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Abstract

Over the past years, methods for the automated induction of models and the extraction of interesting patterns
from empirical data have attracted considerable attention in the fuzzy set community. This paper briefly reviews
some typical applications and highlights potential contributions that fuzzy set theory can make to machine learning,
data mining, and related fields. The paper concludes with a critical consideration of recent developments and some
suggestions for future research directions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Aspects of knowledge representation and reasoning have dominated research in fuzzy set theory (FST)
for a long time, at least in that part of the theory which lends itself to intelligent systems design and
applications in artificial intelligence (AI). Yet, problems of automated learning and knowledge acquisition
have more and more come to the fore during the recent years. This is not very surprising in view of the
fact that the “knowledge acquisition bottleneck” seems to remain one of the key problems in the design of
intelligent and knowledge-based systems. Indeed, experience has shown that a purely knowledge-driven
approach, which aims at formalizing problem-relevant human expert knowledge, is difficult, intricate,
and tedious. More often than not, it does not even lead to fully satisfying results. Consequently, a kind
of data-drivenadaptation of fuzzy systems is often worthwhile. In fact, such a “tuning” even suggests
itself since, in many applications, data is readily available. Indeed, recent research has shown that the
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traditional knowledge-driven approach can be complemented by a data-driven one in a reasonable way.
In the extreme case, the former is even completely replaced by the latter. For example, several approaches
in which fuzzymodels (e.g. fuzzy rule bases) are learned from data in a fully automated way have already
been developed[4].
In addition to this internal shift within fuzzy systems research, an external development has further

amplified the aforementioned trends. This development is the great interest that the field ofknowledge
discovery in databases(KDD) has attracted in diverse research communities in recent years. As a response
to theprogress in digital data acquisition and storage technology, alongwith the limited humancapabilities
in analyzing and exploiting large amounts of data, this field has recently emerged as a new research
discipline, lying at the intersection of statistics, machine learning, data management, and other areas.
According to a widely accepted definition, KDD refers to the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable structure in data [27]. The central step within the
overall KDD process isdata mining, the application of computational techniques to the task of finding
patterns and models in data. Meanwhile, KDD has established itself as a new, independent research field,
including its own journals and conferences.
The aim of this paper is to convey an impression of the current status and prospects of FST in machine

learning, data mining, and related fields. After a brief introduction to these fields (Section 2), we present a
collection of typical applications of FST (Section 3). The examples are representative but are not intended
to provide a comprehensive review of the literature. In Section 4, we try to highlight in a more systematic
way the potential contributions that FST can make to machine learning and data mining. Finally, we
conclude with a critical consideration of recent developments and some suggestions for future research
directions in Section 5.

2. Machine learning, data mining, and related fields

The automated learning ofmodels fromempirical data is a central theme in several research disciplines,
ranging from classical (inferential) statistics to more recent fields such as machine learning. Model
induction may serve different purposes, such as accuratepredictionof future observations or intelligible
descriptionof dependencies between variables in the domain under investigation, among other things.
Typically, a model induction process involves the following steps:

• data acquisition
• data preparation (cleaning, transforming, selecting, scaling, ...)
• model induction
• model interpretation and validation
• model application

A common distinction of performance tasks in empirical1machine learning is supervised learning
(e.g. classification and regression), unsupervised learning (e.g. clustering) and reinforcement learning.

1Here,empiricallearning is used as an antonym toanalyticallearning. Roughly speaking, analytical learning systems do not
require external inputs, whereas such inputs are essential for empirical learning systems. An example of analytical learning is
speedup learning.
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Throughout the paper, we shall focus on the first two performance tasks that have attracted much more
attention in the FST community than the latter one.
In unsupervised learning, the learning algorithm is simply provided with a set of data. The latter

typically consists of data pointsz ∈ Z, whereZ is the Cartesian product of the domains of a fixed set
of attributes. That is, an observationz is described in terms of a feature vector. Roughly speaking, the
goal in unsupervised learning is to discover any kind of structure in the data, such as properties of the
distribution, relationships between data entities, or dependencies between attributes. This includes, e.g.,
non-parametric features such as modes, gaps, or clusters in the data (Section3.1), as well as interesting
patterns like those discovered in association analysis (Section 3.4).
The setting of supervised learning proceeds from a predefined division of the data space into an input

spaceX and an output spaceY. Assuming a dependency between the input attributes and the output,
the former is considered as thepredictivepart of an instance description (like the regressor variables
in regression analysis), whereas the latter corresponds to the target to be predicted (e.g. the dependent
variable in regression). The learning algorithm is provided with a set of labeled examples(x, y) ∈ X ×Y.
Again, the inputsx are typically feature vectors. A distinction between different types of performance
tasks is made according to the structure of the output spaceY. Even though problems involving output
spaces of a richer structure have been considered recently (e.g. so-called ranking problems [33,30]),Y is
typically a one-dimensional space. In particular, the output is a categorical attribute (i.e.,Y is a nominal
scale) inclassification. Here, the goal is to generalize beyond the examples given by inducing a model
that represents a complete mapping from the input space to the output space (a hypothetical classification
function). The model itself can be represented by means of different formalisms such as, e.g., threshold
concepts or logical conjunctions. Inregression, the output is a numerical variable, hence the goal is to
induce a real-valued mappingX → Y that approximates an underlying (functional or probabilistic)
relation betweenX andY well in a specific sense. So-calledordinal regressionis in-between regression
and classification: the output is measured on an ordinal scale.
As can be seen, supervisedmachine learning puts special emphasis on induction as a performance task.

