
204 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

Balance Between Genetic Search and Local Search
in Memetic Algorithms for Multiobjective

Permutation Flowshop Scheduling
Hisao Ishibuchi, Member, IEEE, Tadashi Yoshida, and Tadahiko Murata, Member, IEEE

Abstract—This paper shows how the performance of evolu-
tionary multiobjective optimization (EMO) algorithms can be
improved by hybridization with local search. The main positive
effect of the hybridization is the improvement in the convergence
speed to the Pareto front. On the other hand, the main negative
effect is the increase in the computation time per generation.
Thus, the number of generations is decreased when the available
computation time is limited. As a result, the global search ability of
EMO algorithms is not fully utilized. These positive and negative
effects are examined by computational experiments on multiob-
jective permutation flowshop scheduling problems. Results of
our computational experiments clearly show the importance of
striking a balance between genetic search and local search. In
this paper, we first modify our former multiobjective genetic local
search (MOGLS) algorithm by choosing only good individuals as
initial solutions for local search and assigning an appropriate local
search direction to each initial solution. Next, we demonstrate the
importance of striking a balance between genetic search and local
search through computational experiments. Then we compare
the modified MOGLS with recently developed EMO algorithms:
strength Pareto evolutionary algorithm and revised nondominated
sorting genetic algorithm. Finally, we demonstrate that local
search can be easily combined with those EMO algorithms for
designing multiobjective memetic algorithms.

Index Terms—Evolutionary multiobjective optimization, genetic
local search, memetic algorithms, multiobjective optimization, per-
mutation flowshop scheduling.

I. INTRODUCTION

SINCE Schaffer’s study [1], evolutionary algorithms have
been applied to various multiobjective optimization prob-

lems for finding their Pareto-optimal solutions. Evolutionary al-
gorithms for multiobjective optimization are often referred to
as evolutionary multiobjective optimization (EMO) algorithms.
For review of this field, see [2]–[5]. The task of EMO algorithms
is to find as many Pareto-optimal solutions as possible. In early
studies on EMO algorithms (e.g., [6]–[8]), emphasis was mainly
placed on the diversity of solutions in order to find uniformly
distributed Pareto-optimal solutions. Thus several concepts such

Manuscript received June 17, 2002; revised September 21, 2002. This work
was supported by Japan Society for the Promotion of Science (JSPS) through
Grand-in-Aid for Scientific Research (B): KAKENHI (14380194).

H. Ishibuchi and T. Yoshida are with the Department of Industrial Engi-
neering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531,
Japan (e-mail: hisaoi@ie.osakafu-u.ac.jp; yossy@ie.osakafu-u.ac.jp).

T. Murata is with the Department of Informatics, Faculty of Informatics,
Kansai University, 2-1-1 Ryozenji-cho, Takatsuki, Osaka 569-1095, Japan
(e-mail: murata@res.kutc.kansai-u.ac.jp).

Digital Object Identifier 10.1109/TEVC.2003.810752

as niching, fitness sharing, and mating restriction were intro-
duced into EMO algorithms. In recent studies (e.g., [9]–[13]),
emphasis was placed on the convergence speed to the Pareto
front, as well as on the diversity of solutions. In those studies,
some form of elitism was used as an important ingredient of
EMO algorithms. It was shown that the use of elitism improved
the convergence speed to the Pareto front [12].

One promising approach for improving the convergence
speed to the Pareto front is the use of local search in EMO
algorithms. Hybridization of evolutionary algorithms with
local search has already been investigated for single-objective
optimization problems in many studies (e.g., [14], [15]). Such
a hybrid algorithm is often referred to as a memetic algorithm.
See Moscato [16] for an introduction to this field and [17]–[19]
for recent developments. The hybridization with local search
for multiobjective optimization was first implemented in
[20], [21] as a multiobjective genetic local search (MOGLS)
algorithm where a scalar fitness function with random weights
was used for the selection of parents and the local search for
their offspring. Jaszkiewicz [22] improved the performance of
the MOGLS by modifying its selection mechanism of parents.
While his MOGLS still used the scalar fitness function with
random weights in selection and local search, it did not use
the roulette wheel selection over the entire population. A
pair of parents was randomly selected from a pre-specified
number of the best solutions with respect to the scalar fitness
function with the current weights. This selection scheme can
be viewed as a kind of mating restriction in EMO algorithms.
Knowles and Corne [23] combined their Pareto archived
evolution strategy (PAES [9], [11]) with a crossover operation
for designing a memetic PAES (M-PAES). In their M-PAES,
the Pareto-dominance relation and the grid-type partition of the
objective space were used for determining the acceptance (or
rejection) of new solutions generated in genetic search and local
search. The M-PAES had a special form of elitism inherent
in the PAES. The performance of the M-PAES was examined
in [24] for multiobjective knapsack problems and [25] for
degree-constrained multiobjective MST (minimum-weight
spanning tree) problems. In those studies, the M-PAES was
compared with the PAES, the MOGLS of Jaszkiewicz [22],
and an EMO algorithm. In the above-mentioned hybrid EMO
algorithms (i.e., multiobjective memetic algorithms [20]–[25]),
local search was applied to individuals in every generation. In
some studies [26], [27], local search was applied to individuals
only in the final generation. While Deb and Goel [26] used local
search for decreasing the number of nondominated solutions

1089-778X/03$17.00 © 2003 IEEE

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 205

Fig. 1. Example of a new tour generated by a local search operation.

(i.e., for decreasing the diversity of final solutions), Talbiet al.
[27] intended to increase the diversity of final solutions by the
application of local search. In this paper, we apply local search
to solutions in every generations. While is implicitly
assumed as in many computational experiments of this
paper as in [20]–[25], other values of(e.g., , 100) are
also examined in some computational experiments.

In many combinatorial optimization problems, local search
can be much more efficiently executed than genetic search.
Jaszkiewicz [22] mentioned that local search performed almost
300 times more function evaluations per second than genetic
search in the application of his MOGLS to multiobjective
traveling salesperson problems (TSPs). This is mainly because
local search only needs the difference in the objective values
(i.e., between the current solutionand
its neighbor instead of the objective value of . In the
case of TSPs, the complexity of the calculation of is ,
while that of is , where is the number of cities (for
details, see [28] and [29]). For example, let us consider Fig. 1,
where a new tour is generated by removing the edges (1, 2) and
(6, 7) and adding the edges (1, 6) and (2, 7). The difference in
the objective values between the two tours can be calculated
from only those four edges. On the other hand, when a new tour
is generated by genetic operations, we usually have to consider
much more edges for evaluating the new tour. In addition to the
efficient evaluation of new solutions (i.e., neighbors), they can
be much more efficiently generated in local search than genetic
search. This is because genetic search uses three steps (i.e.,
selection, crossover and mutation) for generating new solutions
while local search uses a single step.

We use some variants of the MOGLS in [20] and [21] for mul-
tiobjective permutation flowshop scheduling. Flowshop is one
of the most frequently studied scheduling problems in the lit-
erature (see [30] for an introduction to this field). Permutation
flowshop scheduling involves finding an optimal permutation of

jobs processed on machines. Thus, the size of the search
space is . Many objectives have been studied in the litera-
ture such as the makespan, total flow time, maximum tardiness,
and total tardiness. Except for some special cases (e.g., two-
machine flowshop scheduling for minimizing the makespan),

-machine -job permutation flowshop scheduling problems
are -hard (see Brucker [31] for the complexity of scheduling
problems). In flowshop scheduling, new solutions can be much
more efficiently generated in local search than genetic search
as in the case of TSPs. The evaluation of new solutions in local
search for flowshop scheduling, however, is not much faster than

Fig. 2. Example of a schedule for a three-machine ten-job problem.

Fig. 3. Example of a new schedule generated by the same local search
operation as Fig. 1.

genetic search. This is because the calculation of the difference
in the objective values cannot be efficiently performed for com-
monly used neighborhood structures. For example, let us con-
sider a schedule in Fig. 2 for a three-machine ten-job problem.
From the schedule in Fig. 2, we generate a new schedule in Fig. 3
by the same local search operation as Fig. 1 for TSPs. We can see
that the completion time of each job is different between Figs. 2
and 3, except for the first job. This means that the recalculation
of the completion time of each job is necessary for evaluating a
new schedule generated by the local search operation. Thus, the
computation time for evaluating a new schedule in local search
is the same order of magnitude as that in genetic search. For the
use of approximate evaluation of solutions in scheduling prob-
lems in order to speed up the search, see Watsonet al. [32],
where fast low-resolution and slow high-resolution simulations
were compared with each other.

In the former MOGLS [20], [21], we used an early termina-
tion strategy for decreasing the computation time spent by local
search. In this strategy, neighbors of the current solution are ex-
amined in random order. Then the current solution is replaced
with the first neighbor that is better than the current solution
(i.e., not the best improvement but the first improvement). The
execution of local search was terminated when no better solution
is found among neighbors randomly generated from the cur-
rent solution, where is a user-definable parameter. The same
early termination strategy was used in the M-PAES [23]. On
the other hand, all neighbors were examined in the MOGLS of
Jaszkiewicz [22]. In Knowles and Corne [24], the early termina-
tion strategy was used in Jaszkiewicz’s MOGLS, as well as the
M-PAES, in their computational experiments on multiobjective
knapsack problems.

In this paper, we introduce a local search probability to
the former MOGLS [20], [21] for decreasing the computation
time spent by local search. In the modified MOGLS, local search
is not applied to all solutions in the current population but prob-
abilistically applied to selected solutions with the probability

. We used a different parameter (i.e., the number of
solutions selected for local search) in our previous study [33].
While these two parameters have the same effect on the compu-
tation time spent by local search, we use the local search proba-
bility in this paper because the specification of depends
on the population size (e.g., for the population size

206 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

50 has a totally different meaning from for the case
of the population size 100). We try to strike a balance between
genetic search and local search using the two parametersand

in local search. We also use another parameterin some
computational experiments, where local search is applied to so-
lutions in every generations.

This paper is organized as follows. In Section II, we briefly
describe the former MOGLS [20], [21] where local search was
applied to all solutions in every generation. We show that the
performance of the former MOGLS can be improved by ap-
plying local search to not all solutions but only good ones. We
also discuss other implementation issues such as the specifica-
tion of an objective function used in local search and the choice
of a neighborhood structure. In Section III, we demonstrate the
importance of striking a balance between genetic search and
local search. Through computational experiments with various
specifications of the three parameters in local search (i.e.,,

and), we show positive and negative effects of the hy-
bridization with local search on the performance of EMO al-
gorithms. We also examine the necessity of genetic operations
in our MOGLS through computational experiments with var-
ious specifications of the crossover and mutation probabilities.
In Section IV, we compare our MOGLS with the strength Pareto
evolutionary algorithm (SPEA [10]) and the revised nondomi-
nated sorting genetic algorithm (NSGA-II [13]). Then we show
that local search is easily combined with those EMO algorithms
for designing multiobjective memetic algorithms. We conclude
this paper in Section V, where some topics for future research
are also suggested.

