
Stat&tics and Computing (1994) 4, 65 -85

A genetic algorithm tutorial

D A R R E L L W H I T L E Y

Computer Science Department, Colorado State University, Fort Collins, CO 80523, USA

This tutorial covers the canonical genetic algorithm as well as more experimental forms of
genetic algorithms, including parallel island models and parallel cellular genetic algorithms.
The tutorial also illustrates genetic search by hyperplane sampling. The theoretical foun-
dations of genetic algorithms are reviewed, include the schema theorem as well as recently
developed exact models of the canonical genetic algorithm.

Keywords: Genetic algorithms, search, parallel algorithms

I. Introduction

Genetic algorithms are a family of computational models
inspired by evolution. These algorithms encode a potential
solution to a specific problem on a simple chromosome-like
data structure, and apply recombination operators to these
structures in such a way as to preserve critical information.
Genetic algorithms are often viewed as function optimizers,
although the range of problems to which genetic algorithms
have been applied is quite broad.

An implementation of a genetic algorithm begins with
a population of (typically random) chromosomes. One
then evaluates these structures and allocates reproductive
opportunities in such a way that those chromosomes which
represent a better solution to the target problem are given
more chances to 'reproduce' than those chromosomes
which are poorer solutions. The 'goodness' of a solution
is typically defined with respect to the current population.

This particular description of a genetic algorithm is
intentionally abstract because in some sense, the term
genetic algorithm has two meanings. In a strict interpre-
tation, the genetic algorithm refers to a model introduced
and investigated by John Holland (1975) and his students
(for example DeJong, 1975). It is still the case that most
of the existing theory for genetic algorithms applies either
solely or primarily to the model introduced by Holland,
as well as variations on what will be referred to in this
paper as the canonical genetic algorithm. Recent theoretical
advances in modelling genetic algorithms also apply
primarily to the canonical genetic algorithm (Vose, 1993).

In a broader usage of the term, a genetic algorithm is
any population-based model that uses selection and
recombination operators to generate new sample points in
a search space. Many genetic algorithm models have been
0960-3174 �9 1994 Chapman & Hall

introduced by researchers largely working from an experi-
mental perspective. Many of these researchers are appli-
cation oriented and are typically interested in genetic
algorithms as optimization tools.

The goal of this tutorial is to present genetic algorithms
in such a way that students new to this field can grasp the
basic concepts behind genetic algorithms as they work
through the tutorial. It should allow the more sophisti-
cated reader to absorb this material with relative ease.
The tutorial also covers topics, such as inversion, which
have sometimes been misunderstood and misused by
researchers new to the field.

The tutorial begins with a very low-level discussion of
optimization to introduce basic ideas in optimization as
well as basic concepts that relate to genetic algorithms.
In Section 2 a canonical genetic algorithm is reviewed. In
Section 3 the principle of hyperplane sampling is explored
and some basic crossover operators are introduced. In
Section 4 various versions of the schema theorem are
developed in a step-by-step fashion and other crossover
operators are discussed. In Section 5 binary alphabets
and their effects on hyperplane sampling are considered. In
Section 6 a brief criticism of the schema theorem is con-
sidered and in Section 7 an exact model of the genetic
algorithm is developed. The last three sections of the
tutorial cover alternative forms of genetic algorithms and
evolutionary computational models, including specialized
parallel implementations.

1.1. Encodings and optimization problems

Usually there are only two main components of most
genetic algorithms that are problem dependent: the prob-
lem encoding and the evaluation function.

66 W h i t l e y

Consider a parameter optimization problem where we
must optimize a set of variables either to maximize some
target such as profit, or to minimize cost or some measure
of error. We might view such a problem as a black box
with a series of control dials representing different para-
meters; the only output of the black box is a value returned
by an evaluation function indicating how well a particular
combination of parameter settings solves the optimization
problem. The goal is to set the various parameters so
as to optimize some output. In more traditional terms,
we wish to minimize (or maximize) some function
F (X 1 , X2, . . . , X M) .

Most users of genetic algorithms are typically concerned
with problems that are non-linear. This also often implies
that it is not possible to treat each parameter as an indepen-
dent variable which can be solved in isolation from the
other variables. There are interactions such that the
combined effects of the parameters must be considered in
order to maximize or minimize the output of the black
box. In the genetic algorithm community, the interaction
between variables is sometimes referred to as epistasis.

The first assumption that is typically made is that the
variables representing parameters can be represented by
bit strings. This means that the variables are discretized in
an a priori fashion, and that the range of the discretization
corresponds to some power of 2. For example, with 10 bits
per parameter, we obtain a range with 1024 discrete values.
If the parameters are actually continuous then this discret-
ization is not a particular problem. This assumes, of course,
that the discretization provides enough resolution to make
it possible to adjust the output with the desired level of
precision. It also assumes that the discretization is in
some sense representative of the underlying function.

If some parameter can only take on an exact finite set of
values, then the coding issue becomes more difficult. For
example, what if there are exactly 1200 discrete values
which can be assigned to some variable Xi. We need at least
11 bits to cover this range, but this codes for a total of 2048
discrete values. The 848 unnecessary bit patterns may result
in no evaluation, a default worst-possible evaluation, or
some parameter settings may be represented twice so that
all binary strings result in a legal set of parameter values.
Solving such coding problems is usually considered to be
part of the design of the evaluation function.

Aside from the coding issue, the evaluation function is
usually given as part of the problem description. On the
other hand, developing an evaluation function can
sometimes involve developing a simulation. In other
cases, the evaluation may be performance based and may
represent only an approximate or partial evaluation. For
example, consider a control application where the system
can be in any one of an exponentially large number of
possible states. Assume a genetic algorithm is used to opti-
mize some form of control strategy. In such cases, the state
space must be sampled in a limited fashion and the resulting

evaluation of control strategies is approximate and noisy
(see for instance Fitzpatrick and Grefenstette, 1988).

The evaluation function must also be relatively fast to
compute. This is typically true for any optimization
method, but it may particularly pose an issue for genetic
algorithms. Since a genetic algorithm works with a popu-
lation of potential algorithms, it incurs the cost of evaluat-
ing this population. Furthermore, the population is
replaced (all or in part) on a generational basis. The
members of the population reproduce, and their offspring
must then be evaluated. If it takes 1 hour to do an evalu-
ation, then it takes over 1 year to do 10000 evaluations.
This would be approximately 50 generations for a popu-
lation of only 200 strings.

1.2. How hard is hard?

Assuming the interaction between parameters is non-linear,
the size of the search space is related to the number of bits
used in the problem encoding. For a bit string encoding of
length L, the size of the search space is 2 L and forms a
hypercube. The genetic algorithm samples the corners of
this L-dimensional hypercube.

Generally, most test functions are at least 30 bits in
length and most researchers would probably agree that
larger test functions are needed. Anything much smaller
represents a space which can be enumerated. (Considering
for a moment that the national debt of the United States
in 1993 is approximately 242 dollars, 23o does not sound
quite so large.) Of course, the expression 2 L grows expon-
entially With respect to L. Consider a problem with an
encoding of 400 bits. How big is the associated search
space? A classic introductory textbook on artificial
intelligence gives one characterization of a space of
this size. Winston (1992, p. 102) points out that 24oo is a
good approximation of the effective size of the search
space of possible board configurations in chess. (This
assumes that the effective branching factor at each possible
move is 16 and that a game is made up of 100 moves;
16 l~176 = (24) 100 = 2400.) Winston states that this is 'a ridicu-
lously large number. In fact, if all the atoms in the universe
had been computing chess moves at picosecond rates since
the big bang (if any), the analysis would be just getting
started.'

The point is that as long as the number of 'good
solutions' to a problem is sparse with respect to the size
of the search space, then random search or search by
enumeration of a large search space is not a practical
form of problem solving. On the other hand, any search
other than random search imposes some bias in terms of
how it looks for better solutions and where it looks in
the search space. Genetic algorithms indeed introduce a
particular bias in terms of what new points in the space
will be sampled. Nevertheless, a genetic algorithm belongs
to the class of methods known as 'weak methods' in the

A genetic algorithm tutorial 67

artificial intelligence community because it makes relatively
few assumptions about the problem that is being solved.

Of course, many optimization methods have been
developed in mathematics and operations research. What
role do genetic algorithms play as an optimization tool?
Genetic algorithms are often described as a global search
method that does not use gradient information. Thus,
non-differentiable functions as well as functions with
multiple local optima represent classes of problems to
which genetic algorithms might be applied. Genetic
algorithms, as a weak method, are robust but very gen-
eral. If there exists a good specialized optimization method
for a specific problem, then a genetic algorithm may not be
the best optimization tool for that application. On the other
hand, some researchers work with hybrid algorithms that
combine existing methods with genetic algorithms.

2. The canonical genetic algorithm

The first step in the implementation of any genetic algo-
rithm is to generate an initial population. In the canonical
genetic algorithm each member of this population will be
a binary string of length L which corresponds to the prob-
lem encoding. Each string is sometimes referred to as a
genotype (Holland, 1975) or, alternatively, a chromosome
(Schaffer, 1987). In most cases the initial population is
generated randomly. After creating an initial population,
each string is then evaluated and assigned a fitness value.

The notions of evaluation and fitness are sometimes used
interchangeably. However, it is useful to distinguish
between the evaluation function and the fitness function
used by a genetic algorithm. In this tutorial, the evaluation
function, or objective function, provides a measure of perfor-
mance with respect to a particular set of parameters. The
fitness function transforms that measure of performance
into an allocation of reproductive opportunities. The evalu-
ation of a string representing a set of parameters is indepen-
dent of the evaluation of any other string. The fitness of that
string, however, is always defined with respect to other
members of the current population.

In the canonical genetic algorithm, fitness is defined by:
f i / f where f . is the evaluation associated with string i and
f is the average evaluation of all the strings in the popu-
lation. Fitness can also be assigned based on a string's
rank in the population (Baker, 1985; Whitley, 1989) or
by sampling methods, such as tournament selection
(Goldberg, 1990).

