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Balance Between Genetic Search and Local Search
In Memetic Algorithms for Multiobjective
Permutation Flowshop Scheduling

Hisao IshibuchiMember, IEEETadashi Yoshida, and Tadahiko Murakéember, |IEEE

Abstract—This paper shows how the performance of evolu- as niching, fitness sharing, and mating restriction were intro-
tionary multiobjective optimization (EMO) algorithms can be  duced into EMO algorithms. In recent studies (e.g., [9]-[13]),
improved by hybridization with local search. The main positive emphasis was placed on the convergence speed to the Pareto
effect of the hybridization is the improvement in the convergence . . . .
speed to the Pareto front. On the other hand, the main negative front, as well as on the diversity of solu.tlons. In thpse st'udles,
effect is the increase in the computation time per generation. SOme form of elitism was used as an important ingredient of
Thus, the number of generations is decreased when the available EMO algorithms. It was shown that the use of elitism improved
computation time is limited. As a result, the global search ability of ' the convergence speed to the Pareto front [12].

EMO algorithms is not fully utilized. These positive and negative One promising approach for improving the convergence

effects are examined by computational experiments on multiob- . .
jective permutation flowshop scheduling problems. Results of speed to the Pareto front is the use of local search in EMO

our computational experiments clearly show the importance of algorithms. Hybridization of evolutionary algorithms with
striking a balance between genetic search and local search. Inlocal search has already been investigated for single-objective
this paper, we first mod_ify our former multiobjective gene_tic local optimization problems in many studies (e.qg., [14], [15]). Such
search (MOGLS) algorithm by choosing only good individuals as 5 v hyig algorithm is often referred to as a memetic algorithm.
initial solutions for local search and assigning an appropriate local . . S

search direction to each initial solution. Next, we demonstrate the See Moscato [16] for an mtroductloq tP th_'s f'e"?' and [17]-{19]
importance of striking a balance between genetic search and local for recent developments. The hybridization with local search
search through computational experiments. Then we compare for multiobjective optimization was first implemented in
the modified MOGLS with recently developed EMO algorithms:  [20], [21] as a multiobjective genetic local search (MOGLS)
strength Pareto evolutionary algorithm and revised nondominated  544rithm where a scalar fitness function with random weights
sorting genetic algorithm. Finally, we demonstrate that local .

search can be easily combined with those EMO algorithms for Wa? used for the selgctl_on of pgrents and the local search for
designing multiobjective memetic algorithms. their offspring. Jaszkiewicz [22] improved the performance of

. o o . the MOGLS by modifying its selection mechanism of parents.
Index Terms—Evolutionary multiobjective optimization, genetic While his MOGLS still used the scalar fitness function with
local search, memetic algorithms, multiobjective optimization, per- . : . o
mutation flowshop scheduling. random weights in selection and local search, it did not use
the roulette wheel selection over the entire population. A
pair of parents was randomly selected from a pre-specified
number of the best solutions with respect to the scalar fitness
INCE Schaffer’s study [1], evolutionary algorithms havdunction with the current weights. This selection scheme can
Sbeen applied to various multiobjective optimization probse viewed as a kind of mating restriction in EMO algorithms.
lems for finding their Pareto-optimal solutions. Evolutionary alKnowles and Corne [23] combined their Pareto archived
gorithms for multiobjective optimization are often referred t@volution strategy (PAES [9], [11]) with a crossover operation
as evolutionary multiobjective optimization (EMO) algorithmsfor designing a memetic PAES (M-PAES). In their M-PAES,
For review of this field, see [2]-[5]. The task of EMO algorithmghe Pareto-dominance relation and the grid-type partition of the
is to find as many Pareto-optimal solutions as possible. In eaflpjective space were used for determining the acceptance (or
studies on EMO algorithms (e.g., [6]-[8]), emphasis was mainfgjection) of new solutions generated in genetic search and local
placed on the diversity of solutions in order to find uniformlysearch. The M-PAES had a special form of elitism inherent
distributed Pareto-optimal solutions. Thus several concepts siietihe PAES. The performance of the M-PAES was examined
in [24] for multiobjective knapsack problems and [25] for
degree-constrained multiobjective MST (minimum-weight
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Fig. 2. Example of a schedule for a three-machine ten-job problem.
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(i.e., for decreasing the diversity of final solutions), Tadbil.
[27] intended to increase the diversity of final solutions by thgg 3. Example of a new schedule generated by the same local search
application of local search. In this paper, we apply local searaperation as Fig. 1.

to solutions in everyl' generations. Whilel" is implicitly

assumed ag’ = 1 in many computational experiments of thisgenetic search. This is because the calculation of the difference
paper as in [20]-[25], other values bf(e.g., 7" = 10, 100) are in the objective values cannot be efficiently performed for com-
also examined in some computational experiments. monly used neighborhood structures. For example, let us con-
In many combinatorial optimization problems, local searcfider a schedule in Fig. 2 for a three-machine ten-job problem.
can be much more efficiently executed than genetic sear¢htom the schedule in Fig. 2, we generate a new schedule in Fig. 3
Jaszkiewicz [22] mentioned that local search performed almastthe same local search operation as Fig. 1 for TSPs. We can see
300 times more function evaluations per second than genatfiat the completion time of each job is different between Figs. 2
search in the application of his MOGLS to multiobjectiveand 3, except for the first job. This means that the recalculation
traveling salesperson problems (TSPs). This is mainly becaugehe completion time of each job is necessary for evaluating a
local search only needs the difference in the objective valuesw schedule generated by the local search operation. Thus, the
(e, Af = f(x) — f(x')) between the current solutiocnand computation time for evaluating a new schedule in local search
its neighborx’ instead of the objective valugx’) of x’. Inthe is the same order of magnitude as that in genetic search. For the
case of TSPs, the complexity of the calculationof is O(1), use of approximate evaluation of solutions in scheduling prob-
while that of f(x") is O(n), wheren is the number of cities (for lems in order to speed up the search, see Wagsal. [32],
details, see [28] and [29]). For example, let us consider Fig.\Where fast low-resolution and slow high-resolution simulations
where a new tour is generated by removing the edges (1, 2) angste compared with each other.
(6, 7) and adding the edges (1, 6) and (2, 7). The difference inin the former MOGLS [20], [21], we used an early termina-
the objective values between the two tours can be calculatesh strategy for decreasing the computation time spent by local
from only those four edges. On the other hand, when a new tagarch. In this strategy, neighbors of the current solution are ex-
is generated by genetic operations, we usually have to considgtined in random order. Then the current solution is replaced
much more edges for evaluating the new tour. In addition to tigth the first neighbor that is better than the current solution
efficient evaluation of new solutions (i.e., neighbors), they cgie., not the best improvement but the first improvement). The
be much more efficiently generated in local search than genedigecution of local search was terminated when no better solution
search. This is because genetic search uses three steps ig.¢ouind among: neighbors randomly generated from the cur-
selection, crossover and mutation) for generating new solutiofit solution, wheré is a user-definable parameter. The same
while local search uses a single step. early termination strategy was used in the M-PAES [23]. On
We use some variants of the MOGLS in [20] and [21] for multhe other hand, all neighbors were examined in the MOGLS of
tiobjective permutation flowshop scheduling. Flowshop is onkaszkiewicz [22]. In Knowles and Corne [24], the early termina-
of the most frequently studied scheduling problems in the lition strategy was used in Jaszkiewicz's MOGLS, as well as the
erature (see [30] for an introduction to this field). Permutatiokl-PAES, in their computational experiments on multiobjective
flowshop scheduling involves finding an optimal permutation dnapsack problems.
n jobs processed om machines. Thus, the size of the search In this paper, we introduce a local search probabjity to
space isn!. Many objectives have been studied in the literahe former MOGLS [20], [21] for decreasing the computation
ture such as the makespan, total flow time, maximum tardineme spent by local search. In the modified MOGLS, local search
and total tardiness. Except for some special cases (e.g., tigorot applied to all solutions in the current population but prob-
machine flowshop scheduling for minimizing the makesparapilistically applied to selected solutions with the probability
m-machinen-job permutation flowshop scheduling problemg;s. We used a different parametéf,s (i.e., the number of
areNP-hard (see Brucker [31] for the complexity of schedulingolutions selected for local search) in our previous study [33].
problems). In flowshop scheduling, new solutions can be muithile these two parameters have the same effect on the compu-
more efficiently generated in local search than genetic seatetion time spent by local search, we use the local search proba-
as in the case of TSPs. The evaluation of new solutions in lodality pr s inthis paper because the specificatiodgf depends
search for flowshop scheduling, however, is not much faster tham the population size (e.gNr.s = 50 for the population size
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50 has a totally different meaning frofd,s = 50 for the case Initialization
of the population size 100). We try to strike a balance between
genetic search and local search using the two parametard Initial
pLs in local search. We also use another parani&ter some \ population
computational experiments, where local search is applied to so-
lutions in everyl’ generations. EMO Part

This paper is organized as follows. In Section II, we briefly Improved New
describe the former MOGLS [20], [21] where local search was population population
applied to all solutions in every generation. We show that the
performance of the former MOGLS can be improved by ap- Local Search Part

plying local search to not all solutions but only good ones. We
also discuss other implementation issues such as the specifit@-4. Generic form of our MOGLS.
tion of an objective function used in local search and the choice

of a neighborhood structure. In Section Ill, we demonstrate tgjected. That is, each selection was governed by a different
importance of striking a balance between genetic search jgignt vector. A local search procedure was applied to each
local search. Through computational experiments with varioyspring using the same scalar fitness function (i.e., the same
specifications of the three parameters in local search (‘i’e"weight vector) as in the selection of its parents.

pis andT), we show positive and negative effects of the Ny- anqther issue is the balance between genetic search and local
bridization with local search on the performance of EMO akearch. For decreasing the computation time spent by local
gorithms. We also examine the necessity of genetic operatiais,rch, only a small number of neighbors of the current solution
in our MOGLS through computational experiments with Valgere examined. It was shown in [21] that the performance
ious specifications of the crossover and mutation probabiliti€s the former MOGLS was deteriorated when all neighbors
In Section IV, we compare our MOGLS with the strength Paretpare examined. The former MOGLS used a simple form of
evolutionary algorithm (SPEA [10]) and the revised nondomjsjiism where all nondominated solutions obtained during its
nated sorting genetic algorithm (NSGA-II [13]). Then we show, . tion were stored in a secondary population separately
that local search is easily combined with those EMO algorithng$, i, the current population. A few nondominated solutions
for designing multiobjective memetic algorithms. We concludgere randomly selected from the secondary population and
this paper in Section V, where some topics for future researgyir copies were added to the current population. The former
are also suggested. MOGLS is written as follows.

Step 0) Initialization: Randomly generate an initial popula-
II. MOGLS ALGORITHMS tion of N, solutions.

The outline of our MOGLS can be writtenin a generic formas Step 1) Evaluation: Calculate theN objectives for each

Fig. 4. This figure shows a basic structure of simple memetic al- solution in the current population. Then update
gorithms. For other types of memetic algorithms, see Krasnogor the secondary population where nondominated
[34], where a taxonomy of memetic algorithms was given using solutions are stored separately from the current
an index numbeD. Our MOGLS is aD = 4 memetic algo- population.

rithm in his taxonomy (for details, see [34]). Step 2) SelectionRepeat the following procedures to select

(Npop — Nelite) pairs of parents.