Moreover, apart from theefficiencyof the induced model, thepredictive accuracyof that model is the
most important quality criterion. The latter refers to the ability to make accurate predictions of outputs
for so far unseen inputs. The predictive accuracy of a modelh : X → Y is typically measured in terms
of theexpected loss, i.e., the expected value of�(y, h(x)), where�(·) is a loss functionY × Y → R (and
(x, y) an example drawn at random according to an underlying probability measure overX × Y). 2
Data mining has a somewhat different focus. Here, other aspects such as, e.g., theunderstandability,

gain in importance. In fact, the goal in data mining is not necessarily to induceglobalmodels of the
system under consideration (e.g. in the form of a functional relation between input and output variables)
or to recover some underlying data generating process, but rather to discoverlocalpatterns of interest, e.g.
very frequent (hence typical) or very rare (hence atypical) events. Data mining is of a more explanatory
nature, and patterns discovered in a data set are usually of adescriptiverather than of apredictivenature.
Data mining also puts special emphasis on the analysis of very large data sets and, hence, on aspects of
scalability and efficiency.
Despite these slightly different goals, the typical KDD process has much in common with the process

of inductive reasoning as outlined above, except for the fact that the former can be (and indeed often is)

2 Since this measure is normally unknown, the expected loss is approximated by theempiricalloss in practice, i.e., the average
loss on a test data set.
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circular in the sense that the datamining results will retroact on the acquisition, selection, and preparation
of the data, possibly initiating a repeated pass with modified data, analysis tools, or queries. A typical
KDD process may comprise the following steps:

• data cleaning
• data integration (combination of multiple sources)
• data selection
• data transformation (into a form suitable for the analysis)
• data mining
• evaluation of patterns
• knowledge presentation

Recently, the interest in data mining has shifted from the analysis of large but homogeneous data sets
(relational tables) to the analysis of more complex and heterogeneous information sources, such as e.g.
texts, images, audio and video data, and the terminformation mininghas been coined to describe a KDD
process focused on this type of information sources[43].
There are several other fields that are closely related to machine learning and data mining such as,

e.g., classical statistics and various forms of data analysis (distinguished by adjectives like multivariate,
exploratory, Bayesian, intelligent, ...) Needless to say, it is impossible to set a clear boundary between
these fields. Subsequently, we shall simply subsume them under the heading “machine learning and
data mining” (ML&DM), 3 understood in a wide sense as the application of computational methods and
algorithms for extracting models and patterns from potentially very large data sets.

3. Typical applications of fuzzy set theory

The tools and technologies that have been developed in FST have the potential to support all of the
steps that comprise a process of model induction or knowledge discovery. In particular, FST can already
be used in the data selection and preparation phase, e.g., for modeling vague data in terms of fuzzy sets
[60], to “condense” several crisp observations into a single fuzzy one, or to create fuzzy summaries of
the data [44]. As the data to be analyzed thus becomes fuzzy, one subsequently faces a problem offuzzy
dataanalysis [5].
The problem of analyzing fuzzy data can be approached in at least two principally different ways.

First, standard methods of data analysis can be extended in a rather generic way bymeans of an extension
principle. For example, the functional relation between the data points and the coefficients of a linear
regression function can be extended to the case of fuzzy data, where the observations are described in
terms of fuzzy sets. Thus, the coefficients become fuzzy as well. A second, often more sophisticated
approach is based on embedding the data into more complex mathematical spaces, such as fuzzy metric
spaces [18], and to carry out data analysis in these spaces [19].
If fuzzy methods are not used in the data preparation phase, they can still be employed in a later stage

in order to analyze the original data. Thus, it is not the data to be analyzed that is fuzzy, but rather the

3Our distinction between machine learning and data mining can roughly be seen as a “modern” or extended distinction
between descriptive and inductive statistics. We note, however, that this view is not an opinio communis. For example, some
people have an even more general view of data mining that includes machine learning as a special case.
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methods used for analyzing the data (in the sense of resorting to tools from FST). In the following, we
shall focus on this type of fuzzy data analysis (where the adjective “fuzzy” refers to the termanalysis,
not to the termdata), which is predominant in ML&DM. In fact, our brief review of typical applications
of FST (including possibility theory) is more oriented toward these fields than toward methods from
classical statistics and multivariate data analysis (such as linear regression).

3.1. Fuzzy cluster analysis

Clustering methods are among the most important unsupervised learning techniques. In data analysis,
they are often routinely applied as one of the first steps in order to convey a rough idea of the structure
of a data set. Clustering refers to the process of grouping a collection of objects into classes or “clusters”
such that objects within the same class aresimilar in a certain sense, and objects from different classes are
dissimilar. In addition, the goal is sometimes to arrange the clusters into a natural hierarchy (hierarchical
clustering). Also, cluster analysis can be used as a form of descriptive statistics, showing whether or not
the data consists of a set of distinct subgroups.
As input, clustering algorithms typically assume information about the (pairwise) similarity between

objects e.g. in the form of aproximity matrix. Usually, objects are described in terms of a set of measure-
ments from which similarity degrees between pairs of objects are derived, using a kind of similarity or
distance measure. There are basically three types of clustering algorithms:Mixture modelingassumes an
underlying probabilistic model, namely that the data were generated by a probability density function,
which is a mixture of component density functions.Combinatorial algorithmsdo not assume such a
model. Instead, they proceed from an objective function to be maximized and approach the problem of
clustering as one of combinatorial optimization. So calledmode-seekersare somewhat similar to mixture
models. However, they take a non-parametric perspective and try to estimatemodes of the component den-
sity functions directly. Clusters are then formed by looking at the closeness of the objects to these modes
that serve as cluster centers. The popularK-means algorithm is maybe the most popular representative of
this class.
In standard clustering, each object is assigned to one cluster in an unequivocal way. Consequently,

the individual clusters are separated by sharp boundaries. In practice, such boundaries are often not very
natural or even counterintuitive. In fact, the boundary of single clusters and the transition betweendifferent
clusters are usually “smooth” rather than abrupt. This is the main motivation underlying fuzzy extensions
to clustering algorithms[34]. In fuzzy clustering an object may belong to different clusters at the same
time, at least to some extent, and the degree to which it belongs to a particular cluster is expressed in
terms of a membership degree. The membership functions of the different clusters (defined on the set of
observed points) is usually assumed to form a partition of unity. This version, often called probabilistic
clustering, can be generalized further by weakening this constraint: In possibilistic clustering, the sum of
membership degrees is constrained to beat least1 [42]. Fuzzy clustering has proved to beextremely useful
in practice and is now routinely applied also outside the fuzzy community (e.g. in recent bioinformatics
applications [31]).