It is helpful to view the execution of the genetic algorithm
as a two-stage process. It starts with the current population.
Selection is applied to the current population to create
an intermediate population. Then recombination and
mutation are applied to the intermediate population to
create the next population. The process of going from the
current population to the next population constitutes one

Selection
(Duplication)

String 2

String 3

String 4

..... ~.:z~2~

String 1

String 2

String 2

String 4

Recombination
(Crossover

- - / x (" - Offsprlng-A (1 X 2)

Offspring-B (1 X 2)

- - x t ~ - Offspring-A (2 X 4)

�9 ~ Offspdng-B (2 X 4)

Current Intermediate Next
Generation t Generation t Generation t + 1

Fig. 1. One generation is broken down into a selection phase
and recombination phase. This figure shows strings being assigned
into adjacent slots during selection. In fact, they can be assigned
slots randomly in order to shuffle the intermediate population.
Mutation (not shown) can be applied after crossover

generation in the execution of a genetic algorithm. Gold-
berg (1989) refers to this basic implementation as a simple
genetic algorithm (SGA).

We will first consider the construction of the intermediate
population from the current population. In the first genera-
tion the current population is also the initial population.
After calculat ingf/ /f for all the strings in the current popu-
lation, selection is carried out. In the canonical genetic algo-
rithm the probability that strings in the current population
are copied (i.e. duplicated) and placed in the intermediate
generation is proportional to their fitness.

There are a number of ways to do selection. We might
view the population as mapping onto a roulette wheel,
where each individual is represented by a space that
proportionally corresponds to its fitness. By repeatedly
spinning the roulette wheel, individuals are chosen using
stochastic sampling with replacement to fill the intermediate
population.

A selection process that will more closely match the
expected fitness values is remainder stochastic sampling.
For each string i whe re f / / f is greater than 1.0, the integer
portion of this number indicates how many copies of that
string are directly placed in the intermediate population.
All strings (including those with f . / f less than 1.0) then
place additional copies in the intermediate population
with a probability corresponding to the fractional portion
of f i / f . For example, a string with f . / f = 1.36 places 1
copy in the intermediate population, and then receives a
0.36 chance of placing a second copy. A string with a fit-
ness o f f i / f = 0.54 has a 0.54 chance of placing one string
in the intermediate population.

Remainder stochastic sampling is most efficiently imple-
mented using a method known as stochastic universal
sampling. Assume that the population is laid out in
random order as in a pie graph, where each individual is
assigned space on the pie graph in proportion to fitness.

68 Whitley

Next an outer roulette wheel is placed around the pie with
N equally spaced pointers. A single spin of the roulette
wheel will now simultaneously pick all N members of the
intermediate population. The resulting selection is also
unbiased (Baker, 1987).

After selection has been carried out the construction of
the intermediate population is complete and recombi-
nation can occur. This can be viewed as creating the next

population from the intermediate population. Crossover is
applied to randomly paired strings with a probability
denoted Pc. (The population should already be sufficiently
shuffled by the random selection process.) Pick a pair
of strings. With probability Pc 'recombine' these strings
to form two new strings that are inserted into the next
population.

Consider the following binary string: 1101001100101101.
The string would represent a possible solution to some
parameter optimization problem. New sample points in
the space are generated by recombining two parent
strings. Consider the string 1101001100101101 and
another binary string, y x y y x y x x y y y x y x x y , in which the
values 0 and 1 are denoted by x and y. Using a single
randomly chosen recombination point, 1-point crossover
occurs as follows:

11010 \ / 01100101101

y x y y x / \ y x x y y y x y x x y

Swapping the fragments between the two parents produces
the following offspring:

l l O l O y x x y y y x y x x y and yxyyx01100101101

After recombination, we can apply a mutation operator.
For each bit in the population, mutate with some low prob-
ability Pro. Typically the mutation rate is applied with less
than 1% probability. In some cases, mutation is inter-
preted as randomly generating a new bit, in which case,
only 50% of the time will the 'mutation' actually change
the bit value. In other cases, mutation is interpreted to
mean actually flipping the bit. The difference is no more
than an implementation detail as long as the user/reader
is aware of the difference and understands that the first
form of mutation produces a change in bit values only
half as often as the second, and that one version of
mutation is just a scaled version of the other.

After the process of selection, recombination and
mutation is complete, the next population can be evalu-
ated. The process of evaluation, selection, recombination
and mutation forms one generation in the execution of a
genetic algorithm.

2.1. Why does it work? Search spaces as hypercubes

The question that most people who are new to the field of
genetic algorithms ask at this point is why such a process

should do anything useful. Why should one believe that
this is going to result in an effective form of search or
optimization?

The answer which is most widely given to explain the
computational behaviour of genetic algorithms came out
of John Holland's work. In his classic 1975 book, Adapta-

tion in Natural and Artificial Systems, Holland develops sev-
eral arguments designed to explain how a 'genetic plan' or
'genetic algorithm' can result in complex and robust search
by implicitly sampling hyperplane partitions of a search
space.

Perhaps the best way to understand how a genetic
algorithm can sample hyperplane partitions is to consider
a simple 3-dimensional space (see Fig. 2). Assume we
have a problem encoded with just 3 bits; this can be repre-
sented as a simple cube with the string 000 at the origin. The
corners in this cube are numbered by bit strings and all
adjacent corners are labelled by bit strings that differ by
exactly 1 bit. An example is given in the top of Fig. 2.
The front plane of the cube contains all the points that
begin with 0. If '*' is used as a 'don't care' or wild card
match symbol, then this plane can also be represented by
the special string 0'*. Strings that contain * are referred

110 111

010 ~ 101

000 001
0110

S 2.. .~ 0111
�9 i ".. -'~ s ."S

�9 I :.1110 "'s �9 I S

OOlO ~..-.... - - -

1010 ~ I

m
10ix

1101

~ ~176176
I ~176176176176
I "~ 0101

�9 o I S
! r

S ! S ". | S S ".1S

0001

S
~176149 .~ ~149

oooo i,'~

1001 ",

Fig. 2. A 3-dimensional cube and a 4-dimensional hypercube. The
corners of the inner cube and outer cube in the bottom 4-dimensional
example are numbered in the same way as in the upper 3-dimensional
cube, except a 1 is added as a prefix to the labels of the inner cube
and a 0 is added as a prefix to the labels of the outer cube. Only
select points are labelled in the 4-dimensional hypercube

A genetic algorithm tutorial 69

to as schemata; each schema corresponds to a hyperplane in
the search space. The 'order' of a hyperplane refers to the
number of actual bit values that appear in its schema.
Thus, 1"* is order 1 while 1"*1"*****0"* would be of
order 3.

The bottom of Fig. 2 illustrates a 4-dimensional space
represented by a cube 'hanging' inside another cube. The
points can be labelled as follows. Label the points in the
inner cube and outer cube exactly as they are labelled in
the top 3-dimensional space. Next, prefix each inner cube
labelling with a 1 bit and each outer cube labelling with a
0 bit. This creates an assignment to the points in hyper-
space that gives the proper adjacency in the space between
strings that are 1 bit different. The inner cube now
corresponds to the hyperplane 1"** while the outer cube
corresponds to 0"**. It is also rather easy to see that *0"*
corresponds to the subset of points that corresponds to
the fronts of both cubes. The order-2 hyperplane 10"* cor-
responds to the front of the inner cube.

A bit string matches a particular schema if that bit string
can be constructed from the schema by replacing the *
symbol with the appropriate bit value. In general, all bit
strings that match a particular schema are contained in
the hyperplane partition represented by that particular
schema. Every binary encoding is a 'chromosome' which
corresponds to a corner in the hypercube and is a member
of 2 L _ 1 different hyperplanes, where L is the length of the
binary encoding. (The string of all * symbols corresponds
to the space itself and is not counted as a partition of the
space: Holland, 1975, p. 72). This can be shown by taking
a bit string and looking at all the possible ways that any
subset of bits can be replaced by * symbols. In other
words, there are L positions in the bit string and each
position can be either the bit value contained in the string
or the * symbol.

It is also relatively easy to see that 3 L - 1 hyperplane
partitions can be defined over the entire search space. For
each of the L positions in the bit string we can have the
value *, 1 or 0, which results in 3 L combinations.

Establishing that each string is a member of 2 L - 1
hyperplane partitions does not provide very much infor-
mation if each point in the search space is examined in
isolation. This is why the notion of a population based
search is critical to genetic algorithms. A population of
sample points provides information about numerous
hyperplanes; furthermore, low-order hyperplanes should
be sampled by numerous points in the population. (This
issue is re-examined in more detail in subsequent sections
of this paper). A key part of a genetic algorithm's intrinsic
or implicit parallelism is derived from the fact that many
hyperplanes are sampled when a population of strings is
evaluated (Holland, 1975); in fact, it can be argued that
far more hyperplanes are sampled than the number of
strings contained in the population. Many different hyper-
planes are evaluated in an implicitly parallel fashion each

time a single string is evaluated (Holland, 1975, p. 74);
but it is the cumulative effects of evaluating a population
of points that provides statistical information about any
particular subset of hyperplanes. (Holland initially used
the term intrinsic parallelism in his 1975 monograph, then
decided to switch to implicit parallelism to avoid confusion
with terminology in parallel computing. Unfortunately,
the term implicit parallelism in the parallel computing
community refers to parallelism which is extracted from
code written in functional languages that have no explicit
parallel constructs. Implicit parallelism does not refer to
the potential for running genetic algorithms on parallel
hardware, although genetic algorithms are generally
viewed as highly parallelizable algorithms.)

Implicit parallelism implies that many hyperplane compe-
titions are simultaneously solved in parallel. The theory
suggests that through the process of reproduction and
recombination, the schemata of competing hyperplanes
increase or decrease their representation in the population
according to the relative fitness of the strings that lie in
those hyperplane partitions. Because genetic algorithms
operate on populations of strings, one can track the propor-
tional representation of a single schema representing a
particular hyperplane in a population and indicate whether
that hyperplane will increase or decrease its representation
in the population over time when fitness-based selection is
combined with crossover to produce offspring from exist-
ing strings in the population.