A. Former MOGLS a) Randomly specify the weights,, wo, ...,

We explain the former MOGLS [20], [21] using the following wy wWherew; > 0fori=1,2,..., N and
N-objective minimization problem: > wi = 1.
o b) Select a pair of parents based on the scalar
Minimize z = (f1(x), f2(x), ..., [n (%)) @) fitness function in (3). The selection proba-
subject tox € X ) bility ps(x) qf eac.h soluti.o.nx in the cur-
rent population¥ is specified by the fol-
wherez is the objective vectok is the decision vector, anX lowing roulette wheel selection scheme with
is the feasible region in the decision space. the linear scaling:
One issue to be considered in the hybridization of EMO al-
gorithms with local search is the specification of an objective ps(x) = finax () = f(x) @)
function to be optimized by local search. In the former MOGLS, > (fmax(¥) = f(¥))
the following scalar fitness function to be minimized was used yev
in both the selection of parents and the local search for their off- where fuax () is the maximum (i.e., worst)
Spring: fitness value among the current populatibn

F(xX) = w1 f1(X) + wafo(X) + -+ wn fn(x). (3 Step 3) Crossover and mutationApply a crossover op-
eration to each of the selectedVi(,, — Naiite)
The weightw; (w; > 0,¢ = 1,2,..., N, and)_,w; = 1) pairs of parents with the crossover probability
was randomly specified whenever a pair of parents was to be pc. A new solution is generated from each pair.
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When the crossover operation is not applied, one o Solution in the current population
parent is randomly chosen and handled as a new f(x) ® Selected parent solution
solution. Then apply a mutation operation to each @ Generated new solution
new solution with the mutation probabilipg;. B e
Step 4) Elitist strategy: Randomly selectV,j;;. solutions o o©0°
from the secondary population. Then add their O f o : o o of
copies to the,op — Neiite) SOlUtiONs generated in Desired search o o
Step 3 to construct a population 8f,,,, solutions. area for B o od
Step 5) Local search:Apply a local search procedure to ° 4
each of theN,,, solutions in the current popu- ae A
lation using the scalar fithess function in (3). For ¢b
each solution, the weight vector used in the selec- @
tion of its parents is also used in local search. Only
for a solution with no parents (i.e., solution gener- Desired search
ated in the initial generation in Step 0), we use a 0 area for A £(x)

random weight vector. Local search is terminated
when no better solution is found amohgeighbors
that are randomly selected from the neighborhoo
of the current solution. After local search is applied
to all solutions in the current population, the currenpriate. Using Fig. 5, we illustrate the drawback of this specifica-
population is replaced with the improved solutiontion method. Let us assume that two solutiaasdb denoted by
(i.e., this algorithm is a Lamarckian multiobjectiveclosed circles are selected as parents based on the scalar fithess
memetic algorithm). function with the weight vectow = (0.1, 0.9) for a two-objec-

Step 6) Return to Step 1. tive minimization problem. This scalar fithess function is also

This algorithm is terminated when a pre-specified number #f€d in local search. Since the two objectives in Fig. 5 should
solutions are examined during its execution. In the local searg® Minimized,—w = (-0.1, —0.9) can be viewed as the local
part (i.e., Step 5), a neighbor is randomly generated from tggarch dlrectl_on for a new solution genergted .from the selecteq
neighborhood of the current solution. If the neighbor is bett@@rents. In this paper, the local search direction means the di-
than the current solution, the current solution is replaced. TH&EtON with the steepest improvement of the objective func-
is, the first improvement strategy is used in the local search pHfn in the objective space, which isw = (—wy, ..., —wy)
instead of the best improvement strategy. When the current £-the scalar fitness function in (3). When an offspring is gen-
lution is updated, local search continues for the new current §ated around the parents (e.g., solution A in Fig. -5y =
lution in the same manner. (—0.1, —0.9) is appropriate as the local search direction for the

In this algorithm, all nondominated solutions are stored in tH¥fSPring. On the contrary, when an offspring is far from its par-

secondary population with no restriction (i.e., no upper boun@flts (€-g., solution B in Fig. Sjyw = (-0.1, —0.9) is not

onits size. In general, the restriction is necessary from the vie@2ProPriate as its local search direction. As we can see from
point of memory storage and computation time (e.g., see thig- 5, an approprlatg Ioc_al search_dlr_ectlon for each offspring
SPEA [10]). We use, however, no restriction because we did f§iPends on its location in the objective space. For example,
encounter any difficulties related to the maintenance of the séc-0-%; —0-1) seems to be much more appropriate for the so-
ondary population in our computational experiments on permiyion B than(—0.1, —0.9) as its local search direction. These
tation flowshop scheduling problems reported in this paper. élﬁcu_ssmns suggest the_lmpprtance ofthe speqlflcanon of_an ap-
course, there may be many application fields where the restitoPriate local search direction for each offspring according to
tion on the size of the secondary population is necessary. ts location in the objective space. _
Randomly selected, ;.. solutions from the secondary pop- When the quality of an offspring is very poor (e.g., solution
ulation in Step 4 work as elite solutions. It was shown in [21§ in Fig. 5), the application of local search seems to be waste
that the performance of this algorithm was deteriorated by sp&the computation time. Thus local search should be applied to
ifying the value ofNujite asNajie = 0 (i.€., no elitism). It was only good offspring. That is, the choice of offspring to which
also shown that the performance was not sensitive to the val@eal search is applied is also important in the MOGLS.
of Nejite When N > 2. In this paper, the value aWVe;ie When two parents are similar to each other (eacandb in

is specified based on preliminary computational experimentsfag. 5), their offspring are usually similar to the parents. Thus,
N.iite = 10 (see Section 1I-C). appropriate initial solutions (e.g., A) are likely to be generated

from good parents that are similar to each other. On the other

hand, when two parents are not similar to each other (eamd

d), inappropriate solutions are much more likely to be generated
In the above-mentioned MOGLS, the scalar fithess functighan the case of similar parents with high fitness values (@.9.,

in local search for each solution was specified by the weigahdb). These discussions suggest that the use of parent selection

vector used in the selection of its parents. This specification &€hemes with high selection pressure may improve the perfor-

the scalar fitness function in local search is not always appmmance of the former MOGLS with the roulette wheel selection.

dg. 5. Specification of a local search direction for an offspring.

B. Modified MOGLS
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S(x) direction specified in Step 5a). While the local search direction
N\ is randomly specified, the search is not a random walk because
<0 different solutions are chosen as initial solutions for different
o local search directions (see Fig. 6). It should be noted that the
current solution does not move to any dominated neighbors be-
cause the weights are specifiedgs> 0 fori =1,2, ..., N
o o in the scalar fitness function. That is, local search does not de-
/0 o o grade the current solution in the sense of the Pareto-dominance
T o relation. This issue will be further discussed later.

0 > f,(x) C. Test Problems and Performance Measures

Before demonstrating how the performance of the former
MOGLS can be improved by the modification in its local search
part, we explain test problems and performance measures used
Such an approach to the modification of the former MOGLS wilh this paper. In the same manner as in [21], we generated
later be further discussed through computational experimentgight m-machine, n-job permutation flowshop scheduling

In this subsection, we modify the former MOGLS by infroblems. The processing time of each job on each machine
troducing a probabilistic selection scheme of initial solutiongas specified as a random integer in the interval [1, 99]. The
for local search. For choosing only good offspring and spediue date of each job was specified by adding a random integer
fying an appropriate local search direction for each offsprind) the interval [-100, 100] to its actual completion time in a
we modify Step 5 of the former MOGLS as follows: randomly generated schedule. All the eight test problems have

Step 5) Local searchiterate the following three steps,., 20 Machines (i.e4n = 20). Using the number of objectives

times. Then replace the current population witk!V) and the number of jobs:§, we denote each test problem
N,pop solutions obtained by the following steps. @SV/n whereN' = 2, 3 andn = 20, 40, 60, 80. Four test
a) Randomly specify the weights problems have two objectives (i.eY, = 2): to minimize the
Wherz P> 0 for i — 192 L wi\’[ and makespan and the maximum tardiness. The other four test
oy TR lw" = PE LA problems are three-objective problems (i%.,= 3) with an
b) Sgsaitguéi[;sélution from the current oo ulatior?dditional objective: to minimize the total flow time.
using tournament selection with rep Ia?ceme Our three-objective test problems can be written in the format
b gd N th lar fitn functi F;} with thrgf Ausiello et al. [35] as follows (two-objective test problems
ased on the scaia €ss functio an be also written in the same manner):

e e oot m o TreT A NSGEE 1 1065 (1, Jy .. Ju) o machines 1
S ): .~ "My, ..., M,,}, ann x m matrix whose {, j) element is
tion is removed from the current population

In our computational experiments. the tourEhe processing time of thah job on thejth machine, and an

mp PE - n-dimensional vector whosgh elementd; is the due date of
nament size for the selection of an initial SO%he ith job
lution for local search is specified as five (see Solution: A set of nondominated solutions with respect to

Section II-C). . L S :
¢) Apply local search to a copy of the selecte(g]e glveg (;bjectwes. Each solution is a permutation{ 8f,

solution using the current weights with”?., "’ .
. Objectives: Cili = 1,2, ... , C; —
the local search probabilityr,s. The local ) max{Cili (2, b max{max{(Cy

search procedure is the same as in the formd"r)’ O}i = 1,2, ..., n}, and}>;_, Ci, whereC; is the com-
MOGLS. When local search is applied td etion time of theith job, which is calculated from the x m

a copy of the selected solution, the ﬁnafnatri{(. All three objectives are tq be minimize(_j. _

solution where local search is ter’minated is As n [21], we us_ed t.he two-po_lnt crossoverin F'g.' 7 and the

included in the next population. On the othe|nsert|on mutatlon'm Fig. 8 The msgrtlon mutation is often re-

hand. when local search is ﬁot applied Eerred_ to as the_shlft mutation in the Ilteraturg. We also usec_i the

copy’of the selected solution is included,in?ns.ertlon mutation as a local _search operz_;ttlon for generating a

the next population nelghb_or of_the cu_rrent solution. The choice of a Ipcal search
' eration will be discussed later through computational exper-

0

The basic idea is to try not to specify an appropriate |0Cﬁ‘ﬁents. Good results were reported in [36], where the insertion
search direction to each solution, but to choose an approprigigitation was used in tabu search for minimizing the makespan.
solution for a randomly specified local search direction. Morgs oo results were also reported by simulated annealing with the
over, local search is not applied to all the selected solutions. M&ertion mutation [37], [38]. Several crossover and mutation
use the local search probabilitys for decreasing the number of s perations were examined in genetic algorithms for flowshop
solutions to which local search is applied. Our idea is illustrate@heduling problems in [39], where good results were obtained
in Fig. 6, where local search is applied to only three solutions. As

S.hown in. thi$ figure, the p'fOposed algorithm chooses a good inispetails of each test problem are available at [Online] http://www.ie.osakafu-
tial solution in Step 5b) with respect to the current local searatac.jp/~hisaoi/ci_lab_e/.

