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Soft computing: the convergence of emerging reasoning technologies
Piero P. Bonissone

Abstract The term Soft Computing (SC) represents the
combination of emerging problem-solving technologies such
as Fuzzy Logic (FL), Probabilistic Reasoning (PR), Neural
Networks (NNs), and Genetic Algorithms (GAs). Each of these
technologies provide us with complementary reasoning and
searching methods to solve complex, real-world problems.
After a brief description of each of these technologies, we will
analyze some of their most useful combinations, such as the
use of FL to control GAs and NNs parameters; the application
of GAs to evolve NNs (topologies or weights) or to tune FL
controllers; and the implementation of FL controllers as NNs
tuned by backpropagation-type algorithms.

Keywords Soft computing, hybrid systems, fuzzy systems,
neural networks, evolutionary systems

1
Soft computing and approximate reasoning systems
Soft Computing (SC) is a recently coined term describing the
symbiotic use of many emerging computing disciplines.
According to Zadeh (1994): ‘‘2 in contrast to traditional,
hard computing, soft computing is tolerant of imprecision,
uncertainty, and partial truth.’’ In the context of our dis-
cussion we will consider Fuzzy Logic (FL), Probabilistic
Reasoning (PR), Neural Networks (NNs), and Genetic Algo-
rithms (GAs) as Soft Computing main components.

Fuzzy Logic, introduced by Zadeh (1965), gives us a lan-
guage, with syntax and local semantics, in which we can
translate our qualitative knowledge about the problem to be
solved. FL’s main characteristic is the robustness of its
interpolative reasoning mechanism.

Probabilistic Reasoning such as Bayesian Belief Networks,
based on the original work of Bayes (1763), and Dempster-
Shafer’s theory of belief, independently developed by Dempster
(1967) and Shafer (1976), gives us the mechanism to evaluate
the outcome of systems affected by randomness or other types
of probabilistic uncertainty. PR’s main characteristic is its

ability to update previous outcome estimates by conditioning
them with newly available evidence.

Neural Networks, first explored by Rosenbaltt (1959),
Widrow and Hoff (1960), are computational structures that can
be trained to learn patterns from examples. By using a training
set that samples the relation between inputs and outputs, and
a back-propagation type of algorithm [introduced by Werbos
(1974)], NNs give us a supervised learning algorithm that
performs fine-granule local optimization.

Genetic Algorithms, proposed by Holland (1975), give us
a way to perform randomised global search in a solution space.
In this space, a population of candidate solutions, encoded as
chromosomes, is evaluated by a fitness function in terms of its
performance. The best candidates evolve and pass some of
their characteristics to their offsprings.

The common denominator of these technologies is their
departure from classical reasoning and modeling approaches
that are usually based on boolean logic, analytical models, crisp
classifications, and deterministic search. In ideal problem
formulations, the systems to be modeled or controlled are
described by complete and precise information. In these cases,
formal reasoning systems, such as theorem provers, can be
used to attach binary truth values to statements describing the
state or behavior of the physical system. This is illustrated in
Figure 1.

As we attempt to solve real-world problems, however, we
realize that they are typically ill-defined systems, difficult to
model and with large-scale solution spaces. In these cases,
precise models are impractical, too expensive, or non-existent.
The relevant available information is usually in the form of
empirical prior knowledge and input-output data representing
instances of the system’s behavior. Therefore, we need approx-
imate reasoning systems capable of handling such imperfect
information. Soft Computing technologies provide us with
a set of flexible computing tools to perform these approximate
reasoning and search tasks.

In the remaining of this paper we will describe and
contrast Soft Computing technology components: fuzzy and
probabilistic reasoning, neural networks, and genetic algo-
rithms. Then we will illustrate some examples of hybrid
systems developed by leveraging combinations of these
components, such as the control of GAs and NNs parameters
by FL; the evolution of NNs topologies and weights by GAs or
its application to tune FL controllers; and the realization of FL
controllers as NNs tuned by backpropagation-type algorithms.
Figure 2 provides a graphical summary of these hybrid
algorithms and their components. The interest reader should
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consult Bouchon-Meunier et al. (1995) for an extensive
coverage of this topic.

2
Probability and fuzziness

2.1
Distinctions
Randomness and fuzziness capture two rather different types
of uncertainty and imprecision. In randomness, the uncertainty
is derived by the nondeterministic membership of a point
from the sample space in a well-defined region of that space.
The sample space describes the set of possible values for
the random variable. The point is the outcome of the system.
The well-defined region represents the event whose probability
we want to predict. The characteristic function of the region
dichotomizes the sample space: either the point falls within the

boundary of the region, in which case its membership value in
the region is one and the event is true, or it falls outside the
region, in which case its membership value in the region is zero
and the event is false. A probability value describes the
tendency or frequency with which the random variable takes
values inside the region.

On the other hand, in fuzziness the uncertainty is derived
from the partial membership of a point from the universe of
discourse in an imprecisely defined region of that space.
The region represents a fuzzy set. The characteristic function
of the fuzzy set does not create a dichotomy in the universe
of discourse. It defines a mapping from such universe into
the real-valued interval [0, 1] instead of the set M0, 1N.
A partial membership value does not represent any frequency.
Rather, it describes the degree to which that particular element
of the universe of discourse satisfies the property that
characterizes the fuzzy set [see Zadeh (1965)].
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2.2
Interpretations
Not all probabilities have frequentistic interpretations. For
example, subjective probabilities, introduced by DeFinetti
(1937), can be defined in terms of the willingness of a rational
agent to accept a bet, in which the ratio of its associated cost
and prize reflects the probability of the event. Similarly, fuzzy
membership values may have more than one interpretation.
We could treat them as possibility values, i.e. fuzzy restrictions
that act as elastic constraints on the value that may be
assigned to a variable [see Zadeh (1978)], or as similarity
values, i.e. the complement of the distances among possible
worlds [see Ruspini (1989), Ruspini (1990)], or as desirability
or preference values, i.e. the partial order induced by the
membership function on the universe of discourse [see Dubois
and Prade (1992)].