3.2. Learning fuzzy rule bases

The most frequent application of FST in machine learning is the induction or the adaptation of rule-
based models. This is hardly astonishing, since rule-based models have always been a cornerstone of
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fuzzy systems and a central aspect of research in the field, not only in ML&DM but also in many other
subfields, notably approximate reasoning and fuzzy control. (The termsfuzzy systemandfuzzy rule base
are sometimes even used synonymously.)
Fuzzy rule bases can represent both classification and regression functions, and different types of fuzzy

models have been used for these purposes. In order to realize a regression function, a fuzzy system is
usually wrapped in a “fuzzifier” and a “defuzzifier”: The former maps a crisp input to a fuzzy one, which
is then processed by the fuzzy system, and the latter maps the (fuzzy) output of the fuzzy system back
to a crisp value. For so-called Takagi–Sugeno models, which are quite popular for modeling regression
functions, the defuzzification step is unnecessary, since these models output crisp values directly.
In the case of classification, the consequent of single rules such as

IF (size ∈ TALL) AND (weight ∈ LIGHT) THEN (class = A)

is usually a class assignment (i.e. a singleton fuzzy set).4 Evaluating a rule base (à la Mamdani-Assilan)
thus becomes trivial and simply amounts to “maximum matching”, that is, searching the maximally
supporting rule for each class. Thus, much of the appealing interpolation and approximation properties of
fuzzy inference gets lost, and fuzziness only means that rules can be activated to a certain degree. There
are, however, alternative methods which combine the predictions of several rules into a classification of
the query [12].
A plethora of strategies has been developed for inducing a fuzzy rule base from the data given. Re-

fraining from a detailed exposition, we only point out one chief difference between these strategies. This
difference concerns the way in which individual rules or their condition parts are learned. One possibility
is to (successively) identify regions in the input space that seem to be qualified to form the (extension of)
condition part of a rule. This can be done by looking for clusters using clustering algorithms (see above),
or by identifying hyperboxes in the manner of so-calledcovering(separate and conquer) algorithms [29].
By projecting the regions thus obtained onto the various dimensions of the input space, rule antecedents
of the form “X ∈ A” are obtained, whereX is an individual attribute andA is a fuzzy set (the projection
of the fuzzy region). The condition part of the rule is then given by the conjunction of these antecedents.
This approach is relatively flexible, though it suffers from the disadvantage that each rule makes use of
its own fuzzy sets. Thus, the complete rule base might be difficult to interpret.
An alternative is to proceed from a fixed fuzzy partition for each attribute, i.e., a regular “fuzzy grid”

of the input space, and to consider each cell of this grid as a potential antecedent part of a rule [61]. This
approach is advantageous from an interpretability point of view. On the other hand, it is less flexible and
may produce inaccurate models when the one-dimensional partitions define amulti-dimensional grid that
does not reflect the structure of the data.
Especially important in the field of fuzzy rule learning are hybrid methods that combine FST with

other methodologies, notably evolutionary algorithms and neural networks. For example, evolutionary
algorithms are often used in order to optimize (“tune”) a fuzzy rule base or for searching the space
of potential rule bases in a (more or less) systematic way [13]. Quite interesting are alsoneuro-fuzzy
methods [47]. For example, one idea is to encode a fuzzy system as a neural network and to apply
standard methods (like backpropagation) in order train such a network. This way, neuro-fuzzy systems
combine the representational advantages of fuzzy systems with the flexibility and adaptivity of neural
networks.

4More generally, a rule consequent can suggest different classes with different degrees of certainty.
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3.3. Fuzzy decision tree induction

Decision tree induction, well-known examples of which include theID3 algorithm[50] and its successor
C4.5 andC5.0 [51] as well as theCART system [8], are among themost widely applied supervisedmachine
learning techniques. The basic principle underlying most decision tree learners is that of partitioning the
set of givenexamples ina recursivemanneruntil the subsetsof examples thusobtainedare “homogeneous”
enough (with respect to an output attribute, which is typically a class label). Each inner node of a decision
tree defines a partition of the examples assigned to that node. This is done by classifying elements
according to the value of a specific input attribute. The latter is selected according to a measure of
effectiveness in improving the homogeneity of the resulting partition, thereby supporting the overall
objective of constructing a small (simple) tree. The recursive partitioning process terminates if a stopping
condition is satisfied, in which case the node becomes a leaf of the tree.
Once the decision tree has been constructed, each path can be considered as a rule. The antecedent part

of a rule is a conjunction of constraints on attribute values and the conclusion part determines a value for
the class variable. New examples are then classified on the basis of these rules, i.e., by looking at the class
label of the leaf node the attribute values of which match the description of the example. Decision tree
induction can thus be seen as a special form of rule induction, where the potential rule bases are restricted
to those having a tree-like hierarchical structure. Since decision trees are derived in a top-down fashion
by means of a heuristic (greedy) strategy, the class of potential models is searched in a rather efficient
way, though optimality cannot be guaranteed.
Fuzzy variants of decision tree induction have been developed for quite a while (e.g. [62,40]) and seem

to remain a topic of interest even today (see [48] for a recent approach and a comprehensive overview
of research in this field). In fact, these approaches provide a typical example for the “fuzzification” of
standard machine learning methods. In the case of decision trees, it is primarily the “crisp” thresholds
used for defining splitting predicates (constraints), such as e.g.size�181, at inner nodes that have been
criticized: Such thresholds lead to hard decision boundaries in the input space, which means that a slight
variation of an attribute (e.g.size = 182 instead ofsize = 181) can entail a completely different
classification of an object (e.g. of a person characterized by size, weight, gender, ...) Moreover, the
learning process becomes unstable in the sense that a slight variation of the training examples can change
the induced decision tree drastically.5

In order tomake the decision boundaries “soft”, an obvious idea is to apply fuzzy predicates at the inner
nodes of a decision tree, such as e.g.size ∈ TALL, whereTALL is a fuzzy set (rather than an interval). In
other words, a fuzzy partition instead of a crisp one is used for the splitting attribute (heresize) at an inner
node. Since an example can satisfy a fuzzy predicate to a certain degree, the examples are partitioned in
a fuzzy manner as well. That is, an object is not assigned to exactly one successor node in a unique way,
but perhaps to several successors with a certain degree. For example, a person whose size is 181 cm could
be an element of theTALL-group to the degree, say, 0.7 and of the complementary group to the degree
0.3.
The above idea of “soft recursive partitioning” has been realized in different ways. Moreover, the

problems entailed by corresponding fuzzy extensions have been investigated. For example, how can

5Decision tree induction is known to have high variance, a property that has recently been exploited in connection with
ensemble learning techniques.
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splitting measures like entropy, originally defined for ordinary sets of examples, be extended to fuzzy
sets of examples[14]? Or, how can a new object be classified by a fuzzy decision tree?

