods (4) (5) (6)
Influence r mt06 la01 r mt06 la01 mt06 la01
55.0 666.9 G=2 G=5 — —

55.3 671.6
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Table 7. Average optima for 5000 generations

Perez, Herrera and Herndndez

Generations (€))] 2) “é) (&) 6)
R=2 R=2 R=2k=1 G=2
mt10 1042.1 1095.1 1076.7 1114.5 1045.6 —
mt20 1269.3 1340.1 1353.1 1425.5 1310.8 —
Table 8. Final obtained solution and number of needed generations
mt10 Generation 3.10° 3.10° 2.10° 3.10° 2.10° 5.10° 1.10°
Solutions 940 951 940 951 951 937 951
mt20 Generation 4.10° 4.10° 4.10° 4.10° 2.10° 4.10° 5.10°
Solutions 1178 1178 1165 1178 1178 1165 1178
Table 9. Comparison of methods for optimal values
mt06 la01
(1) Sharing R=2 R=5 2 3
(2) Continuously updated sharing R=5 R=2 3
(3) Clearing R=5 R=15 & (mt06) 4 (la01) ~
k=1 k=5
(4) Deterministic crowding Non-param. 4
(5) Multiniche crowding G=5 G=2 ) 3) 4) (%)

this is the method that presents the highest diversity
after 5000 generations and it is the most efficient one.
For further, we investigate to extend the stop criterion
(200,000 generations without improvement). Then,
the results obtained are shown in Table 8, as well as
the number of generations and the best optima when
the process stopped.

In the case of the mt10, the algorithm was not able
to find the optimal value (930) but for the m¢20 it did
so twice (1165).

Once the better-adapted niche radius to each method
is known (m#06 and la0l instances), we can compare
the different methods to know which one is the best.

In Appendix B it is shown the Student’s tests (-
tests) obtained. The results are summarized in Table 9.
Each applied t-test is indicated by a filled in cell in the
table. Each entry indicates the number of the best
method found, or the symbol = if the different is not
significant.

Table 10 shows the percentage of success in each
method, ordered from the largest to the smallest.

Thus, we can see that:

o between the two sharing methods, (1) and (2),
and the similar one, clearing (3), the best is the
clearing and the worst is the classic sharing;

e in the two crowding methods, (4) and (5), the
difference is clear.

Therefore, we can conclude that the deterministic
crowding method (4) has the higher efficacy, for all
sizes of instances.

The study for the sequential method is different
because of its characteristics. The process is iterative
and its stop criterion is based on finding a number of
different optima. In Table 11, we can study the stop
criterion (10 or 15 different solutions), the percentage
of success and the total needed runs for finding these
optima. As we can see for /a0, the algorithm was not
able to find 15 different optima. Also in this case the
niche radius used was equal to 2.

Considering these results, we can affirm that the
best method, in terms of percentage of success, is the
deterministic crowding for all problem sizes.

4.3. Number of different optima found

When we talk about multimodal problems, one of the
most interesting measures for a successful run is the
number of different optima found in the last
generation. The results are shown in Tables 12 and
13, in which:
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Table 10. Percentage of success
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4) (3) (5) (2) (1)
mt06 Non-param. R=5 G=2 R=15 R=2
k=5
100% 92.5% 85.0% 72.5% 35.0%
(4) (3) (5) (2) (1)
la01 Non-param. R=25 G=5 R=15 R=5
k=
85% 75.0% 70.0% 17.5% 5.0%
Table 11. Results for the sequential method
Instances Number of solutions % Success Number of runs
mt06 10 86.8% 11.52
15 82.9% 18.1
la01 10 27.3% 36.7
15 — —
Table 12. Number of optima for successful run (mr06)
mt06 (1) (2) (3) k=1
R 2 15 2 5 15 2 5 15
# 14 11 9 30 24 18 194 125 164
Av. 1 1 1 1 1 1 54 3.6 4.7
4) (5) (6)
Non-param. Groups Stop criterion
25 10 5 2 10 15
# 383 78 67 53 60 400 600
Av. 9.6 24 22 1.8 1.8 10 15
Table 13. Number of optima for successful run (la01)
la01 (1) (2) (3) k=1
R 2 5 15 25 2 5 15 25 2 5 15 25
# 1 2 0 0 7 2 428 414 390 389
Av. 1 1 0 0 1 1 1 1 15.3 15.3 13.5 13.0
(4) (5) (6)
Non-param. Groups Stop criterion
25 10 5 2 10 15
# 64 95 74 85 71 400 —
Av. 1.9 5.2 3.1 3.1 2.8 10 —
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Table 14. Percentage of mixed runs (mt06)