2.3
Probabilistic reasoning systems
The earliest probabilistic techniques are based on single-valued
representations. These techniques started from approximate
methods, such as the modified Bayesian rule, introduced by
Duda et al. (1976) and confirmation theory, proposed by
Shortliffe and Buchanan (1975), and evolved into formal
methods for propagating probability values over Bayesian
Belief Networks [see Pearl (1982), Pearl (1988a)]. Another
trend among the probabilistic approaches is represented by
interval-valued representations such as Dempster-Shafer the-
ory [see Dempster (1967), Shafer (1976), Smets (1991)]. In all
approaches, the basic inferential mechanism is the condition-
ing or updating operation. We will briefly review two main
currents within probabilistic reasoning: Bayesian Belief Net-
works, and Dempster-Shafer’s theory of belief.

2.3.1
Bayesian belief networks
Over the last ten years, considerable efforts have been devoted
to improve the computational efficiency of Bayesian Belief
Networks for trees, poly-trees, and Directed Acyclic Graphs
(DAGs), such as influence diagrams [see Howard and
Matheson (1984), Schachter (1986), Agogino and Rege (1987)].

An efficient propagation of belief on Bayesian Networks has
been originally proposed by Pearl (1982), Pearl (1986a). In his
work, Pearl describes an efficient updating scheme for trees
and, to a lesser extent, for poly-trees [see Kim and Pearl (1983),
Pearl (1986b), Pearl (1988b)]. However, as the graph complex-
ity increases from trees to poly-trees to general graphs, so does
the computational complexity. The complexity for trees is
O(n2), where n is the number of values per node in the tree. The
complexity for poly-trees is O(Km), where K is the number of
values per parent node and m is the number of parents per
child. This number is the size of the table attached to each
node. Since the table must be constructed manually and
updated automatically, it is reasonable to assume that the value
of m will be small and so will the table. The complexity for
multiconnected graphs is O(Kn), where K is the number of
values per node and n is the size of the largest nondecompos-
able subgraph. To handle such complexity, techniques such as
moralization and propagation in a tree of cliques [see

Lauritzen and Spiegelhalter (1988)] and loop cutset condition-
ing [see Suermondt et al. (1991), Stillman (1991)] are typically
used to decrease the value of n, decomposing the original
problem represented by the graph into a set of smaller
problems or subgraphs.

When this problem decomposition process is not possible,
exact methods are abandoned in favor of approximate
methods. Among these methods the most common are
clustering, bounding conditioning, discussed by Horvitz
et al. (1989), and simulation techniques, such as logic samp-
lings and Markov simulations described by Henrion (1989).

2.3.2
Dempster-Shafer theory of belief
Belief functions have been introduced in an axiomatic
manner by Shafer (1976). Their original purpose was to
compute the degree of belief of statements made by different
sources or witnesses from a subjective probability of the
sources reliability.

Many other interpretations of belief functions have been
presented, ranging from functions induced from a probability
measure by multivalued mappings [see Dempster (1967)] or
by compatibility relations [see Lowrance et al. (1986)], to
probability of provability [see Pearl (1988b)], to inner
measures [see Ruspini (1987), Fagin and Halpern (1989)], to
a nonprobabilistic model of transferable belief [see Smets
(1991)].

All interpretations share the same static component of the
theory: the Möbius Transform, which defines a mapping from
basic probability assignments, masses assigned to subsets of
the frame of discernment, to the computation of the lower
bound (belief) of a proposition, a region defined in the same
frame of discernment. An inverse Möbius transform can be
used to recover the masses from the belief. All these interpreta-
tions also share the same definition of the upper bound, usually
referred to as plausibility.

More specifically, this formalism defines a function that
maps subsets of a space of propositions # on the [0,1] scale.
The sets of partial beliefs are represented by mass distributions
of a unit of belief across the propositions in #. This distribu-
tion is called basic probability assignment (bpa). The total
certainty over the space is 1. A non-zero bpa can be given to the
entire space # to represent the degree of ignorance, which
models the source lack of complete reliability. Given a space of
propositions #, referred to as frame of discernment, a function
m: 2#][0, 1] is called a basic probability assignment if it
satisfies the following three conditions:

m(/)\0 where / is the empty set (1)

0\m(A)\1 (2)

+
Af#

m(A)\1 (3)

The certainty of any proposition A is then represented by the
interval [Bel (A), P*(A)], where Bel(A) and P*(A) are defined
as:

Bel(A)\ +
/ExfA

m(x) (4)

P*(A)\ +
xVAE/

m(x) (5)
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where x-#. From the above definitions the following relation
can be derived:

Bel(A)\1[P*(2A) (6)

(4) and (5) represent the static component of the theory, which
is common to all interpretations. However, these interpreta-
tions do not share the same dynamic component of the theory:
the process of updating (i.e., conditioning or evidence combi-
nation). This issue has been recently addressed by various
researchers, such as Halpern and Fagin (1990), Smets (1991).

Inference mechanism: Conditioning Given the beliefs (or
masses) for two propositions A and B, Dempster’s rule of
combination can be used, under assumptions of independence,
to derive their combined belief (or mass).