3.4. Fuzzy association analysis

As mentioned above, methods for learning dependencies in the data that are expressed in terms of (IF–
THEN) rules are quite popular. Rules of this form are also extracted from data in so-called association
analysis, by now one of the most frequently applied data mining techniques. As an important difference
between association rules and rule-basedmodels for classification and regression, we note that the former
are of adescriptivenature. Moreover, association rules are typically considered in isolation, i.e., as a
particular type of local pattern,6 and not as an integral part of a rule base.
Association rules provide a means for representing dependencies between attribute values of objects

(data records) stored in a database.7 Typically, an association involves two sets of binary attributes (fea-
tures),A andB. Then, the intended meaning of a rule “IFA THEN B” is that an object having all the
features inA is likely to have all the features inB as well. In order to decide whether a potential asso-
ciation is interesting or at least well-supported by the data, it is evaluated by several quality measures.
Standard measures include thesupportof a rule, i.e. the number of objects in the database satisfying both
the conditionA and the conclusionB, and itsconfidence, i.e. the relative frequency of objects satisfying
B among those satisfyingA. Then, the problem is to find all associations, the support and confidence of
which are above a (user-specified) threshold. Since the number of candidate rules grows exponentially
with the number of attributes, this problem is computationally complex [1,54].
Association rules of the above type are often employed in the context of market-basket analysis, where

an object is a purchase and features are associated with products or items. In this context, the association

IF {paper, envelopes} THEN {stamps}
suggests, for example, that a purchase containing paper and envelopes is likely to contain stamps as well.
A generalization of binary association rules is motivated by the fact that a database is usually not

restricted to binary attributes but also contains attributes with values ranging on (completely) ordered
scales, such as numerical or ordered categorical attributes. Inquantitative association analysis, rule
antecedents and consequents are specified in terms of subsets of attribute values, typically in the form of
intervals. For example, “Employees at the age of 30–40 have incomes between $50,000 and $70,000”.
The use of fuzzy sets in connection with association analysis has been proposed by numerous authors

(see[10,16] for recent overviews), with motivations closely resembling those in the case of rule learning
and decision tree induction. Again, by allowing for “soft” rather than crisp boundaries of intervals, fuzzy
sets can avoid certain undesirable threshold effects [57], this time concerning the quality measures of
association rules rather than the classification of objects. Moreover, identifying fuzzy sets with linguistic
terms allows for a comprehensible and user-friendly presentation of rules discovered in a database.
Example: “Middle-aged employees receive considerable incomes.”
Many standard techniques for association rule mining have been transferred to the fuzzy case, some-

times in a rather ad-hocmanner. Indeed, publications on this topic are oftenmore concernedwith issues of

6 Even though dependencies between association rules are of course important. For example, if one rule is more general than
another one, only the first one should be reported to the user of a data mining system.

7 In a sense, association analysis can be seen as an extension of statistical correlation analysis.
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data preprocessing, e.g. the problem of finding good fuzzy partitions for the quantitative attributes, rather
than the rule mining process itself. Still, more theoretically-oriented research has recently been started
[23]. For example, the existence of different types of fuzzy rules [24] suggests that fuzzy associations
might be interpreted in different ways and, hence, that the evaluation of an association cannot be indepen-
dent of its interpretation. In particular, one can raise the question which generalized logical operators can
reasonably be applied in order to evaluate fuzzy associations, e.g., whether the antecedent part and the
condition part should be combined in a conjunctiveway (à laMamdani rules) or bymeans of a generalized
implication (as in implication-based fuzzy rules) [35]. Moreover, since standard evaluation measures for
association rules can be generalized in many ways, it is interesting to investigate properties of particular
generalizations and to look for an axiomatic basis that supports the choice of specific measures [23].

3.5. Fuzzy methods in case-based learning

Case-based or instance-based learning algorithms have been applied successfully in fields such as
machine learning and pattern recognition during the recent years [3,15]. The case-based learning (CBL)
paradigm is also of central importance in case-based reasoning (CBR), a problem solvingmethodology that
goes beyond the standard prediction problems of classification and regression that are usually considered
in machine learning [52,41].
As the term suggests, inCBL special importance is attached to the concept of acase. A case or an

instance can be thought of as a single experience, such as a pattern (along with its classification) in
pattern recognition or a problem (along with a solution) inCBR. Rather than inducing a global model
(theory) from the data and using this model for further reasoning, as inductive, model-based machine
learning methods typically do,CBL systems simply store the data itself. The processing of the data is
deferred until a prediction (or some other type of query) is actually requested, a property that qualifies
CBL as alazy learning method [2]. Predictions are then derived by combining the information provided
by the stored examples, primarily by those cases that aresimilar to the new query. In fact, the major
assumption underlyingCBL is a commonsense principle suggesting that “similar problems have similar
solutions”. This “similarity hypothesis” serves as a basic inference paradigm in various domains of
application. For example, in a classification context, it translates into the assertion that “similar objects
have similar class labels”.
Similarity-based inference has also been a topic of interest in FST, which is hardly astonishing since

similarity is one of the main semantics of fuzzy membership degrees [53,56]. Along these lines, a close
connection between case-based learning and fuzzy rule-based reasoning has been established in [21,22].
Here, the aforementioned “similarity hypothesis” has been formalized within the framework of fuzzy
rules. More precisely, each observed case, consisting of a problemx (e.g. an object) and an associated
solutiony (e.g. a class label), is encoded in terms of a so-calledpossibility rule: If a queryx0 is similar tox,
then its solutiony0 ispossiblysimilar toy. On the basis of such rules, case-based inference can be realized
as a special type of fuzzy set-based approximate reasoning. Note that this “possibilistic” variant of the
similarity hypothesis takes the heuristic and, hence, uncertain character of similarity-based inference into
consideration.
A possibilistic variant of the well-knownk-nearest neighbor classifier, which constitutes the core of