Fig. 6. lllustration of the selection of initial solutions for local search.
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BII4[I5]I6]17] (GD) in the literature [4], [5], [42]. While the GD can only eval-
uate the proximity of the solution sét; to S*, D1g(S;) can
evaluate the distribution df; as well as the proximity of; to
S*. See Czyzak and Jaszkiewicz [43] for characteristic features
of theD1r measure.
[J5 133 [J6 [ 99 [310] J1 BT14TI8] In any multiobjective optimization problem, it is reasonable
for the decision maker (DM) to choose a final single solution
Fig. 7. Two-point crossover. x* from the Pareto-optimal solution set. The final solutionis
the best solution with respect to the DM'’s preference. When the
ik w3 true Pareto-optimal solution set is not given, the DM will choose
LA 2N SN EEN RN REA KL 19 [310] a final solutionx from an available solution sét;. When.S; is

Parent 1

Offspring 5113161714

Parent 2

a good approximation of the true Pareto-optimal solution set,
[J1]32 J5133 136 [17 134119 ]110] the chosen solutior may be close to the best solutiasi. In
this case, the loss due to the choicexohstead ofx* can be
Fig. 8. Insertion mutation. approximately measured by the distance betweeamdx* in

the objective space. Sinceandx* are unknown, we cannot
from the combination of the two-point crossover and the insefir€Ctly measure the distance betweeandx". The expected
tion mutation. Moreover, the simultaneous use of different my@lue of the distance, however, can be roughly estimated by the
tation operations with adaptive mutation probabilities was e@verage value of the distance from each Pareto-optimal solution
amined for two-objective flowshop scheduling problems in tH its nearest available solution. The r measure corresponds
framework of multiobjective memetic algorithms in Bassetir 10 this approximation. In addition to thielr measure, we also
al. [40]. See Bagchi [41] for applications of multiobjective ge!/S€ the following performance measures for evaluating the so-

netic algorithms to shop scheduling problems including flowution sets;. _ _ _
shop, jobshop and openshop. Let S be the union of thg/ solution sets (i.e§ = S, U---U

Next, we briefly describe performance measures used in tHfig)- A Straightforward performance measure of the solution set
paper for comparing many solution sets obtained from differefit With respect to the/ solution sets is the ratio of solutions
algorithms or different parameter specifications. We use pép-S; that are not dominated by any other solutionssiriThis
formance measures that are applicable to simultaneous cdRf:asure is written as follows:
parison of many solution sets. L&t be a solution setj( = L ' )
1,2, ..., J). For comparing/ solution sets§, S, ..., Sy), Rxps(S;) = |9 = {x € 5By € S:y < x}|
we use several performance measures because it is impossible 15il

to evaluate all aspects of each solution set using a single per(%'erey < x means that the solutior is dominated by the
mance measure (see [4], [5], and [42] for a number of perfal ign . In the numerator of (7), dominated solutiorsy

mance measures). other solutionsy in S are removed from the solution sgf.

We mainly use a performance measure based on the distapgg higher the ratidixps(5;) is, the better the solution s&f

from a reference solution set (i.e., the Pareto-optimal solutipsr] In some computation exjperiments of this paper, we also use

set or a near Pareto-optimal solution set) for evaluating the qué number of obtained solutions (i.¢5,|) as a performance
tion setS;. More specifically, we use the average distance fromeasure. v
each reference solution to its nearest solutio§inThis mea- 1.4 oference solution sét of each test problem was found
sure was used in Czyzak and Jaszkiewicz [43] and referred t‘l@f’ng the SPEA [10], the NSGA-II [13], and our MOGLS (i.e.,
DIR in Knowles and Corne [42]. Leg’,k be the reference SOIU'the modified MOGLS in Section 1I-B). Each algorithm was ap-
tion set. TheD1r measure can be written as plied to each test problem with much longer computation time
1 and larger memory storage than the other computational exper-

()

D1r(S5;) = Q] > min{dyy|x € S;} () iments in this paper. More specifically, we used the following
yes: parameter specifications in all the three algorithms for finding
wheredyy is the distance between a solutirrand a reference the reference solution set of each test problem.
solutiony in the N-dimensional normalized objective space Population size {pop): 200.
Crossover probability: 0.9.
dey = \/(ff () = F10))2 + -+ (F3(¥) - F5(x)? () Mutation probability per string: 0.6.

Stopping conditions: Evaluation of 5000 000 solutions.

wheref(-) is theith objective that is normalized using the refIn the SPEA, the size of the secondary population was specified
erence solution set*. We will explain the normalization of the s 200. In our MOGLS, we used the following parameter spec-
objective space later. The smaller the valudag (S;) is, the ifications.
better the solution sef; is. Number of elite solutionsNej;t.): 10.

It should be noted that thelg measure in (5) is not the av- Number of neighbors to be examing): 2.
erage distance from each solutiondnto its nearest reference Tournament size in the selection of initial solutions: 5.
solution inS*, which is referred to as the generation distance Local search probabilityps): 0.8.
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1500 1 TABLE |
» ‘ | NUMBER OF OBTAINED REFERENCESOLUTIONS FOR THETWO-OBJECTIVE
§ “ ‘ TESTPROBLEMS AND THE WIDTH OF THEIR RANGE FOREACH OBJECTIVE
'g 1000 | * - 1 - " - - Test #of  Width of the range
E Sy problem solutions  f;(x) fr(x)
= e 3 ‘ 2/20 38 284 834
E s0b—ng—1— | 2/40 44 381 978
<>§ ‘ “~ ‘- ”+ 2/60 54 473 2632
s i e . .. . 2/80 28 245 478
0 , |
3300 3400 3500 3600 3700 TABLE I
NUMBER OF OBTAINED REFERENCESOLUTIONS FOR THETHREE-OBJECTIVE
Makespan TESTPROBLEMS AND THE WIDTH OF THEIR RANGE FOREACH OBJECTIVE
(@ Test # of Width of the range
800 ‘ T problem solutions fi(x) fo(x) f3(x)
2 200 |9 3/20 548 351 1032 4115
g L] 3/40 580 446 1916 10663
S 600 e 3/60 381 507 3298 19309
s A 3/80 508 463 4262 32105
£ 500 i |
é 400 * ".'. The number of the obtained reference solutions for each test
o] e problem is summarized in Table | for the two-objective prob-
= 300 * T ., lems and Table I for the three-objective problems. In these ta-
200 x ° bles, we also show the width of the range of each objective

wheref;(x), f2(x), andf;(x) are the makespan, the maximum

tardiness, and the total flow time, respectively. The width of the

Makespan range of theith objectivef;(-) over the reference solution set
(b) S* is defined as

Fig. 9. Reference solutions obtained from the three EMO algorithms. (a) . .
Two-objective 40-job test problem. (b) Two-objective 80-job test problem. 7)“'”dthfz (8%) = max{fi(y)ly € 5*} — min{fi(y)|y € S*%)
8

The computation load in the search for reference solutions wa®m the comparison between Tables | and II, we can see that
50 times as much as the other computational experimentsm@ny more reference solutions were obtained for the three-ob-
this paper, where the stopping condition was the evaluationjg€tive problems than the two-objective problems. We can also
100 000 solutions. We used the two-point crossover and the §&€ that the reference solutions of each test problem are located
sertion mutation in all the three algorithms. The insertion mut@ver the wide range of each objective except for the case of the
tion was also used in local search of our MOGLS. The above g#o-objective 80-job test problem (i.e., 2/80 in Table I). In this
rameter values were specified from preliminary computationg@®se, it seems that the three algorithms did not find extreme so-
experiments on the two-objective 40-job test problem (i.e., 2/4@ions with very good values of one objective and poor values
problem). One may think that the value ofis too small. The of the other objective. As we have already mentioned, we ap-

effect of k andprs on the performance of our MOGLS will plied the three algorithms to each test problem ten times (i.e.,
be discussed in Section Ill, whete= 2 andprs = 0.8 are tenruns). In each run, 5000 000 solutions were examined. This

shown to be one of their good combinations. In computation@leans that 150 000 000 solutions were examined for each test

experiments on multiobjective knapsack problems by Knowl@soblem in total. Thus, we did not further perform the search for

and Corne [24], the value df (i.e., |_fails in their notation) reference solutions.

was specified as 5 for the M-PAES [23] and the MOGLS of The objective space of each test problem was normalized so

Jaszkiewicz [22]. The effect of the other parameters on the p##atthe minimum and maximum values of each objective among

formance of each algorithm will be discussed later in this papéhe reference solutions were 0 and 100, respectively. For ex-
We chose only nondominated solutions as reference solutigisple, the rectangle [3315, 3696][97, 1075] specified by the

from 30 solution sets obtained by ten runs of the three algference solutions in Fig. 9(a) was normalized into the square

rithms for each test problem. We show the obtained refererl€e 100] x [0, 100]. Using the normalized objective space, the

solution sets for the two-objective 40-job and 80-job test proB21r measure is calculated.

lems in Fig. 9(a) and (b), respectively. We can observe the ex- o

istence of a clear tradeoff between the two objectives in eabh Effect of Modification of the Local Search Part

figure. We can also see that the obtained reference solution se€tor examining the effect of the modification of the local

for each test problem has a good distribution (i.e., somewtssarch part in Section 1I-B, we applied the former MOGLS

similar to a uniform distribution) on the tradeoff front in the ob{20], [21] and the modified MOGLS to the eight test problems

jective space. using the following parameter specifications.

5450 5500 5550 5600 5650 5700 5750
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. TABLE 1lI
o Former MOGLS ¢ Modified MOGLS AVERAGE DISTANCE BETWEEN TWO PARENTS OF EACH SOLUTION IN THE
NORMALIZED OBJECTIVE SPACE OFEACH TEST PROBLEM

» 2500
é 2000 Test Roulette Tournament  Best solutions
5 problem wheel 2 5 10 10% 20% 50%
S 1500 220 49.6 155 11.1 3.0 6.9 11.8 20.4
£ 2/40  47.8 180 88 2.0 5.3 115 20.1
3 1000 2/60 315 92 53 1.8 32 57 115
g 2/80 109.4 22.6 122 3.9 9.8 139 31.0
X 500 3/20 568 134 103 42 88 7.2 23.7
P 0 3/40 432 84 66 3.0 53 53 174
3/60 393 6.4 50 24 41 42 141
3300 3400 3500 3600 3700 3800 3900 4000 380 404 S8 38 20 36 34 143
Makespan
Fig. 10. Comparison between the former MOGLS and its modified version. TABLE IV
All solutions obtained by 20 runs of each algorithm for the two-objective 40-joff VERAGE DISTANCE BETWEEN EACH SOLUTION AND ITS NEARESTPARENT IN
test problem are shown. THE NORMALIZED OBJECTIVE SPACE OFEACH TEST PROBLEM
Test Roulette Tournament  Best solutions
Population size {op): 60. problem wheel 2 5 10 10% 20% 50%
Stopping conditions: Evaluation of 100 000 solutions. 220 162 234 233 21.8 22.7 23.6 22.1
The other parameter values were the same as those in Sec- 2/40 135 224 213 202 20.6 21.3 21.0
tion 1I-C for finding the reference solution set of each test 2/60 99 125126 12.2 124 12,6 124
problem. 2/80  27.5 52.1 543 52.6 52.6 52.7 52.2
Each algorithm was applied to each test problem 20 times ;;4218 }i'z f;'g 218202 21.1 21.3 22.0
. . ; . . . . 5134 129 134 132 149
(_|.e.,20 runs_) using dlﬁerent|n|t!al populatlon_s. Multiple solu- 360 129 97 98 94 96 96 118
tions were simultaneously obtained from a single run of each 3/80 137 96 96 91 97 98 11.9