If m
1

and m
2

are two bpas induced from two independent
sources, a third bpa, m(C), expressing the pooling of the
evidence from the two sources, can be computed by using
Dempster’s rule of combination:

m(C)\

+
Ai W Bj\C

m1(Ai) · m2(Bj)

1[ +
Ai W BjO/

m1(Ai) · m2(Bj)

(7)

Dempster’s rule allows us to consider and pool discounted
pieces of evidence, i.e. evidence whose belief can be less than
one. On the other hand, conditioning can only be done with
certain evidence. If proposition B is true (i.e., event B has
occurred), then Bel(B)\1 and from Demspster rule of
combination, we can derive a formula for conditioning A given
B, Bel(A DB):

Bel(A DB)\
Bel(AX2B)[Bel(2B)

1[Bel(2B)
(8)

This expression is compatible with the interpretation of
Belief as evidence, and as inner measure. However, this
expression is not compatible with the interpretation of belief as
the lower envelope of a family of probability distributions.
Under such interpretation, the correct expression for condi-
tioning is

Bel(AEB)\
Bel(AWB)

Bel(AWB)]Pl(2AWB)
(9)

The interested reader is referred to Shafer (1990) for a
clear explanation and an updated bibliography on belief
functions.

As for the case of belief networks, a variety of exact and
approximate methods have been proposed to perform inferen-
ces using belief functions. Typically, the exact methods require
additional constraints on the structure of the evidence.

All above probabilistic methods use the operation of
conditioning to update the probability values and perform
a probabilistic inference. We will now switch our focus to fuzzy
logic based systems, a class of approximate reasoning systems
whose inference mechanism is not conditioning, but an
extension of modusponens.

2.4
Fuzzy logic based reasoning systems
Fuzzy logic approaches are based on a fuzzy-valued representa-
tion of uncertainty and imprecision. Typically they use
Linguistic Variables, as proposed by Zadeh (1978), Zadeh
(1979), to represent different information granularities, and
Triangular-norms to propagate the fuzzy boundaries of such
granules [see Schweizer and Sklar (1963), Schweizer and Sklar
(1983), Dubois and Prade (1984), Bonissone (1987), Bonissone
and Decker (1986), Bonissone et al. (1987)].

The basic inferential mechanism used in fuzzy reasoning
systems is the generalized modus-ponens, introduced by Zadeh
(1979), which makes use of inferential chains (syllogisms).

2.4.1
Triangular norms: a review
Since Triangular norms play such an important role in the
definition of the generalized modus ponens, we will provide the
reader with a brief overview of these operators. Triangular
norms (T-norms) and their dual T-conorms are two-place
functions from [0, 1]][0, 1] to [0, 1] that are monotonic,
commutative and associative. They are the most general
families of binary functions that satisfy the requirements of the
conjunction and disjunction operators, respectively. Their
corresponding boundary conditions satisfy the truth tables of
the Boolean AND and OR operators.

Any triangular norm T(A, B) falls in the interval Tw(A, B)
4T(A, B)4Min(A, B) , where

T
w

(A, B)\G
min(A, B)

0

if max(A, B)\1,

otherwise
(10)

The corresponding DeMorgan dual T-conorm, denoted by
S(A, B), is defined as

S(A, B)\1[T (1[A, 1[B) (11)

T
w

(A, B) is referred to as the drastic T-norm (to reflect its
extreme behavior) and is clearly non-continuous. By changing
one of the axioms of the T-norms [see Schweizer and Sklar
(1963)] we can derive a subset of T-norms, referred to as
copulas, such that any copula T(A, B) falls in the interval
Max(0, A]B[1)4T(A, B)4Min(A, B).

In the original version of fuzzy logic proposed by Zadeh
(1965), the conjunction and disjunction operators are the
minimum and maximum, i.e. the upper and lower bounds of
the T-norm and T-conorm ranges, respectively. These oper-
ators are the only ones satisfying distributivity and idem-
potency [see Bellman and Giertz (1973)]. Other selection of
T-norms and T-conorms provide different logics with different
properties [see Klement (1981), Bonissone and Decker
(1986)].

Perhaps the most notable selection is the one based on the
lower bound of the T-norms (Lukasiewicz T-norm) [see
Lukasiewicz (1967)] and its dual T-conorm. This logic satisfies
the law of the excluded-middle, at the expense of distributivity,
and is the basis of MV-Algebras [see Di Nola and Gerla
(1986)]. In the fuzzy logic community this algebra was
originally referred to as bold algebra, a concept first introduced
by Giles (1981). Mundici (1995) has provided us with interest-
ing semantics for this algebra, presenting it as a decision
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1When the input is crisp, the degree of matching is the evaluation of the
reference membership distribution at the point representing the value of
the input:

%(X
i,j

DI
j
)"min[kX

i, j
(x

0
), kI

j
(x

0
)]"kx

i,j
(x

0
) (16)

making or voting paradigm in a context in which the
information source can have up to a maximum number of
k lies (errors). This paradigm is also known as Ulam’s game
with k lies and has direct applications to on-line error
correcting code.

Fuzzy reasoning systems can be used in many applications,
from advice providing expert systems, to soft constraint
propagation, to decision making systems, etc. Within this
paper we will limit our scope to Fuzzy Controllers (FCs),
reasoning systems composed of a Knowledge Base (KB), an
inference engine, and a defuzzification stage. The KB is
comprised by a rule base, describing the relationship between
state vector and output, and by the semantics of the linguistic
terms used in the rule base. The semantics are established by
scaling factors delimiting the regions of saturation and by
termsets defining a fuzzy partition in the state and output
spaces [see Bonissone and Chiang (1993)].

The concept of a fuzzy controller was initially outlined by
Zadeh (1973) and first explored by Mamdani and Assilian
(1975), Kickert and Mamdani (1978) in the early seventies.
Currently it represents one of the most successful applications
of fuzzy logic based systems [see Bonissone et al. (1995)].