Perez, Herrera and Herndndez

mt06 (3) K=1 (3) K=5 (4)
R 2 5 15 5 15 Non-param.
YoM 5.9% 5.9% 5.7% 5.7% 15.6% 3% 57.5%
(5) (6)
Groups Stop criterion
25 10 S 2 10 15
YoM 0% 13.3% 20% 14.7% 97.5% 95.0%
Table 15. Percentage of mixed runs (la01)
la01 3)K=1 (3)K=5 (4)
R 2 5 15 25 2 5 15 25 Non-param.
YoM 17.8% 3.7% 10.3% 16.7% 3.7% 0% 14.3% 13.1% 17.6%
(5) (6)
Groups Stop criterion
25 10 5 2 10
YoM 0% 4.2% 10.7% 8% 95%

e # shows the total number of different optima in
the 40 realized runs, and

e Av. is the average number of different solutions
for a successful run.

We only give the results for the mt06 and /a0l
instances, since for larger sizes (mt/0 and mt20) the
efficacy has been very poor, and only in two cases the
deterministic crowding method found an optimum.

As we can observe, the classical and continuous
sharing methods (1 and 2), only obtain one optimum
during a successful run. That is, only one of the
formed niches has been able to evolve to optima
whereas the rest have been trapped into local optima.
However, the rest of methods achieves a desired
effort, that a lot of their niches evolve to optima,
offering different multiple optima.

In the case of the mr06 instance, the method that
offers the largest number of different optima for
successful runs is the sequential scheme. However, in
the /a0l instance the best is the clearing method
followed by the sequential one.

In general, we suggest the use of the sequential
method to find the largest possible number of different
optima, since this method is relatively fast. The
clearing method needs five times more computational
time than the sequential one.

4.4. Exploration versus exploitation

In this section, we study what the distribution of the
final optima is. There would be an explorative
behavior when the final optima belong to different
areas in the search space. On the other hand, there will
be exploitation when the optima are from the same
area.

In Tables 14 and 15 we are showing the distribution
of solutions, where%M indicates the percentage of
runs with optima belonging to different areas.

The method that produces more exploration with
the larger number of optima of different areas is the
sequential method. It finds optima belonging to
different areas for the mt06 and la0l in a 95% of
the runs.

In the same way, the largest exploitation is obtained
with the crowding scheme, with a 100% of the
solutions belonging to the same area in both instances.

5. Concluding remarks

This study about the use of different niching GA
methods to get multiple solutions in job shop
scheduling problems has proved that they have
different behavior. This behavior depends on the
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efficacy, the number of different final optimal and the
exploration or exploitation.

In the following we present the most important
conclusions obtained in our study:

Efficacy. The highest efficacy for all size problems is
under the deterministic crowding. Moreover, it is a
non-parametric method, very fast and very simple to
be implemented. The elimination in the replacement
of the weakest and the most similar individual to the
survivor limits the quantity of the existing solutions in
each of the zones, benefiting diversity that could
produce an optimal convergence.

The second best method is the clearing method.
This method eliminates before the selection, the
accumulation of individuals in specific zones, which
benefits diversity. Moreover, it maintains stable the
efficacy when the problem size varies.

We must also point out that the analyzed methods
are robust to the variation of the parameters (niche
radius or number of groups). This result is very
important to simplify the implementation process and
the algorithm use.

Number of final optima. The method that allows us to

obtain the largest number of final optima is the
sequential or the clearing (for larger size problems),

Appendix A

Table A.1. Dates of mt06 instance
Processing time
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with an average number of optima of 15 for successful
runs respectively. Nevertheless, the clearing method
has a poor performance for small size problems that
must be studied in the future.