algorithm. In Fig. 10, we show 20 solution sets obtained from
each algorithm for the two-objective 40-job test problem. We
can see from Fig. 10 that all solutions obtained from the formeson, we also examined the use of the tournament selection of
algorithm (i.e., open circles) are dominated by many solutiotise tournament size 2, 5 and 10 instead of the roulette wheel se-
from the modified one (i.e., closed circles). We can also see thattion. Moreover, the use of the random selection from the best
no solutions from the modified algorithm are dominated by ary0%, 20%, and 50% solutions of the current population was also
solutions from the former one. examined. Jaszkiewicz [22] used the latter selection scheme for
For each of 20 runs of the two algorithms for each tegarent selection.
problem, we calculated the ratio of hondominated solutions Average results with respect to the distance between two par-
[i.e., Rxps(+)] for the solution seby from the former algorithm ents are summarized in Table Ill. From this table, we can see that
and the solution sefy; from the modified one by specifyin§ the distance between two parents was much larger in the case of
in (7) asS = Sr U Su. Then we calculated the average valuthe roulette wheel selection than the other selection schemes.
of Rxps(-) over 20 runs. For all the eight test problems, w&his observation means that dissimilar parents (e.gndd
obtained the following average resultBxps(Sr) = 0 and in Fig. 5) were often selected in the execution of the former
Rnps(Swm) = 1. These results show that all solutions obtainelOGLS with the roulette wheel selection. The dissimilarity of
from the former algorithm were dominated by solutions fromparents may be the main cause of the poor performance of the
the modified one. Moreover no solutions from the modifieebrmer MOGLS. When we used the other selection schemes
algorithm were dominated by any solutions from the formewith higher selection pressure for parent selection, similar par-
one. That is, the modified algorithm clearly outperformed thents were selected more frequently as shown in Table Il1.
former one for all the eight test problems as visually shown in Average results with respect to the distance between each
Fig. 10 for the two-objective 40-job test problem. solution and its nearest parent are summarized in Table IV.
In Section II-B, we explained the motivation for modifyingFrom the comparison between Table IV and the second column
the former MOGLS using Fig. 5. More specifically, we pointeadf Table Ill, we can see that each solution was similar to
out the possibility that the genetic operations generate an indg- nearest parent in all the seven MOGLS variants for all
propriate initial solution for the current weight vector (e.g., Bhe eight test problems. This observation together with the
and C in Fig. 5). For examining the validity of this motivationabove-mentioned observation on Table Ill suggests that good
we measured the distance between two parents of each solutidtial solutions (e.g., A in Fig. 5) were often generated from
in the normalized objective space during each of 20 runs of theod parents with high similarity (e.gs, andb in Fig. 5) in
former MOGLS for each test problem. We also measured ttiee six variants with the tournament selection and the random
distance between each solution and its nearest parent. Assgkection from the best solutions. Thus, we expect that the
have already mentioned, we used the roulette wheel selectimprovement of the former MOGLS would be achieved by the
in (4) for parent selection in the former MOGLS. For compamse of those selection schemes for parent selection.
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TABLE V TABLE VI
PERFORMANCE EVALUATION OF EACH VARIANT OF THE FORMER MOGLS PERFORMANCE EVALUATION OF EACH VARIANT OF THE MODIFIED MOGLS
USING THED1r MEASURE SMALLER VALUES MEAN BETTER SOLUTION SETS USING THED1r MEASURE
Test Roulette Tournament  Best solutions Test Roulette  Tournament  Best solutions
problem wheel 2 5 10 10% 20% 50% problem wheel 2 5 10 10% 20% 50%
2/20 214 68 62 69 68 73 8.0 2/20 60 75 83 74 71 75 89
2/40 48.5 17.6 20.5 22.4 209 19.6 20.4 2/40 17.8 19.7 20.6 22.0 18.7 19.4 20.3
2/60 45.7 21.7 21.1 21.6 21.3 23.7 24.6 2/60 229 22.8 22.8 22.7 23.1 23.5 25.2
2/80 2679 72.7 69.8 72.5 70.8 72.2 76.9 2/80 773 774 72.1 67.2 72.1 76.3 82.3
3/20 174 108 9.5 9.6 94 11.1 9.6 3/20 9.3 14.4 14.1 13.5 13.7 152 15.8
3/40 413 23.6 243 22.8 234 26.0 21.5 3/40 21.6 339 33.1 30.5 29.3 32.8 34.6
3/60 58.5 32.1 33.7 28.1 32.8 32.3 30.1 3/60 29.5 37.5 39.1 38.5 38.9 39.9 40.8
3/80 70.2 39.5 41.3 40.6 40.2 42.4 349 3/80 35.7 48.1 48.6 48.9 48.0 51.2 50.7
Average 714 28.4 28.9 29.3 28.2 29.4 283 Average 27.5 329 33.0 32.6 314 33.3 34.9

Average values of théD1y measure are summarized inand the modified MOGLS with the roulette wheel selection

Table V where smaller values mean better solution sets. Ksable V). Hereafter, we mainly use the modified MOGLS
expected from Tables Ill and IV, the six variants with théf"'th the roulette wheel for pa_lrent selection (i.e., the secor!d
tournament selection and the random selection from the b&&fumn of Table V) for examining the balance between genetic
solutions outperformed its original version with the roulett88arch and local search through computational experiments
wheel selection. More specifically, all results by the six variant$ing the local search probabilipy.s. Multiobjective memetic
for the eight test problems in Table V are significantly betté90rithms with no selection scheme of initial solutions for
(i.e., smaller) than the corresponding results by their origin@c@l Search will be examined again in Section IV in the context
version with the 99% confidence level (the Mann—Whitney ' the hybridization of popular EMO algorithms.
test). . .

In the same manner as Table V, we performed computatior'?al Choice of a Neighborhood Structure
experiments using the modified MOGLS. The tournament se-In the above computational experiments, we used the inser-
lection with the tournament size five was used for selecting ifion mutation as a local search operation. In this subsection, we
tial solutions for local search in the modified MOGLS. Averag€xamine other local search operations (i.e., other neighborhood
values of theD1x measure are summarized in Table VI whergtructures): exchange of adjacent two jobs, exchange of arbi-
the seven variants with different selection schemes for pardf@ry two jobs, and exchange of arbitrary three jobs. The number
selection are compared. It is interesting to note that the best @éneighbors of the current solution (i.e., the size of the neigh-
sults were obtained from the roulette wheel selection in Table $prhood structure) ién — 1) when we exchange adjacent two
on the average (especially for the three-objective test problenigfs for ann-job permutation flowshop scheduling problem. It
while it was the worst in Table V. When the roulette wheel wa§ »C2 = n(n—1)/2and2-, C3 = n(n—1)(n—2)/3 when we
used for parent selection, the improvement by the modificatié#Change arbitrary two and three jobs, respectively. The number
of the local search part from Tables V to VI is significant foPf neighbors ign — 1)? in the case of the insertion operation. It
all the eight test problems with the 99% confidence level (tH&ould be noted that these four neighborhood structures are not
Mann-Whitney U test). On the other hand, the same modifputually exclusive. For example, the adjacent two-job exchange
cation significantly degraded the performance of the other digighbors are included in the arbitrary two-job exchange and
variants for all the four three-objective test problems with thgsertion neighbors. The insertion neighbors partially overlap
99% confidence level. The deterioration in the performance m@jth the arbitrary two-job and three-job exchange neighbors.
be due to the negative effect of the selection of initial soldMany neighborhood structures were explained in a more gen-
tions for local search. When our MOGLS has a parent seledal manner in Krasnogor [34].
tion scheme with high selection pressure, the selection of initial The performance of the four local search operations was com-
solutions for local search makes the overall selection press@@ed using th®1r measure. For evaluating each local search
too strong. Selection pressure that is too strong leads to the @eeration, the modified MOGLS with the roulette wheel se-
crease in the diversity of solutions (i.e., undesired convergerigétion was applied to each test problem 20 times in the same
to a small number of solutions). As a result, the performan&anner as the previous computational experiments. The average
of our MOGLS with high selection pressure in the parent s¥alue of theD1gr measure over 20 runs is shown together with
lection was deteriorated by the combination with high selectidhe standard deviation (in parentheses) in Table VII. We can see
pressure in the selection of initial solutions for local search fom this table that the best (i.e., smallest) results were obtained
computational experiments on the three-objective test probleffgm the insertion operation for all the eight test problems.
with many reference solutions. ) )

Among the 14 variants of the MOGLS in Tables V and Choice of an Acceptance Rule in Local Search
VI, good results were obtained by seven variants (i.e., the sixIn the local search part of the modified MOGLS, the scalar
variants of the former MOGLS with the tournament selectiofitness function in (3) was used for making the decision on the
and the random selection from the best solutions in Table réplacement of the current solution with its neighbor. Thatis, the
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TABLE VII H(x)

PERFORMANCE EVALUATION OF EACH ALGORITHM USING THE D1gr /\
MEASURE STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES

<0

Test Local Search Operation
problem  Adjacent Two-job Three-job Insertion

2/20 69(1.6) 61(1.0) 69(1.4 6.0(1.7)
2/40 269 (4.7) 22.4(4.4) 28.0(45) 17.8(3.3)

«0
«°

2/60 289 (4.4) 24.7(2.9) 27.1(2.9) 22.9(.7) &2 /3 f
TN

2/80 156.9(24.5) 101.1(21.1) 125.1(14.8) 77.3(13.8)
320 11.5(1.8) 10.0(1.1) 10.1(1.0) 9.3 (1.4)
3/40 263 (2.6) 22.6(2.5) 25.4(3.3) 21.6(2.7)
3/60  37.8(3.2) 34.1(4.0) 35.0(3.0) 29.5(3.2) -
3/80  44.5(6.8) 38.4(4.3) 41.2(6.1) 35.7(4.1) 0 > f1(x)
Average 425 (6.2) 32.4(5.2) 37.3 (4.6) 27.5 (4.1)

Fig. 12. Pseudoweight vector.
So(x)
N acceptance rule. Let us assume in Fig. 11 that the arrow shows
the weight vector-w and the inclined line is orthogonal with
this arrow. In this case, the current solution A can move to the
three neighbors C, D, and E. The determination of the weight
Co A vector by (9) is illustrated in Fig. 12, where all solutions in
OoF the current population are shown by open circles. The arrow
Do attached to each open circle shows the weight veetar for
of the corresponding solution. From this figure, we can see that
an appropriate weight vector is assigned to each solution by
0 > £1(x) (9). Note that each arrow in Fig. 12 is not the exact direction of
the move by local search. Since we use the first improvement
Fig. 11. lllustration of each acceptance rule. strategy for combinatorial optimization problems with discrete
search spaces, the move by local search is not the same as the
neighbor was accepted only when it had a better (i.e., smallgifiection of the weight vectorw. For example, A in Fig. 11
value of the scalar fitness function than the current solution. Itégll move to the first examined neighbor among C, D and E. It
possible to use other acceptance rules in the local search parghauld be noted that the local search direction specified by the
this subsection, we examine three acceptance rules in additiegight vector—w in the objective space is a totally different
to the scalar fitness function in (3). concept from the local search direction in the continuous
One rule is to accept neighbors that are not dominated by @hcision space (e.g., see Salomon [44]).
current solution. Let us consider Fig. 11, where the current solu-In the calculation of the pseudoweight vector for each solu-
tion and its neighbors are denoted by a closed circle (i.e., A) atign, we need the maximum and minimum values of each objec-
open circles (i.e., B, C, D, E, F and G), respectively. The currelite over the current population. Thus this approach has some
solution A can move to the five neighbors except for G becausemputational overhead. The overhead, however, is not large
only G is dominated by A. A drawback of this acceptance rulgecause the maximum and minimum values are calculated just
is that the current solution can be degraded by multiple move#ice for the current population in each generation. The calcu-
For example, the current solution A can move to the neighbor Bfed values are used for all solutions in the current population.
from which the current solution can further move to G. Anothdyloreover, the pseudoweight vector is calculated only for each
acceptance rule is to accept only better neighbors that dominiigal solution of local search (i.e., the pseudoweight vector is
the current solution. In this case, the current solution A can moket updated unless local search restarts from a new initial so-
only to the neighbor D in Fig. 11. A drawback of this acceptandstion). A possible drawback of this approach is that the distri-
rule is that the movable area is very small, especially when thgtion of weight vectors directly depends on the distribution of
number of objectives is large. solutions in the objective space. Thus the distribution of weight
The other acceptance rule is the use of the pseudoweigyhetors is not uniform when the distribution of solutions in the
vector [4]. The pseudoweight; for theith objective is defined current population is not uniform. For example, similar weight

ow

oG

for the current solutiox as vectors are assigned to many solutions when they are closely lo-
] s cated in the objective space.
w; = Ji™ = / N (X)A We compared the three acceptance rules using the modified
Joe — f““n fmax frm MOGLS with the insertion neighborhood. The same parameter
i=1,2, 9) values as in Section II-D were used. Since the three acceptance

rules do not have any selection mechanism of initial solutions,
where f/ 2 and f™i* are the maximum and minimum valuesve chose an initial solution in the same manner as the modi-
of the ith objective in the current population, respectivelyffied MOGLS. Then local search with each acceptance rule was
The scalar fithess function with the pseudoweight vectapplied to the selected initial solution with the local search prob-
w = (wy, ..., wy) determined by (9) is used in the thirdability. Average results over 20 runs with each acceptance rule
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TABLE VIl I1l. BALANCE BETWEEN GENETIC AND LOCAL SEARCH
COMPARISON AMONG THE FOUR ACCEPTANCERULES USING THED1r