the family of CBL algorithms, has been presented in [37]. Among other things, this paper emphasizes
the ability of possibility theory to represent partial ignorance as a special advantage in comparison to
probabilistic approaches. In fact, this point seems to be of critical importance inCBL, where the reliability
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of a classification strongly depends on the existence of cases that are similar to the query. Consider
the extreme situation where the case library does not contain any case similar to the query. In other
words, nothing is known about the query. This situation of complete ignorance can be represented in an
adequate way in possibility theory (either by the possibility distribution� ≡ 1, or by the distribution
� ≡ 0, depending on whether possibility is interpreted as “potential possibility” or “evidential support”).
In probability theory, complete ignorance is usually modeled by the uniform distribution, as suggested
by the principle of insufficient reason. In our situation, this distribution is given byp ≡ 1/c, wherec is
the number of potential class labels. The adequacy of this distribution as a representation of ignorance
has been called into question[25]. In particular, one cannot distinguish between complete ignorance
and the situation where one can be quite sure that the class labels are indeed equi-probable, since the
distributionp ≡ 1/c has been derived from a large enough number of similar cases. From a knowledge
representational point of view, this clearly shows the advantage ofabsolute(possibilistic) overrelative
(probabilistic) degrees of support inCBL. For example, telling a patient that your experience does not
allow any statement concerning his prospect of survival is very different from telling him that his chance
is fifty-fifty.
The use of OWA-operators as generalized aggregation operators inCBL has been proposed in [63]. In

fact, there are several types of aggregation problems that arise inCBL. One of these problems concerns the
derivation of a global degree of similarity between cases: Typically, one proceeds fromlocal similarity
degrees pertaining to individual (one-dimensional) attributes of a case (e.g. the size of a person), since
specifying the similarity with respect to a single aspect is much easier than providing a global similarity
directly. Rather, a global degree of similarity is derived indirectly, by aggregating the local similarity
degrees. Usually, this is done by means of a simple linear combination, and this is where OWA-operators
provide an interesting, more flexible alternative. A second aggregation problem inCBL concerns the
combination of the evidences in favor of different class labels that come from the neighbors of the query
case. In [38], it is argued that cases retrieved from a case library must not be considered as independent
information sources, as implicitly done by mostCBL methods. To take interdependencies between the
neighboredcases intoaccount, anew inferenceprinciple is developed that combinespotentially interacting
piecesof evidencebymeansof the (discrete)Choquet-integral. Thismethodcanbeseenasageneralization
of weighted nearest neighbor estimation.

3.6. Possibilistic networks

So-called graphical models, including Bayesian networks [49] and Markov networks [45], have been
studied intensively in recent years. The very idea of such models is to represent a high-dimensional prob-
ability distribution (defined on the Cartesian product of the domains of all attributes under consideration)
in an efficient way, namely by factorizing it into several low-dimensional conditional or marginal distri-
butions. This is accomplished by exploiting certain independence relations between subsets of attributes.
The graphical model itself represents just these (in-)dependence relations: A node corresponds to an
attribute, and an edge represents a direct dependency. Efficient algorithms for propagating evidence in
graphical models have been developed to obtain the conditional distribution of certain attributes given
the values of other variables.
Moreover, methods for learning graphical models from data have been devised. A graphical model

basically consists of two components, aqualitative and aquantitativeone. The former consists of
the dependence and independence relations (as represented by the graph), the latter of the associated
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(conditional, low-dimensional) probability distributions. Correspondingly, there are two types of learn-
ing methods: those which assume the qualitative part to be given and, hence, learn only the proba-
bility distributions, and those which aim at learning the complete model, including the independence
relations.
By their very nature, graphical models of the above kind provide a suitable means for representing

probabilisticuncertainty. However, they cannot easily deal with other types of uncertainty such as impre-
cision or incompleteness. This has motivated the development ofpossibilistic networksas a possibilistic
counterpart to probabilistic networks[6]. This approach relies upon possibility theory as an underlying
uncertainty calculus, which makes it particularly suitable for dealing with imprecise data (in the form of
set-valued specifications of attribute values). In this approach, the interpretation of possibility distribu-
tions is based on the so-called context model [32], hence possibility degrees are considered as a kind of
upper probability.

4. Potential contributions of fuzzy set theory

4.1. Graduality

The ability to represent gradual concepts and fuzzy properties in a thorough way is one of the key
features of fuzzy sets. This aspect is also of primary importance in the context of ML&DM.
In machine learning, for example, the formal problem ofconcept learninghas received a great deal

of attention. A concept is usually identified with its extension, that is a subsetC of an underlying set
(universe)U of objects. For example,Cmight be the concept “dog” whose extension is the set of dogs
presently alive, a subset of all creatures on earth. The goal of (machine) learning is to induce anintensional
description of a concept from a set of (positive and negative) examples, that is a characterization of a
concept in terms of its properties (a dog has four legs and a tail, it can bark, ...). Now, it is widely
recognized that most natural concepts have non-sharp boundaries. To illustrate, consider concepts like
woods, river, lake, hill, street, house, or chair. Obviously, these concepts are vague or fuzzy, in that one
cannot unequivocally say whether or not a certain collection of trees should be called a wood, whether
a certain building is really a house, and so on. Rather, one will usually agree only to a certain extent
that an object belongs to a concept. Thus, an obvious idea is to inducefuzzy concepts, that are formally
identified by a fuzzy rather than a crisp subset ofU. Fuzzy concepts can be characterized in terms of
fuzzy predicates (properties) which are combined by means of generalized logical connectives. In fact,
one should recognize that graduality is not only advantageous for expressing the concept itself, but also
for modeling the qualifying properties. For example, a “firm ground” is a characteristic property of a
street, and this property is obviously of a fuzzy nature (hence it should be formalized accordingly).
Likewise, in datamining, the patterns of interest are often vague and have boundaries that are non-sharp

in the sense of FST. To illustrate, consider the concept of a “peak”: It is usually not possible to decide in
an unequivocal way whether a timely ordered sequence of measurements (e.g. the expression profile of
a gene in a microarray experiment, to mention one of the topical application areas of fuzzy data mining)
has a “peak” (a particular kind of pattern) or not. Rather, there is a gradual transition between having a
peak and not having a peak. Taking graduality into account is also important if one must decide whether
a certain property is frequent among a set of objects, e.g., whether a pattern occurs frequently in a data
set. In fact, if the pattern is specified in an overly restrictive manner, it might easily happen that none of
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the objects matches the specification, even though many of them can be seen as approximate matches. In
such cases, the pattern might still be considered as “well-supported” by the data.
Unfortunately, the representation of graduality is often foiled in machine learning applications, espe-