3. Two views of hyperplane sampling

Another way of looking at hyperplane partitions is pre-
sented in Fig. 3. A function over a single variable is plotted
as a 1-dimensional space, with function maximization as a
goal. The hyperplane 0"***...** spans the first half of the
space and 1"***...** spans the second half of the space.
Since the strings in the 0"***...** partition are on average
better than those in the 1"***...** partition, we would like
the search to be proportionally biased toward this partition.
In the second graph the portion of the space corresponding
to **1"*...** is shaded, which also highlights the inter-
section of 0"***...** and **1"*...**, namely, 0"1".. .**.
Finally, in the third graph, 0"10"*...** is highlighted.

One of the points of Fig. 3 is that the sampling of hyper-
plane partitions is not really effected by local optima. At the
same time, increasing the sampling rate of partitions that
are above average compared with other competing
partitions does not guarantee convergence to a global
optimum. The global optimum could be a relatively
isolated peak, for example. Nevertheless, good solutions
that are globally competitive should be found.

It is also a useful exercise to look at an example of a
simple genetic algorithm in action. In Table 1, the first 3
bits of each string are given explicitly while the remainder

70 Wh i t l e y

1

F(X)

o
K/2 K

Variable X

F(x)

K/8 K/4 K/2 K
Variable X

F(X3

1 I

o K)<
0 K/8 K/4 K/2 K

ValiabIe X

0.**...* *.i*...* DCXXXXX!

Table 1. A population with fitness assigned to strings according to
rank. R is a random number which determines whether or not a copy
of a string is awarded for the fractional remainder of the fitness

String Fitness R Copies

001bl,4...bl,L
10162,4...b2,L
l l lb3,4. . .b3,L
010b4,4...b4,L
lllbs,4...bs,L
101b6, 4 ...b6, L
01 lb7, 4 . . .by, L
001b8,4 b8,L
000b9,4 b9,L
100blo,4 blo, L
010bll,4 bll,L
01 lb12,4 blz, L
000b13,4 b13, L
110b14,4 bla, L
110b15,4 �9 bls,L
100b16,4 ..bl6,L
011b17,4 ..bl7,L
000b18,4 ..bILL
001b19,4 ..bl9,L
100b20,4...b20,L
010b21,4... b21,L

2.0 - 2
1.9 0.93 2
1.8 0.65 2
1.7 0.02 1
1.6 0.51 2
1.5 0.20 1
1.4 0.93 2
1.3 0.20 1
1.2 0.37 1
1.1 0.79 1
1 . 0 - 1

0.9 0.28 1
0.8 0.13 0
0.7 0.70 1
0.6 0.80 1
0.5 0.51 1
0.4 0.76 1
0.3 0.45 0
0.2 0.61 0
0.1 0.07 0
0 . 0 - 0

Fig. 3. A function and various partitions of hyperspace. Fitness is
sealed to a 0 to 1 range in this diagram

of the bit positions are unspecified. The goal is to look at
only those hyperplanes defined over the first 3 bit positions
in order to see what actually happens during the selection
phase when strings are duplicated according to fitness.
The theory behind genetic algorithms suggests that the
new distribution of points in each hyperplane should
change according to the average fitness of the strings in
the population that are contained in the corresponding
hyperplane partition. Thus, even though a genetic algo-
rithm never explicitly evaluates any particular hyperplane
partition, it should change the distribution of string copies
as if it had.

The example population in Table 1 contains only 21
(partially specified) strings. Since we are not particularly
concerned with the exact evaluation of these strings, the fit-
ness values are assigned according to rank. (The notion of
assigning fitness by rank rather than by fitness propor-
tional representation has not been discussed in detail, but
the current example relates to change in representation
due to fitness and not how that fitness is assigned.) The
table includes information on the fitness of each string
and the number of copies to be placed in the intermediate
population. In this example, the number of copies pro-
duced during selection is determined by automatically
assigning the integer part, then assigning the fractional
part by generating a random value between 0.0 and 1.0 (a
form of remainder stochastic sampling). If the random

value is greater than (1 -remainder), then an additional
copy is awarded to the corresponding individual.

Genetic algorithms appear to process many hyperplanes
implicitly in parallel when selection acts on the population.
Table 2 enumerates the 27 hyperplanes (33) that can be
defined over the first three bits of the strings in the popu-
lation and explicitly calculates the fitness associated with
the corresponding hyperplane partition. The true fitness
of the hyperplane partition corresponds to the average fit-
ness of all strings that lie in that hyperplane partition.
The genetic algorithm uses the population as a sample for
estimating the fitness of that hyperplane partition. Of
course, the only time the sample is random is during the
first generation. After this, the sample of new strings
should be biased toward regions that have previously
contained strings that were above average with respect to
previous populations.

If the genetic algorithm works as advertised, the number
of copies of strings that actually fall in a particular hyper-
plane partition after selection should approximate the
expected number of copies that should fall in that partition.

In Table 2, the expected number of strings sampling a
hyperplane partition after selection can be calculated by
multiplying the number of hyperplane samples in the
current population before selection by the average fitness
of the strings in the population that fall in that partition.
The observed number of copies actually allocated by selec-
tion is also given. In most cases the match between
expected and observed sampling rate is fairly good: the

A gene t i c a lgor i thm tu tor ia l 71

Table 2. The average fitnesses (Mean) associated with the samples
from the 27 hyperplanes defined over the first three bit positions
are explicitly calculated. The expected representation (Expect)
and observed representation (Obs) are shown. Count refers to the
number of strings in hyperplane H before selection

Schema Mean Count Expect Obs

101' ...* 1.70 2 3.4 3
111' ...* 1.70 2 3.4 4
1"1" ...* 1.70 4 6.8 7
01" ... 1.38 5 6.9 6
**1" ...* 1.30 10 13.0 14
11' ... 1.22 5 6.1 8
11"* ...* 1.175 4 4.7 6
001" ...* 1.166 3 3.5 3
1"**...* 1.089 9 9.8 11
O* 1" ...* 1.033 6 6.2 7
10"* ...* 1.020 5 5.1 5
1" ...* 1.010 10 10.1 12
.... ...* 1.000 21 21.0 21
0" ...* 0.991 11 10.9 9
00"* ...* 0.967 6 5.8 4
0'** ...* 0.933 12 11.2 10
011" ...* 0.900 3 2.7 4
010"...* 0.900 3 2.7 2
01'* ...* 0.900 6 5.4 6
0"0" ...* 0.833 6 5.0 3
* 10" ...* 0.800 5 4.0 4
000" ...* 0.767 3 2.3 1
**0" ...* 0.727 11 8.0 7
00" ... 0.667 6 4.0 3
110"...* 0.650 2 1.3 2
1"0" ...* 0.600 5 3.0 4
100" ...* 0.566 3 1.70 2

error is a result of sampling error due to the small popu-
lation size.

It is useful to begin formalizing the idea of tracking
the potential sampling rate o f a hyperplane, H. Let M (H , t)
be the number of strings sampling H at the current gener-
ation t in some population. Let (t + intermediate) index
the generation t after selection (but before crossover and
mutation), and f (H , t) be the average evaluation of the
sample of strings in partition H in the current population.
Formally, the change in representation according to fitness
associated with the strings that are drawn from hyperplane
H is expressed by:

M (H , t § intermediate) : M (H , t) f (f ' t) .

Of course, when strings are merely duplicated no new
sampling o f hyperplanes is actually occurring since no
new samples are generated. Theoretically, we would like
to have a sample of new points with this same distri-
bution. In practice, this is generally not possible. Recombi-
nation and mutation, however, provide a means of

generating new sample points while partially preserving
distribution of strings across hyperplanes that is observed
in the intermediate population.

3.1. Crossover operators and schemata

The observed representation of hyperplanes in Table 2
corresponds to the representation in the intermediate popu-
lation after selection but before recombination. What does
recombination do to the observed string distributions?
Clearly, order-1 hyperplane samples are not affected by
recombination, since the single critical bit is always
inherited by one of the offspring. However, the observed
distribution of potential samples from hyperplane par-
titions of order 2 and higher can be affected by crossover.
Furthermore, all hyperplanes of the same order are not
necessarily affected with the same probability. Consider
1-point crossover. This recombination operator is nice
because it is relatively easy to quantify its effects on differ-
ent schemata representing hyperplanes. To keep things
simple, assume we are working with a string encoded with
just 12 bits. Now consider the following two schemata:

1 1 . * * * * * * * * * and 1 . * * * * * * * * * 1

The probability that the bits in the first schema will be
separated during 1-point crossover is only 1 / L - 1, since
in general there are L - 1 crossover points in a string of
length L. The probability that the bits in the second right-
most schema are disrupted by 1-point crossover however
is (L - 1)/(L - 1), or 1.0, since each of the L - 1 crossover
points separates the bits in the schema. This leads to a
general observation: when using 1-point crossover the posi-
tions of the bits in the schema are important in determining
the likelihood that those bits will remain together during
crossover.

3.1.1. 2-point crossover

What happens if a 2-point crossover operator is used? A
2-point crossover operator uses two randomly chosen
crossover points. Strings exchange the segment that falls
between these two points. Ken DeJong first observed
(1975) that 2-point crossover treats strings and schemata
as if they form a ring, which can be illustrated as follows:

b7 b6 b5 * * *
b8 b4 * *

b9 b3 * *
blO b2 * *

b l l b12 b l * 1 1

where bl to b12 represents bits 1 to 12. When viewed in this
way, 1-point crossover is a special case of 2-point crossover
where one of the crossover points always occurs at the
wrap-around position between the first and last bit. Maxi-
mum disruptions for order-2 schemata now occur when
the 2 bits are at complementary positions on this ring.