MEASURE FOR THECASE OFk = 2 AND prs = 0.8 In this section, we examine the effect of the balance between

genetic search and local search on the search ability of our

Test Acceptance Rule ’ . X X
problem — NonD Better _ Pseudo  MOGLS MOGLS (i.e., the modified MOGLS in Section II-B). The

3720 67(1.1) 7221 64(15) 6.0(.7) problem is how to allocate the available computation time
2/40  23.5(2.0) 21.4(3.4) 18.3(2.8) 17.8(3.3) wisely between genetic search and local search. This problem
%;gg 1126866(541"(1); 9216-60(1(22; 8223'99(5%-‘3 727239(1(58 has been studied in the field of single-objective hybrid (i.e.,
320 06 (1:1) 11’_1(1:6) 98 (1:2) 93 (1:4) memetic) algorithms [45]. For example, Orvosh and David
3/40 302 (4.0) 23.3(3.5 23.0(23) 21.6(2.7) [46] reported that the best results in their computational
3/60 429 (42) 324(4.5) 30.1(41) 295(.2) experiments were obtained from their memetic algorithm when

3/80  50.4(6.0) 38.4(4.2) 36.6(3.5) 35.7(4.1)

Average 385(3.5) 314(49) 18950 2754 1) individuals were improved by local search with a probability

0.05 (i.e., when the local search probabilitys was specified
asprs = 0.05). Goldberg and Voessner [45] presented a theo-
retical framework for discussing the balance between genetic

TABLE IX search and local search. Hart [47] investigated the following
COMPARISON AMONG THE FOUR ACCEPTANCERULES USING THE D1 four questions for designing efficient memetic algorithms for
MEASURE FOR THECASE OFk = 100 AND prs = 0.02 continuous optimization.
Test Acceptance Rule a) How often should local search be applied?
problem  Non-D Better Pseudo MOGLS b) On which solutions should local search be used?
2/20  92.1(13.4) 6.8(1.3) 7.3(1.9) 4.4(0.7) ¢) How long should local search be run?
2/40  163.9(15.0) 20.3(3.1) 16.6(3.9) 19.2(3.1) d) How efficient does local search need to be?
2/60 137.8(13.1) 25.8(3.3) 21.9(3.4) 20.1(1.6) ) ]
2/80  699.6(75.6) 101.7(24.3) 67.2(12.6) 69.5 (8.8) The first and second questions are related to the local search
3/20 108.7(12.0) 11.5(1.8) 10.9(1.9) 7.8(1.0) probability prs and the local search application interva]
3/40 142.2(16.3) 24.6(2.6) 24.4(2.4) 203 (1.9) while the third question is related to the paramete(i.e.,
3/60 145.3(15.6) 33.4(4.3) 32.3(3.5) 26.8(2.7) . ; .
3/80 175.021.0) 39.5(3.9) 38.5(3.4) 31.2(3.2) the maximum number of examined neighbors of the current
Average 208.1(22.8) 33.0(5.6) 27.4(4.1) 24.9(2.9) solution) in our MOGLS. Hart's study was extended to the case

of combinatorial optimization by Land [48], where the balance
between genetic search and local search was referred to as the
are summarized in Table VIII. We also show average results [jtal/global ratio. The balance can be also adjusted by the use of
the modified MOGLS in the same table. From this table, we cajifferent neighborhood structures. Krasnogor [34] investigated
see that almost the same results were obtained from the magiw to change the size and the type of neighborhood struc-
fied MOGLS and the pseudoweight approach. This is becausges dynamically in the framework of multimeme memetic
these two approaches are based on the scalar fitness functipgerithms where each meme had a different neighborhood
We can also see that the performance of the first two approackgsicture, a different acceptance rule, and a different number of
based on the dominance relation were not bad for many cagegations of local search.
while they were outperformed by the other approaches based|l the above-mentioned studies investigated the balance be-
on the scalar fitness function for all the eight test problem@een local search and genetic search for single-objective opti-
(small values in Table VIII mean better solution sets). That ifsization. Since the aim of EMO algorithms is not to find a single
the above-mentioned drawbacks of the acceptance rules bagesl solution but to simultaneously find a variety of Pareto-op-
on the dominance relation were not clear in Table VIII. Thigmal (or near Pareto-optimal) solutions, an appropriate balance
is because the value df (i.e., the maximum number of ex-for multiobjective optimization may be different from the case
amined neighbors of the current solution) was very small (i.&f single-objective optimization. For example, the diversity of
k = 2). We also performed the same computational expedolutions in the final generation is very important in multiobjec-
ments by specifying the value éfandprs ask = 100 and  tive optimization while it is usually not important in single-ob-
pLs = 0.02. Average results over 20 runs are summarized jBctive optimization. Thus, more emphasis should be placed on
Table IX. While good results were still obtained from the twehe maintenance of the diversity of solutions in each genera-
approaches based on the scalar fitness function in the last #é® in the case of multiobjective optimization than single-ob-
columns of Table IX, the performance of the first acceptangective optimization. In this section, we examine the balance be-
rule based on the dominance relation was severely deterioraigéen local search and genetic search using the three parameters
for all the eight test problems as shown in the second colunire., k, pr.s andT) in the local search part of our MOGLS. We
of Table IX. The drawback of this acceptance rule (i.e., possibdgso examine the necessity of genetic search using the crossover
deterioration of the current solution by multiple moves) becangobability p and the mutation probabilityy;.
clear by increasing the value bfin Table IX. The performance
qf the second acceptance_ rule based_on the dorr_nnance rel‘f"/ﬂ?rﬁﬁect of Local Search
(i.e., move to better solutions) was slightly deteriorated by in-
creasing the value of from Tables VIII to IX (see the third  For examining the effect of local search on the search ability
column of these tables). of our MOGLS, we performed computational experiments using
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TABLE X
COMPARISON OF THETHREE CASES OF(k, prs) FOR THE TWO-OBJECTIVE
80-JB PROBLEM. AVERAGE VALUES OVER 20 RUNS ARE SHOWN TOGETHER
WITH STANDARD DEVIATIONS IN PARENTHESES LARGER VALUES OF
Rnps(S;) AND |\S;| MEAN BETTER SOLUTION SETS WHILE SMALLER
VALUES OF D1r MEAN BETTER SOLUTION SETS

Specification of (k, p;g)
(80,0.02) (100,1) p;g=0

Dly 67.2 (12.1) 125.7 (9.3) 97.8 (21.1)
Ryps(S;) 0.90(0.22) 0.00 (0.00) 0.23 (0.33)

[S;1 12.7(3.3) 9.0(2.0) 14447
Generations 358 (38.0)  3.9(0.3) 1667 (0.0)

Measure

Fig. 13. Average value of th®1r measure for the two-objective 80-job
problem. Shorter bars mean better solution sets.

various specifications df andprs. More specifically, we exam-
ined 132 combinations of 11 values/ofi.e.,.k =1, 2, 4, 6, 8,
10, 20, 40, 60, 80, 100) and 12 valueggf (i.e.,pr.s = 0,0.01,
0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0). Using each
combination oft andprs, our MOGLS was applied to each test
problem 20 times in the same manner as Section II-D under the
same stopping condition (i.e., evaluation of 100 000 solutions).
The average value of tHe@lg measure obtained from each com-
bination of k andprs is shown in Fig. 13 for the two-objec-
tive 80-job test problem where shorter bars mean better solutfd® 14. Average value of th®1r measure for the two-objective 20-job
sets. In this figure, we can observe a valley from the left-bottoRPP'e™
corner to the top-right corner in thepys plane. That is, good
results were obtained from combinationskofindpy s that ap- tions in each run. The EMO part of our MOGLS was iterated
proximately satisfy the relatiok- prs = 1~10. When the value for 358 generations on the average. On the other hand, the EMO
of k - pr.s was too small (i.e., the left-top corner), the search ipart was iterated for only a few generations wikes 100 and
our MOGLS was mainly driven by genetic operations. Thug; 5 = 1. In this case, the average number of obtained solutions
the search ability of local search was not utilized well in ouras small (i.e., 9.0) and the quality of each solution was not
MOGLS. On the other hand, when the valuetofpr.s was too  good. Actually all the obtained solutions from this combination
large (i.e., the bottom-right corner), almost all computation timsf k& and p;.s were dominated by other solutions (i.e., the av-
was spent by local search. Thus, the search ability of genetic@dage ratio of nondominated solutions was 0 in Table X). That
gorithms was not utilized well. is, both the diversity of solutions and the convergence speed to
The best (i.e., smallest) average value of Ihsy measure the Pareto front were degraded by the use of large valugés of
was obtained from the combination bf= 80 andprs = 0.02 andprs in Table X. When the local search probabilitys was
as 67.2. The worst average value was obtained from the cospecified aprs = 0, local search was not applied to any so-
bination of & = 100 andprs = 1 as 125.7. Wheprs = 0, lutions. In this case, the quality of each solution was not high
local search was applied to no solutions. Thus, the value ofwvhile the average number of obtained solutions was large. Ac-
has no effect on the performance of our MOGLS as shown hyally only 23% of obtained solutions were not dominated by
the flat region corresponding &5 = 0 in Fig. 13 (i.e., the any other solutions in each run.
top-most row). In this case, the average value oflilig mea- For all the eight test problems, we observed the improvement
sure was 97.8. We further examined solution sets obtained framtheD1r measure by the hybridization with local search when
these three specificationg:, prs) = (80, 0.02), (100, 1), and the values ok andprs were appropriate. We also observed the
prs = 0. In addition to theD1g measure, we also calculatedhegative effect of the hybridization with local search for all the
the ratio of nondominated solutions [i.&2xps(S;)] and the eight test problems when bothandprg were large (i.e., the
number of obtained solutions (i.45;]) for each run of our right-bottom corner of Fig. 13). The negative effect, however,
MOGLS using the three parameter specifications. Average rgas small for small-size test problems. For example, we show
sults over 20 runs for each parameter specification are sumrtiee average value of thB1g measure for the two-objective
rized in Table X together with standard deviations (in pare20-job test problem in Fig. 14, where the deterioration in the
theses). In Table X, we also show the average number of genleiig measure at the bottom-right corner is not clear. The best
ations updated by the EMO part. Wher= 80 andprs = 0.02, resultin Fig. 14 was obtained from the combinatiorkcf 100
the average number of obtained solutions was 12.7. Amoagdprs = 0.02. In the same manner as Table X, we compare
those solutions, 90% were not dominated by any other solhe three specificationgk, prs) = (100, 0.02),(100,1), and
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TABLE XI In the above computational experiments, we adjusted the bal-
COMPARISON OF THETHREE SPECIFICATIONS OF(K, prs) FOR THE ance between genetic search and local search using the two pa-
Two-OBJECTIVE 20-JoB PROBLEM . . .
rameters: andprs. We can also adjust the balance by invoking