2.4.2
Inference mechanism: generalized modus ponens
Rule base The most common definition of a fuzzy rule base
R is the disjunctive interpretation initially proposed by
Mamdani and Assillian (1975) and found in the majority of
Fuzzy Controller applications:

R\
m
Z
i/1

ri\
m
Z
i/1

(XM i]Yi) (12)

R is composed of a disjunction of m rules. Each rule ri defines

a mapping between a fuzzy state vector X
i
and a corresponding

fuzzy action Y
i
. Each rule r

i
is represented by the Cartesian

product operator. There are, however, other representations
for a fuzzy rule, which are based on the material implication
operator and the conjunctive interpretation of the rule base
[see Trillas and Valverde (1985)]. For a definition of different
rule types, the interested reader should consult Misumoto and
Zimmerman (1982), Lee (1990). A particularly useful type of
FC is the Takagi-Sugeno (TS) controller [see Takagi and
Sugeno (1985)]. In this type of controller the output Y

i
of each

rule r
i
: (X

i
]Y

i
) is no longer a fuzzy subset of the output space

but rather a first order polynomial in the state space X i , i.e.:

Y
i
\F

i
(X

i
)\c

0
]

n
+
j/1

cj Xi, j
(13)

where X
i, j

is the jth element of the n-dimensional vector X
i
.

Modus ponens The inference engine of a FC can be defined as
a parallel forward chainer operating on fuzzy production rules.

An input vector I is matched with each n-dimensional state

vector X i , i.e., the Left Hand Side (LHS) of rule ri\X i]Yi . The
degree of matching ji indicates the degree to which the rule
output can be applied to the overall FC output. The main
inferences issues for the FC are; the definition of the fuzzy
predicate evaluation, which is usually a possibility measure

[see Zadeh (1978)]; the LHS evaluation, which is typically
a triangular norm [see Schweizer and Sklar (1963), Schweizer
and Sklar (1983), Bonissone (1987)]; the conclusion detach-
ment, which is normally a triangular norm or a material
implication operator; and the rule output aggregation, which is
usually a triangular conorm for the disjunctive interretation of
the rule base, or a triangular norm for the conjuctive case.

Under commonly used assumptions we can describe the
output of the Fuzzy System as

kY(y)\
m
¨
i

min[j i , kYi
(y)] ) (14)

where ji is the degree of applicability of rule ri

ji\
n
§
j

%(X
i, j

DIj) (15)

and %(X
i, j
DIj) is the possibility measure representing the

matching between the reference state variable and the input
element1

%(X
i, j

Ij)\¨
xj

(min[kxi, j
(xj), kI(xj)] ) (17)

(14), (15), and (17) describe the generalized modus ponens
[see Zadeh (1979)], which is the basis for interpreting
a fuzzy-rule set.

2.5
Defuzzification
The most important FC design choice is the selection of the
defuzzification mode. The output of the rule aggregation stage
is a composite membership distribution defined on the
space of control actions. This distribution must be summarized
into a scalar value before it is passed to an actuator for
execution. This summarization can be performed by a variety
of defuzzifiers: the Mean of Maxima (MOM), the Center of
Gravity (COG), the Height Method (HM).

The selection of the defuzzifier is a tradeoff between storage
requirements (MOM lends itself to easy compilation), perfor-
mance (COG typically exhibits the smoothest performance),
and computational time (HM is faster to compute than COG)
[see Mizumoto (1989)].

2.6
Complementarity
The distinction between probability and fuzziness has been
presented and analyzed in many different publications,
such as Berdek (1994), Dubois and Prade (1993), Klir and
Folger (1988) to mention a few. Most researches in probabilis-
tic reasoning and fuzzy logic have reached the
same conclusion about the complementarity of the two
theories [see Bonissone (1991)]. This complementarity was
first noted by Zadeh (1968), who introduced the concept of the
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probability measure of a fuzzy event. Let A be a fuzzy event,
i.e, a subset of a finite sample space X. Let also x

i
represent the

ith singleton in such a space and p(x
i
) be its probability. Then

P(A), the probability of the fuzzy event A, is the weighted sum
of the probability of each singleton in the sample space
multiplied by k

A
(x

i
), the partial degree to which the singleton

x
i

belongs to the fuzzy subset A, i.e.:

P(A)\ +
xi3X

p(x
i
)]k

A
(x

i
) (18)

In 1981 Smets, extended the theory of belief functions to
fuzzy sets by defining the belief of a fuzzy event [see
Smets (1981), Smets (1988)]. Let A be a fuzzy event of a finite
sample space X. Let also S

i
represent the ith available piece of

evidence, i.e. a non-empty subset of the frame of discernment
with an assigned probability mass m(S

i
). Then Bel(A), the

belief of the fuzzy event A, is the weighted sum of the
probability masses of each piece of evidence multiplied by the
minimum degree to which the evidence supports the event, i.e.
it is included in the fuzzy region defining the event:

Bel(A)\ +
/OSi-X

m(Si)] §
xj3Si

k
A

(x
j
) (19)

We have established the orthogonality and complementarity
between probabilistic and possibilistic methods. Given their
duality of purpose and characteristics, it is clear that these
technologies ought to be regarded as being complementary
rather than competitive.

3
Neural networks
Fuzzy logic enables us to translate and embed empirical,
qualitative knowledge about the problem to be solved into
reasoning systems capable of performing approximate pattern
matching and interpolation. Fuzzy logic however does not have
adaptation or learning features, since it lacks the mechanism to
extract knowledge fron existing data. Of course, it could be
argued that it is possible to use fuzzy clustering methods, such
as Fuzzy C-means [see Bezdek and Harris (1978), Bezdek
(1981)] to provide more accurate definitions of the member-
ship functions of the state and output variables, in a typical
unsupervised mode. However, FL systems are not able to learn
from examples of input-output pairs, in a typical supervised
mode.

On the other hand, this is the typical characteristic of Neural
Networks, another Soft Computing technology. NNs and
Perceptorns started in the early 60s as algorithms to train
adaptive elements. Their origins can be traced to the works of
Rosenbaltt (1959) on spontaneous learning, Stark et al. (1962)
on competitive learning, and Widrow and Hoff (1960) on the
development of ADALINE and MADALINE algorithms.