II. MOGLS ALGORITHMS

The outline of our MOGLS can be written in a generic form as
Fig. 4. This figure shows a basic structure of simple memetic al-
gorithms. For other types of memetic algorithms, see Krasnogor
[34], where a taxonomy of memetic algorithms was given using
an index number . Our MOGLS is a memetic algo-
rithm in his taxonomy (for details, see [34]).

A. Former MOGLS

We explain the former MOGLS [20], [21] using the following
-objective minimization problem:

Minimize (1)

subject to (2)

where is the objective vector, is the decision vector, and
is the feasible region in the decision space.

One issue to be considered in the hybridization of EMO al-
gorithms with local search is the specification of an objective
function to be optimized by local search. In the former MOGLS,
the following scalar fitness function to be minimized was used
in both the selection of parents and the local search for their off-
spring:

(3)

The weight (, , and)
was randomly specified whenever a pair of parents was to be

Fig. 4. Generic form of our MOGLS.

selected. That is, each selection was governed by a different
weight vector. A local search procedure was applied to each
offspring using the same scalar fitness function (i.e., the same
weight vector) as in the selection of its parents.

Another issue is the balance between genetic search and local
search. For decreasing the computation time spent by local
search, only a small number of neighbors of the current solution
were examined. It was shown in [21] that the performance
of the former MOGLS was deteriorated when all neighbors
were examined. The former MOGLS used a simple form of
elitism where all nondominated solutions obtained during its
execution were stored in a secondary population separately
from the current population. A few nondominated solutions
were randomly selected from the secondary population and
their copies were added to the current population. The former
MOGLS is written as follows.

Step 0) Initialization: Randomly generate an initial popula-
tion of solutions.

Step 1) Evaluation: Calculate the objectives for each
solution in the current population. Then update
the secondary population where nondominated
solutions are stored separately from the current
population.

Step 2) Selection:Repeat the following procedures to select
() pairs of parents.

a) Randomly specify the weights
where for and

.
b) Select a pair of parents based on the scalar

fitness function in (3). The selection proba-
bility of each solution in the cur-
rent population is specified by the fol-
lowing roulette wheel selection scheme with
the linear scaling:

(4)

where is the maximum (i.e., worst)
fitness value among the current population.

Step 3) Crossover and mutation:Apply a crossover op-
eration to each of the selected (
pairs of parents with the crossover probability

. A new solution is generated from each pair.

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 207

When the crossover operation is not applied, one
parent is randomly chosen and handled as a new
solution. Then apply a mutation operation to each
new solution with the mutation probability .

Step 4) Elitist strategy: Randomly select solutions
from the secondary population. Then add their
copies to the (solutions generated in
Step 3 to construct a population of solutions.

Step 5) Local search:Apply a local search procedure to
each of the solutions in the current popu-
lation using the scalar fitness function in (3). For
each solution, the weight vector used in the selec-
tion of its parents is also used in local search. Only
for a solution with no parents (i.e., solution gener-
ated in the initial generation in Step 0), we use a
random weight vector. Local search is terminated
when no better solution is found amongneighbors
that are randomly selected from the neighborhood
of the current solution. After local search is applied
to all solutions in the current population, the current
population is replaced with the improved solutions
(i.e., this algorithm is a Lamarckian multiobjective
memetic algorithm).

Step 6) Return to Step 1.

This algorithm is terminated when a pre-specified number of
solutions are examined during its execution. In the local search
part (i.e., Step 5), a neighbor is randomly generated from the
neighborhood of the current solution. If the neighbor is better
than the current solution, the current solution is replaced. That
is, the first improvement strategy is used in the local search part
instead of the best improvement strategy. When the current so-
lution is updated, local search continues for the new current so-
lution in the same manner.

In this algorithm, all nondominated solutions are stored in the
secondary population with no restriction (i.e., no upper bound)
on its size. In general, the restriction is necessary from the view-
point of memory storage and computation time (e.g., see the
SPEA [10]). We use, however, no restriction because we did not
encounter any difficulties related to the maintenance of the sec-
ondary population in our computational experiments on permu-
tation flowshop scheduling problems reported in this paper. Of
course, there may be many application fields where the restric-
tion on the size of the secondary population is necessary.

Randomly selected solutions from the secondary pop-
ulation in Step 4 work as elite solutions. It was shown in [21]
that the performance of this algorithm was deteriorated by spec-
ifying the value of as (i.e., no elitism). It was
also shown that the performance was not sensitive to the value
of when . In this paper, the value of
is specified based on preliminary computational experiments as

(see Section II-C).

B. Modified MOGLS

In the above-mentioned MOGLS, the scalar fitness function
in local search for each solution was specified by the weight
vector used in the selection of its parents. This specification of
the scalar fitness function in local search is not always appro-

Fig. 5. Specification of a local search direction for an offspring.

priate. Using Fig. 5, we illustrate the drawback of this specifica-
tion method. Let us assume that two solutionsand denoted by
closed circles are selected as parents based on the scalar fitness
function with the weight vector for a two-objec-
tive minimization problem. This scalar fitness function is also
used in local search. Since the two objectives in Fig. 5 should
be minimized, can be viewed as the local
search direction for a new solution generated from the selected
parents. In this paper, the local search direction means the di-
rection with the steepest improvement of the objective func-
tion in the objective space, which is
for the scalar fitness function in (3). When an offspring is gen-
erated around the parents (e.g., solution A in Fig. 5),

is appropriate as the local search direction for the
offspring. On the contrary, when an offspring is far from its par-
ents (e.g., solution B in Fig. 5), is not
appropriate as its local search direction. As we can see from
Fig. 5, an appropriate local search direction for each offspring
depends on its location in the objective space. For example,

seems to be much more appropriate for the so-
lution B than as its local search direction. These
discussions suggest the importance of the specification of an ap-
propriate local search direction for each offspring according to
its location in the objective space.

When the quality of an offspring is very poor (e.g., solution
C in Fig. 5), the application of local search seems to be waste
of the computation time. Thus local search should be applied to
only good offspring. That is, the choice of offspring to which
local search is applied is also important in the MOGLS.

When two parents are similar to each other (e.g.,and in
Fig. 5), their offspring are usually similar to the parents. Thus,
appropriate initial solutions (e.g., A) are likely to be generated
from good parents that are similar to each other. On the other
hand, when two parents are not similar to each other (e.g.,and
), inappropriate solutions are much more likely to be generated

than the case of similar parents with high fitness values (e.g.,
and). These discussions suggest that the use of parent selection
schemes with high selection pressure may improve the perfor-
mance of the former MOGLS with the roulette wheel selection.

208 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

Fig. 6. Illustration of the selection of initial solutions for local search.

Such an approach to the modification of the former MOGLS will
later be further discussed through computational experiments.

In this subsection, we modify the former MOGLS by in-
troducing a probabilistic selection scheme of initial solutions
for local search. For choosing only good offspring and speci-
fying an appropriate local search direction for each offspring,
we modify Step 5 of the former MOGLS as follows:

Step 5) Local search:Iterate the following three steps
times. Then replace the current population with

solutions obtained by the following steps.

a) Randomly specify the weights
where for and

.
b) Select a solution from the current population

using tournament selection with replacement
based on the scalar fitness function with the
current weights specified in a). A copy of the
selected solution is used in c). Thus no solu-
tion is removed from the current population.
In our computational experiments, the tour-
nament size for the selection of an initial so-
lution for local search is specified as five (see
Section II-C).

c) Apply local search to a copy of the selected
solution using the current weights with
the local search probability . The local
search procedure is the same as in the former
MOGLS. When local search is applied to
a copy of the selected solution, the final
solution where local search is terminated is
included in the next population. On the other
hand, when local search is not applied, a
copy of the selected solution is included in
the next population.

The basic idea is to try not to specify an appropriate local
search direction to each solution, but to choose an appropriate
solution for a randomly specified local search direction. More-
over, local search is not applied to all the selected solutions. We
use the local search probability for decreasing the number of
solutions to which local search is applied. Our idea is illustrated
in Fig. 6, where local search is applied to only three solutions. As
shown in this figure, the proposed algorithm chooses a good ini-
tial solution in Step 5b) with respect to the current local search

direction specified in Step 5a). While the local search direction
is randomly specified, the search is not a random walk because
different solutions are chosen as initial solutions for different
local search directions (see Fig. 6). It should be noted that the
current solution does not move to any dominated neighbors be-
cause the weights are specified as for
in the scalar fitness function. That is, local search does not de-
grade the current solution in the sense of the Pareto-dominance
relation. This issue will be further discussed later.

C. Test Problems and Performance Measures

Before demonstrating how the performance of the former
MOGLS can be improved by the modification in its local search
part, we explain test problems and performance measures used
in this paper. In the same manner as in [21], we generated
eight -machine, -job permutation flowshop scheduling
problems. The processing time of each job on each machine
was specified as a random integer in the interval [1, 99]. The
due date of each job was specified by adding a random integer
in the interval [100, 100] to its actual completion time in a
randomly generated schedule. All the eight test problems have
20 machines (i.e.,). Using the number of objectives
() and the number of jobs (), we denote each test problem
as where , 3 and , 40, 60, 80. Four test
problems have two objectives (i.e.,): to minimize the
makespan and the maximum tardiness. The other four test
problems are three-objective problems (i.e.,) with an
additional objective: to minimize the total flow time.1

Our three-objective test problems can be written in the format
of Ausiello et al. [35] as follows (two-objective test problems
can be also written in the same manner):

Instance: jobs , , machines ,
, an matrix whose (,) element is

the processing time of theth job on the th machine, and an
-dimensional vector whoseth element is the due date of

the th job.
Solution: A set of nondominated solutions with respect to

the given objectives. Each solution is a permutation of,
.

Objectives: ,
, and , where is the com-

pletion time of the th job, which is calculated from the
matrix. All three objectives are to be minimized.

As in [21], we used the two-point crossover in Fig. 7 and the
insertion mutation in Fig. 8. The insertion mutation is often re-
ferred to as the shift mutation in the literature. We also used the
insertion mutation as a local search operation for generating a
neighbor of the current solution. The choice of a local search
operation will be discussed later through computational exper-
iments. Good results were reported in [36], where the insertion
mutation was used in tabu search for minimizing the makespan.
Good results were also reported by simulated annealing with the
insertion mutation [37], [38]. Several crossover and mutation
operations were examined in genetic algorithms for flowshop
scheduling problems in [39], where good results were obtained

1Details of each test problem are available at [Online] http://www.ie.osakafu-
u.ac.jp/~hisaoi/ci_lab_e/.

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 209

Fig. 7. Two-point crossover.