Measure Specification of (k, pig) the local search part eveffj generations (not every genera-
(100,0.02)  (100,1) p.¢=0 tion). When the local search part is invoked, we still use the
Dl 44(0.65 54(092) 58(1.34) local search probabilityr s. Thus, the overall local search prob-

ability can be viewed agr.s /7" over the whole execution of the
MOGLS. The local search application interzalvas implicitly
assumed a& = 1 in all the above computational experiments.
In the same manner as Fig. 13, we examined 132 combina-
tions of pr.s andT (i.e.,pLs = 0, 0.01, 0.02, 0.04, 0.06, 0.08,
TABLE XII 0.1,0.2,0.4,0.6,0.8,1.0,amd=1, 2, 4, 6, 8, 10, 20, 40, 60,
EFFECT OF THEPARA"C")ETTEF'TE\Q;:E,\SAgSTJ'FfELOCAL SEARCH PART 80, 100) for the two-objective 80-job problem. The value:of
was fixed ag: = 80, which was the value df in the best com-

Ryps(S;) 0.68(0.13) 0.50(0.17) 0.44(0.15)
[S;1 22.3(3.2) 19.7(24) 21.134)
Generations 358 (16.5) 9.3 (0.4) 1667 (0.0)

Test Specification of (k, prg) bination ofk andpys in Fig. 13. While we examined various
problem Tuned (100, 1) prs =0 values ofT', we did not observe any improvement in thég

2/20 44(07) 5409 58(13) measure by the specification’tfas” > 1. Thatis, we obtained

2/40 173 (3.0) 267 (17) 22.9(5.3) the best result froml” = 1. We also examined the effect @f

2/60 193(1.8) 27325 23.8(2.6) for the other test problems in the same manner. The best results

were obtained fronl” = 1 for all the eight test problems. This

2/80 67.2(12.1) 125.7(9.3) 97.8(21.1) . e .

may be because the selection of initial solutions for local search
3/20 77 - 9.7(12) - 8.7(09) lays a very important role in our MOGLS as shown in Tables V
3/40 19.6 (2.4) 26.2(3.0) 21.5(2.1) piay yimp

and VI. We will further examine the effect @ in the context
of the hybridization of other EMO algorithms with local search
in Section V.

3/60 254 (2.9) 355(3.1) 31.5(4.6)
3/80 312(3.2) 47.1(5.5) 35.8 (4.4)

pLs = 0in Table XI. From this table, we can see that the perfoP- Efféct of Genetic Search
mance deterioration by the use of large valuek ahdp s was For examining the effect of the crossover probabitityand
small for the two-objective 20-job test problem (i.e., the neg#he mutation probabilityy; on the performance of our MOGLS,
tive effect of the hybridization with local search was small). Thige performed computational experiments using 121 combina-
may be because the number of examined solutions (i.e., 100 @idds of 11 values ofc andpy; (i.e.,pc = 0.0, 0.1, ..., 1.0
solutions) during the execution of our MOGLS was large rel@ndpy; = 0.0, 0.1, ..., 1.0). Whenpc = 0.0 andpy; = 0.0,
tive to the problem size in the case of the two-objective 20-jdhe evolution is driven by local search and selection. In this case,
test problem. On the other hand, the positive effect of the hgur MOGLS can be viewed as a population-based multiobjec-
bridization with local search was still clear for small-size tedive local search algorithm. Using the best parameter values in
problems as shown in Table XI. Fig. 13 for the local search part (i.é.,= 80, pLs = 0.02 and
We further examined the positive and negative effects @f = 1), we applied our MOGLS with each combinationzgf
the hybridization with local search for the other test problensndp,,; to the two-objective 80-job test problem 20 times. The
using theD1r measure. Average results over 20 runs amher parameter values were the same as the above-mentioned
summarized in Table XlI, where standard deviations are showomputational experiments. Average results over 20 runs are
in parentheses. In this table, the second column labeledsasnmarized in Fig. 15, where the performance of the MOGLS
“Tuned” shows the results obtained from the best combinatitevaluated using the1g measure as in Fig. 13. From Fig. 15,
of k andprs for each test problem (e.dg:,= 80 andprs = 0.02 we can see that the performance of the MOGLS was less sensi-
for the 2/80 problem). In this table, we can observe both thiee top andpy thank andprs (compare Fig. 15 with Fig. 13).
positive and negative effects in all the eight test problems whileln Fig. 15, the best (i.e., smallest) average result 61.6 was
their strength depends on the problem. obtained frompc = 0.9 andpy = 0.1 among the 121 combi-
From the above experimental results, one may think that thations ofpc andpy;. When the crossover probabilipy was
negative effect of the hybridization with local search can be repecified agpc = 0 (i.e., no crossover: the left-most row of
duced by the increase in computation load. This may be the c&$g. 15), the best average result 68.6 was obtained fragm-
for all test problems. We need, however, much more computa2. On the other hand, the best average result 63.8 was ob-
tion load for large test problems because the size of the searaimed frompc = 1.0 when the mutation probabilityy; was
space exponentially increases with the number of jobs file., specified apy; = 0 (i.e., no mutation: the top-most row). Fur-
for n-job problems). We performed computational experimentsermore, the average result was 72.3 in the caga-0& 0
with more computation load (i.e., evaluation of 500 000 solandpy = 0 (no genetic search: the top-left corner). These four
tions) for the two-objective 80-job test problem in the sameases are compared in Table XIIl. From this table, we can see
manner as Fig. 13. In experimental results, we still observedhat the crossover and the mutation improved the search ability
clear negative effect of the hybridization with local search whestf our MOGLS. When we did not use the genetic operations,
bothk andprs were large as in Fig. 13. the average number of obtained solutions was small (i.e., 8.2).
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TABLE XIV
COMPARISON OF THEFOUR CASESWITH RESPECT TO THEPARAMETER
SPECIFICATIONS IN GENETIC SEARCH FOREACH OF THE EIGHT TEST
PROBLEMS. THE AVERAGE VALUE OF THE D1r MEASURE AND THE
CORRESPONDINGSTANDARD DEVIATION ARE SHOWN FOREACH CASE

Test Specification of ( pc, py )

problem (5 py) (0, pp)  (pc.0)  (0,0)

2/20 44(0.7) 4.6(0.7) 59(1.1) 85(1.7)
2/40 17.3 (3.1) 21.8(3.0) 22.2 (4.7) 28.5(5.3)
2/60 19.2 (2.4) 19.7 (1.6) 20.4 (2.4) 22.5(2.9)
2/80  61.6(10.5) 68.6(9.6) 63.8(12.0) 72.3(14.9)
3/20 7.4(0.6) 7.7(1.0) 8.3(1.0) 11.6(1.7)
3/40 18.9 (2.5) 19.5(2.1) 19.5(2.6) 21.3 (2.8)

3/60 29.5(3.6) 39.6 (3.6) 42.7 (3.9) 53.4(4.7)
Fig. 15. Average value of th®1gr measure for the two-objective 80-job 3/80 28.2 (3.3) 29.6 (4.3) 28.2(3.3) 31.5(3.3)
problem by our MOGLS with various specifications of the crossover probability
pc and the mutation probabilityy, .

TABLE XV
TABLE Xl COMPARISON OF THEFOUR ALGORITHMS BASED ON THE RESULTS IN TABLE
COMPARISON OF THEFOUR CASESWITH RESPECT TO THEPARAMETER XIV. IN THE FIRST Row, A < B MEANS THAT THE ALGORITHM A
SPECIFICATIONS INGENETIC SEARCH FOR THETWO-OBJECTIVE 80-JB TEST OUTPERFORMS THEALGORITHM B
PROBLEM. LARGERVALUES OF Rxps(.5;) AND |.S;| MEAN BETTER SOLUTION
SETSWHILE SMALLER VALUES OF D1x MEAN BETTER SOLUTION SETS Tess CM CM CM M C
Problem <M <C <LS <LS <LS
Measure Specification of ( pc, pv ) 220 - 99 99 99 99
(0.9,01) (0,02) (1.0,0)  (0,0) 240 99 99 99 99 99
DIy 61.6(10.5) 68.6 (9.6) 63.8(12.0) 72.3(14.9) 2/60 - - 99 99 97.5
Ryps(S;)  0.53(0.36) 0.28(0.23) 0.52(0.31) 0.26(0.23) 2/80 95 - 99 - 95
[S; ] 10.2 (3.5) 11.0(3.4) 11.1(5.3) 8.2(2.6) 3/20 - 99 99 99 99
Generations 410(68.4) 461(44.9) 443(45.5) 518(40.2) 3/40 - - 99 95 -
3/60 99 99 99 99 99
Moreover, only 26% of them were not dominated by other so- 3% - - 9 - 9

lutions in each run on the average. In Table XllI, the crossover

seems to be more important than the mutation because bette @utperforms the algorithm B. In this table, “-” means that the
sults were obtained from our MOGLS with only the crossoveipnfidence level is less than 95%. From the fourth column of
operation than that with only the mutation operation. Table XV, we can see that our MOGLS with both genetic op-
In the same manner as Table XIlI, we further examined the frations (i.e., CM) significantly outperformed its variant with
fect of genetic search for the other test problems. ExperimentgJ genetic operations (i.e., LS) for all the eight test problems.
results are summarized in Table XIV using theér measure e can also see from the last two columns of Table XV that the
where we used the tuned parameter values, f.s and7 for  yse of at least one genetic operation (i.e., C or M) significantly
each test problem. In this table, the column labeledasiy)  improved the performance of our MOGLS with no genetic op-
shows the best result among the 121 combinationscofnd  erations (i.e., LS) for many test problems. These results suggest
pu for each test problem. On the other hand,/(Q) and pc.  that at least one genetic operation is necessary in our MOGLS.
0) mean the best specification pf; whenpc = 0 (i.e., N0 The necessity of both genetic operations was clearly shown in
crossover) and the best specificationpefwhenpy = 0 (i.e.,  the second and third columns of Table XV for some test prob-
no mutation), respectively. For the results in Table XIV, we efems (e.g., 2/40 and 3/60), while it was not clear for other test
amined the statistical significance using the Mann—-Whitney toplems (e.g., 2/60 and 3/40). Moreover, the best result for the

test for three confidence levels 95%, 975%, and 99%. MO%O test prob'em was obtained from the Cas@@f> 0 and
specifically, we compared each result in the four columns i), — ¢ (see Table XIV).