cially in connection with the learning of predictive models. In such applications, a fuzzy prediction is
usually not desired, rather one is forced to come up with a definite final decision. Classification is an
obvious example: Usually, a decision in favor of one particular class label has to be made, even if the
object under consideration seems to have partial membership in several classes simultaneously. This is
the case both in theory and practice: In practice, the bottom line is the course of action (e.g. the choice
among a set of applicants) one takes on the basis of a prediction, not the prediction itself. In theory, a
problem concerns the performance evaluation of a fuzzy classifier:8 The standard benchmark data sets
(e.g. those from the UCI repository or the StatLib archive)9 have crisp rather than fuzzy labels. Moreover,
a fuzzy classifier cannot be compared with a standard (non-fuzzy) classifier unless it eventually outputs
crisp predictions.
Needless to say, if a fuzzy predictor is supplementedwith a “defuzzification”mechanism (like awinner-

takes-all strategy in classification), many of its merits are lost. In the classification setting, for instance,
a defuzzified fuzzy classifier does again produce hard decision boundaries in the input space. Thereby, it
is actually reduced to a standard classifier.
Here is an example often encountered in the literature: Suppose the premise of a classification rule to

be a conjunction of antecedents of the formxi ∈ Ai , wherexi is an attribute value andAi a fuzzy set, and
let the rules be combined in a disjunctive way. Moreover, let the consequent of a rule be simply a class
assignment. If the standard minimum and maximum operators are used, respectively, as a generalized
logical conjunction and disjunction, it is easy to see that the classifier thus obtained induces axis-parallel
decision boundaries in the input space, and that the same boundaries can be produced by means of
interval-based instead of fuzzy rules.
If a classifier is solely evaluated on the basis of its predictive accuracy, then all that matters is the

decision boundaries it produces in the input space. Since a defuzzified fuzzy classifier does not produce
a decision boundary that is principally different from the boundaries produced by alternative classifiers
(such as decision trees or neural networks), fuzzy machine learning methods do not have much to offer
with regard to generalization performance. And indeed, fuzzy approaches to classification do usuallynot
improve predictive accuracy.
Let us finally note that “graduality” is of course not reserved to fuzzy methods. Rather, it is inherently

present also in many standard learning methods. Consider, for example, a concept learner (binary classi-
fier) c : X → [0,1] the output of which is a number in the unit interval, expressing a kind of “propensity”
of an inputx to the concept under consideration. Classifiers of such kind abound, a typical example is a
multilayer perceptron. In order to extend such classifiers to multi-class problems (involving more than
two classes), one common approach is to apply a one-against-all strategy: For each classy, a separate
classifiercy(·) is trained which considers that class as the concept to be learned and, hence, instances of
all other classes as negative examples. The prediction for a new inputx is then given by the class that
maximizescy(x). Now, it is of course tempting to consider thecy(x) as (estimated) membership degrees
and, consequently, the collection{cy(x) | y ∈ Y} of these estimations as a fuzzy classification.

8 The same problem occurs for probabilistic classifiers.
9 http://www.ics.uci.edu/ ∼mlearn , http://stat.cmu.edu/

http://www.ics.uci.edu/~mlearn
http://stat.cmu.edu/
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4.2. Interpretability

Aprimarymotivation for the development of fuzzy setswas to provide an interface betweenanumerical
scale and a symbolic scale which is usually composed of linguistic terms. Thus, fuzzy sets have the
capability to interface quantitative patterns with qualitative knowledge structures expressed in terms of
natural language. This makes the application of fuzzy technology very appealing from a knowledge
representational point of view. For example, it allows association rules discovered in a database to be
presented in a linguistic and hence comprehensibleway. In fact, the user-friendly representation ofmodels
and patterns is often emphasized as one of the key features of fuzzy methods.
The use of linguistic modeling techniques does also produce some disadvantages, however. A first

problem concerns the interpretation of fuzzy models: Linguistic terms and, hence, models are highly
subjective and context-dependent. It is true that the imprecision of natural language is not necessarily
harmful and can even be advantageous.10A fuzzy controller, for example, can be quite insensitive to
the concrete mathematical translation of a linguistic model. One should realize, however, that in fuzzy
control the information flows in a reverse direction: The linguistic model is not the end product, as in
ML&DM, it rather stands at the beginning.
It is of course possible to disambiguate a model by complementing it with the semantics of the fuzzy

concepts it involves (including the specification of membership functions). Then, however, the complete
model, consisting of a qualitative (linguistic) and a quantitative part, becomes cumbersome and will not
be easily understandable. This can be contrasted with interval-basedmodels, the most obvious alternative
to fuzzymodels: Even though suchmodels do certainly have their shortcomings, they are at least objective
and not prone to context-dependency.
Another possibility to guarantee transparency of a fuzzy model is to let a user of a data mining system

specify all fuzzy concepts by hand, including the fuzzy partitions for all of the variables involved in the
study under consideration. This is rarely done, however, mainly for two reasons. Firstly, the job is of
course tedious and cumbersome if the number of variables is large. Secondly, much flexibility for model
adaptation is lost, because it is by no means guaranteed that accurate predictive models or interesting
patterns can be found on the basis of the fuzzy partitions as pre-specified by the user. In fact, in most
methods the fuzzy partitions are ratheradaptedto the data in an optimal way, so as tomaximize themodel
accuracy or the interestingness of patterns.
A second problem with regard to transparency concerns the complexity of models. A rule-based

classifier consisting of, say, 40 rules each of which has a condition part with 5–7 antecedents, will hardly
be comprehensible as a whole, even if the various ingredients might be well understandable. Now, since
models that are simple, e.g. in the sense of including only a few attributes or a few rules, will often not
be accurate at the same time, there is obviously a conflict between accuracy and understandability and,
hence, the need to find a tradeoff between these criteria [9].
In fact, this tradeoff concerns not only the size of models, but also other measures that are commonly

employed in order to improve model accuracy. In connection with rule-based models, for example, the
weightingof individual rules can often help to increase the predictive accuracy. On the other hand, the
interpretation of a set of weighted rules is anything but trivial.

10See Zadeh’s famous principle of incompatibility between precision and meaning.
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4.3. Robustness

It is often claimed that fuzzy methods are more robust than non-fuzzy methods. Of course, the term
“robustness” can refer to many things, e.g., to the sensitivity of an induction method towards violations
of the model assumptions.11 In connection with fuzzy methods, the most relevant type of robustness
concerns sensitivity towards variations of the data. Roughly speaking, a learning or data mining method
is considered robust if a small variation of the observed data does hardly alter the induced model or the
evaluation of a pattern.12

A common argument supporting the claim that fuzzy models are in this sense more robust than non-
fuzzy models refers to the already mentioned “boundary effect”, which occurs in various variants and is
arguably an obvious drawback of interval-basedmethods. In fact, it is not difficult to construct convincing
demonstrations of this effect: In association analysis (cf. Section 3.4), for example, a small shift of the
boundary of an interval can have a drastic effect on the support of a fuzzy association rule if many data
points are located near the boundary. This effect is alleviated when using fuzzy sets instead of intervals.
Unfortunately, such examples are often purely artificial and, hence, of limited practical relevance.