Fig. 8. Insertion mutation.

from the combination of the two-point crossover and the inser-
tion mutation. Moreover, the simultaneous use of different mu-
tation operations with adaptive mutation probabilities was ex-
amined for two-objective flowshop scheduling problems in the
framework of multiobjective memetic algorithms in Basseuret
al. [40]. See Bagchi [41] for applications of multiobjective ge-
netic algorithms to shop scheduling problems including flow-
shop, jobshop and openshop.

Next, we briefly describe performance measures used in this
paper for comparing many solution sets obtained from different
algorithms or different parameter specifications. We use per-
formance measures that are applicable to simultaneous com-
parison of many solution sets. Let be a solution set (

). For comparing solution sets (,),
we use several performance measures because it is impossible
to evaluate all aspects of each solution set using a single perfor-
mance measure (see [4], [5], and [42] for a number of perfor-
mance measures).

We mainly use a performance measure based on the distance
from a reference solution set (i.e., the Pareto-optimal solution
set or a near Pareto-optimal solution set) for evaluating the solu-
tion set . More specifically, we use the average distance from
each reference solution to its nearest solution in. This mea-
sure was used in Czyzak and Jaszkiewicz [43] and referred to as

in Knowles and Corne [42]. Let be the reference solu-
tion set. The measure can be written as

(5)

where is the distance between a solutionand a reference
solution in the -dimensional normalized objective space

(6)

where is the th objective that is normalized using the ref-
erence solution set . We will explain the normalization of the
objective space later. The smaller the value of is, the
better the solution set is.

It should be noted that the measure in (5) is not the av-
erage distance from each solution in to its nearest reference
solution in , which is referred to as the generation distance

(GD) in the literature [4], [5], [42]. While the GD can only eval-
uate the proximity of the solution set to , can
evaluate the distribution of as well as the proximity of to

. See Czyzak and Jaszkiewicz [43] for characteristic features
of the measure.

In any multiobjective optimization problem, it is reasonable
for the decision maker (DM) to choose a final single solution

from the Pareto-optimal solution set. The final solutionis
the best solution with respect to the DM’s preference. When the
true Pareto-optimal solution set is not given, the DM will choose
a final solution from an available solution set . When is
a good approximation of the true Pareto-optimal solution set,
the chosen solution may be close to the best solution. In
this case, the loss due to the choice ofinstead of can be
approximately measured by the distance betweenand in
the objective space. Sinceand are unknown, we cannot
directly measure the distance betweenand . The expected
value of the distance, however, can be roughly estimated by the
average value of the distance from each Pareto-optimal solution
to its nearest available solution. The measure corresponds
to this approximation. In addition to the measure, we also
use the following performance measures for evaluating the so-
lution set .

Let be the union of the solution sets (i.e.,
. A straightforward performance measure of the solution set
with respect to the solution sets is the ratio of solutions

in that are not dominated by any other solutions in. This
measure is written as follows:

(7)

where means that the solution is dominated by the
solution . In the numerator of (7), dominated solutionsby
other solutions in are removed from the solution set .
The higher the ratio is, the better the solution set
is. In some computation experiments of this paper, we also use
the number of obtained solutions (i.e.,) as a performance
measure.

The reference solution set of each test problem was found
using the SPEA [10], the NSGA-II [13], and our MOGLS (i.e.,
the modified MOGLS in Section II-B). Each algorithm was ap-
plied to each test problem with much longer computation time
and larger memory storage than the other computational exper-
iments in this paper. More specifically, we used the following
parameter specifications in all the three algorithms for finding
the reference solution set of each test problem.

Population size (): 200.
Crossover probability: 0.9.
Mutation probability per string: 0.6.
Stopping conditions: Evaluation of 5 000 000 solutions.

In the SPEA, the size of the secondary population was specified
as 200. In our MOGLS, we used the following parameter spec-
ifications.

Number of elite solutions (): 10.
Number of neighbors to be examined : 2.
Tournament size in the selection of initial solutions: 5.
Local search probability : 0.8.

210 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

(a)

(b)

Fig. 9. Reference solutions obtained from the three EMO algorithms. (a)
Two-objective 40-job test problem. (b) Two-objective 80-job test problem.

The computation load in the search for reference solutions was
50 times as much as the other computational experiments in
this paper, where the stopping condition was the evaluation of
100 000 solutions. We used the two-point crossover and the in-
sertion mutation in all the three algorithms. The insertion muta-
tion was also used in local search of our MOGLS. The above pa-
rameter values were specified from preliminary computational
experiments on the two-objective 40-job test problem (i.e., 2/40
problem). One may think that the value ofis too small. The
effect of and on the performance of our MOGLS will
be discussed in Section III, where and are
shown to be one of their good combinations. In computational
experiments on multiobjective knapsack problems by Knowles
and Corne [24], the value of (i.e., l_fails in their notation)
was specified as 5 for the M-PAES [23] and the MOGLS of
Jaszkiewicz [22]. The effect of the other parameters on the per-
formance of each algorithm will be discussed later in this paper.

We chose only nondominated solutions as reference solutions
from 30 solution sets obtained by ten runs of the three algo-
rithms for each test problem. We show the obtained reference
solution sets for the two-objective 40-job and 80-job test prob-
lems in Fig. 9(a) and (b), respectively. We can observe the ex-
istence of a clear tradeoff between the two objectives in each
figure. We can also see that the obtained reference solution set
for each test problem has a good distribution (i.e., somewhat
similar to a uniform distribution) on the tradeoff front in the ob-
jective space.

TABLE I
NUMBER OF OBTAINED REFERENCESOLUTIONS FOR THETWO-OBJECTIVE

TESTPROBLEMS AND THEWIDTH OF THEIR RANGE FOREACH OBJECTIVE

TABLE II
NUMBER OF OBTAINED REFERENCESOLUTIONS FOR THETHREE-OBJECTIVE

TESTPROBLEMS AND THEWIDTH OF THEIR RANGE FOREACH OBJECTIVE

The number of the obtained reference solutions for each test
problem is summarized in Table I for the two-objective prob-
lems and Table II for the three-objective problems. In these ta-
bles, we also show the width of the range of each objective
where , , and are the makespan, the maximum
tardiness, and the total flow time, respectively. The width of the
range of the th objective over the reference solution set

is defined as

width

(8)
From the comparison between Tables I and II, we can see that
many more reference solutions were obtained for the three-ob-
jective problems than the two-objective problems. We can also
see that the reference solutions of each test problem are located
over the wide range of each objective except for the case of the
two-objective 80-job test problem (i.e., 2/80 in Table I). In this
case, it seems that the three algorithms did not find extreme so-
lutions with very good values of one objective and poor values
of the other objective. As we have already mentioned, we ap-
plied the three algorithms to each test problem ten times (i.e.,
ten runs). In each run, 5 000 000 solutions were examined. This
means that 150 000 000 solutions were examined for each test
problem in total. Thus, we did not further perform the search for
reference solutions.

The objective space of each test problem was normalized so
that the minimum and maximum values of each objective among
the reference solutions were 0 and 100, respectively. For ex-
ample, the rectangle [3315, 3696][97, 1075] specified by the
reference solutions in Fig. 9(a) was normalized into the square
[0, 100] [0, 100]. Using the normalized objective space, the

measure is calculated.

D. Effect of Modification of the Local Search Part

For examining the effect of the modification of the local
search part in Section II-B, we applied the former MOGLS
[20], [21] and the modified MOGLS to the eight test problems
using the following parameter specifications.

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 211

Fig. 10. Comparison between the former MOGLS and its modified version.
All solutions obtained by 20 runs of each algorithm for the two-objective 40-job
test problem are shown.

Population size (: 60.
Stopping conditions: Evaluation of 100 000 solutions.

The other parameter values were the same as those in Sec-
tion II-C for finding the reference solution set of each test
problem.

Each algorithm was applied to each test problem 20 times
(i.e., 20 runs) using different initial populations. Multiple solu-
tions were simultaneously obtained from a single run of each
algorithm. In Fig. 10, we show 20 solution sets obtained from
each algorithm for the two-objective 40-job test problem. We
can see from Fig. 10 that all solutions obtained from the former
algorithm (i.e., open circles) are dominated by many solutions
from the modified one (i.e., closed circles). We can also see that
no solutions from the modified algorithm are dominated by any
solutions from the former one.

For each of 20 runs of the two algorithms for each test
problem, we calculated the ratio of nondominated solutions
[i.e.,] for the solution set from the former algorithm
and the solution set from the modified one by specifying
in (7) as . Then we calculated the average value
of over 20 runs. For all the eight test problems, we
obtained the following average results: and

. These results show that all solutions obtained
from the former algorithm were dominated by solutions from
the modified one. Moreover no solutions from the modified
algorithm were dominated by any solutions from the former
one. That is, the modified algorithm clearly outperformed the
former one for all the eight test problems as visually shown in
Fig. 10 for the two-objective 40-job test problem.

In Section II-B, we explained the motivation for modifying
the former MOGLS using Fig. 5. More specifically, we pointed
out the possibility that the genetic operations generate an inap-
propriate initial solution for the current weight vector (e.g., B
and C in Fig. 5). For examining the validity of this motivation,
we measured the distance between two parents of each solution
in the normalized objective space during each of 20 runs of the
former MOGLS for each test problem. We also measured the
distance between each solution and its nearest parent. As we
have already mentioned, we used the roulette wheel selection
in (4) for parent selection in the former MOGLS. For compar-

TABLE III
AVERAGE DISTANCE BETWEEN TWO PARENTS OFEACH SOLUTION IN THE

NORMALIZED OBJECTIVE SPACE OFEACH TEST PROBLEM

TABLE IV
AVERAGE DISTANCE BETWEENEACH SOLUTION AND ITS NEARESTPARENT IN

THE NORMALIZED OBJECTIVE SPACE OFEACH TESTPROBLEM

ison, we also examined the use of the tournament selection of
the tournament size 2, 5 and 10 instead of the roulette wheel se-
lection. Moreover, the use of the random selection from the best
10%, 20%, and 50% solutions of the current population was also
examined. Jaszkiewicz [22] used the latter selection scheme for
parent selection.

Average results with respect to the distance between two par-
ents are summarized in Table III. From this table, we can see that
the distance between two parents was much larger in the case of
the roulette wheel selection than the other selection schemes.
This observation means that dissimilar parents (e.g.,and
in Fig. 5) were often selected in the execution of the former
MOGLS with the roulette wheel selection. The dissimilarity of
parents may be the main cause of the poor performance of the
former MOGLS. When we used the other selection schemes
with higher selection pressure for parent selection, similar par-
ents were selected more frequently as shown in Table III.