72 Whitley

For 1-point and 2-point crossover it is clear that
schemata which have bits that are close together on the
string encoding (or ring) are less likely to be disrupted by
crossover. More precisely, hyperplanes represented by
schemata with more compact representations should be
sampled at rates that are closer to those potential sampling
distribution targets achieved under selection alone. For
current purposes a compact representation with respect to
schemata is one that minimizes the probability of dis-
ruption during crossover. Note that this definition is opera-
tor dependent, since both of the two order-2 schemata
examined in Section 3.1 are equally and maximally com-
pact with respect to 2-point crossover, but are maximally
different with respect to 1-point crossover.

3.1.2. Linkage and defining length
Linkage refers to the phenomenon whereby a set of bits act
as 'coadapted alleles' that tend to be inherited together as a
group. In this case an allele would correspond to a par-
ticular bit value in a specific position on the chromosome.
Of course, linkage can be seen as a generalization of
the notion of a compact representation with respect to
schema. Linkage is sometimes defined by physical
adjacency of bits in a string encoding; this implicitly
assumes that l-point crossover is the operator being used.
Linkage under 2-point crossover is different and must be
defined with respect to distance on the chromosome when
treated as a ring. Nevertheless, linkage usually is equated
with physical adjacency on a ring, as measured by defining
length.

The defining length of a schemata is based on the distance
between the first and last bits in the schema with value
either 0 or 1 (i.e. not a * symbol). Given that each position
in a schema can be 0, 1 or *, then scanning left to right, if Ix
is the index of the position of the rightmost occurrence of
either a 0 or 1 and Iy is the index of the leftmost occurrence
of either a 0 or 1, then the defining length is merely Ix - Iy.
Thus, the defining length of ****1"*0"*10"* is 12 - 5 = 7.
The defining length of a schema representing a hyperplane
H is denoted here by A(H). The defining length is a direct
measure of how many possible crossover points fall within
the significant portion of a schemata. I f 1-point crossover is
used, then A (H) / L - 1 is also a direct measure of how
likely crossover is to fall within the significant portion of
a schemata during crossover.

3.1.3. Linkage and inversion
Along with mutation and crossover, inversion is often con-
sidered to be a basic genetic operator. Inversion can change
the linkage of bits on the chromosome such that bits with
greater non-linear interactions can potentially be moved
closer together on the chromosome.

Typically, inversion is implemented by reversing a random
segment of the chromosome. However, before one can start
moving bits around on the chromosome to improve linkage,

the bits must have a position-independent decoding. A
common error that some researchers make when first imple-
menting inversion is to reverse bit segments of a directly
encoded chromosome. But just reversing some random
segment of bits is nothing more than large-scale mutation
if the mapping from bits to parameters is position dependent.

A position-independent encoding requires that each bit
be tagged in some way. For example, consider the follow-
ing encoding composed of pairs where the first number is
a bit tag which indexes the bit and the second represents
the bit value:

((90) (60)(2 1)(7 1)(5 1)(8 1)(30)(1 0)(40)).

The linkage can now be changed by moving around the
tag-bit pairs, but the string remains the same when
decoded: 010010110. One must now also consider how
recombination is to be implemented. Goldberg and
Bridges (1990), Whitley (1991) as well as Holland (1975)
discuss the problems of exploiting linkage and the recombi-
nation of tagged representations.

4. The schema theorem

A foundation has now been laid to develop the fundamen-
tal theorem of genetic algorithms. The schema theorem
(Holland, 1975) provides a lower bound on the change in
the sampling rate for a single hyperplane from generation
t to generation t + 1.

Consider again what happens to a particular hyperplane,
H when only selection occurs:

M(H, t + intermediate) = M(H, t) f (f ' t)

To calculate M(H, t + 1) we must consider the effects of
crossover as the next generation is created from the inter-
mediate generation. First we consider that crossover is
applied probabilistically to a portion of the population.
For that part of the population that does not undergo cross-
over, the representation due to selection is unchanged. When
crossover does occur, then we must calculate losses due to its
disruptive effects:

M(H, t + 1) = (1 -pe)M(H, t) f (f ' t)

+ p c [M (H , t) ~ (1 - losses) +gains].

In the derivation of the schema theorem a conservative
assumption is made at this point. It is assumed that cross-
over within the defining length of the schema is always
disruptive to the schema representing H. In fact, this is
not true and an exact calculation of the effects of crossover
is presented later in this paper. For example, assume we are
interested in the schema 11"****. If a string such as

A genetic algorithm tutorial 73

1110101 were recombined between the first two bits with a
string such as 1000000 or 0100000, no disruption would
occur in hyperplane ll***** since one of the offspring
would still reside in this partition. Also, if 1000000 and
0100000 were recombined exactly between the first and
second bit, a new independent offspring would sample
11"****; this is the source of gains that is referred to in
the above calculation. To simplify things, gains are ignored
and the conservative assumption is made that crossover
falling in the significant portion of a schema always leads
to disruption. Thus,

M(H, t + 1) > (1 -pc)M(H, t) f (f t)

+ p e [M (H , t) ~ (1- disruptions) l

where disruptions overestimates losses. We might wish to
consider one exception: if two strings that both sample H
are recombined, then no disruption occurs. Let P(H, t)
denote the proportional representation of H obtained by
dividing M(H, t) by the population size. The probability
that a randomly chosen mate samples H is just P(H, t).
Recall that A(H) is the defining length associated with
1-point crossover. Disruption is therefore given by

A(H) (1 - P(H, t)).

At this point, the inequality can be simplified. Both sides
can be divided by the population size to convert this into an
expression for P(H, t + 1), the proportional representation
of H at generation t + 1. Furthermore, the expression can
be rearranged with respect to Pc:

P(H,t+ I) >P(H, t) f (H- 't) 1-pc P(H,t))
- " f L - t "

We now have a useful version of the schema theorem
(although it does not yet consider mutation); but it is not
the only version in the literature. For example, both
parents are typically chosen based on fitness. This can be
added to the schema theorem by merely indicating the alter-
native parent is chosen from the intermediate population
after selection:

P(H, t + l) > P(H, t) f(H' t)
- . f

A (a) (1 - e (H , t) ~) 1.
• [1-pc-fiZZ_ 1

Finally, mutation is included. Let o(H) be a function that
returns the order of the hyperplane H. The order of H
exactly corresponds to a count of the number of bits in
the schema representing H that have value 0 or 1. Let the
mutation probability be Pm where mutation always flips
the bit. The probability that mutation does not affect the
schema representing H is (1 -pro) ~ This leads to the

following expression of the schema theorem:

P(H, t + 1) > P(H, t) f (f ' t)

• [1-pc-~--Z-- i-

x (1 --pm) ~

4 . 1 . Crossover , muta t ion and p r e m a t u r e convergence

Clearly the schema theorem places the greatest emphasis on
the role of crossover and hyperplane sampling in genetic
search. To maximize the preservation of hyperplane
samples after selection, the disruptive effects of crossover
and mutation should be minimized. This suggests that
mutation should perhaps not be used at all, or at least
used at very low levels.

The motivation for using mutation, then, is to prevent
the permanent loss of any particular bit or allele. After
several generations it is possible that selection will drive
all the bits in some position to a single value: either 0 or
1. If this happens without the genetic algorithm converging
to a satisfactory solution, then the algorithm has prema-
turely converged. This may particularly be a problem
if one is working with a small population. Without a
mutation operator, there is no possibility for reintroducing
the missing bit value. Also, if the target function is non-
stationary and the fitness landscape changes over time
(which is certainly the case in real biological systems),
then there needs to be some source of continuing genetic
diversity. Mutation, therefore acts as a background
operator, occasionally changing bit values and allowing
alternative alleles (and hyperplane partitions) to be
retested.

This particular interpretation of mutation ignores its
potential as a hill-climbing mechanism: from the strict
hyperplane sampling point of view imposed by the schema
theorem mutation is a necessary evil. But this is perhaps a
limited point of view. Several experimental researchers
have pointed out that genetic search using mutation and
no crossover often produces a fairly robust search. And
there is little or no theory that has addressed the inter-
actions of hyperplane sampling and hill-climbing in genetic
search.

Another problem related to premature convergence is the
need for scaling the population fitness. As the average
evaluation of the strings in the population increases, the
variance in fitness decreases in the population. There may
be little difference between the best and worst individuals
in the population after several generations, and the selec-
tive pressure based on fitness is correspondingly reduced.
This problem can partially be addressed by using some
form of fitness scaling (Grefenstette, 1986; Goldberg,
1989). In the simplest case, one can subtract the evaluation

74 Whit ley

of the worst string in the population from the evaluations of
all strings in the population. One can now compute the
average string evaluation as well as fitness values using
this adjusted evaluation, which will increase the resulting
selective pressure. Alternatively, one can use a rank-based
form of selection.

4.2. How recombination moves through a hypercube

The nice thing about 1-point crossover is that it is easy to
model analytically. But it is also easy to show analytically
that if one is interested in minimizing schema disruption,
then 2-point crossover is better. However, operators that
use many crossover points should be avoided because of
extreme disruption to schemata. This is again a point of
view imposed by a strict interpretation of the schema
theorem. On the other hand, disruption may not be the
only factor affecting the performance of a genetic
algorithm.

4.2.1. Uniform crossover

The operator that has received the most attention in recent
years is uniform crossover. Uniform crossover was studied
in some detail by Ackley (1987) and popularized by
Syswerda (1989). Uniform crossover works as follows: for
each bit position 1 to L, randomly pick each bit from either
of the two parent strings. This means that each bit is
inherited independently from any other bit and that there
is, in fact, no linkage between bits. It also means that
uniform crossover is unbiased with respect to defining
length. In general the probability of disruption is
1 - (1/2) ~ where o(H) is the order of the schema
we are interested in. (It does not matter which offspring
inherits the first critical bit, but all other bits must be
inherited by that same offspring. This is also a worst-case
probability of disruption which assumes no alleles
found in the schema of interest are shared by the
parents.) Thus, for any order-3 schema the probability of
uniform crossover separating the critical bits is always
1 - (1/2) 2 = 0.75. Consider for a moment a string of 9
bits. The defining length of a schema must equal 6 before
the disruptive probabilities of 1-point crossover match
those associated with uniform crossover (6/8 = 0.75). We
can define 84 different order-3 schemata over any particu-
lar string of 9 bits (i.e. 9 choose 3). Of these schemata,
only 19 of the 84 order-2 schemata have a disruption
rate higher than 0.75 under 1-point crossover. Another
15 have exactly the same disruption rate, and 50 of the
84 order-2 schemata have a lower disruption rate. It is
relatively easy to show that, while uniform crossover is
unbiased with respect to defining length, it is also generally
more disruptive than 1-point crossover. Spears and DeJong
(1991) have shown that uniform crossover is in every
case more disruptive than 2-point crossover for order-3
schemata for all defining lengths.