Typically NNs are divided into Feed-Forward and Recur-
rent/Feedback networks. The Feed-Forward networks include
single-layer perceptrons, multilayer perceptrons, and Radial
Basis function nets (RBFs) [see Moody and Darken (1989)],
while the Recurrent nets cover Competitive networks,
Kohonen (1982) Self Organizing Maps, Hopfield, J. (1982) nets,
and ART models [see Carpenter and Grossberg 1983), Carpen-
ter and Grossberg (1987), Carpenter and Grossberg (1990)].
While feedforward NNs are used in supervised mode, recurrent

NNs are typically geared toward unsupervised learning,
associative memory, and self-organization. In the context of
our paper we will only consider feedforward NNs. Given the
functional equivalence already proven between RBF and fuzzy
systems [see Jang et al. (1993)] we will further limit our
discussion to multilayer feedforward nets.

A feedforward multilayer NN is composed of a network of
processing units or neurons. Each neuron performs the
weighted sum of its input, using the resulting sum as the
argument of a non-linear activation function. Originally the
activation functions were sharp thresholds (or Heavyside)
functions, which evolved to piecewise linear saturation func-
tions, to differentiable saturation functions (or sigmoids), and
to gaussian functions (for RBFs). For a given interconnection
topology, NNs train their weight vector to minimize a quad-
ratic error function.

Prior to backpropagation, proposed by Werbos (1974), there
was no sound theoretical way to train multilayers, feedforward
networks with nonlinear neurons. On the other hand single-
layer NNs (perceptrons) were too limited, as they could only
provide linear partitions of the decision space. While their
limitations were evidenced by Minsky and Papert (1969),
Hornick et al. (1989) proved that a three-layers NN was an
universal functional approximator. Therefore, with the
advent of BP, multilayers feedforward NNs became extremely
popular. Since then, most researchers on NNs have focused
their efforts on improving BP’s converge speed: by using
estimates of the second derivatives, under simplifying assump-
tions of a quadratic error surface, as in Quickprop
[see Fahlman (1988)]; by changing the size of the step size in
a self-adapting fashion such as SuperSAB [see Tollenaere
(1990)]; or by using second order information, as in the
Conjugate Gradient Descent method described by Moller
(1990). An excellent history of Adaptive NNs is provided by
Widrow (1990).

3.1
Learning
In the context of this paper, we will consider learning only in
the context of Soft Computing. Therefore, we will limit our
discussion to structural and parametric learning, which are the
counterpart of system identification and parameter estimation
in classical system theory. For a fuzzy controller learning (or
tuning) entails defining (or refining) the knowledge base (KB),
which is composed of the a parameter set (state and output
scaling factors, state and output termsets) and a structure (the
rule base). The parameter set describe the local semantics of
the language and the rule set describe the syntactic mapping.
For Neural Networks, structural learning means the synthesis
of the network topology (i.e., the number of hidden layers and
nodes), while parametric learning implies determining the
weight vectors that are associated to each link in a given
topology.

Learning can be facilitated by the availability of complete or
partial feedback. In the case of total feedback (a teacher
providing an evaluation at every iteration or a training set
describing the correct output for a given input vector) we have
supervised learning. When only partial feedback is available
(every so often we are told if we succeed or failed) we have
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reinforcement learning. When no feedback is available we have
the case of unsupervised learning.

3.1.1
Supervised learning
In the context of supervised learning, ANFIS (Adaptive Neural
Fuzzy Inference Systems) [see Jang (1993)] is a great example
of an architecture for tuning fuzzy system parameters from
input-output pairs of data. The fuzzy inference process is
implemented as a generalized neural network, which is then
tuned by gradient descent techniques. It is capable of tuning
antecedent parameters as well as consequent parameters of
TSK-rules which use a softened trapezoidal membership
function. It has been applied to a variety of problems,
including chaotic timeseries prediction and the IRIS cluster
learning problem. As a fuzzy system, it does not require a large
data set and it provides transparency, smoothness, and
representation of prior knowledge. As a neural system, it
provides parametric adaptability.

3.1.2
Steepest descent
Backpropagation neural-net based techniques usually
depend on a differentiable input-output map, which restricts
their applicability. For controllers, it is practical to
evaluate their performance over the whole trajectory rather
than individual states, and a few such evaluations provide
a crude local snapshot of the performance surface as a
function over parameter space. This snapshot can then
guide a steepest descent algorithm to determine the two
scaling factors (Kp and Ki) in the design of a fuzzy logic
PI controller.

The evaluation function is a metric based on the total
deviation of the actual trajectory from an ideal trajectory,
which is crafted based on the specifications of the controller,
such as rise time, settling time, steady-state error band and
steady-state oscillation. The metric can be quite flexible if
desired.

The method uses a logarithmic search of the parameter
space followed by a linear one to identify the appropriate
scaling factors. The same method can be applied to other
critical parameters such as the centers of the output member-
ship functions. For low-dimensional searches, this method can
be applied easily to any kind of system and remains reasonably
efficient, since it is easy to parallelize.

3.1.3
Reinforcement learning
Reinforcement learning exploits the availability of expert
knowledge in the area of exerting control actions as well as
evaluating system state. Approximate linguistic rules can be
used to initialize the two knowledge bases which deal with
action selection and action evaluation. The resulting system is
capable of learning to control a complex, dynamic system in
the absence of desired output, with only a delayed, somewhat
uninformative reinforcement signal from the environment.
This system has been used to control systems from the inverted
pendulum to the space shuttles attitude control, [see Berenji
and Khedkar (1992)].