Moreover, there is no clear conception of the concrete meaning ofrobustness. Needless to say, without a
formal definition of robustness, i.e., certain types of robustness measures, one cannot argue convincingly
that one data mining method is more robust than another one. For example, it makes a great difference
whether robustness is understood as a kind ofexpectedor a kind ofworst-casesensitivity: It is true that a
shifting of data points can have a stronger effect on, say, the support of an interval-based association rule
than on the support of a fuzzy association. However, if the data points are not located at the boundary
region of the intervals, it can also happen that the former is not affected at all, whereas a fuzzy rule is
almost always affected at least to some extent (since the “boundary” of a fuzzy interval is much wider
than that of a standard interval). Consequently, if robustness is defined as a kind ofaveragerather than
maximalsensitivity, the fuzzy approach might not be more robust than the non-fuzzy one.

4.4. Representation of uncertainty

Machine learning is inseparably connected with uncertainty. To begin with, the data presented to
learning algorithms is imprecise, incomplete or noisy most of the time, a problem that can badly mislead
a learning procedure. But even if observations are perfect, the generalization beyond that data, the process
of induction, is still afflicted with uncertainty. For example, observed data can generally be explained
by more than one candidate theory, which means that one can never be sure of the truth of a particular
model.
Fuzzy sets and possibility theory have made important contributions to the representation and pro-

cessing of uncertainty. In ML&DM, like in other fields, related uncertainty formalisms can complement
probability theory in a reasonable way, because not all types of uncertainty relevant to machine learning
are probabilistic and because other formalisms are more expressive than probability.
To illustrate the first point, consider the problem of inductive reasoning as indicated above: In machine

learning, a model is often induced from a set of data on the basis of aheuristicprinciple of inductive

11This type of sensitivity is of special interest in robust statistics.
12Note that we speak about robustness of the learning algorithm (that takes a set of data as input and outputs a model), not

about robustness of the induced model (that takes instances as input and outputs, say, a classification).
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inference such as, e.g., the well-known Occams’s razor. As one can never be sure of the truth of the
particular model suggested by the heuristic principle, it seems reasonable to specify a kind oflikelihood
for all potential candidate models. This is done, e.g., in Bayesian approaches, where the likelihood of
models is characterized in terms of a posterior probability distribution (probability of models given
the data). One can argue, however, that the uncertainty produced by heuristic inference principles such
as Occam’s razor is not necessarily of a probabilistic nature and, for example, that the derivation of
a possibility distributionover the model space is a viable alternative. This idea has been suggested in
[36] in connection with decision tree induction: Instead of learning a single decision tree, a possibility
distribution over the class of all potential trees is derived on the basis of a possibilistic variant of Occam’s
razor.
The second point, concerning the limited expressivity of probability distributions, has been illustrated

nicely inSection 3.5,wherewehaveargued that possibility distributions aremore suitable for representing
partial ignorance inCBL. In a similar way, possibility theory is used for modeling incomplete and missing
data in possibilistic networks, as outlined in Section 3.6.
Finally, we note that apart from possibility theory, other formalisms can be used tomodel various forms

of uncertainty and incomplete information in learning from data. For example, belief functions have been
extensively employed in this connection (e.g. [17,26]).

4.5. Incorporation of background knowledge

Roughly speaking, inductive learning can be seen as searching the space of candidate hypotheses
for a most suitable model. The corresponding search process, regardless whether it is carried out in an
explicit or implicit way, is usually “biased” in various ways, and each bias usually originates from a sort
of background knowledge. For example, therepresentation biasrestricts the hypothesis space to certain
types of input–output relations such as, e.g., linear or polynomial relationships. Incorporating background
knowledge is extremely important, because the data by itself would be totally meaningless if considered
from an “unbiased” point of view [46].
Fuzzyset-basedmodeling techniquesprovideaconvenient tool formakingexpert knowledgeaccessible

to computationalmethods and, hence, to incorporate background knowledge in the learning process.Here,
we briefly outline two possibilities.
One very obvious approach is to combine rule-based modeling and learning. For example, an expert

can describe an input–output relation in terms of a fuzzy rule base (as in fuzzy control). Afterwards,
the membership functions specifying the linguistic terms that have been employed by the expert can
be adapted to the data in an optimal way.13 In other words, the expert specifies the rough structure of
the rule-based model, while the fine-tuning is done in a data-driven way. Let us note that specifying
the structure of a model first and adapting that structure to the data afterwards is a general strategy for
combining knowledge-based and data-driven modeling, which is not reserved to rule-based models; it is
used, for example, in graphical models (cf. Section 3.6) as well.
Analternative approach, called constraint-regularized learning, aimsat exploiting fuzzy set-basedmod-

eling techniques within the context of the regularization (penalization) framework of inductive learning
[39]. Here, the idea is to express vague, partial knowledge about an input–output relation in terms of fuzzy

13Here, the expert knowledge implements a kind ofsearch bias, as it determines the starting point of the search process and,
hence, the local optimum in the space of models that will eventually be found.
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constraints and to let such constraints play the role of a penalty term within the regularization approach.
Thus, an optimal model is one that achieves an optimal tradeoff between fitting the data and satisfying
the constraints.

4.6. Generalized aggregation operators

Many ML&DMmethods make use of logical and arithmetical operators for representing relationships
between attributes in models and patterns. In decision tree induction, for example, each inner node
represents an equality or an inequality predicate, and these predicates are combined in a conjunctive way
along a path of a tree. In nearest neighbor classification, each neighbor provides a certain amount of
evidence in favor of the class it belongs to. To make a final decision, this evidence must be aggregated
either way, which in the standard approach is done by simply adding them up.
Now, a large repertoire of generalized logical (e.g. t-norms and t-conorms) and arithmetical (e.g.