Average results with respect to the distance between each
solution and its nearest parent are summarized in Table IV.
From the comparison between Table IV and the second column
of Table III, we can see that each solution was similar to
its nearest parent in all the seven MOGLS variants for all
the eight test problems. This observation together with the
above-mentioned observation on Table III suggests that good
initial solutions (e.g., A in Fig. 5) were often generated from
good parents with high similarity (e.g., and in Fig. 5) in
the six variants with the tournament selection and the random
selection from the best solutions. Thus, we expect that the
improvement of the former MOGLS would be achieved by the
use of those selection schemes for parent selection.

212 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

TABLE V
PERFORMANCEEVALUATION OF EACH VARIANT OF THE FORMER MOGLS

USING THED1 MEASURE. SMALLER VALUES MEAN BETTERSOLUTION SETS

Average values of the measure are summarized in
Table V where smaller values mean better solution sets. As
expected from Tables III and IV, the six variants with the
tournament selection and the random selection from the best
solutions outperformed its original version with the roulette
wheel selection. More specifically, all results by the six variants
for the eight test problems in Table V are significantly better
(i.e., smaller) than the corresponding results by their original
version with the 99% confidence level (the Mann–Whitney U
test).

In the same manner as Table V, we performed computational
experiments using the modified MOGLS. The tournament se-
lection with the tournament size five was used for selecting ini-
tial solutions for local search in the modified MOGLS. Average
values of the measure are summarized in Table VI where
the seven variants with different selection schemes for parent
selection are compared. It is interesting to note that the best re-
sults were obtained from the roulette wheel selection in Table VI
on the average (especially for the three-objective test problems),
while it was the worst in Table V. When the roulette wheel was
used for parent selection, the improvement by the modification
of the local search part from Tables V to VI is significant for
all the eight test problems with the 99% confidence level (the
Mann–Whitney U test). On the other hand, the same modifi-
cation significantly degraded the performance of the other six
variants for all the four three-objective test problems with the
99% confidence level. The deterioration in the performance may
be due to the negative effect of the selection of initial solu-
tions for local search. When our MOGLS has a parent selec-
tion scheme with high selection pressure, the selection of initial
solutions for local search makes the overall selection pressure
too strong. Selection pressure that is too strong leads to the de-
crease in the diversity of solutions (i.e., undesired convergence
to a small number of solutions). As a result, the performance
of our MOGLS with high selection pressure in the parent se-
lection was deteriorated by the combination with high selection
pressure in the selection of initial solutions for local search in
computational experiments on the three-objective test problems
with many reference solutions.

Among the 14 variants of the MOGLS in Tables V and
VI, good results were obtained by seven variants (i.e., the six
variants of the former MOGLS with the tournament selection
and the random selection from the best solutions in Table V

TABLE VI
PERFORMANCEEVALUATION OF EACH VARIANT OF THE MODIFIED MOGLS

USING THED1 MEASURE

and the modified MOGLS with the roulette wheel selection
in Table VI). Hereafter, we mainly use the modified MOGLS
with the roulette wheel for parent selection (i.e., the second
column of Table VI) for examining the balance between genetic
search and local search through computational experiments
using the local search probability . Multiobjective memetic
algorithms with no selection scheme of initial solutions for
local search will be examined again in Section IV in the context
of the hybridization of popular EMO algorithms.

E. Choice of a Neighborhood Structure

In the above computational experiments, we used the inser-
tion mutation as a local search operation. In this subsection, we
examine other local search operations (i.e., other neighborhood
structures): exchange of adjacent two jobs, exchange of arbi-
trary two jobs, and exchange of arbitrary three jobs. The number
of neighbors of the current solution (i.e., the size of the neigh-
borhood structure) is when we exchange adjacent two
jobs for an -job permutation flowshop scheduling problem. It
is and when we
exchange arbitrary two and three jobs, respectively. The number
of neighbors is in the case of the insertion operation. It
should be noted that these four neighborhood structures are not
mutually exclusive. For example, the adjacent two-job exchange
neighbors are included in the arbitrary two-job exchange and
insertion neighbors. The insertion neighbors partially overlap
with the arbitrary two-job and three-job exchange neighbors.
Many neighborhood structures were explained in a more gen-
eral manner in Krasnogor [34].

The performance of the four local search operations was com-
pared using the measure. For evaluating each local search
operation, the modified MOGLS with the roulette wheel se-
lection was applied to each test problem 20 times in the same
manner as the previous computational experiments. The average
value of the measure over 20 runs is shown together with
the standard deviation (in parentheses) in Table VII. We can see
from this table that the best (i.e., smallest) results were obtained
from the insertion operation for all the eight test problems.

F. Choice of an Acceptance Rule in Local Search

In the local search part of the modified MOGLS, the scalar
fitness function in (3) was used for making the decision on the
replacement of the current solution with its neighbor. That is, the

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 213

TABLE VII
PERFORMANCEEVALUATION OF EACH ALGORITHM USING THED1

MEASURE. STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES

Fig. 11. Illustration of each acceptance rule.

neighbor was accepted only when it had a better (i.e., smaller)
value of the scalar fitness function than the current solution. It is
possible to use other acceptance rules in the local search part. In
this subsection, we examine three acceptance rules in addition
to the scalar fitness function in (3).

One rule is to accept neighbors that are not dominated by the
current solution. Let us consider Fig. 11, where the current solu-
tion and its neighbors are denoted by a closed circle (i.e., A) and
open circles (i.e., B, C, D, E, F and G), respectively. The current
solution A can move to the five neighbors except for G because
only G is dominated by A. A drawback of this acceptance rule
is that the current solution can be degraded by multiple moves.
For example, the current solution A can move to the neighbor B,
from which the current solution can further move to G. Another
acceptance rule is to accept only better neighbors that dominate
the current solution. In this case, the current solution A can move
only to the neighbor D in Fig. 11. A drawback of this acceptance
rule is that the movable area is very small, especially when the
number of objectives is large.

The other acceptance rule is the use of the pseudoweight
vector [4]. The pseudoweight for the th objective is defined
for the current solution as

(9)

where and are the maximum and minimum values
of the th objective in the current population, respectively.
The scalar fitness function with the pseudoweight vector

determined by (9) is used in the third

Fig. 12. Pseudoweight vector.

acceptance rule. Let us assume in Fig. 11 that the arrow shows
the weight vector and the inclined line is orthogonal with
this arrow. In this case, the current solution A can move to the
three neighbors C, D, and E. The determination of the weight
vector by (9) is illustrated in Fig. 12, where all solutions in
the current population are shown by open circles. The arrow
attached to each open circle shows the weight vector for
the corresponding solution. From this figure, we can see that
an appropriate weight vector is assigned to each solution by
(9). Note that each arrow in Fig. 12 is not the exact direction of
the move by local search. Since we use the first improvement
strategy for combinatorial optimization problems with discrete
search spaces, the move by local search is not the same as the
direction of the weight vector . For example, A in Fig. 11
will move to the first examined neighbor among C, D and E. It
should be noted that the local search direction specified by the
weight vector in the objective space is a totally different
concept from the local search direction in the continuous
decision space (e.g., see Salomon [44]).

In the calculation of the pseudoweight vector for each solu-
tion, we need the maximum and minimum values of each objec-
tive over the current population. Thus this approach has some
computational overhead. The overhead, however, is not large
because the maximum and minimum values are calculated just
once for the current population in each generation. The calcu-
lated values are used for all solutions in the current population.
Moreover, the pseudoweight vector is calculated only for each
initial solution of local search (i.e., the pseudoweight vector is
not updated unless local search restarts from a new initial so-
lution). A possible drawback of this approach is that the distri-
bution of weight vectors directly depends on the distribution of
solutions in the objective space. Thus the distribution of weight
vectors is not uniform when the distribution of solutions in the
current population is not uniform. For example, similar weight
vectors are assigned to many solutions when they are closely lo-
cated in the objective space.

We compared the three acceptance rules using the modified
MOGLS with the insertion neighborhood. The same parameter
values as in Section II-D were used. Since the three acceptance
rules do not have any selection mechanism of initial solutions,
we chose an initial solution in the same manner as the modi-
fied MOGLS. Then local search with each acceptance rule was
applied to the selected initial solution with the local search prob-
ability. Average results over 20 runs with each acceptance rule

214 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

TABLE VIII
COMPARISONAMONG THE FOUR ACCEPTANCERULES USING THED1

MEASURE FOR THECASE OFk = 2 AND p = 0:8

TABLE IX
COMPARISONAMONG THE FOUR ACCEPTANCERULES USING THED1

MEASURE FOR THECASE OFk = 100 AND p = 0:02

are summarized in Table VIII. We also show average results by
the modified MOGLS in the same table. From this table, we can
see that almost the same results were obtained from the modi-
fied MOGLS and the pseudoweight approach. This is because
these two approaches are based on the scalar fitness function.
We can also see that the performance of the first two approaches
based on the dominance relation were not bad for many cases
while they were outperformed by the other approaches based
on the scalar fitness function for all the eight test problems
(small values in Table VIII mean better solution sets). That is,
the above-mentioned drawbacks of the acceptance rules based
on the dominance relation were not clear in Table VIII. This
is because the value of (i.e., the maximum number of ex-
amined neighbors of the current solution) was very small (i.e.,

). We also performed the same computational experi-
ments by specifying the value of and as and

. Average results over 20 runs are summarized in
Table IX. While good results were still obtained from the two
approaches based on the scalar fitness function in the last two
columns of Table IX, the performance of the first acceptance
rule based on the dominance relation was severely deteriorated
for all the eight test problems as shown in the second column
of Table IX. The drawback of this acceptance rule (i.e., possible
deterioration of the current solution by multiple moves) became
clear by increasing the value ofin Table IX. The performance
of the second acceptance rule based on the dominance relation
(i.e., move to better solutions) was slightly deteriorated by in-
creasing the value of from Tables VIII to IX (see the third
column of these tables).

III. B ALANCE BETWEENGENETIC AND LOCAL SEARCH

In this section, we examine the effect of the balance between
genetic search and local search on the search ability of our
MOGLS (i.e., the modified MOGLS in Section II-B). The
problem is how to allocate the available computation time
wisely between genetic search and local search. This problem
has been studied in the field of single-objective hybrid (i.e.,
memetic) algorithms [45]. For example, Orvosh and David
[46] reported that the best results in their computational
experiments were obtained from their memetic algorithm when
individuals were improved by local search with a probability
0.05 (i.e., when the local search probability was specified
as). Goldberg and Voessner [45] presented a theo-
retical framework for discussing the balance between genetic
search and local search. Hart [47] investigated the following
four questions for designing efficient memetic algorithms for
continuous optimization.

a) How often should local search be applied?
b) On which solutions should local search be used?
c) How long should local search be run?
d) How efficient does local search need to be?