3.1.4
Structural learning: rule clustering
The previously mentioned systems deal mainly with parameter
identification once the structure has been fixed. However,
identifying the number of rules in a fuzzy system or fixing the
granularity of the fuzzy partition of the input space is
a structure identification problem which also needs to be
solved. If expert rules are not available, then other known
properties of the unknown function may be available and could
be exploited. For instance, in industrial settings, many map-
pings are implemented as approximations using look-up tables
or analytic interpolation functions. If a fuzzy system can be
reverse engineered from such information, then knowledge
extraction can help to refine or upgrade the system.

If analytical information about the mapping is available,
then various algorithms can be used to extract a near-optimal
fuzzy rulebase which is equivalent to the mapping. On the
other hand, the function can be sampled for data points or the
look-up table can be used to generate the data points according
to a desired distribution. If there is sufficient data, it is possible
to adapt neural network clustering methods to extract clusters
in product space which correspond to fuzzy rules. The method
uses the joint criteria of incompleteness as well as accuracy in
prediction to add rules to the database and then conducts
a deletion phase to prune redundant knowledge. This system
extracts a set of rules from a single online pass over a reason-
ably small dataset. It can then be tuned by using the same
gradient optimization techniques to tune the parameters as
have been discussed above. The reader is referred to Berenji
and Khedkar (1993), Khedkar (1993) for a detailed discussion
of reinforcement learning and rule clustering.

4
Evolutionary computing
In the previous section we discussed supervised learning of
fuzzy system parameters. Since gradient descent techniques
may become mired in local minima, global search techniques
have also been explored. We will focus our attention on
a randomized global search paradigm, which is commonly
referred to as Evolutionary Computation (EC). This paradigm
covers several variations, such as Evolutionary Strategies (ES),
addressing continuous function optimization [see Rechenberg
(1965), Schwefel (1965)]; Evolutionary Programs (EP), generat-
ing finite state automata that describe strategies or behaviors
[see Fogel (1962), Fogel et al. (1966)]; Genetic Algorithms
(GAs), providing continuous and discrete function optimiza-
tion, system synthesis, tuning, testing, etc. [see Holland
(1975)]; and Genetic Programming (GP), evolving computer
programs to approximately solve problems, such as generating
executable expressions to predict timeseries, etc. [see Koza
(1992)].

As noted by Fogel (1995) in his historical perspective and
a comparison of these paradigms: . . . the three main lines of
investigation — genetic algorithms, evolution strategies, and
evolutionary programming — share many similarities. Each
maintains a population of trial solutions, imposes random
changes to those solutions, and incorporate selection to
determine which solutions to maintain in future genera-
tions . . . . Fogel also notes that GAs emphasize models of
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genetic operators as observed in nature, such as crossing-over,
inversion, and point mutation, and apply these to abstracted
chromosomes, while ES and EP emphasize mutational trans-
formations that maintain behavioral linkage between each
parent and its offspring. In this paper, we will limit our analysis
to Genetic Algorithms.

4.1
Genetic algorithms
Genetic Algorithms (GAs) are perhaps the most widely known
of the above paradigms. In the context of designing fuzzy
controllers, it is relatively easy to specify an evaluation of the
trajectory or the controller as a whole, but it is difficult to
specify desired step-by-step actions, as would be required by
supervised learning methods. Thus Genetic Algorithms can use
such an evaluation function to design a fuzzy controller.

GAs are a new programming paradigm that has been applied
to much more difficult (NP-hard) optimization problems such
as scheduling with very promising results. GAs encode the
solution to a given scheduling problem in a binary- (or
real-valued) string [see Holland (1975), Goldberg (1978),
Michalewics (1994)]. Each string’s element represents a par-
ticular feature in the solution. The string (solution) is
evaluated by a fitness function to determine the solution’s
quality: good solutions survive and have off-springs, while bad
solutions are discontinued. Solution’s constraints are modeled
by penalties in the fitness function or encoded directly in the
solution data structures. To improve current solutions, the
string is modified by two basic type of operators: cross-over
and mutations. Cross-over are deterministic operators that
capture the best features of two parents and pass it to a new
off-spring string. Mutations are probabilistic operators that try
to introduce needed solutions features in populations of
solutions that lack such feature.

Some GAs have exhibited exceptional performances in large
scale scheduling problems. However, many unanswered ques-
tions still remain. Design questions range from the type of
solution and constraints encoding to probability of mutation,
definition of fitness function, desired type of cross-over
operations (to encode context dependent heuristics), etc. More
fundamental questions include the applicability conditions of
GAs, comparative analyses with other scheduling techniques,
and, in general, a deeper understanding of the way GAs explore
the solution space.

4.2
Simulated annealing
A special case of the genetic algorithm approach is the method
known as Simulated Annealing (SA), which is considered
a probabilistic hill-climbing technique [see Romeo and
Sangiovanni-Vincentelli (1985)]. SA is a more restricted
version of GAs, with well understood convergence properties.
Simulated Annealing can be seen as a GA in which crossovers
are disabled and only mutations implemented by the probabil-
ity of jumping the energy barrier are allowed. Furthermore, the
population size is typically one. SA is also a global search
strategy and can work in very high-dimensional searches, given
enough computational resources. An interesting hybrid algo-
rithm that spans the space from GAs to SAs has been proposed

by Adler (1993). In his algorithm the GAs operators use
Simulated Annealing to determine if the newly generated
solution is better than the best of its parents (in the case of the
crossover operator) or better than the original solution (in the
case of the mutation operator).

5
Hybrid algorithm: the symbiosis
Over the past few years we have seen an increasing number of
hybrid algorithms, in which two or more of Soft Computing
technologies (FL, NN, GA) have been integrated to improve the
overall algorithm performance. In the sequel we will analyze
a few of such combinations.