The sequential method compels every valid run of
the algorithm to seek for a new optimum to the
problem. On the other hand, the clearing method is
compelled to create different niches in the same run
that, because of diversity, evolve towards multiple
final solutions.

Exploration versus exploitation. The highest explora-
tion is obtained by the sequential method. In our test it
produces solutions that belong to different areas in
95% of the runs. This is accomplished by eliminating
the already studied zones, and benefiting the explor-
ation among runs which causes a larger dispersion of
the solutions.

The highest exploitation is achieved by the
crowding method, with a number of groups of 25 (2
individuals each group) with 100% of runs producing
solutions of the same type. The low selection pressure
(in this case present in the replacement) benefits the
high exploration in the evolutionary process.

According to these conclusions, a user can select the
appropriate niching method according to his/her needs
on these above three points.

Technological constraints

Ml M2 M3 M4 M5 M6 Sequence
J1 3 6 1 7 3 6 J1 3 1 2 4 6 5
J2 10 8 5 4 10 10 J2 2 3 5 6 1 4
J3 9 1 5 4 7 8 J3 3 4 6 1 2 5
J4 5 5 5 3 8 9 J4 2 1 3 4 5 6
J5 3 3 9 1 5 4 J5 3 2 5 6 1 4
J6 10 3 1 3 4 9 J6 2 4 6 1 5 3
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Table A.2. Dates of /a0l instance

Processing time

Technological constraints

Perez, Herrera and Herndndez

MI M2 M3 M4 M5 Sequence

J1 53 21 34 55 95 J1 2 1 5 4 3
J2 21 71 26 52 16 J2 1 4 5 3 2
J3 12 42 31 39 98 J3 4 5 2 3 1
J4 55 77 66 77 79 J4 2 1 5 3 4
J5 83 19 64 34 37 J5 1 4 3 2 5
J6 92 54 43 62 79 J6 2 3 5 1 4
J7 93 87 87 69 77 J7 4 5 2 3 1
J8 60 40 38 24 33 J8 3 1 2 4 5
J9 44 49 98 17 25 J9 4 2 5 1 3
J10 96 75 43 79 77 J10 5 4 3 2 1
Table A.3. Dates of mt/0 instance

Processing time Technological constraints

Ml M2 M3 M4 M5 M6 M7 M8 M9 MIO0 Sequence

JIL 29 78 9 36 49 11 62 56 44 21 J1 1 2 3 4 5 6 7 8 9 0
J2 43 28 90 69 75 46 46 72 30 11 J2 1 3 5 10 4 2 7 6 8 9
J3 8 91 74 39 33 10 8 12 90 45 J3 2 1 4 39 6 8 7 10 5
J4 71 81 95 98 99 43 9 85 52 22 J4 2 3 1 5 7 9 8 4 10 6
J5 62 2 14 26 69 61 53 49 21 72 J5 3 1 2 6 4 5 9 8 10 7
J6 47 2 8 95 65 26 52 54 87 2 J6 3 2 6 4 9 10 1 7 5 8
J7 37 46 13 61 55 21 32 30 89 32 J7 2 1 4 3 7 6 10 9 8 5
J8 8 46 31 79 32 74 88 36 19 48 J8 31 2 6 5 7 9 10 8 4
J9 76 69 8 76 26 51 40 89 74 11 J9 1 2 4 6 3 10 7 8 5 9
J10 13 8 61 52 90 47 7 45 64 76 Jio 2 1 3 7 9 10 6 4 5 8
Table A.4. Dates of mr20 instance