Despite these analytical results, several researchers have
suggested that uniform crossover is sometimes a better
recombination operator. One can point to its lack of repre-
sentational bias with respect to schema disruption as a pos-
sible explanation, but this is unlikely since uniform
crossover is uniformly worse than 2-point crossover.
Spears and DeJong (1991, p. 314) speculate that, 'With
small populations, more disruptive crossover operators
such as uniform or n-point (n >> 2) may yield better
results because they help overcome the limited information
capacity of smaller populations and the tendency for more
homogeneity'. Eshelman (1991) has made similar argu-
ments outlining the advantages of disruptive operators.

There is another sense in which uniform crossover
is unbiased. Assume we wish to recombine the bit
strings 0000 and 1111. We can conveniently lay out the
4-dimensional hypercube as shown in Fig. 4. We can also
view these strings as being connected by a set of minimal
paths through the hypercube; pick one parent string as
the origin and the other as the destination. Now change a
single bit in the binary representation corresponding to
the point of origin. Any such move will reach a point that
is one move closer to the destination. In Fig. 4 it is easy
to see that changing a single bit is a move up or down in
the graph.

All of the points between 0000 and 1111 are reachable by
some single application of uniform crossover. However,
1-point crossover only generates strings that lie along two
complementary paths (in the figure, the leftmost and right-
most paths) through this 4-dimensional hypercube. In
general, uniform crossover will draw a complementary
pair of sample points with equal probability from all points
that lie along any complementary minimal paths in the
hypercube between the two parents, while 1-point cross-
over samples points from only two specific complementary
minimal paths between the two parent strings. It is also easy

1111

0111 1011 1101 1110

0011 0101 0110 1001 1010 1100

0001 0010 0100 1000
~ oOO~ "" ~ ~ . ~ 1 7 6 1 7 6 1 7 6 1 7 6

0000
Fig. 4. This graph illustrates paths through 4-dimensional space. A
1-point crossover of 1111 and 0000 can only generate offspring that
reside along the dashed paths at the edges of this graph

A genetic algorithm tutorial 75

to see that 2-point crossover is less restrictive than
1-point crossover. Note that the number of bits that are
different between two strings is just the Hamming
distance, W. Not including the original parent strings, uni-
form crossover can generate 2 ~ - 2 different strings, while
1-point crossover can generate 2 (J g - 1) different strings
since there are Y g - 1 crossover points that produce
unique offspring (see the discussion in the next section)
and each crossover produces 2 offspring. The 2-point cross-
over operator can generate 2 (~) = ~gr _ NV different off-
spring since there are #t ~ choose 2 different crossover
points that will result in offspring that are not copies of
the parents and each pair of crossover points generates 2
strings.

4.3. Reduced surrogates

Consider crossing the following two strings and a 'reduced'
version of the same strings, where the bits the strings share
in common have been removed.

0001111011010011 1 1 - - - 1 1

0001001010010010 0 0 - - - 0 0

Both strings lie in the hyperplane 0001"*101"01001"
The flip side of this observation is that crossover is
really restricted to a subcube defined over the bit positions
that are different. We can isolate this subcube by removing
all of the bits that are equivalent in the two parent
structures. Booker (1987) refers to strings such as

. . . . 1 1 - - - 1 1

and

. . . . 0 0 - - - 0 0

as the 'reduced surrogates' of the original parent chromo-
somes.

When viewed in this way, it is clear that recombination of
these particular strings occurs in a 4-dimensional subcube,
more or less identical to the one examined in the previous
example. Uniform crossover is unbiased with respect to
this subcube in the sense that uniform crossover will still
sample in an unbiased, uniform fashion from all of the
pairs of points that lie along complementary minimal
paths in the subcube defined between the two original
parent strings. On the other hand, simple l-point or
2-point crossover will not. To help illustrate this idea, we
recombine the original strings, but examine the offspring
in their ' reduced' forms. For example, simple 1-point
crossover will generate offspring 11- - -1 0 and
. . . . 0 0 - - - 0 1 with a probability of 6/15 since there
are 6 crossover points in the original parent strings between
the third and fourth bits in the reduced subcube and
L - 1 = 15. On the other hand, - - - -10- - -0 0
and 01- - -1 1 are sampled with a probability
of only 1/15 since there is only a single crossover point in

the original parent structures that falls between the first
and second bits that define the subcube.

One can remove this particular bias, however. We apply
crossover on the reduced surrogates. Crossover can now
exploit the fact that there is really only 1 crossover point
between any significant bits that appear in the reduced
surrogate forms. There is also another benefit. I f at least 1
crossover point falls between the first and last significant
bits in the reduced surrogates, the offspring are guaranteed
not to be duplicates of the parents. (This assumes the
parents differ by at least two bits.) Thus, new sample points
in hyperspace are generated.

The debate on the merits of uniform crossover and opera-
tors such as 2-point reduced surrogate crossover is not a
closed issue. To understand fully the interaction between
hyperplane sampling, population size, premature conver-
gence, crossover operators, genetic diversity and the role of
hill-climbing by mutation requires better analytical methods.

5. T h e c a s e for b i n a r y a l p h a b e t s

The motivation behind the use of a minimal binary alpha-
bet is based on relatively simple counting arguments. A
minimal alphabet maximizes the number of hyperplane
partitions directly available in the encoding for schema
processing. These low-order hyperplane partitions are
also sampled at a higher rate than would occur with an
alphabet of higher cardinality.

Any set of order-1 schemata such as 1"** and 0"** cuts
the search space in half. Clearly, there are L pairs of order-1
schemata. For order-2 schemata, there are (L) ways to pick
locations in which to place the 2 critical bit positions, and
there are 22 possible ways to assign values to those bits.
In general, if we wish to count how many schemata repre-
senting hyperplanes exist at some order i, this value is
given by 2i()) where ()) counts the number of ways to pick i
positions that will have significant bit values in a string of
length L and 2 i is the number of ways to assign values to
those positions. This ideal can be illustrated for order-1
and order-2 schemata as follows:

Order 1 schemata Order 2 schemata

0"** *0"* **0" ***0 00"* 0"0" 0"*0 *00" *0"0 **00
1 *3* 313" **1" ***1 01 *3 0'13 0"*1 *01" *0"1 **01

10"* 1'0" 1"'0 *10" *1'0 **10
11"* 1"1" 1"'1 *11" *1"1 **11

These counting arguments naturally lead to questions
about the relationship between population size and the
number of hyperplanes that are sampled by a genetic algo-
rithm. One can take a very simple view of this question and
ask how many schemata of order 1 are sampled and how
well are they represented in a population of size N. These
numbers are based on the assumption that we are inter-
ested in hyperplane representations associated with the

76

initial random population, since selection changes the
distributions over time. In a population of size N there
should be N/2 samples of each of the 2L order-1 hyper-
plane partitions. Therefore 50% of the population falls
in any particular order-1 partition. Each order-2 partition
is sampled by 25% of the population. In general then,
each hyperplane of order i is sampled by (1/2) / of the
population.

5.1. The N 3 argument

These counting arguments set the stage for the claim that a
genetic algorithm processes on the order of N 3 hyperplanes
when the population size is N. The derivation used here is
based on work found in the appendix of Fitzpatrick and
Grefenstette (1988).

Let 0 be the highest order of hyperplane which is
represented in a population of size N by at least ~b copies;
0 is given by log(N/~b). We wish to have at least ~b samples
of a hyperplane before claiming that we are statistically
sampling that hyperplane.

Recall that the number of different hyperplane partitions
of order 0 is given by 2~ which is just the number of dif-
ferent ways to pick 0 different positions and to assign all
possible binary values to each subset of the 0 positions.
Thus, we now need to show

2 ~ >_N 3 which implies 20(0) _>(2~ 3

since 0 = log(N/~b) and N = 2~ Fitzpatrick and Grefen-
stette now make the following arguments. Assume L > 64
and 26 <_ N _< 220. Pick ~b = 8, which implies 3 < 0 < 17.
By inspection, the number of schemata processed is greater
than N 3.

This argument does not hold in general for any popu-
lation of size N. Given a string of length L, the number
of hyperplanes in the space is finite. However, the popu-
lation size can be chosen arbitrarily. The total number of
schemata associated with a string of length L is 3 L. Thus
if we pick a population size where N = 3 L then at most N
hyperplanes can be processed (Michael Vose, personal
communication). Therefore, N must be chosen with
respect to L to make the N 3 argument reasonable. At the
same time, the range of values 26 _< N < 220 does represent
a wide range of practical population sizes.

Still, the argument that N 3 hyperplanes are usefully pro-
cessed assumes that all of these hyperplanes are processed
with some degree of independence. Notice that the current
derivation counts only those schemata that are exactly of
order 0. The sum of all schemata from order 1 to order 0
that should be well represented in a random initial popu-
lation is given by: o 2x(L) By only counting schemata ~ x = l ~x*"
that are exactly of order 0 we might hope to avoid
arguments about interactions with lower-order schemata.

Whitley

However, all the N 3 argument really shows is that there
may be as many as N 3 hyperplanes that are well repre-
sented given an appropriate population size. But a simple
static count of the number of schemata available for pro-
cessing fails to consider the dynamic behaviour of the
genetic algorithm.