5.1
NN controlled by FL
Fuzzy logic enables us to easily translate our qualitative
knowledge about the problem to be solved, such as resource
allocation strategies, performance evaluation, and perfor-
mance control, into an executable rule set. As a result, fuzzy
rule bases and fuzzy algorithms have been used to monitor the
performance of NNs or GAs and modify their control para-
meters. For instance, FL controllers have been used to control
the learning rate of Neural Networks to improve the crawling
behavior typically exhibited by NNs as they are getting closer
to the (local) minimum. More specifically, the typical equation
for the weight changes in a NN is:

*W
n
\[g+E(W

n
)]a*W

n~1
(20)

in which *W
n

represents the changes to the weight vector W
n
,

E(W
n
) is the error function at the nth iteration, g is the learning

rate and a is the momentum. The learning rate g is a function
of the step size k and determines how fast the algorithm will
move along the error surface, following its gradient. Therefore
the choice of g has an impact on the accuracy of the final
approximation and on the speed of convergence. The smaller
the value of g the better the approximation but the slower the
convergence. Jacobs (1988) established a heuristic rule, known
as the Delta-bar-delta rule to increase the size of g if the sign of
+E was the same over several consecutive steps. Arabshahi
et al. (1992) developed a simple Fuzzy Logic controller to
modify g as a function of the error and its derivative,
considerably improving Jacobs’ heuristics.

5.2
GAs controlled by FL
The use of Fuzzy Logic to translate and improve heuristic rules
has also been applied to manage the resource of GAs (popula-
tion size, selection pressure) during their transition from
exploration (global search in the solution space) to exploitation
(localized search in the discovered promising regions of that
space [see Cordon et al. (1995), Herrera et al. (1995a), Lee and
Tagaki (1993)]. The management of GA resources gives the
algorithm an adaptability that improves its efficiency and
converge speed. According to Herrera and Lozano (1996), this
adaptability can be used in the GA’s parameter settings, genetic
operators selection, genetic operators behavior, solution
representation, and fitness function.
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In the same reference we can see two examples of this
adaptability used to avoid the premature convergency of the
GA to an inferior solution. This problem occurs when, due to
selection pressure, disruption caused by the crossover oper-
ators, and inadequate parameter settings, the GA exhibits
a lack of diversity in its population.

The first approach is based on dynamic crossover operators
applied to real-coded chromosomes. These operators use
different type of aggregators: t-norms and t-conorms to
emphasize exploration properties, and averaging operators to
show exploitation properties.

The second approach (in the same reference) uses two FL
controllers to control the use of the exploitative crossover and
the selection pressure. For this purpose two diversity measures
are defined: the genotypic diversity, which measures the
(normalized) average distance of the population from the best
chromosome; and the phenotypic diversity, which measures the
ratio between the best fitness and the average fitness. These
diversity measures are the inputs to the FLCs. Every five
generations the FLCs evaluate these measures to adjust the
probability of using an exploitative crossover (based on
averaging aggregators) and the selection pressure (keeping or
eliminating diversity in the next generation).

It should be noted that there are other ways of controlling
the GAs parameters setting. Specifically, GAs have also been
applied at the meta-level to control the resource parameters of
object-level GAs [see Grefenstette (1986)].

5.3
FL controller tuned by GAs
Many researchers have explored the use of genetic algorithms
to tune fuzzy logic controllers. Cordon et al. (1995) contains an
updated bibliography of over 300 papers combining GAs with
fuzzy logic, of which at least half are specific to the tuning and
design of fuzzy controllers by GAs. For brevity’s sake we will
limit this section to a few contributions. These methods differ
mostly in the order or the selection of the various FC
components that are tuned (termsets, rules, scaling factors).

C. Karr, one of the precursors in this quest [see Karr
(1991b), Karr (1991a), Karr (1993)], used GAs to modify the
membership functions in the termsets of the variables used by
the FCs. Karr used a binary encoding to represent three
parameters defining a membership value in each termset. The
binary chromosome was the concatenation of all termsets. The
fitness function was a quadratic error calculated for four
randomly chosen initial conditions.

Herrera et al. (1995b) directly tuned each rule used by the
FC. They used a real encoding for a four-parameter character-
ization of a trapezoidal membership value in each termset.
Each rule was represented by the concatenation of the
membership values used in the rule antecedent (state vector)
and consequent (control action). The population was the
concatenation of all rules so represented. A customized
(max-min arithmetical) crossover operator was also proposed.
The fitness function was a sum of quadratic errors.

Kinzel et al. (1994) tuned both rules and termsets. They
departed from the string representation and used a (cross-
product) matrix to encode the rule set (as if it were in table
form). They also proposed customized (point-radius) cross-
over operators which were similar to the two-point crossover

for string encoding. They first initialized the rule base
according to intuitive heuristics, used GAs to generate better
rule base, and finally tuned the membership functions of the
best rule base. This order of the tuning process is similar to
that typically used by self-organizing controllers [see
Burkhardt and Bonissone (1992)].

Lee and Takagi (1993) also tuned the rule base and the
termsets. They used a binary encoding for each three-tuple
characterizing a triangular membership distribution. Each
chromosome represents a Takagi-Sugeno rule [see Takagi and
Sugeno (1985)], concatenating the membership distributions
in the rule antecedent with the polynomial coefficients of the
consequent.

Also interesting is the approach taken by Surmann et al.
(1993), who modify the usual quadratic fitness function by
addition of an entropy term describing the number of activated
rules.

In Bonissone et al. (1996), we followed the tuning order
suggested by Zheng (1992) for manual tuning. We began with
macroscopic effects, by tuning the FC state and control
variable scaling factors, while using a standard uniformly
spread termset and a homogeneous rule base. After obtaining
the best scaling factors, we proceeded to tune the termsets,
causing medium-size effects. Finally, if additional improve-
ments were needed, we tuned the rule base to achieve
microscopic effects.