Processing time Technological constraints

Ml M2 M3 M4 M5 Sequence

J1 29 9 49 62 44 J1 1 2 3 4 5
J2 43 75 46 69 72 J2 1 2 4 3 5
J3 39 91 90 45 12 J3 2 1 3 5 4
J4 71 81 85 22 9 J4 2 1 5 3 4
J5 26 22 14 21 72 J5 3 2 1 4 5
J6 47 52 84 6 48 J6 3 2 5 1 4
J7 61 46 32 32 30 J7 2 1 3 4 5
J8 32 46 31 19 36 J8 3 2 1 4 5
J9 76 40 85 76 26 J9 1 4 3 2 5
J10 64 85 61 47 90 J10 2 3 1 4 5
J11 11 78 21 36 56 J11 2 4 1 5 3
J12 11 28 90 46 30 J12 3 1 2 4 5
J13 85 10 74 89 33 J13 1 3 2 4 5
J14 99 52 95 98 43 J14 3 1 2 4 5
J15 6 61 49 53 69 J15 1 2 5 3 4
J16 95 2 25 72 65 J16 2 1 4 5 3
J17 37 21 13 89 55 J17 1 3 2 4 5
J18 86 74 48 79 88 J18 1 2 5 3 4
J19 11 69 51 89 74 J19 2 3 1 4 5
J20 13 7 76 52 45 J20 1 2 3 4 5
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Appendix B

ANOVA for mt06
Table B.1. ANOVA for classic sharing method

Source of Sum of Degrees of Mean Fo Foos2.117

variation square freedom square

SSA 6.65 2 332 1.82 299
(niche radius)

SSE 214.15 117 1.83

SSY 220.80 119
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Table B.6. ANOVA for continuously updated sharing

Source of Sum of  Degrees of Mean Fo Foos3.156

variation square  freedom  square

SSA 72122 3 240.41 1.04 2.6
(niche radius)

SSE 36113.78 156 231.50

SSY 36834.99 159

Table B.7. ANOVA for clearing K = 5

Table B.2. ANOVA for continously updated sharing

Source of Sum of Degrees of Mean Fo Foos2.117

variation square freedom square

SSA 0.32 2 0.16 025 2.99
(niche radius)

SSE 73.47 117 0.63

SSY 73.79 119

Table B.3. ANOVA for clearing K = 1

Source of Sum of Degrees of Mean Fo Foos2.117

variation square freedom square

SSA 0.02 2 0.01  0.05 2.99
(niche radius)

SSE 19.85 117 0.17

SSY 19.87 119

Table B.4. ANOVA for crowding of C. and V.

Source of Sum of Degrees of Mean Fo  Foos3.156

variation square freedom square

SSA 0.65 3 0.22 0.34 2.68
(number of
groups)

SSE 99.75 156 0.64

SSY 100.40 159

ANOVA for la0!
Table B.S. ANOVA for classic sharing method

Source of Sum of  Degrees of Mean Fy Fos53.156

variation square  freedom  square

SSA 2031.15 3 677.05 0.88 2.6
(niche radius)

SSE 120266.85 156 770.94

SSY 122298.00 159

Source of Sum of  Degrees of Mean Fy Fo0s3.156

variation square  freedom  square

SSA 24523 3 81.74 0.82 2.68
(niche radius)

SSE 15475.6 156 99.20

SSY 15720.8 159

Table B.8. ANOVA for crowding of C. and V.

Source of Sum of  Degrees of Mean Fo Foos3.156
variation square  freedom square
SSA 457.87 3 152.62 1.01 2.68
(number of
groups)
SSE 23598.77 156 151.27
SSY 24056.24 159

t-test for a0l
Table B.9. t-test (1) vs (2)

Average Variance F Fooszo30 vV 1 10.025.57
56.32 1.71 428 1.69 57 4.03 2.005
55.40 0.40

Table B.10. z-test (1) vs (3)

Average Variance F Foosaeze V' 1 10.025 46
56.32 1.71 10.47 1.69 46 554 2015
55.12 0.16

Table B.11. #-test (2) vs (3)

Average Variance F Fooszoz0 V5 4 10.025.67
55.40 0.40 245 1.69 67 232 1999

55.12 0.16
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Table B.12. t-test (3) vs (4)

Perez, Herrera and Herndndez

Table B.20. z-test (4) vs (5)

Average Variance Fo Foos3030 V5 1 10.025.39 Average Variance F, Fooszoz0 V5 4 10.025.43
55.12 0.16 —  1.69 39 196 2.021 666.97 6.69 17.13  1.69 43 2.68 2.021
55.00 0 671.65 114.64

Table B.13. t-test (3) vs (5)

Average  Variance Fy Fooszoz0 V' 4 10.025,57
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