Table XIV obtained from the four variants of our MOGLS:

LS (the population-based multiobjective local search algorithm |\ compPARISONWITH OTHER EMO ALGORITHMS

with no genetic operations whefes = 0 andpyy = 0), C i

(MOGLS with no mutation wherec > 0 andpy = 0), M A Comparison With SPEA and NSGA-II

(MOGLS with no crossover wherg- = 0 andpy; > 0) and We compare our MOGLS with the SPEA [10] and the
CM (MOGLS with both genetic operations where > 0 and NSGA-II [13] through computational experiments on the
pum > 0). We examined the confidence level with which one akight test problems under the same stopping condition (i.e.,
gorithm can be viewed as being better than another algorithm #aluation of 100000 solutions). Fair comparison among
each test problem based on fthér measure. Results are sumdifferent algorithms is not easy, especially when they involve
marized in Table XV, where A< B means that the algorithm many parameters. Since different parameter values may be
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TABLE XVI
BEST, AVERAGE, AND WORSTVALUES OF THED1r MEASUREOVER 540 SLUTION SETS OBTAINED BY EACH ALGORITHM FOR EACH TEST PROBLEM

Test SPEA NSGA-II MOGLS
problem  Best Ave. Worst Best Ave. Worst Best Ave. Worst

2/20 29 6.0 125 33 12.1 40.8 20 53 94

2/40 79 183 334 9.1 284 768 10.7 20.0 31.5

2/60 124 22,6 34.1 13.1 281 725 13.1 213 314
2/80 40.6 849 145.4 38.0 99.9 220.8 264 722 116.7
3/20 42 77 154 9.0 240 54.1 59 81 123
3/40 1.7 17.8 315 13.2 450 89.6 142 20.8 29.0
3/60 15.1 248 384 15.6 46.8 80.0 182 272 38.8
3/80 199 28.8 424 21.2 49.8 90.5 20.1 322 493

appropriate for each of the three algorithms (i.e., MOGLS, TABLE XVII

SPEA and NSGA-Il), we examined 27 combinations of the COMPARISON OF THETHREE ALGORITHMS USING THE D1z MEASURE
foIIowing parameter values: (SMALLER VALUES MEAN BETTER SOLUTION SETS)

population size §pop): 30, 60, 120; Test  SpEA  NSGA-I MOGLS

il . . problem
crossover probal_Jllllty;r(c). 0:6, 0.8, 1.0; 220 51(13) 58(15) 46(.D
mutation probability per stringpgs): 0.4, 0.6, 0.8. 2/40  21.7(3.7) 15.2(3.2) 21.3(42)
Inthe SPEA, the size of the secondary population was specified ;;gg 9179.'31(1(3133 7117.‘38(1(‘1‘:% 62&2(1%3
as 60, independent of the size of the primary population. The 3/20  10.8(1.1) 10.6(0.9) 8.2(0.8)
values ofk, pr.s, andT tuned in Section Il were used for each 3/40  16.2(1.9) 20.2(2.7) 19.2(2.2)

3/60  24.9(3.9) 35.9(6.7) 24.5(3.3)

test problem in our MOGLS. We used the two-point crossover 380 25.9(2.8) 278 (34) 298(3.4)

in Fig. 7 and the insertion mutation in Fig. 8 for all the three al-
gorithms. The insertion mutation was also used for local search

. TABLE XVIII
in our MOGLS. COMPARISON OF THETHREE ALGORITHMS USING THE RATIO OF
Each algorithm was applied to each test problem 20 times NON-DOMINATED SOLUTIONS (LARGER VALUES MEAN BETTER

for each of the 27 combinations of the parameter values. Thus, SOLUTION SETS)

540 solution sets were obtained by each algorithm for each test Test

problem. Table XVI summarizes the best, average, and worst problem SPEA  NSGA-Il MOGLS
values of theD1r measure over those 540 solution sets. From %ﬁg 8.62 (é;t) 8-57 (-éS) 0.64 (.11)
this table, we can see that the performance of the NSGA-II e 0:;,/ 5125; 0:‘7“2) E:zg; 8:22 8‘7‘3
strongly depends on the parameter specifications. While there 2/80  0.14(20) 0.38(.36) 0.73(.27)
are no large differences in the best results among the three algo- 3/20  0.33(.14) 0.41(.14) 0.85(.10)
rithms except for the results on the 2/80 and 3/20 test problems, 3/40  0.60(.18) 0.48(.26) 0.64(.19)

3/60  0.61(.25) 0.21(.12) 0.78(.22)

the worst results by the NSGA-II are much inferior to those by 380 0.58(36) 0.53(30) 0.54(28)

the other algorithms for all the eight test problems. The worst
results by the MOGLS are better than those by the SPEA for TABLE XIX

Six test prObIemS except fOI’ 3/60 and 3/80 ThIS means that tBSMPARISON OF THETHREE ALGORITHMS USING THE NUMBER OF OBTAINED
performance of our MOGLS is less sensitive to the parameter  SoLuTioNs (LARGER VALUES MEAN BETTER SOLUTION SETS)
specifications ofN,.p,, pc andpy; in the EMO part than the

SPEA and the NSGA-II. The best results for the two-objective przglsém SPEA NSGA-I MOGLS
test problems ir_1 Table XVI were obtained by our MOGLS on 250 235(3.0) 19601 22730
the average while the SPEA was the best for the three-objective 2/40 21.8(3.8) 23.1(2.6) 20.1(5.4)
test problems. 2/60 21.5(5.2) 199@4.0) 13.7(3.7)

2/80 12.0(4.6) 16.0(3.7) 11.9(3.6)

We further examined the performance of each algorithm 320 30.5(0.8) 48.9(4.8) 104.9(11.9)
using the best values of the three parametéss,, pc andpu 3/40 603 (2.1) 59.2(3.6) 73.8(14.2)
for each test problem. That is, we chose the parameter values 3/60  61.0(1.1) 41.5(5.7) 71.4(14.6)

from which the best solution set was obtained by each algorithm 3/80 60.6(1.3) 53.6(7.8) 53.2(11.1)

for each test problem in Table XVI. Using those parameter

values, we applied each algorithm to each test problem 80 obtained solutions for the two-objective test problems in
times. Experimental results were summarized in Table XVII fdrable XIX. These results suggest that our MOGLS tends to
the D1g measure, Table XVIII for the ratio of nondominatedind fewer solutions with higher quality than the SPEA and
solutions, and Table XIX for the number of obtained solutionthe NSGA-II (we have similar results by the hybridization
We can see from Table XVIII that our MOGLS outperformeaf the SPEA and the NSGA-II with local search in the next
the other algorithms for six test problems in terms of the ratgubsection). As a result, our MOGLS is comparable to the other
of nondominated solutions. On the other hand, our MOGL&gorithms for many test problems with respect to iheg

was inferior to the other algorithms in terms of the numbeneasure in Table XVII.
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TABLE XX TABLE XXII
COMPARISON OF THETHREE ALGORITHMS USING THE COMPUTATION AVERAGE VALUE OF THE D1g MEASURE EACH BOLDFACE RESULT BY A
TIME (SECONDS HYBRID ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE
CORRESPONDINGRESULT BY ITS NON-HYBRID VERSION WITH THE
Test SPEA NSGA-I MOGLS 95% CGONFIDENCE LEVEL
problem
220 4.6(0.12) 8.1(0.02) 3.3(0.04) Test Pure  brid  Pure  Hybrid
2/40 6.3 (0.05) 10.6 (0.03) 7.5(0.03) roblem SPEA SPEA NSGA- NSGA-II
2/60 9.6 (0.23) 13.2(0.05) 7.0 (0.05) P Ver.l Ver2 I  Ver.l Ver.2
2/80 11.1(0.10) 15.7 (0.04) 9.8 (0.11) 2/20 51 47 50 58 51 51

320 7.5(0.19) 8.9(0.06) 4.0(0.10)

340 109(0.78) 112(0.02) 5.1(0.04) 240 217 157 19.6 152 14.6 144
3/60 16.0 (0.97) 11.4(0.04) 8.7(0.17) 2/60 19.1 184 185 178 18.0 17.5
3/80 155 (1.11) 16.4 (0.04) 9.8 (0.14) 280 973 50.5 717 713 60.5 64.7

3/20 108 9.6 93 106 9.7 88
3/40 162 159 159 202 18.2 18.2
TABLE XXI 3/60 249 236 236 359 28.8 28.2

COMPARISON OF THETHREE ALGORITHMS USING THED1r MEASUREUNDER 3/80 259 260 254 278 272 27.1
THE SAME COMPUTATION TIME: 10 SECONDS

Test
problem SPEA ~ NSGA-Il MOGLS be combined with other EMO algorithms such as the SPEA and
2220 44(L1) 57(1.3) 3.3(1.0) the NSGA-Il. We implemented a hybrid SPEA by combining

240  17.4(2.9) 15.6(3.1) 19.3(4.0)

260 18.8(2.9) 19.8(2.3) 18.4(3.0) the SPEA with the local search part of our MOGLS. A hybrid
2/80 101.2(19.1) 91.2(16.8) 59.9(12.1) NSGA-II was also implemented in the same manner. In those
320 11.1(1.2) 10.7(1.1) 6.3(1.0) hybrid algorithms, the SPEA and the NSGA-II are used as the
gfgg ;g'g 8"8 %2:2 gg ég'g gg EMO part of Fig. 4 with no modifications. The local search part
3/80  30.1 (3:8) 31.9 (3.5) 29 4 (3:4) is applied to the new population generated by the EMO part.

The improved population is returned to the EMO part as the cur-
rent population. In the hybrid SPEA, local search is not applied

In Table XX, we compare the three algorithms in terms ab the secondary population as in our MOGLS. The secondary
the computation time. All the three algorithms were coded population is updated using the primary population improved by
C and executed on a PC with a Pentium 4 CPU (2.2 GHz). Wétal search. We also implemented another version (say Ver.2)
used the same code in the three algorithms for calculating thiehybrid algorithms where the scalar fithess function was not
objective functions of each solution. Since the number of evalsed for selecting initial solutions for local search. In the Ver.2
uated solutions was used as the stopping condition, the thrgérid algorithms, local search is applied to each solution with
algorithms spent the same computation time for solution evalire local search probability.s independent of its quality as an
ations. Thus, the difference in the total computation time amoimgtial solution. The local search direction of each solution is
the three algorithms stemmed from the difference in their fispecified by the pseudoweight vector in (9). A similar idea to
ness calculation mechanisms and the generation update mede-\er.2 hybrid algorithms has already been used in Table V
nisms. While the SPEA and NSGA-II used sophisticated fithefsr avoiding too much selection pressure.

calculation mechanisms based on the Pareto-dominance relarpese two versions of the hybrid SPEA and the hybrid
tion a”‘?' the conce.pt of crowding, our MOGLS used a S_'mPIQSGA-II were compared with their nonhybrid versions (i.e.,
scalar fitness function. Moreover, the local search operation t&ﬁre EMO algorithms). Each algorithm was applied to each
gt_anerating_new solutions is simpler.than the genetic operatiqps; problem 20 times using the same stopping condition:
with selection, crossover and mutation. From Table XX, we calya|yation of 100 000 solutions. In the EMO part of each hybrid
expect that experimental results may favor our MOGLS whegiyorithm, we used the same parameter values as its nonhybrid
the three algorithms are compared under the same COMPWgion in Tables XVII-XX. That is, the parameter values in
tion time instead of the same number of examined solutions. i Emo part were tuned not for each hybrid algorithm but for
Table XXI, we show the average values of ez measure ob- ji5 griginal pure EMO algorithm. In the local search part of
tained by each algorithm when the same computation time was.p, hybrid algorithm, the best combination/ofp;s and T’

used as the stopping condition. In computational experimentsilg chosen for each test problem from their 18 combinations
Table XXI, the execution of each algorithm was iterated for 1@e. k = 1,10, 100,pr5 = 0.01, 0.1 andT = 1, 10, 100).