As discussed later in this tutorial, dynamic models of
the genetic algorithm now exist (Vose and Liepins, 1991;
Whitley et al., 1992). There has not yet, however, been
any real attempt to use these models to look at complex
interactions between large numbers of hyperplane com-
petitions. It is obvious in some vacuous sense that knowing
the distribution of the initial population as well as the
fitnesses of these strings (and the strings that are subse-
quently generated by the genetic algorithm) is sufficient
information for modelling the dynamic behaviour of the
genetic algorithm (Vose, 1993). This suggests that we only
need information about those strings sampled by the
genetic algorithm. However, this micro-level view of the
genetic algorithm does not seem to explain its macro-level
processing power.

5.2. The case for non-binary alphabets

There are two basic arguments against using higher-
cardinality alphabets. First, there will be fewer explicit
hyperplane partitions. Second, the alphabetic character
(and the corresponding hyperplane partitions) associated
with a higher-cardinality alphabet will not be as well repre-
sented in a finite population. This either forces the use of
larger population sizes or the effectiveness of statistical
sampling is diminished.

The arguments for using binary alphabets assume that
the schemata representing hyperplanes must be explicitly
and directly manipulated by recombination. Antonisse
(1989) has argued that this need not be the case and
that higher-order alphabets offer as much richness in
terms of hyperplane samples as lower-order alphabets. For
example, using an alphabet of the four characters A, B, C,
D one can define all the same hyperplane partitions in a bin-
ary alphabet by defining partitions such as (A and B), (C
and D), etc. In general, Antonisse argues that one can
look at the all subsets of the power set of schemata as
also defining hyperplanes. Viewed in this way, higher-
cardinality alphabets yield more hyperplane partitions
than binary alphabets. Antonisse's arguments fail to show
however, that the hyperplanes that correspond to the sub-
sets defined in this scheme actually provide new indepen-
dent sources of information which can be processed in a
meaningful way by a genetic algorithm. This does not dis-
prove Antonisse's claims, but does suggest that there are
unresolved issues associated with this hypothesis.

There are other arguments for non-binary encodings.
Davis (1991) argues that the disadvantages of non-binary
encodings can be offset by the larger range of operators

A genetic algorithm tutorial 77

that can be applied to problems, and that more problem-
dependent aspects of the coding can be exploited. Schaffer
and Eshelman (1992) as well as Wright (1991) present
interesting arguments for real-valued encodings. Goldberg
(1991) suggests that virtual minimal alphabets that
facilitate hyperplane sampling can emerge from higher-
cardinality alphabets.

6. Criticisms of the schema theorem

There are some obvious limitations of the schema theorem
which restrict its usefulness. First, it is an inequality. By
ignoring string gains and undercounting string losses, a
great deal of information is lost. The inexactness of the
inequality is such that if one were to try to use the schema
theorem to predict the representation of a particular hyper-
plane over multiple generations, the resulting predictions
would in many cases be useless or misleading (e.g. Grefen-
stette, 1993; Vose, personal communication, 1993). Second,
the observed fitness of a hyperplane H at time t can change
dramatically as the population concentrates its new samples
in more specialized subpartitions of hyperspace. Thus,
looking at the average fitness of all the strings in a particu-
lar hyperplane (or using a random sample to estimate this
fitness) is only relevant to the first generation or two
(Grefenstette and Baker, 1989). After this, the sampling
of strings is biased and the inexactness of the schema
theorem makes it impossible to predict computational
behaviour.

In general, the schema theorem provides a lower bound
that holds for only one generation into the future. There-
fore, one cannot predict the representation of a hyperplane
H over multiple generations without considering what is
simultaneously happening to the other hyperplanes being
processed by the genetic algorithm.

These criticisms imply that the views of hyperplane
sampling presented in Section 3 of this tutorial may be
good rhetorical tools for explaining hyperplane sampling,
but they fail to capture the full complexity of the genetic
algorithm. This is partly because the discussion in Section
3 focuses on the impact of selection without considering
the disruptive and generative effects of crossover. The
schema theorem does not provide an exact picture of the
genetic algorithm's behaviour and cannot predict how a
specific hyperplane is processed over time. In the next
section, an introduction is given to an exact version of the
schema theorem.

7. An executable model of the genetic algorithm

Consider the complete version of the schema theorem
before dropping the gains term and simplifying the losses

calculation:

V(z t)
P(Z, t + 1) = P(Z, t) a ' - - ' (1 - {Pc losses})

" f

+ {po gains}.

In the current formulation, Z will refer to a string.
Assume we apply this equation to each string in the search
space. The result is an exact model of the computational
behaviour of a genetic algorithm. Since modelling strings
models the highest-order schemata, the model implicitly
includes all lower-order schemata. Also, the fitnesses of
strings are constants in the canonical genetic algorithm
using fitness proportional reproduction and one need not
worry about changes in the observed fitness of a hyperplane
as represented by the current population. Given a specifi-
cation of Z, one can exactly calculate losses and gains.
Losses occur when a string crosses with another string
and the resulting offspring fails to preserve the original
string. Gains occur when two different strings cross and
independently create a new copy of some string. For
example, if Z = 000 then recombining 100 and 001 will
always produce a new copy of 000. Assuming 1-point cross-
over is used as an operator, the probability of 'losses' and
'gains' for the string Z = 000 are calculated as follows:

losses = P l o J ~ P(l l 1, t) + P l o a ~ P(IO1, t)

gains = PIO~ P(OOl,t)f(f O) P(lO0 , t)

+ Pzlf(O- lO)f P(OIO, t) ~ P (l O 0 , t)

+ P I 2 ~ P (O O I , t) ~ P (l l O , t)
J J

+ loo ,

, t).

The use of Pi0 in the preceding equations represents
the probability of crossover in any position on the corre-
sponding string or string pair. Since Z is a string, it follows
that P~0 = 1.0 and crossover in the relevant cases will
always produce either a loss or a gain (depending on the
expression in which the term appears). The probability
that 1-point crossover will fall between the first and second
bit will be denoted by P11. In this case, crossover must fall
in exactly this position with respect to the corresponding
strings to result in a loss or a gain. Likewise, PI2 will

78 Whitley

denote the probability that 1-point crossover will fall
between the second and third bit and the use of PI2 in the
computation implies that crossover must fall in this
position for a particular string or string pair to effect the
calculation of losses or gains. In the above illustration,
PI1 = PI2 = 0.5.

The equations can be generalized to cover the remaining
7 strings in the space. This translation is accomplished using
bitwise addition modulo 2 (i.e. a bitwise exclusive-or
denoted by (9. See Fig. 4 and Section 6.4). The function
(Si | Z) is applied to each string, Si, contained in the
equation presented in this section to produce the appropri-
ate corresponding strings for generating an expression for
computing all terms of the form P(Z, t + 1).

7.1. A generalized form based on equation generators

The 3-bit equations are similar to the 2-bit equations devel-
oped by Goldberg (1987). The development of a general
form for these equations is illustrated by generating the
loss and gain terms in a systematic fashion (Whitley et al.,
1992). Because the number of terms in the equations is
greater than the number of strings in the search space, it
is only practical to develop equations for encodings of
approximately 15 bits. The equations need only be defined
once for one string in the space; the standard form of the
equation is always defined for the string composed of all
zero bits. Let S represent the set of binary strings of length
L, indexed by i. In general, the string composed of all zero
bits is denoted S O .

7.2. Generating string losses for 1-point crossover

Consider two strings 00000000000 and 00010000100. Using
1-point crossover, if the crossover occurs before the first
1 bit or after the last 1 bit, no disruption will occur. Any
crossover between the 1 bits, however, will produce disrup-
tion: neither parent will survive crossover. Also note that
recombining 00000000000 with any string of the form
0001# # # #100 will produce the same pattern of disrup-
tion. We will refer to this string as a generator: it is like a
schema, but # is used instead of * to distinguish better
between a generator and the corresponding hyperplane.
Bridges and Goldberg (1987) formalize the notion of a
generator as follows. Consider strings B and B ' where the
first x bits are equal, the middle (6 + 1)b i t s have the
pattern b # # . . . #b for B and 6 # # . . . #b for B'. Given
that the strings are of length L, the last (L - 6 - x - 1)
bits are equivalent. The 6 bits are referred to as sentry bits
and they are used to define the probability of disruption.
In standard form, B = So and the sentry bits must be 1.
The following directed acyclic graph illustrates all genera-
tors for 'string losses' for the standard form of a 5-bit
equation for So:

1 # # # 1
/ \

/ \
01##1 1##10

/ \ / \
/ \ / \

001#1 01#10 1#100
/ \ / \ / \

/ \ / \ / \
00011 00110 01100 11000

The graph structure allows one to visualize the set of all
generators for string losses. In general, the root of this
graph is defined by a string with a sentry bit in the first
and last bit positions, and the generator token # in all other
intermediate positions. A move down and to the left in the
graph causes the leftmost sentry bit to be shifted right; a
move down and to the right causes the rightmost sentry
bit to be shifted left. All bits outside the sentry positions
are 0 bits. Summing over the graph, one can see that there
are ~L--11j.2L-j-1 or (2 L - L - 1) strings generated as
potential sources of string losses.

For each string Si produced by one of the 'middle' gener-
ators in the above graph structure, a term of the following
form is added to the losses equations:

6(Si) f(S=i) P(Si, t)
L - l f

where 6(Si) is a function that counts the number of cross-
over points between sentry bits in string Si.

7.3. Generating string gains for I-point crossover

Bridges and Goldberg (1987) note that string gains for a
string B are produced from two strings Q and R which
have the following relationship to B"

Region ~ beginning middle end
Length ~ a r w

Q characteristics # # . . . # 6 = =
R characteristics = = 6 # . . . #

The = symbol denotes regions where the bits in Q and R
match those in B; again B = So for the standard form of the
equations. Sentry bits are located such that 1-point cross-
over between sentry bits produces a new copy of B, while
crossover of Q and R outside the sentry bits will not pro-
duce a new copy of B.

Bridges and Goldberg define a beginning function A [B, a]
and ending function f~[B, co], assuming L - w > a - 1,
where for the standard form of the equations:

AlSo, c~] = # # . . . ##1~_1%. . . 0L-1
and

~'~[S0, co] = 0 0 . . . OL_w_ 11L_~o # # . . . # #.