The first and second questions are related to the local search
probability and the local search application interval,
while the third question is related to the parameter(i.e.,
the maximum number of examined neighbors of the current
solution) in our MOGLS. Hart’s study was extended to the case
of combinatorial optimization by Land [48], where the balance
between genetic search and local search was referred to as the
local/global ratio. The balance can be also adjusted by the use of
different neighborhood structures. Krasnogor [34] investigated
how to change the size and the type of neighborhood struc-
tures dynamically in the framework of multimeme memetic
algorithms where each meme had a different neighborhood
structure, a different acceptance rule, and a different number of
iterations of local search.

All the above-mentioned studies investigated the balance be-
tween local search and genetic search for single-objective opti-
mization. Since the aim of EMO algorithms is not to find a single
final solution but to simultaneously find a variety of Pareto-op-
timal (or near Pareto-optimal) solutions, an appropriate balance
for multiobjective optimization may be different from the case
of single-objective optimization. For example, the diversity of
solutions in the final generation is very important in multiobjec-
tive optimization while it is usually not important in single-ob-
jective optimization. Thus, more emphasis should be placed on
the maintenance of the diversity of solutions in each genera-
tion in the case of multiobjective optimization than single-ob-
jective optimization. In this section, we examine the balance be-
tween local search and genetic search using the three parameters
(i.e., , and) in the local search part of our MOGLS. We
also examine the necessity of genetic search using the crossover
probability and the mutation probability .

A. Effect of Local Search

For examining the effect of local search on the search ability
of our MOGLS, we performed computational experiments using

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 215

Fig. 13. Average value of theD1 measure for the two-objective 80-job
problem. Shorter bars mean better solution sets.

various specifications ofand . More specifically, we exam-
ined 132 combinations of 11 values of(i.e., , 2, 4, 6, 8,
10, 20, 40, 60, 80, 100) and 12 values of (i.e., , 0.01,
0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0). Using each
combination of and , our MOGLS was applied to each test
problem 20 times in the same manner as Section II-D under the
same stopping condition (i.e., evaluation of 100 000 solutions).
The average value of the measure obtained from each com-
bination of and is shown in Fig. 13 for the two-objec-
tive 80-job test problem where shorter bars mean better solution
sets. In this figure, we can observe a valley from the left-bottom
corner to the top-right corner in the- plane. That is, good
results were obtained from combinations ofand that ap-
proximately satisfy the relation . When the value
of was too small (i.e., the left-top corner), the search in
our MOGLS was mainly driven by genetic operations. Thus,
the search ability of local search was not utilized well in our
MOGLS. On the other hand, when the value of was too
large (i.e., the bottom-right corner), almost all computation time
was spent by local search. Thus, the search ability of genetic al-
gorithms was not utilized well.

The best (i.e., smallest) average value of the measure
was obtained from the combination of and
as 67.2. The worst average value was obtained from the com-
bination of and as 125.7. When ,
local search was applied to no solutions. Thus, the value of
has no effect on the performance of our MOGLS as shown by
the flat region corresponding to in Fig. 13 (i.e., the
top-most row). In this case, the average value of the mea-
sure was 97.8. We further examined solution sets obtained from
these three specifications: and

. In addition to the measure, we also calculated
the ratio of nondominated solutions [i.e.,] and the
number of obtained solutions (i.e.,) for each run of our
MOGLS using the three parameter specifications. Average re-
sults over 20 runs for each parameter specification are summa-
rized in Table X together with standard deviations (in paren-
theses). In Table X, we also show the average number of gener-
ations updated by the EMO part. When and ,
the average number of obtained solutions was 12.7. Among
those solutions, 90% were not dominated by any other solu-

TABLE X
COMPARISON OF THETHREE CASES OF(k; p) FOR THETWO-OBJECTIVE

80-JOB PROBLEM. AVERAGE VALUES OVER 20 RUNS ARESHOWN TOGETHER

WITH STANDARD DEVIATIONS IN PARENTHESES. LARGER VALUES OF

R (S) AND jS j MEAN BETTER SOLUTION SETS WHILE SMALLER

VALUES OFD1 MEAN BETTER SOLUTION SETS

Fig. 14. Average value of theD1 measure for the two-objective 20-job
problem.

tions in each run. The EMO part of our MOGLS was iterated
for 358 generations on the average. On the other hand, the EMO
part was iterated for only a few generations when and

. In this case, the average number of obtained solutions
was small (i.e., 9.0) and the quality of each solution was not
good. Actually all the obtained solutions from this combination
of and were dominated by other solutions (i.e., the av-
erage ratio of nondominated solutions was 0 in Table X). That
is, both the diversity of solutions and the convergence speed to
the Pareto front were degraded by the use of large values of
and in Table X. When the local search probability was
specified as , local search was not applied to any so-
lutions. In this case, the quality of each solution was not high
while the average number of obtained solutions was large. Ac-
tually only 23% of obtained solutions were not dominated by
any other solutions in each run.

For all the eight test problems, we observed the improvement
in the measure by the hybridization with local search when
the values of and were appropriate. We also observed the
negative effect of the hybridization with local search for all the
eight test problems when bothand were large (i.e., the
right-bottom corner of Fig. 13). The negative effect, however,
was small for small-size test problems. For example, we show
the average value of the measure for the two-objective
20-job test problem in Fig. 14, where the deterioration in the

measure at the bottom-right corner is not clear. The best
result in Fig. 14 was obtained from the combination of
and . In the same manner as Table X, we compare
the three specifications: and

216 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

TABLE XI
COMPARISON OF THETHREE SPECIFICATIONS OF(k; p) FOR THE

TWO-OBJECTIVE 20-JOB PROBLEM

TABLE XII
EFFECT OF THEPARAMETER VALUES IN THE LOCAL SEARCH PART

ON THE D1 MEASURE

in Table XI. From this table, we can see that the perfor-
mance deterioration by the use of large values ofand was
small for the two-objective 20-job test problem (i.e., the nega-
tive effect of the hybridization with local search was small). This
may be because the number of examined solutions (i.e., 100 000
solutions) during the execution of our MOGLS was large rela-
tive to the problem size in the case of the two-objective 20-job
test problem. On the other hand, the positive effect of the hy-
bridization with local search was still clear for small-size test
problems as shown in Table XI.

We further examined the positive and negative effects of
the hybridization with local search for the other test problems
using the measure. Average results over 20 runs are
summarized in Table XII, where standard deviations are shown
in parentheses. In this table, the second column labeled as
“Tuned” shows the results obtained from the best combination
of and for each test problem (e.g., and
for the 2/80 problem). In this table, we can observe both the
positive and negative effects in all the eight test problems while
their strength depends on the problem.

From the above experimental results, one may think that the
negative effect of the hybridization with local search can be re-
duced by the increase in computation load. This may be the case
for all test problems. We need, however, much more computa-
tion load for large test problems because the size of the search
space exponentially increases with the number of jobs (i.e.,!
for -job problems). We performed computational experiments
with more computation load (i.e., evaluation of 500 000 solu-
tions) for the two-objective 80-job test problem in the same
manner as Fig. 13. In experimental results, we still observed a
clear negative effect of the hybridization with local search when
both and were large as in Fig. 13.

In the above computational experiments, we adjusted the bal-
ance between genetic search and local search using the two pa-
rameters and . We can also adjust the balance by invoking
the local search part every generations (not every genera-
tion). When the local search part is invoked, we still use the
local search probability . Thus, the overall local search prob-
ability can be viewed as over the whole execution of the
MOGLS. The local search application intervalwas implicitly
assumed as in all the above computational experiments.

In the same manner as Fig. 13, we examined 132 combina-
tions of and (i.e., , 0.01, 0.02, 0.04, 0.06, 0.08,
0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and , 2, 4, 6, 8, 10, 20, 40, 60,
80, 100) for the two-objective 80-job problem. The value of
was fixed as , which was the value of in the best com-
bination of and in Fig. 13. While we examined various
values of , we did not observe any improvement in the
measure by the specification ofas . That is, we obtained
the best result from . We also examined the effect of
for the other test problems in the same manner. The best results
were obtained from for all the eight test problems. This
may be because the selection of initial solutions for local search
plays a very important role in our MOGLS as shown in Tables V
and VI. We will further examine the effect of in the context
of the hybridization of other EMO algorithms with local search
in Section IV.

B. Effect of Genetic Search

For examining the effect of the crossover probabilityand
the mutation probability on the performance of our MOGLS,
we performed computational experiments using 121 combina-
tions of 11 values of and (i.e.,
and). When and ,
the evolution is driven by local search and selection. In this case,
our MOGLS can be viewed as a population-based multiobjec-
tive local search algorithm. Using the best parameter values in
Fig. 13 for the local search part (i.e., , and

), we applied our MOGLS with each combination of
and to the two-objective 80-job test problem 20 times. The
other parameter values were the same as the above-mentioned
computational experiments. Average results over 20 runs are
summarized in Fig. 15, where the performance of the MOGLS
is evaluated using the measure as in Fig. 13. From Fig. 15,
we can see that the performance of the MOGLS was less sensi-
tive to and than and (compare Fig. 15 with Fig. 13).

In Fig. 15, the best (i.e., smallest) average result 61.6 was
obtained from and among the 121 combi-
nations of and . When the crossover probability was
specified as (i.e., no crossover: the left-most row of
Fig. 15), the best average result 68.6 was obtained from

. On the other hand, the best average result 63.8 was ob-
tained from when the mutation probability was
specified as (i.e., no mutation: the top-most row). Fur-
thermore, the average result was 72.3 in the case of
and (no genetic search: the top-left corner). These four
cases are compared in Table XIII. From this table, we can see
that the crossover and the mutation improved the search ability
of our MOGLS. When we did not use the genetic operations,
the average number of obtained solutions was small (i.e., 8.2).

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 217

Fig. 15. Average value of theD1 measure for the two-objective 80-job
problem by our MOGLS with various specifications of the crossover probability
p and the mutation probabilityp .

TABLE XIII
COMPARISON OF THEFOUR CASESWITH RESPECT TO THEPARAMETER

SPECIFICATIONS INGENETIC SEARCH FOR THETWO-OBJECTIVE 80-JOB TEST

PROBLEM. LARGERVALUES OFR (S) AND jS j MEAN BETTERSOLUTION

SETS WHILE SMALLER VALUES OFD1 MEAN BETTERSOLUTION SETS

Moreover, only 26% of them were not dominated by other so-
lutions in each run on the average. In Table XIII, the crossover
seems to be more important than the mutation because better re-
sults were obtained from our MOGLS with only the crossover
operation than that with only the mutation operation.