seconds. From this table, we can see that better results Wereﬁpe- average value of thB1g measure, the average ratio
tained from our MOGLS than the SPEA and the NSGA-II fopt hgngominated solutions, the average number of obtained

seven test problems in Table XXI (except for the 2/40 problemyy tions and the average computation time are summarized
o ) in Tables XXII-XXV, respectively. We examined whether
B. Hybridization of EMO Algorithms each hybrid algorithm outperformed its original pure EMO
In our MOGLS, the local search direction (i.e., the weigtalgorithm for each test problem. When we can confirm that
vector in the scalar fithess function) for each solution is not i hybrid algorithm outperformed its nonhybrid version with
herited from the EMO part. This means that the local search ptre 95% confidence level by the Mann—Whitney U test, the
is independent of the EMO part. Thus the local search part camrresponding result by the hybrid algorithm is highlighted by
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TABLE XXIII TABLE XXV
AVERAGE RATIO OF NON-DOMINATED SOLUTIONS. EACH BOLDFACE RESULT AVERAGE COMPUTATION TIME (SECONDS. EACH BOLDFACE RESULT BY A
BY A HYBRID ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE HYBRID ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE
CORRESPONDINGRESULT BY ITS NON-HYBRID VERSIONWITH THE CORRESPONDINGRESULT BY ITS NON-HYBRID VERSIONWITH THE
95% QONFIDENCE LEVEL 95% QONFIDENCE LEVEL

Hybrid Pure Hybrid Hybrid Pure Hybrid

Test  Pure Test Pure

SPEA  NSGA- NSGA-II SPEA  NSGA- NSGA-II
problem SPEA Ver.l Ver.2 II  Ver.l Ver.2 problem SPEA Ver.l Ver.2 I  Ver.l Ver.2
220 0.48 0.61 0.50 0.50 0.53 0.53 2/20 46 31 43 8.1 69 4.0
2/40  0.05 0.34 0.02 031 039 0.32 2/40 6.3 73 6.4 106 10.7 10.6
2/60 024 029 022 025 0.19 0.24 2/60 96 9.0 96 13.24 13.21 13.19
2/80 0.04 0.53 0.11 0.11 0.32 0.26 2/80 11.1 9.7 11.0 157 14.0 13.6
320 023 0.58 0.47 026 036 0.54 3/20 7.5 27 2.6 89 43 2.7
3/40 029 0.39 036 024 031 028 3/40 109 9.5 104 112 114 113
3/60 042 0.44 047 0.18 0.28 0.15 3/60 160 13.1 124 114 68 74
3/80 026 0.32 034 035 023 022 3/80 155 153 155 164 163 16.3

TABLE XXIV
AVERAGE NUMBER OF OBTAINED SOLUTIONS. EACH BOLDFACE RESULT BY A
HYBRID ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE
CORRESPONDINGRESULT BY ITS NON-HYBRID VERSIONWITH THE
95% QONFIDENCE LEVEL

Hybrid Pure Hybrid

SPEA  NSGA- NSGA-II
Ver.l Ver.2 1II  Ver.l Ver.2
2/20 23,5 223 232 19.6 203 21.0
2/40 21.8 23.7 225 231 215 242
2/60 21,5 207 234 199 20.8 22.0
2/80 12.0 9.7 10.1 16.0 165 16.0
3/20 305 306 30.8 489 470 53.6 Fig. 16. Average value of thB1x measure obtained by the hybrid SPEA
3/40 603 603 60.8 59.2 56.7 58.7 Ver.1 algorithm using various values bfandyp,,s for the 2/80 test problem.
3/60 61.0 308 30.8 415 312 374
3/80 60.6 606 59.5 53.6 51.1 533

Test  Pure
problem SPEA

boldface in each table. From Table XXII, we can see that the
performance of the SPEA and the NSGA-Il was significantly
improved for some test problems by the hybridization with local
search. Such improvement is also observed in Table XXIII. The
difference between the two versions of the hybridization was
not large for many test problems in Table XXII. On the other
hand, the hybridization with local search severely decreased
the number of obtained solutions for some test problems (i.e.,
2/80 and 3/60) while there exist some counter-examples in
Table XXIV. Moreover, the hybridization with local search
significantly decreased the computation time for many test
problems as shown in Table XXV. Thus the experimentgaly 17, average value of th®1; measure obtained by the hybrid SPEA
results in Tables XXIl and XXIII will more favor the hybrid Ver.1 algorithm using various values pfs andT for the 2/80 test problem.
algorithms if computational experiments are performed under
the same computation time as in Table XXI. the hybrid algorithm than the case pfs = 0 with no local

In Table XXII, the largest improvement was achieved for theearch (i.e., the top-most row of Fig. 16). In Fig. 16, the best
2/80 test problem by the hybrid SPEA Ver.1 algorithm. Usingesult 43.8 was obtained whén= 60 andprs = 0.02. Using
this algorithm, we examined the effect of the parameteasd £ = 60, we examined the effect gfps andT" on the perfor-
pLs on the performance in the same manner as Fig. 13 in Setance of the hybrid SPEA Ver.1 algorithm in the same manner
tion 1ll. Experimental results are summarized in Fig. 16. In thias Fig. 16. Experimental results are summarized in Fig. 17. As
figure, we can observe the negative effect of the hybridizatiam Fig. 16, we can observe the negative effect of the hybridiza-
with local search when both and pr.s were large (i.e., the tion with local search in Fig. 17 when s was large and” was
right-bottom corner). We can also observe the positive effectghall (i.e., the bottom-right corner). Moreover, we can observe
the hybridization whei& andpy,s were appropriately specified. a valley from the bottom-left corner to the top-right corner in
That is, smaller values of thB1g measure were obtained byFigs. 16 and 17 as in Fig. 13 by our MOGLS in Section IIl.
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TABLE XXVI choosing only good individuals from the current population as
AVERAGE VALUE OF THE D1r MEASURE OBTAINED FROM THE TUNED initi ; i ifvi
PARAMETER VALUES OF THEPOPULATION SIZE, THE CROSSOVERPROBABILITY initial solutions of l.ocal. search and fqr gppropna_tely specifying
AND THE MUTATION PROBABILITY . EACH BOLDFACE ResuLT By A Hysrip @ local search direction of each initial solution. Next, we
ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE CORRESPONDING  examined the positive and negative effects of the hybridization
- 0, .
RESULT BY ITS NON-HYBRID VERSIONWITH THE 95% QONFIDENCELEVEL  \vith [ocal search on the performance of our MOGLS. Then

we demonstrated the importance of striking a balance between

Hybrid Pure Hybrid

Test  Pure SPEA  NSGA- NSGA-II genetic search and local search. We also examined the role
problem SPEA = =0 1 Verdl Ver2 of genetic search in our MOGLS. Moreover our MOGLS
2/20 51 45 5.0 58 51 5.1 was compared with the SPEA and the NSGA-II. Finally, we
2/40 217 149 152 152 14.6 144 demonstrated that the local search part of our MOGLS could
2/60 19.1 183 185 17.8 18.0 175 be easily combined with other EMO algorithms such as the
2/80 973 46.0 717 713 549 618 SPEA and the NSGA-Il. It was shown through computa-
320 108 82 78 106 93 88 tional experiments that the performance of the SPEA and the
3/40 162 156 158 202 18.2 182 NSGA-II was significantly improved for some test problems

3/60 249 21.7 22,0 359 273 27.1

380 250 260 254 278 272 271 by the hybridization with local search. It was also shown that

the hybridization significantly decreased the computation time
of those EMO algorithms for many test problems.

While better results were obtained from the Ver.2 hybrid 1"€ main contribution of this paper is that the importance
algorithms than their original pure EMO versions for all tth striking a balance between genetic search and local search

eight test problems in Table XXII, the Ver.1 hybrid algorithmas clearly demonstrated through computational experiments
did not always outperform their original versions (i.e., 3/g8" Multiobjective permutation flowshop scheduling problems.
for SPEA and 2/60 for NSGA-Il). One possible reason jgor adjusting the balance, we used three parameters that can de-
the use of the tuned parameter values for the SPEA and f{2S€ the number of solutions examined by local search. The
NSGA-II. In Section IV-A. the best combination was choseMalues of those three parameters were constant during the ex-
for the SPEA and the NSGA-Il among 27 combinations of thigeution of our computational experiments. Dynamic control of
population sizeN,,,, (30, 60, 120), the crossover probability10S€ parameters is a future research topic.ela. [49] pro-
pe (0.6, 0.8, 1.0) and the mutation probability; (0.4, 0.6 posed an idea of adjusting the number of solutions examined in

0.8). The chosen combination for each EMO algorithm Wé_gcal search in their mul_tiobjective memetic algorithm. Many
also used for its hybrid versions in Tables XXII-XXV. Wher{SSues related to dynamic parameter control have already been
the best combination among those 27 combinations was uééldd'ed forsmgle-objgctlve memetic algorithms [34], [47], [48]',
for each hybrid algorithm, experimental results were improvdgCl: [91]- Those studies can be extended to the case of multi-
for some test problems, as shown in Table XXV (Compa,%bjectlve meme_tlc al_gorlthms vyhere more emphasis s_hould be
Table XXVI with Table XXII). Even in Table XXVI, the Ver.1 placed on the diversity of solutions than the case of single-ob-

hybrid algorithms slightly deteriorated the performance of thelffCtive optimization. _ o .
original pure EMO algorithms (i.e., 3/80 for SPEA and 2/60 The performance evaluation of our MOGLS in this paper is

for NSGA-I1). This may be due to the negative effect of the s&1°t complete. We compared our MOGLS with a population-

lection of initial solutions for local search. As we have alreadgesed MOLS algorithm, which was implemented by specifying
shown in Tables Il and IV, the proposed selection scheme B crossover probabilityc and the mutation probabiligy as

initial solutions for local search can degrade EMO algorithm&¢ = 0 andpy = 0. As summarized in Jaszkiewicz [52], a
It should be noted, however, that much larger improvement Wlagmber O,f M_OLS allgorlthms.have been propqse(_j n the f|eld
achieved in Table XXVI for some test problems (e.g., 2/80) b?/‘ multicriteria decision making such as multiobjective sim-

the Veer.1 hybridization with the proposed selection scheme thidted annealing (MOSA) [43], [53] and multiobjective tabu

the Ver.2 hybridization with no selection of initial solutionsS€arch (MOTS) [54]). Comparison of our MOGLS with those

The Ver.1 hybridization significantly improved the convergen

OLS algorithms is a future research topic. Comparing our

speed to the Pareto front of the SPEA in Table XXIII for man%SGLS with other multiobjective memetic algorithms such as
more test problems than the Ver.2 hybridization. On the oth MOGLS of \']aszklewmz [22] and the M-PAES Of, Kn_owles

hand, the number of obtained solutions by the Ver.1 hybr@f'd Come [23] is also left for future research. Jaszkiewicz [55]
NSGA-Il was smaller than that by the Ver.2 hybrid NSGA-Ifompared these two algorithms with three MOSA algorithms
for seven test problems in Table XXIV (except for 2/80). Thedfrough computational experiments on multiobjective knapsack
observations suggest that the proposed selection schemdgPlems. He obtained the best results from his MOGLS [22]
initial solutions for local search used in the Ver.1 hybridizatioﬂnd an MOSA of Czyzak and Jaszkiewicz [43]. Jaszkiewicz’s

tends to improve the convergence speed to the Pareto friiffGLS and the M-PAES were also compared with each other
while it tends to degrade the diversity of solutions. on multiobjective knapsack problems by Knowles and Corne

[24], where better results were obtained from the M-PAES than
Jaszkiewicz's MOGLS.
Inour MOGLS, simple hill climbing was used as local search.
In this paper, we first improved the performance of thk is worth examining the use of other local search algorithms
former MOGLS [20], [21] by modifying its local search part by(e.g., simulated annealing and tabu search) in multiobjective

V. CONCLUSION AND FUTURE RESEARCH
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memetic algorithms. Such a future study will motivate us to def20] H. Ishibuchi and T. Murata, “Multi-objective genetic local search algo-
sign adaptive multiobjective memetic algorithms that can dy-

namically control the balance between genetic search and locgh;
search through the choice of local search algorithms and neigh-

borhood structures in addition to the adaptation of paramet
values in a similar manner to multimeme memetic algorithms

[34].
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