These generators can again be presented as a directed
acyclic graph structure composed of paired templates

A genetic algorithm tutorial 79

which will be referred to as the upper A-generator and
lower f~-generator. The following are the generators in a
5-bit problem:

10000
00001

/ \
/ \

#1000 10000
00001 0001#

/ \ / \
/ \ / \

##100 #1000 10000
00001 001##

/ \ / \
t \ / \

0001#
/ \

/ \
1 0 ##100 #1000 10000

00001 0001# 001## 0 1 # # #

In this case, the root of the directed acyclic graph is
defined by starting with the most specific generator
pair. The A-generator of the root has a 1 bit as the sentry
bit in the first position, and all other bits are 0. The f~-
generator of the root has a 1 bit as the sentry bit in the
last position, and all other bits are 0. A move down and
left in the graph is produced by shifting the left sentry bit
of the current upper A-generator to the right. A move
down and right is produced by shifting the right sentry
bit of the current lower f~-generator to the left. Each
vacant bit position outside of the sentry bits which results
from a shift operation is filled using the # symbol.

For any level k of the directed graph there are k genera-
tors and the number of string pairs generated at that level is
2 k-1 for each pair of generators (the root is level 1). There-
fore, the total number of string pairs that must be included
in the equations to calculate string gains for So of length L

v-~L-l t. 2k-1
i s Z . ~ k = l n.

Let S~+x and S~+y be two strings produced by a genera-
tor pair, such that S~+x was produced by the A-generator
and has a sentry bit at location a - 1 and S~+y was pro-
duced by the f~-generator with a sentry bit at L - w. (The
x and y terms are correction factors added to a and w in
order to index uniquely a string in S.) Let the critical cross-
over region associated with S~+x and S~+y be computed by
the function p(S~+x, S~+y) = L - w - (a - 1). For each
string pair S~+x and S~+y a term of the following form is
added to the gains equations:

p(Sc~+x , S~+y) f (S~_+ x) P(S~+x, t) f(S~-+y) P(S~+y, t)
L - 1 f f

where p(S~+x,S~+y) counts the number of crossover
points that fall in the critical region defined by the sentry
bits located at a - 1 and L - w.

The generators are used as part of a two-stage compu-
tation where the generators are first used to create an exact
equation in standard form. A simple transformation func-
tion maps the equations to all other strings in the space.

7.4. The Vose and Liepins models

The executable equations developed by Whitley (1993a)
represent a special case of the model of a simple genetic
algorithm introduced by Vose and Liepins (1991). In the
Vose and Liepins model, the vector s t E IR represents the
tth generation of the genetic algorithm and the ith com-
ponent of s t is the probability that the string i is selected
for the gene pool. Using i to refer to a string in s can some-
times be confusing. The symbol S has already been used to
denote the set of binary strings, also indexed by i. This
notation will be used where appropriate to avoid con-
fusion. Note that s t corresponds to the expected distri-
bution of strings in the intermediate population in the
generational reproduction process (after selection has
occurred, but before recombination).

In the Vose and Liepins formulation,

s I ~ P(Si, t)f(Si)

where ~ is the equivalence relation such that x ~ y if and
only if 37 > 0Ix = 7Y. In this formulation, the term I / f ,
which would represent the average population fitness nor-
mally associated with fitness proportional reproduction,
can be absorbed by the 7 term.

Let V = 2 L, the number of strings in the search space.
The vectorp t E ~ v is defined such that the kth component
of the vector is equal to the proportional representation of
string k at generation t before selection occurs. The k com-
ponent o f p t would be the same as P(Sk, t) in the notation
more commonly associated with the schema theorem.
Finally, let ri,j(k) be the probability that string k results
from the recombination of strings i and j. Now, using g
to denote expectation,

gp~+l:}-~sls~ri,j(k).
i , j

To generalize this model further, the function ri,j(k) is
used to construct a mixing matrix M where the i , j th entry
mi, j : ri, j(O). Note that this matrix gives the probabilities
that crossing strings i an d j will produce the string So. Tech-
nically, the definition of ri,j(k) assumes that exactly one
offspring is produced. But note that M has two entries for
each string pair i,j where i :fij, which is equivalent to
producing two offspring. For current purposes, assume no
mutation is used and 1-point crossover is used as the
recombination operator. The matrix M is symmetric
and is zero everywhere on the diagonal except for entry
m0,0 which is 1.0. Note that M is expressed entirely in
terms of string gain information. Therefore, the first row
and column of the matrix has entries inversely related to
the string losses probabilities, each entry is given by
1 - (0 . 5 ~ (S i) / L - 1), where each string in the set S is
crossed with So. For completeness, ~5(Si) for strings
not produced by the string loss generators is 0 and, thus,
the probability of obtaining So during reproduction is

80 Whitley

1.0. The remainder of the matrix entries are given by
0.5[p(So+x, S~+y)/(L - 1)]. For each pair of strings pro-
duced by the string gains generators determine their index
and enter the value returned by the function into the corre-
sponding location in M. For completeness, p(Sj, Sk)= 0
for all pairs of strings not generated by the string gains
generators (i.e. mj-,k = 0).

Once defined M does not change since it is not affected by
variations in fitness or proportional representation in the
population. Thus, given the assumption of no mutations,
that s is updated each generation to correct for changes in
the population average, and that 1-point crossover is
used, then the standard form of the executable equations
corresponds to the following portion of the Liepins and
Vose model (T denotes transpose):

sTMs.

An alternative form of M denoted M ~ can be defined by
having only a single entry for each string pair i,j where
i e j. This is done by doubling the value of the entries in
the lower triangle and setting the entries in the upper
triangle of the matrix to 0.0. Assuming each component
ofs is given by s; = P(Si, t) (f (S i) / f) , this has the rhetori-
cal advantage that

sTM '(:, 1)So = P(So, t) (f (S o) / f)(1 - losses).

where M ~(:, 1) is the first column of M ~ and So is the first
component of s. Not including the above subcomputation,
the remainder of the computation of sTM~s calculates
string gains.

Vose and Liepins formalize the notion that bitwise
exclusive-or can be used to remap all the strings in the
search space, in this case represented by the vector s.
They show that if recombination is a combination of cross-
over and mutation then

A transform function to redefine equations

000 @010=~010

001 |

010 |

011 0010=~001

100|

101GOIO=~lll

110|

111|

Fig. 5. The operator | is bit-wise exclusive-or. Let ri,j(k) be
the probability that k results from the recombination of
strings i and j. I f recombination is a combination of crossover
and mutation then ri,j(k @ 0) =riek, j|). The strings are
reordered with respect to 010

algorithm goes from generation t to t + 1 (after selection,
but before recombination). To complete the cycle and
reach a point at which the Vose and Liepins models can
be executed in an iterative fashion, fitness information is
now explicitly introduced to transform the population at
the beginning of iteration t + 1 to the next intermediate
population. A fitness matrix F is defined such that fitness
information is stored along the diagonal; the i, ith element
is given byf(i) wheref is the evaluation function.

The transformation from the vector pt+l to the next
intermediate population represented by s t+l is given as
follows:

st+ I ~ F ~ (s l)

Vose and Liepins give equations for calculating the
mixing matrix M which not only includes probabilities
for 1-point crossover, but also mutation. More complex
extensions of the Vose and Liepins model include finite
population models using Markov chains (Nix and Vose,
1992). Vose (1993) surveys the current state of this research.

ri, j (k | q) = r iek , j ,k (q)
and specifically

r i , A k) = r , , A k �9 0) =

This allows one to reorder the elements in s with respect
to any particular point in the space. This reordering is
equivalent to remapping the variables in the executable
equations (see Fig. 5). A permutation function, a, is
defined as follows:

~/So , . . . ,sv_l) T = (Silo, . . . ,sj| T

where the vectors are treated as columns and V = 2 L, the
size of the search space. A general operator dg can be
defined over s which remaps sTMs to cover all strings in
the space:

= +

Recall that s denoted the representation of strings in the
population during the intermediate phase as the genetic

8. Other models of evolutionary computation

There are several population-based algorithms that are
either spin-offs of Holland's genetic algorithm, or which
were developed independently. Evolution strategies and
Evolutionary programming are two computational para-
digms that use a population-based search.

Evolutionary programming is based on the early book by
Fogel et al. (1966) entitled Artificial Intelligence Through
Simulated Evolution. The individuals, or 'organisms' in
this study were finite-state machines. Organisms that best
solved some target function obtained the opportunity to
reproduce, and parents were mutated to create offspring.
There has been renewed interest in evolutionary program-
ming as reflected by the 1992 First Annual Conference on
Evolutionary Programming (Fogel and Atmar, 1992).

Evolution strategies (ES) are based on the work of
Rechenberg (1973) and Schwefel (1975; 1981) and are
discussed in a survey by B/ick et al. (1991). Two examples

A genetic algorithm tutorial 81

of ES are the (# + A)-ES and (#, A)-ES. In (# + A)-ES #
parents produce A offspring; the population is then
reduced again to # parents by selecting the best solutions
from among both the parents and offspring. Thus, parents
survive until they are replaced by better solutions. The
(/z, A)-ES is closer to the generational model used in canoni-
cal genetic algorithms; offspring replace parents and then
undergo selection. Recombination operators for evolution-
ary strategies also tend to differ from Holland-type cross-
over, allowing operations such as averaging parameters,
for example, to create an offspring.

8.1. Genitor

Genitor (Whitley, 1989; Whitley and Kauth, 1988) was the
first of what Syswerda (1989) has termed 'steady state'
genetic algorithms. The name 'steady state' is somewhat
misleading, since these algorithms show more variance
than canonical algorithms in terms of hyperplane sampling
behaviour (Syswerda, 1991) and are therefore more suscep-
tible to sampling error and genetic drift. The advantage is
that the best points found in the search are maintained in
the population. This results in a more aggressive search
that in practice is often quite effective.