This parameter sensitivity order can be easily understood if
we visualize a homogeneous rule base as a rule table: a modi-
fied scaling factor affects the entire rule table; a modified term
in a termset affects one row, column, or diagonal in the table;
a modified rule only affects one table cell.

5.4
NNs generated by GAs
There are many forms in which GAs can be used to synthesize
or tune NN: to evolve the network topology (number of hidden
layers, hidden nodes, and number of links) letting then
Back-Propagation (BP) tune the net; to find the optimal
set of weights for a given topology, thus replacing BP; and to
evolve the reward function, making it adaptive. The GA
chromosome needed to directly encode both NN topology and
parameters is usually too large to allow the GAs to perform an
efficient global search. Therefore, the above approaches are
usually mutually exclusive, with a few exceptions [see
Maniezzo (1994), Patel and Maniezzo (1994)] that rely on
variable granularity to represent the weights.

Montana and Davis (1989) were among the first to propose
the use of GAs to train a feedforward NN with a given topology.

Typically NNs using Back-Propagation (BP) converge faster
than GAs due to their exploitation of local knowledge. However
this local search frequently causes the NNs to get stuck in
a local minima. On the other hand, GAs are slower, since they
perform a global search. Thus GAs perform efficient coarse-
granularity search (finding the promising region where the
global minimum is located) but they are very inefficient in the
fine-granularity search (finding the minimum). These charac-
teristics motivated Kitano (1990) to propose an interesting
hybrid algorithm in which the GA would find a good parameter
region which was then used to initialize the NN. At that point,
Back-Propagation would perform the final parameter tuning.
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McInerney and Dhawan improved Kitano’s algorithm by
using the GA to escape from the local minima found by the
backpropagation during the training of the NNs (rather than
initializing the NNs using the GAs and then tuning it using BP).
They also provided a dynamic adaptation of the NN
learning rate [see McInerney and Dhawan (1993)].

For an extensive review of the use of GAs in NNs, the reader
is encouraged to consult Schaffer et al. (1992), Yao (1992).

5.5
FL controller tuned by NNs
Among the first to propose the combined use of FL and NNs
was Lee and Lee (1974), who proposed a multi-input/multi-
output neuron model, in contrast with the binary-step output
function advocated in the mid seventies. Since then we have
witnessed many FL-NNs combinations — see Takagi (1990) for
a more exhaustive coverage.

Within the limited scope of using NNs to tune FL Control-
lers, we already mentioned the seminal work on ANFIS
(Adaptive Neural Fuzzy Inference Systems) by Jang (1993).
ANFIS consists of a six layers generalized network. The first
and sixth layers correspond to the system inputs and outputs.
The second layer defines the fuzzy partitions (termsets) on the
input space, while the third layer performs a differentiable
T-norm operation, such as the product or the soft-minimum.
The fourth layer normalizes the evaluation of the left-hand-side
of each rule, so that their degrees of applicability ji — see
(15) — will add up to one. The fifth layer computes the
polynomial coefficients in the right-hand-side of each Takagi-
Sugeno rule, as described in (13). Jang’s approach is based on
a two-stroke optimization process. During the forward stroke
the termsets of the second layer are kept equal to their previous
iteration value while the coefficients of the fifth layer are
computed using a Least Mean Square method. At this point
ANFIS produces an output, which is compared with the one
from the training set, to produce and error. The error gradient
information is then used in the backward stroke to modify the
fuzzy partitions of the second layer. This process is continued
until convergence is reached.

Many other variations of FLC tuning by NN have been
developed, such as the ones described in Kawamura et al.
(1992), Bersini et al. (1993), Bersini et al. (1995).

5.6
Hybrid GAs
Since GAs are quite robust with respect to being trapped in
local minima (due to the global nature of their search) but
rather inaccurate and inefficient in finding the global min-
imum, several modifications have been proposed to exploit
their advantage and compensate for their shortcoming. Of
special interest is the work by Renders and Bersini (1994), who
proposed two type of hybrid GAs. The fist type consists in
interweaving GAs with Hill Climbing techniques (GA]HC):
the solution selection no longer depends on the instantaneous
evaluation of the fitness function applied to the solution but
rather applied to a refinement of the solution obtained via Hill
Climbing techniques. The second type of hybrid consists in
embedding optimization techniques in the crossover operator
used by the GAs. The population size is j(n]1) individuals, of

which only j individuals are replaced by offsprings. Each
offspring is obtained from a group of (n]1) parents via
a simplex crossover. His results show by combining the two
hybrid methods, (GA]HC) and (Simplex crossover) the
resulting hybrid algorithm outperforms each of its components
in achieving maximum fitness, reliably, accurately, and minim-
izing computing time. An analysis of the tradeoff between
accuracy, reliability and computing time for hybrid GAs can be
found in Renders and Flasse (1976).

6
Conclusions
We should note that Soft Computing technologies are relatively
young: Neural Networks originated in 1959, Fuzzy Logic in
1965, Genetic Algorithms in 1975, and probabilistic reason-
ing (beside the original Bayes’ rule) started in 1967 with
Dempster’s and the in early 80s with Pearl’s work. Originally,
each algorithm had well-defined labels and could usually be
identified with specific scientific communities, e.g. fuzzy,
probabilistic, neural, or genetic. Lately, as we improved our
understanding of these algorithms’ strengths and weaknesses,
we began to leverage their best features and developed hybrid
algorithms. Their compound labels indicate a new trend of
co-existence and integration that reflects the current high
degree of interaction among these scientific communities.
These interactions have given birth to Soft Computing, a new
field that combines the versatility of Fuzzy Logic to represent
qualitative knowledge, with the data-driven efficiency of
Neural Networks to provide fine-tuned adjustments via local
search, with the ability of Genetic Algorithms to perform
efficient coarse-granule global search. The result is the devel-
opment of hybrid algorithms that are superior to each of their
underlying SC components and that provide us with the better
real-world problem solving tools.
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