In the same manner as Table XIII, we further examined the ef-
fect of genetic search for the other test problems. Experimental
results are summarized in Table XIV using the measure
where we used the tuned parameter values of, and for
each test problem. In this table, the column labeled as (,)
shows the best result among the 121 combinations ofand

for each test problem. On the other hand, (0,) and (,
0) mean the best specification of when (i.e., no
crossover) and the best specification ofwhen (i.e.,
no mutation), respectively. For the results in Table XIV, we ex-
amined the statistical significance using the Mann–Whitney U
test for three confidence levels 95%, 97.5%, and 99%. More
specifically, we compared each result in the four columns in
Table XIV obtained from the four variants of our MOGLS:
LS (the population-based multiobjective local search algorithm
with no genetic operations where and), C
(MOGLS with no mutation where and), M
(MOGLS with no crossover where and) and
CM (MOGLS with both genetic operations where and

). We examined the confidence level with which one al-
gorithm can be viewed as being better than another algorithm for
each test problem based on the measure. Results are sum-
marized in Table XV, where A B means that the algorithm

TABLE XIV
COMPARISON OF THEFOUR CASESWITH RESPECT TO THEPARAMETER

SPECIFICATIONS IN GENETIC SEARCH FOREACH OF THE EIGHT TEST

PROBLEMS. THE AVERAGE VALUE OF THE D1 MEASURE AND THE

CORRESPONDINGSTANDARD DEVIATION ARE SHOWN FOREACH CASE

TABLE XV
COMPARISON OF THEFOUR ALGORITHMS BASED ON THERESULTS INTABLE

XIV. I N THE FIRST ROW, A � B MEANS THAT THE ALGORITHM A
OUTPERFORMS THEALGORITHM B

A outperforms the algorithm B. In this table, “-” means that the
confidence level is less than 95%. From the fourth column of
Table XV, we can see that our MOGLS with both genetic op-
erations (i.e., CM) significantly outperformed its variant with
no genetic operations (i.e., LS) for all the eight test problems.
We can also see from the last two columns of Table XV that the
use of at least one genetic operation (i.e., C or M) significantly
improved the performance of our MOGLS with no genetic op-
erations (i.e., LS) for many test problems. These results suggest
that at least one genetic operation is necessary in our MOGLS.
The necessity of both genetic operations was clearly shown in
the second and third columns of Table XV for some test prob-
lems (e.g., 2/40 and 3/60), while it was not clear for other test
problems (e.g., 2/60 and 3/40). Moreover, the best result for the
3/80 test problem was obtained from the case of and

(see Table XIV).

IV. COMPARISONWITH OTHER EMO ALGORITHMS

A. Comparison With SPEA and NSGA-II

We compare our MOGLS with the SPEA [10] and the
NSGA-II [13] through computational experiments on the
eight test problems under the same stopping condition (i.e.,
evaluation of 100 000 solutions). Fair comparison among
different algorithms is not easy, especially when they involve
many parameters. Since different parameter values may be

218 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

TABLE XVI
BEST, AVERAGE, AND WORSTVALUES OF THED1 MEASUREOVER 540 SOLUTION SETSOBTAINED BY EACH ALGORITHM FOR EACH TESTPROBLEM

appropriate for each of the three algorithms (i.e., MOGLS,
SPEA and NSGA-II), we examined 27 combinations of the
following parameter values:

population size (: 30, 60, 120;
crossover probability (: 0.6, 0.8, 1.0;
mutation probability per string (: 0.4, 0.6, 0.8.

In the SPEA, the size of the secondary population was specified
as 60, independent of the size of the primary population. The
values of , , and tuned in Section III were used for each
test problem in our MOGLS. We used the two-point crossover
in Fig. 7 and the insertion mutation in Fig. 8 for all the three al-
gorithms. The insertion mutation was also used for local search
in our MOGLS.

Each algorithm was applied to each test problem 20 times
for each of the 27 combinations of the parameter values. Thus,
540 solution sets were obtained by each algorithm for each test
problem. Table XVI summarizes the best, average, and worst
values of the measure over those 540 solution sets. From
this table, we can see that the performance of the NSGA-II
strongly depends on the parameter specifications. While there
are no large differences in the best results among the three algo-
rithms except for the results on the 2/80 and 3/20 test problems,
the worst results by the NSGA-II are much inferior to those by
the other algorithms for all the eight test problems. The worst
results by the MOGLS are better than those by the SPEA for
six test problems except for 3/60 and 3/80. This means that the
performance of our MOGLS is less sensitive to the parameter
specifications of , and in the EMO part than the
SPEA and the NSGA-II. The best results for the two-objective
test problems in Table XVI were obtained by our MOGLS on
the average while the SPEA was the best for the three-objective
test problems.

We further examined the performance of each algorithm
using the best values of the three parameters , and
for each test problem. That is, we chose the parameter values
from which the best solution set was obtained by each algorithm
for each test problem in Table XVI. Using those parameter
values, we applied each algorithm to each test problem 20
times. Experimental results were summarized in Table XVII for
the measure, Table XVIII for the ratio of nondominated
solutions, and Table XIX for the number of obtained solutions.
We can see from Table XVIII that our MOGLS outperformed
the other algorithms for six test problems in terms of the ratio
of nondominated solutions. On the other hand, our MOGLS
was inferior to the other algorithms in terms of the number

TABLE XVII
COMPARISON OF THETHREE ALGORITHMS USING THED1 MEASURE

(SMALLER VALUES MEAN BETTER SOLUTION SETS)

TABLE XVIII
COMPARISON OF THETHREE ALGORITHMS USING THE RATIO OF

NON-DOMINATED SOLUTIONS (LARGER VALUES MEAN BETTER

SOLUTION SETS)

TABLE XIX
COMPARISON OF THETHREEALGORITHMS USING THENUMBER OF OBTAINED

SOLUTIONS (LARGER VALUES MEAN BETTER SOLUTION SETS)

of obtained solutions for the two-objective test problems in
Table XIX. These results suggest that our MOGLS tends to
find fewer solutions with higher quality than the SPEA and
the NSGA-II (we have similar results by the hybridization
of the SPEA and the NSGA-II with local search in the next
subsection). As a result, our MOGLS is comparable to the other
algorithms for many test problems with respect to the
measure in Table XVII.

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 219

TABLE XX
COMPARISON OF THETHREE ALGORITHMS USING THE COMPUTATION

TIME (SECONDS)

TABLE XXI
COMPARISON OF THETHREEALGORITHMS USING THED1 MEASUREUNDER

THE SAME COMPUTATION TIME: 10 SECONDS

In Table XX, we compare the three algorithms in terms of
the computation time. All the three algorithms were coded in
C and executed on a PC with a Pentium 4 CPU (2.2 GHz). We
used the same code in the three algorithms for calculating the
objective functions of each solution. Since the number of eval-
uated solutions was used as the stopping condition, the three
algorithms spent the same computation time for solution evalu-
ations. Thus, the difference in the total computation time among
the three algorithms stemmed from the difference in their fit-
ness calculation mechanisms and the generation update mecha-
nisms. While the SPEA and NSGA-II used sophisticated fitness
calculation mechanisms based on the Pareto-dominance rela-
tion and the concept of crowding, our MOGLS used a simple
scalar fitness function. Moreover, the local search operation for
generating new solutions is simpler than the genetic operations
with selection, crossover and mutation. From Table XX, we can
expect that experimental results may favor our MOGLS when
the three algorithms are compared under the same computa-
tion time instead of the same number of examined solutions. In
Table XXI, we show the average values of the measure ob-
tained by each algorithm when the same computation time was
used as the stopping condition. In computational experiments in
Table XXI, the execution of each algorithm was iterated for 10
seconds. From this table, we can see that better results were ob-
tained from our MOGLS than the SPEA and the NSGA-II for
seven test problems in Table XXI (except for the 2/40 problem).

B. Hybridization of EMO Algorithms

In our MOGLS, the local search direction (i.e., the weight
vector in the scalar fitness function) for each solution is not in-
herited from the EMO part. This means that the local search part
is independent of the EMO part. Thus the local search part can

TABLE XXII
AVERAGE VALUE OF THED1 MEASURE. EACH BOLDFACE RESULT BY A

HYBRID ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE

CORRESPONDINGRESULT BY ITS NON-HYBRID VERSION WITH THE

95% CONFIDENCELEVEL

be combined with other EMO algorithms such as the SPEA and
the NSGA-II. We implemented a hybrid SPEA by combining
the SPEA with the local search part of our MOGLS. A hybrid
NSGA-II was also implemented in the same manner. In those
hybrid algorithms, the SPEA and the NSGA-II are used as the
EMO part of Fig. 4 with no modifications. The local search part
is applied to the new population generated by the EMO part.
The improved population is returned to the EMO part as the cur-
rent population. In the hybrid SPEA, local search is not applied
to the secondary population as in our MOGLS. The secondary
population is updated using the primary population improved by
local search. We also implemented another version (say Ver.2)
of hybrid algorithms where the scalar fitness function was not
used for selecting initial solutions for local search. In the Ver.2
hybrid algorithms, local search is applied to each solution with
the local search probability independent of its quality as an
initial solution. The local search direction of each solution is
specified by the pseudoweight vector in (9). A similar idea to
the Ver.2 hybrid algorithms has already been used in Table V
for avoiding too much selection pressure.

These two versions of the hybrid SPEA and the hybrid
NSGA-II were compared with their nonhybrid versions (i.e.,
pure EMO algorithms). Each algorithm was applied to each
test problem 20 times using the same stopping condition:
evaluation of 100 000 solutions. In the EMO part of each hybrid
algorithm, we used the same parameter values as its nonhybrid
version in Tables XVII–XX. That is, the parameter values in
the EMO part were tuned not for each hybrid algorithm but for
its original pure EMO algorithm. In the local search part of
each hybrid algorithm, the best combination of, and
was chosen for each test problem from their 18 combinations
(i.e., , 10, 100, , 0.1 and , 10, 100).
The average value of the measure, the average ratio
of nondominated solutions, the average number of obtained
solutions and the average computation time are summarized
in Tables XXII–XXV, respectively. We examined whether
each hybrid algorithm outperformed its original pure EMO
algorithm for each test problem. When we can confirm that
a hybrid algorithm outperformed its nonhybrid version with
the 95% confidence level by the Mann–Whitney U test, the
corresponding result by the hybrid algorithm is highlighted by

220 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

TABLE XXIII
AVERAGE RATIO OF NON-DOMINATED SOLUTIONS. EACH BOLDFACE RESULT

BY A HYBRID ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE

CORRESPONDINGRESULT BY ITS NON-HYBRID VERSION WITH THE

95% CONFIDENCELEVEL

TABLE XXIV
AVERAGE NUMBER OF OBTAINED SOLUTIONS. EACH BOLDFACE RESULT BY A

HYBRID ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE

CORRESPONDINGRESULT BY ITS NON-HYBRID VERSION WITH THE

95% CONFIDENCELEVEL

boldface in each table. From Table XXII, we can see that the
performance of the SPEA and the NSGA-II was significantly
improved for some test problems by the hybridization with local
search. Such improvement is also observed in Table XXIII. The
difference between the two versions of the hybridization was
not large for many test problems in Table XXII. On the other
hand, the hybridization with local search severely decreased
the number of obtained solutions for some test problems (i.e.,
2/80 and 3/60) while there exist some counter-examples in
Table XXIV. Moreover, the hybridization with local search
significantly decreased the computation time for many test
problems as shown in Table XXV. Thus the experimental
results in Tables XXII and XXIII will more favor the hybrid
algorithms if computational experiments are performed under
the same computation time as in Table XXI.