Choquet- and Sugeno-integral) operators have been developed in FST and related fields. Thus, a straight-
forward way to extend standard learning methods consists of replacing standard operators by their gen-
eralized versions. In fact, several examples of this idea have been presented in previous sections.
The general effect of such generalizations is to make models more flexible. For example, while a

standard decision tree can only produce axis-parallel decision boundaries, these boundaries can become
non-axis-parallel for fuzzy decision trees where predicates are combined by means of a t-norm. Now,
it is well-known that learning from empirical data will be most successful if the model class under
consideration has just the right flexibility, since both over- and underfitting of amodel can best be avoided
in that case. Therefore, the question whether a fuzzy generalization will pay off cannot be answered in
general: If the original (non-fuzzy) hypothesis space is not flexible enough, the fuzzy versionwill probably
be superior. On the other hand, if the former is already flexible enough, a fuzzification might come along
with a danger of overfitting.

5. Conclusions

All things considered, it is beyond question that FST has the potential to contribute tomachine learning
and data mining in various ways. In fact, the previous sections have shown that substantial contributions
have already been made. Yet, our remarks also suggest that much scope for further developments is still
left. According to our opinion, however, it is very important to focus on the right issues, that is to say, to
concentrate more on the strengths and distinctive features of FST.
In particular, we doubt that FST will be very conducive togeneralization performanceandmodel

accuracy, albeit the latter is still the dominant quality criterion in machine learning research. This some-
what sceptical view has at least two reasons: Firstly, after several years of intensive research the field
of machine learning has reached a somewhat mature state, and a large repertoire of quite sophisticated
learning algorithms is now available. Regarding predictive accuracy, a significant improvement of the
current quality level can hardly be expected.
Secondly, and perhaps more importantly, FST does not seem to offer fundamentally new concepts or

induction principles for the design of learning algorithms, comparable, e.g., to the ideas ofresamplingand
ensemble learning[20] (like bagging [7] andboosting [28]) or the idea ofmarginmaximizationunderlying
kernel-based learning methods [55], that might raise hope for an improved generalization performance.
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As mentioned above, even though fuzzifying standard learning methods, e.g. by using fuzzy partitions
of numeric attributes or generalized logical and arithmetic operators, can have an effect on the decision
boundaries of a classifier or the regression function produced in the case of numeric prediction, the gain
in predictive accuracy is mostly insignificant.
In this connection, we also like to question a current research trend in the FST community. It seems that

the shift from (knowledge-driven) modeling to (data-driven) learning, as signified in Section1, comes
along with a tendency to view fuzzy systems as pure function approximators. In fact, in many recent
publications fuzzy sets simply serve as a special kind of basis or kernel function.14Thus, there is a high
danger of losing sight of the original ideas and intentions of FST, and to produce another type of “black
box” approach instead. Truly, renaming a basis function a “fuzzy set” does not mean that a model will
suddenly become comprehensible.
Rather than suggesting new solutions to problems for which alternative methods from established

fields such as, e.g., approximation theory, neural networks, and machine learning, will probably be more
successful, more emphasis should be put on the distinguished features of FST. In this connection, let us
highlight the following points:

1. FST has the potential to producemodels that aremore comprehensible, less complex, andmore robust.
2. FST, in conjunctionwith possibility theory, can contribute considerably to themodeling andprocessing

of various forms of uncertain and incomplete information.
3. Fuzzy methods appear to be particularly useful for data pre- and post-processing.

Concerning the first point, our critical comments in previous sections have shown that, despite of the high
potential, many questions are still open. For example, notions like “comprehensibility”, “simplicity”, or
“robustness” still lack an underlying formal theory including a quantification of their intuitive meaning
in terms of universally accepted measures. This is probably one of the reasons why model accuracy is
still regarded as a more concrete and, hence, more important quality criterion. Anyway, we think that the
tradeoff between accuracy on the one side and competitive criteria like interpretability, simplicity, and
robustness on the other side is an issue of central importance and a problem to that FST can contribute in a
substantial way. In fact, fuzzy information granulation appears to be an ideal tool for trading off accuracy
against complexity and understandability of models. Of course, a necessary prerequisite for studying this
tradeoff in a more rigorous way and, hence, a challenge for future research, is a better understanding and
formalization of these alternative criteria.
The second point refers to an aspect that is of primary importance in ML&DM, and that has already

been touched on in Section4.4. Meanwhile, the coexistence of various forms of uncertainty, not all of
which can be adequately captured by probability theory, has been widely recognized. Still, in machine
learning, and more generally in the AI community, fuzzy sets and related uncertainty calculi have not yet
obtained a proper acceptance. This situation might be further impaired by the increasing popularity of
probabilistic methodology, which in machine learning can mainly be ascribed to the success ofstatistical
learning theory[59] as a solid foundation of empirical learning, and in AI to the general acceptance
of the Bayesian framework for knowledge representation and reasoning under uncertainty. For the FST
community, it is all the more important to show that alternative uncertainty formalisms can complement
probability theory in a reasonable way.

14 In [11], for example, a support vector machine is trained and then turned into a fuzzy rule base by identifying each support
vector with a fuzzy rule.
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Concerning the third point, we have the feeling that this research direction has not received enough
attention so far. In fact, even though FST seems to be especially qualified for data pre- and postprocess-
ing, e.g. for data summarization and reduction, approximation of complex and accurate models, or the
(linguistic) presentation of data mining results, current research is still more focused on the inductive
reasoning or data mining process itself. In this respect, we see a high potential for further developments,
especially against the background of the current trend to analyze complex and heterogeneous information
sources that are less structured than standard relational data tables.
Finally, there are some other research directions that are worth further exploration. For example, so

far most of the work in the FST community has beenmethodologicallyoriented, focusing on the fuzzy
extension of standard learning methods, whereas both theexperimentalvalidation and thetheoretical
analysis of fuzzy machine learning methods have received much less attention. As mentioned above,
validating the predictive performance of a fuzzy method in an empirical way is not as easy, since fuzzy
labels for comparison are rarely available in practice. What is a good fuzzy prediction? This question
naturally arises if fuzzy predictions are not defuzzified, and it becomes even more intricate if predictions
are expressed in terms of still more complex uncertainty formalisms such as, e.g., lower and upper
possibility bounds, type-II fuzzy sets, or belief functions. Regarding theoretical analyses of fuzzy learning
methods, it would be interesting to investigate whether fuzzy extensions are profitable from a theoretical
point of view. For example, is it possible that a class of concepts is, say, PAC-learnable15by the fuzzy
extension of a learning algorithm but not by the original version? Such results would of course be highly
welcome as a formal justification of fuzzy learning methods.
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