In Table XXII, the largest improvement was achieved for the
2/80 test problem by the hybrid SPEA Ver.1 algorithm. Using
this algorithm, we examined the effect of the parametersand

on the performance in the same manner as Fig. 13 in Sec-
tion III. Experimental results are summarized in Fig. 16. In this
figure, we can observe the negative effect of the hybridization
with local search when both and were large (i.e., the
right-bottom corner). We can also observe the positive effect of
the hybridization when and were appropriately specified.
That is, smaller values of the measure were obtained by

TABLE XXV
AVERAGE COMPUTATION TIME (SECONDS). EACH BOLDFACE RESULT BY A

HYBRID ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE

CORRESPONDINGRESULT BY ITS NON-HYBRID VERSION WITH THE

95% CONFIDENCELEVEL

Fig. 16. Average value of theD1 measure obtained by the hybrid SPEA
Ver.1 algorithm using various values ofk andp for the 2/80 test problem.

Fig. 17. Average value of theD1 measure obtained by the hybrid SPEA
Ver.1 algorithm using various values ofp andT for the 2/80 test problem.

the hybrid algorithm than the case of with no local
search (i.e., the top-most row of Fig. 16). In Fig. 16, the best
result 43.8 was obtained when and . Using

, we examined the effect of and on the perfor-
mance of the hybrid SPEA Ver.1 algorithm in the same manner
as Fig. 16. Experimental results are summarized in Fig. 17. As
in Fig. 16, we can observe the negative effect of the hybridiza-
tion with local search in Fig. 17 when was large and was
small (i.e., the bottom-right corner). Moreover, we can observe
a valley from the bottom-left corner to the top-right corner in
Figs. 16 and 17 as in Fig. 13 by our MOGLS in Section III.

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 221

TABLE XXVI
AVERAGE VALUE OF THED1 MEASUREOBTAINED FROM THE TUNED

PARAMETER VALUES OF THEPOPULATION SIZE, THE CROSSOVERPROBABILITY

AND THE MUTATION PROBABILITY . EACH BOLDFACE RESULT BY A HYBRID

ALGORITHM CAN BE VIEWED AS BEING BETTER THAN THE CORRESPONDING

RESULT BY ITS NON-HYBRID VERSIONWITH THE 95% CONFIDENCELEVEL

While better results were obtained from the Ver.2 hybrid
algorithms than their original pure EMO versions for all the
eight test problems in Table XXII, the Ver.1 hybrid algorithms
did not always outperform their original versions (i.e., 3/80
for SPEA and 2/60 for NSGA-II). One possible reason is
the use of the tuned parameter values for the SPEA and the
NSGA-II. In Section IV-A, the best combination was chosen
for the SPEA and the NSGA-II among 27 combinations of the
population size (30, 60, 120), the crossover probability

(0.6, 0.8, 1.0) and the mutation probability (0.4, 0.6,
0.8). The chosen combination for each EMO algorithm was
also used for its hybrid versions in Tables XXII–XXV. When
the best combination among those 27 combinations was used
for each hybrid algorithm, experimental results were improved
for some test problems, as shown in Table XXVI (compare
Table XXVI with Table XXII). Even in Table XXVI, the Ver.1
hybrid algorithms slightly deteriorated the performance of their
original pure EMO algorithms (i.e., 3/80 for SPEA and 2/60
for NSGA-II). This may be due to the negative effect of the se-
lection of initial solutions for local search. As we have already
shown in Tables III and IV, the proposed selection scheme of
initial solutions for local search can degrade EMO algorithms.
It should be noted, however, that much larger improvement was
achieved in Table XXVI for some test problems (e.g., 2/80) by
the Ver.1 hybridization with the proposed selection scheme than
the Ver.2 hybridization with no selection of initial solutions.
The Ver.1 hybridization significantly improved the convergence
speed to the Pareto front of the SPEA in Table XXIII for many
more test problems than the Ver.2 hybridization. On the other
hand, the number of obtained solutions by the Ver.1 hybrid
NSGA-II was smaller than that by the Ver.2 hybrid NSGA-II
for seven test problems in Table XXIV (except for 2/80). These
observations suggest that the proposed selection scheme of
initial solutions for local search used in the Ver.1 hybridization
tends to improve the convergence speed to the Pareto front
while it tends to degrade the diversity of solutions.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we first improved the performance of the
former MOGLS [20], [21] by modifying its local search part by

choosing only good individuals from the current population as
initial solutions of local search and for appropriately specifying
a local search direction of each initial solution. Next, we
examined the positive and negative effects of the hybridization
with local search on the performance of our MOGLS. Then
we demonstrated the importance of striking a balance between
genetic search and local search. We also examined the role
of genetic search in our MOGLS. Moreover our MOGLS
was compared with the SPEA and the NSGA-II. Finally, we
demonstrated that the local search part of our MOGLS could
be easily combined with other EMO algorithms such as the
SPEA and the NSGA-II. It was shown through computa-
tional experiments that the performance of the SPEA and the
NSGA-II was significantly improved for some test problems
by the hybridization with local search. It was also shown that
the hybridization significantly decreased the computation time
of those EMO algorithms for many test problems.

The main contribution of this paper is that the importance
of striking a balance between genetic search and local search
was clearly demonstrated through computational experiments
on multiobjective permutation flowshop scheduling problems.
For adjusting the balance, we used three parameters that can de-
crease the number of solutions examined by local search. The
values of those three parameters were constant during the ex-
ecution of our computational experiments. Dynamic control of
those parameters is a future research topic. Tanet al. [49] pro-
posed an idea of adjusting the number of solutions examined in
local search in their multiobjective memetic algorithm. Many
issues related to dynamic parameter control have already been
studied for single-objective memetic algorithms [34], [47], [48],
[50], [51]. Those studies can be extended to the case of multi-
objective memetic algorithms where more emphasis should be
placed on the diversity of solutions than the case of single-ob-
jective optimization.

The performance evaluation of our MOGLS in this paper is
not complete. We compared our MOGLS with a population-
based MOLS algorithm, which was implemented by specifying
the crossover probability and the mutation probability as

and . As summarized in Jaszkiewicz [52], a
number of MOLS algorithms have been proposed in the field
of multicriteria decision making such as multiobjective sim-
ulated annealing (MOSA) [43], [53] and multiobjective tabu
search (MOTS) [54]). Comparison of our MOGLS with those
MOLS algorithms is a future research topic. Comparing our
MOGLS with other multiobjective memetic algorithms such as
the MOGLS of Jaszkiewicz [22] and the M-PAES of Knowles
and Corne [23] is also left for future research. Jaszkiewicz [55]
compared these two algorithms with three MOSA algorithms
through computational experiments on multiobjective knapsack
problems. He obtained the best results from his MOGLS [22]
and an MOSA of Czyzak and Jaszkiewicz [43]. Jaszkiewicz’s
MOGLS and the M-PAES were also compared with each other
on multiobjective knapsack problems by Knowles and Corne
[24], where better results were obtained from the M-PAES than
Jaszkiewicz’s MOGLS.

In our MOGLS, simple hill climbing was used as local search.
It is worth examining the use of other local search algorithms
(e.g., simulated annealing and tabu search) in multiobjective

222 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 2, APRIL 2003

memetic algorithms. Such a future study will motivate us to de-
sign adaptive multiobjective memetic algorithms that can dy-
namically control the balance between genetic search and local
search through the choice of local search algorithms and neigh-
borhood structures in addition to the adaptation of parameter
values in a similar manner to multimeme memetic algorithms
[34].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable comments.

REFERENCES

[1] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” inProc. 1st Int. Conf. Genetic Algorithms and Their
Applications, Pittsburgh, PA, July 24–26, 1985, pp. 93–100.

[2] C. A. Coello Coello, “A comprehensive survey of evolutionary-based
multiobjective optimization techniques,”Knowledge and Inform. Syst.,
vol. 1, no. 3, pp. 269–308, August 1999.

[3] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art,”Evol. Comput., vol. 8, no. 2,
pp. 125–147, 2000.

[4] K. Deb, Multi-Objective Optimization Using Evolutionary Algo-
rithms. Chichester, U.K.: Wiley, 2001.

[5] C. A. Coello Coello, D. A. van Veldhuizen, and G. B. Lamont,Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Boston,
MA: Kluwer, 2002.

[6] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization,” inProc. 5th
Int. Conf. Genetic Algorithms, Univ. Illinois at Urbana-Champaign, July
17–21, 1993, pp. 416–423.

[7] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic
algorithm for multi-objective optimization,” inProc. 1st IEEE Int. Conf.
Evolutionary Computation, Orlando, FL, June 27–29, 1994, pp. 82–87.

[8] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,”Evol. Comput., vol. 2, no. 3, pp.
221–248, 1994.

[9] J. D. Knowles and D. W. Corne, “The Pareto archived evolution strategy:
A new baseline algorithm for Pareto multiobjective optimization,” in
Proc. 1999 Congress on Evolutionary Computation, Washington, DC,
July 6–9, 1999, pp. 98–105.

[10] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,”IEEE Trans.
Evol. Comput., vol. 3, pp. 257–271, Nov. 1999.

[11] J. D. Knowles and D. W. Corne, “Approximating the nondominated front
using Pareto archived evolution strategy,”Evol. Comput., vol. 8, no. 2,
pp. 149–172, 2000.

[12] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolu-
tionary algorithms: Empirical results,”Evol. Comput., vol. 8, no. 2, pp.
173–195, 2000.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,”IEEE Trans. Evol. Comput.,
vol. 6, pp. 182–197, Apr. 2002.

[14] P. Merz and B. Freisleben, “Genetic local search for the TSP: New re-
sults,” in Proc. 4th IEEE Int. Conf. Evolutionary Computation, Indi-
anapolis, MN, Apr. 13–16, 1997, pp. 159–164.

[15] N. Krasnogor and J. Smith, “A memetic algorithm with self-adaptive
local search: TSP as a case study,” inProc. 2000 Genetic and Evo-
lutionary Computation Conf., Las Vegas, NV, July 10–12, 2000, pp.
987–994.

[16] P. Moscato, “Memetic algorithms: A short introduction,” inNew Ideas in
Optimization, D. Corne, F. Glover, and M. Dorigo, Eds. Maidenhead:
McGraw-Hill, 1999, pp. 219–234.

[17] “First workshop on memetic algorithms (WOMA I),”Proc. 2000 Ge-
netic and Evolutionary Computation Conference Workshop Program,
pp. 95–130, July 8, 2000.

[18] “Second workshop on memetic algorithms (WOMA II),”Proc. 2001
Genetic and Evolutionary Computation Conf. Workshop Program, pp.
137–179, July 7, 2001.

[19] Proc. 3rd Workshop on Memetic Algorithms (WOMA III), Sept. 7, 2002.

[20] H. Ishibuchi and T. Murata, “Multi-objective genetic local search algo-
rithm,” in Proc. 3rd IEEE Int. Conf. Evolutionary Computation, Nagoya,
Japan, May 20–22, 1996, pp. 119–124.

[21] , “A multi-objective genetic local search algorithm and its applica-
tion to flowshop scheduling,”IEEE Trans. Syst., Man, and Cybern. C,
vol. 28, no. 3, pp. 392–403, August 1998.

[22] A. Jaszkiewicz, “Genetic local search for multi-objective combinatorial
optimization,”Eur. J. Oper. Res., vol. 137, no. 1, pp. 50–71, Feb. 2002.

[23] J. D. Knowles and D. W. Corne, “M-PAES: A memetic algorithm for
multiobjective optimization,” inProc. 2000 Congress on Evolutionary
Computation, San Diego, CA, July 16–19, 2000, pp. 325–332.

[24] , “A comparison of diverse approaches to memetic multiobjective
combinatorial optimization,” inProc. 2000 Genetic and Evolutionary
Computation Conf. Workshop Program, Las Vegas, NV, July 8, 2000,
pp. 103–108.

[25] , “A comparative Assessment of memetic, evolutionary, and con-
structive algorithms for the multiobjectived-MST problem,” inProc.
2001 Genetic and Evolutionary Computation Conf.Workshop Program,
San Francisco, CA, July 7, 2001, pp. 162–167.

[26] K. Deb and T. Goel, “A hybrid multi-objective evolutionary approach
to engineering shape design,” inProc. 1st Int. Conf. Evolutionary
Multi-Criterion Optimization, Zurich, Switzerland, Mar. 7–9, 2001, pp.
385–399.

[27] E. Talbi, M. Rahoual, M. H. Mabed, and C. Dhaenens, “A hybrid evo-
lutionary approach for multicriteria optimization problems: Application
to the flow shop,” inProc. 1st Int. Conf. Evolutionary Multi-Criterion
Optimization, Zurich, Switzerland, Mar. 7–9, 2001, pp. 416–428.

[28] P. Merz, “On the performance of memetic algorithms in combinato-
rial optimization,” in Proc. 2001 Genetic and Evolutionary Computa-
tion Conf. Workshop Program, San Francisco, CA, July 7, 2001, pp.
168–173.

[29] , “Memetic algorithms for combinatorial optimization problems:
Fitness landscape and effective search strategy,” Ph.D. dissertation,
Univ. of Siegen, Siegen, Germany, Dec. 2000.

[30] R. A. Dudek, S. S. Panwalkar, and M. L. Smith, “The lessons of flow-
shop scheduling research,”Oper. Res., vol. 40, no. 1, pp. 7–13, Jan./Feb.
1992.

[31] P. Brucker,Scheduling Algorithms. Berlin: Springer, 1998.
[32] J. P. Watson, S. Rana, L. D. Whitley, and A. E. Howe, “The impact

of approximate evaluation on the performance of search algorithms for
warehouse scheduling,”J. Scheduling, vol. 2, no. 2, pp. 79–98, Mar./Apr.
1999.

[33] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in hybrid evolutionary multi-criterion optimiza-
tion algorithms,” inProc. 2002 Genetic and Evolutionary Computation
Conf., New York, July 9–13, 2002, pp. 1301–1308.

[34] N. Krasnogor, “Studies on the theory and design space of memetic algo-
rithms,” Ph.D. dissertation, Univ. of the West of England, Bristol, U.K.,
June 2002.

[35] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spac-
camela, and M. Protasi,Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties. Berlin,
Germany: Springer, 1999.

[36] E. Taillard, “Some efficient heuristic methods for the flow shop
sequencing problem,”Eur. J. Oper. Res., vol. 47, no. 1, pp. 65–74, July
1990.

[37] I. H. Osman and C. N. Potts, “Simulated annealing for permutation
flow-shop scheduling,”OMEGA, vol. 17, no. 6, pp. 551–557, 1989.

[38] H. Ishibuchi, S. Misaki, and H. Tanaka, “Modified simulated annealing
algorithms for the flow shop sequencing problem,”Eur. J. Oper. Res.,
vol. 81, no. 2, pp. 388–398, Mar. 1995.

[39] T. Murata, H. Ishibuchi, and H. Tanaka, “Genetic algorithms for flow-
shop scheduling problems,”Comput. Indust. Eng., vol. 30, no. 4, pp.
1061–1071, October 1996.

[40] M. Basseur, F. Seynhaeve, and E. G. Talbi, “Design of multi-objective
evolutionary algorithms: Application to the flow-shop scheduling
problem,” in Proc. 2002 Congress Evolutionary Computation, Hon-
olulu, HI, May 12–17, 2002, pp. 1151–1156.

[41] T. P. Bagchi, Multiobjective Scheduling by Genetic Algo-
rithms. Boston, MA: Kluwer, 1999.

[42] J. D. Knowles and D. W. Corne, “On metrics for comparing nondomi-
nated sets,” inProc. 2002 Congress on Evolutionary Computation, Hon-
olulu, HI, May 12–17, 2002, pp. 711–716.

[43] P. Czyzak and A. Jaszkiewicz, “Pareto-simulated annealing—A meta-
heuristic technique for multi-objective combinatorial optimization,”J.
Multi-Criteria Decis. Anal., vol. 7, no. 1, pp. 34–47, Jan. 1998.

[44] R. Salomon, “Evolutionary algorithms and gradient search: Similarities
and differences,”IEEE Trans. Evol. Comput., vol. 2, pp. 45–55, July
1998.

ISHIBUCHI et al.: BALANCE BETWEEN GENETIC SEARCH AND LOCAL SEARCH IN MEMETIC ALGORITHMS 223

[45] D. E. Goldberg and S. Voessner, “Optimizing global-local search hy-
brids,” in Proc. 1999 Genetic and Evolutionary Computation Conf., Or-
lando, FL, July 13–17, 1999, pp. 220–228.

[46] D. Orvosh and L. David, “Shall we repair? Genetic algorithms, combi-
natorial optimization, and feasibility constraints,” inProc. 5th Int. Conf.
Genetic Algorithms, Univ. of Illinois at Urbana-Champaign, July 17–21,
1993, p. 650.

[47] W. E. Hart, “Adaptive global optimization with local search,” Ph.D. dis-
sertation, Univ. of California, San Diego, 1994.

[48] M. W. S. Land, “Evolutionary algorithms with local search for combina-
torial optimization,” Ph.D. dissertation, Univ. of California, San Diego,
1998.

[49] K. C. Tan, T. H. Lee, and E. F. Khor, “Evolutionary algorithms with
dynamic population size and local exploration for multiobjective opti-
mization,” IEEE Trans. Evol. Comput., vol. 5, pp. 565–588, Dec. 2001.

[50] N. Krasnogor and J. Smith, “Emergence of profitable search strategies
based on a simple inheritance mechanism,” inProc. 2001 Genetic and
Evolutionary Computation Conf., San Francisco, CA, July 7–11, 2001,
pp. 432–439.

[51] B. Carr, W. Hart, N. Krasnogor, J. Hirst, E. Burke, and J. Smith, “Align-
ment of protein structures with a memetic evolutionary algorithm,” in
Proc. 2002 Genetic and Evolutionary Computation Conf., New York,
July 9–13, 2002, pp. 1027–1034.

[52] A. Jaszkiewicz, “Multiple objective metaheuristic algorithms for com-
binatorial optimization,” Habilitation thesis, Poznan Univ. of Technol.,
Poznan, Poland, 2001.

[53] E. L. Ulungu, J. Teghem, P. H. Fortemps, and D. Tuyttens, “MOSA
method: A tool for solving multiobjective combinatorial optimization
problems,”J. Multi-Criteria Decis. Anal., vol. 8, no. 4, pp. 221–236,
July 1998.

[54] M. P. Hansen, “Tabu search for multiobjective optimization: MOTS,”
in Proc. 13th Int.Conf. Multiple Criteria Decision Making, Cape Town,
South Africa, Jan. 6–10, 1997.

[55] A. Jaszkiewicz, “Comparison of local search-based metaheuristics on
the multiple objective knapsack problem,”Foundations of Comput.
Decis. Sci., vol. 26, no. 1, pp. 99–120, 2001.

Hisao Ishibuchi (M’93) received the B.S. and M.S.
degrees in precision mechanics from Kyoto Univer-
sity, Kyoto, Japan, in 1985 and 1987, respectively,
and the Ph.D. degree from Osaka Prefecture Univer-
sity, Osaka, Japan, in 1992.

Since 1987, he has been with Department of
Industrial Engineering, Osaka Prefecture University,
where he is currently a Professor. He was a Visiting
Research Associate at the University of Toronto,
Toronto, ON, Canada, from August 1994 to March
1995 and from July 1997 to March 1998. His

research interests include fuzzy systems, genetic algorithms, and neural
networks.

Dr. Ishibuchi is currently an Associate Editor for IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—PART B and forMathware and Soft Com-
puting.

Tadashi Yoshidareceived the B.S. degree in indus-
trial engineering in 2001 from Osaka Prefecture Uni-
versity, Osaka, Japan, where he is currently working
toward the M.S. degree.

His research interests include evolutionary multi-
objective optimization and hybrid algorithms.

Tadahiko Murata (S’96–M’97) received the B.S.,
M.S., and Ph.D. degrees from Osaka Prefecture Uni-
versity, Osaka, Japan, in 1994, 1996, and 1997 re-
spectively.

He joined the Department of Industrial and Infor-
mation Engineering, Ashikaga Institute Technology
as a Research Associate in 1997, and became an
Assistant Professor in 1998. Since 2001, he has
been an Associate Professor in the Department
of Informatics, Faculty of Informatics, Kansai
University, Osaka, Japan. His research interests

include multiobjective optimization, scheduling, pattern classification, fuzzy
systems, machine learning, and genetic algorithms.

Dr. Murata received the 1997 Award from Institute of Systems, Control and
Information Engineers for his paper on flowshop scheduling with interval pro-
cessing time. He has been on the program committees of GECCO 2000–2002,
EMO 2001, EMO 2003, and other conferences. He has been a member of the
Soft Computing Committee of the IEEE Systems, Man, and Cybernetics (SMC)
Technical Committee since 2002. He is a member of SOFT, JIMA, ISCIE, and
ISGEC.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