There are three differences between Genitor-style
algorithms and canonical genetic algorithms. First, repro-
duction produces one offspring at a time. Two parents are
selected for reproduction and produce an offspring that is
immediately placed back into the population. The second
major difference is in how that offspring is placed back in
the population. Offspring do not replace parents, but
rather the least fit (or some relatively less fit) member of
the population. In Genitor, the worst individual in the
population is replaced. The third difference between
Genitor and most other forms of genetic algorithms is
that fitness is assigned according to rank rather than by
fitness proportionate reproduction. Ranking helps to
maintain a more constant selective pressure over the
course of search.

Goldberg and Deb (1991) have shown replacing the
worst member of the population generates much higher
selective pressure than random replacement. But higher
selective pressure is not the only difference between
Genitor and the canonical genetic algorithm. To borrow
terminology used by the ES community (as suggested by
Larry Eshelman), Genitor is a (# + A) strategy while the
canonical genetic algorithm is a (#, A) strategy. Thus, the
accumulation of improved strings in the population is
monotonic.

8.2. CHC

Another genetic algorithm that monotonicall~r collects the
best strings found so far is the CHC algorithm developed
by Eshelman (1991). CHC stands for cross-generational

elitist selection, heterogeneous recombination (by incest
prevention) and cataclysmic mutation, which is used to
restart the search when the population starts to converge.

CHC explicitly borrows from the (# + A) strategy of ES.
After recombination, the N best unique individuals are
drawn from the parent population and offspring popu-
lation to create the next generation. Duplicates are
removed from the population. As Goldberg has shown
with respect to Genitor, this kind of 'survival of the
fittest' replacement method already imposes considerable
selective pressure, so that there is no real need to use any
other selection mechanisms. Thus CHC uses random selec-
tion, except restrictions are imposed on which strings are
allowed to mate. Strings with binary encodings must be a
certain Hamming distance away from one another before
they are allowed to reproduce. This form of 'incest pre-
vention' is designed to promote diversity. Eshelman also
uses a form of uniform crossover called HUX where
exactly half of the differing bits are swapped during cross-
over. CHC is typically run using small population sizes
(e.g. 50); thus using uniform crossover in this context is
consistent with Spears and DeJong's (1991) conjecture
that uniform crossover can provide better sampling cover-
age in the context of small populations.

The rationale behind CHC is to have a very aggressive
search (by using monotonic selection through survival of
the best strings) and to offset the aggressiveness of the
search by using highly disruptive operators such as
uniform crossover. With such small population sizes,
however, the population converges to the point that it
begins more or less to reproduce many of the same
strings. At this point the CHC algorithm uses cataclysmic
mutation. All strings undergo heavy mutation, except that
the best string is preserved intact. After mutation, genetic
search is restarted using only crossover.

8.3. Hybrid algorithms

L. 'Dave' Davis states in the Handbook of Genetic Algo-
rithms, 'Traditional genetic algorithms, although robust,
are generally not the most successful optimization algo-
rithm on any particular domain' (1991, p. 59). Davis
argues that hybridizing genetic algorithms with the most
successful optimization methods for particular problems
gives one the best of both worlds: correctly implemented,
these algorithms should do no worse than the (usually
more traditional) method with which the hybridizing is
done. Of course, it also introduces the additional compu-
tational overhead of a population-based search.

Davis often uses real-valued encodings instead of
binary encodings, and employs 'recombination operators'
that may be domain specific. Other researchers, such as
Michalewicz (1992) also use non-binary encodings and
specialized operations in combination with a genetic-based
model of search. Mfihlenbein takes a similar opportunistic

82

view of hybridization. In a description of a parallel genetic
algorithm Mfihlenbein (1991, p. 320) states, after the initial
population is created, 'Each individual does local hill-
climbing'. Furthermore, after each offspring is created,
'The offspring does local hill-climbing'.

Experimental researchers and theoreticians are particu-
larly divided on the issue of hybridization. By adding
hill-climbing or hybridizing with some other optimization
methods, learning is being added to the evolution process.
Coding the learned information back onto the chromosome
means that the search utilizes a form of Lamarckian evol-
ution. The chromosomes improved by local hill-climbing
or other methods are placed in the genetic population and
allowed to compete for reproductive opportunities.

The main criticism is that ~f we wish to preserve the
schema processing capabilities of the genetic algorithm,
then Lamarckian learning should not be used. Changing
information in the offspring inherited from the parents
results in a loss of inherited schemata. This alters the sta-
tistical information about hyperplane partitions that is
implicitly contained in the population. Therefore using
local optimization to improve each offspring undermines
the genetic algorithm's ability to search via hyperplane
sampling.

Despite the theoretical objections, hybrid genetic algo-
rithms typically do well at optimization tasks. There may
be several reasons for this. First, the hybrid genetic algo-
rithm is hill-climbing from multiple points in the search
space. Unless the objective function is severely multimodal
it may be likely that some strings (offspring) will be in the
basin of attraction of the global solution, in which case
hill-climbing is a fast and effective form of search. Second,
a hybrid strategy impairs hyperplane sampling, but does
not disrupt it entirely. For example, using local optimiz-
ation to improve the initial population of strings only
biases the initial hyperplane samples, but does not interfere
with subsequent hyperplane sampling. Third, in general,
hill-climbing may find a small number of significant
improvements, but may not dramatically change the off-
spring. In this case, the effects on schemata and hyperplane
sampling may be minimal.

9. Hill-climbers or hyperplane samplers?

In a recent paper entitled, 'How genetic algorithms really
work: I. Mutation and Hill-climbing', Mtihlenbein shows
that an ES algorithm using only mutation works quite
well on a relatively simple test suite. Mtihlenbein states
that for many problems 'many nonstandard genetic
algorithms work well and the standard genetic algorithm
performs poorly' (1992, p. 24).

This raises a very interesting issue. When is a genetic algo-
rithm a hyperplane sampler and when is it a hill-climber?
This is a non-trivial question since it is the hyperplane

Whitley

sampling abilities of genetic algorithms that are usually
touted as the source of global sampling. On the other
hand, some researchers argue that crossover is unnecessary
and that mutation is sufficient for robust and effective
search. All the theory concerning hyperplane sampling has
been developed with respect to the canonical genetic
algorithm. Alternative forms of genetic algorithms often
use mechanisms such as monotonic selection of the best
strings which could easily lead to increased hill-climbing.
Vose's work (personal communication, June 1993) with
exact models of the canonical genetic algorithm indicates
that even low levels of mutation can have a significant
impact on convergence and change the number of fixed
points in the space. (For the functions Vose has examined
so far mutation always reduces the number of fixed points.)

In practice there may be clues as to when hill-climbing is
a dominant factor in a search. Hyperplane sampling
requires larger populations. Small populations are much
more likely to rely on hill-climbing. A population of 20
individuals just does not provide very much information
about hyperplane partitions, except perhaps very low-
order hyperplanes (there are only 5 samples of each
order-2 hyperplane in a population of 20). Second, very
high selective pressure suggests hill-climbing may domi-
nate the search. If the 5 best individuals in a population
of 100 strings reproduce 95% of the time, then the effective
population size may not be large enough to support hyper-
plane sampling.

10. Parallel genetic algorithms

Part of the biological metaphor used to motivate genetic
search is that it is inherently parallel. In natural popu-
lations, thousands or even millions of individuals exist in
parallel. This suggests a degree of parallelism that is
directly proportional to the population size used in genetic
search. In this paper, three different ways of exploiting
parallelism in genetic algorithms will be reviewed. First, a
parallel genetic algorithm similar to the canonical genetic
algorithm is reviewed; next an island model using distinct
subpopulations is presented. Finally, a fine-grain massively
parallel implementation that assumes one individual resides
at each processor is explored. It can be shown that the fine-
grain models are a subclass of cellular automata (Whitley,
1993b). Therefore, while these algorithms have been
referred to by a number of somewhat awkward names
(e.g. fine-grain genetic algorithms, or massively parallel
genetic algorithms) the name cellular genetic algorithm is
used in this tutorial.

In each of the following models, strings are mapped to
processors in a particular way. Usually this is done in a
way that maximizes parallelism while avoiding unnecessary
processor communication. However, any of these models
could be implemented in a massively parallel fashion.

A genetic algorithm tutorial 83

What tends to be different is the role of local versus global
communication.

10.1. Global populations with parallelism

The most direct way to implement a parallel genetic algo-
rithm is to implement something close to a canonical
genetic algorithm. The only change is that selection is
done by tournament selection (Goldberg, 1990; Goldberg
and Deb, 1991).

Tournament selection implements a noisy form of rank-
ing. Recall that the implementation of one generation in a
canonical genetic algorithm can be seen as a two-step
process. First, selection is used to create an intermediate
population of duplicate strings selected according to
fitness. Second, crossover and mutation are applied to
produce the next generation. Instead of using fitness-
proportionate reproduction or directly using ranking,
tournaments are held to fill the intermediate population.
Assume two strings are selected out of the current popu-
lation after evaluation. The better of the two strings is
then placed in the intermediate population. This process
of randomly selecting two strings from the current popu-
lation and placing the best in the intermediate population
is repeated until the intermediate population is full.
Goldberg and Deb (1991) show analytically that this form
of tournament selection is the same in expectation as
ranking using a linear 2.0 bias. If a winner is chosen
probabilistically from a tournament of 2, then the ranking
is linear and the bias is proportional to the probability
with which the best string is chosen.

With the addition of tournament selection, a parallel form
of the canonical genetic algorithm can now be implemented
in a fairly direct fashion. Assume the processors are
numbered 1 to N / 2 and the population size, N, is even; 2
strings reside at each processor. Each processor holds two
independent tournaments by randomly sampling strings in
the population and each processor then keeps the winners
of the two tournaments. The new strings that now reside in
the processors represent the intermediate generation. Cross-
over and evaluation can now occur in parallel.

10.2. Island models

One motivation for using island models is to exploit a more
coarse-grain parallel model. Assume we wish to use 16
processors and have a population of 1600 strings; or we
might wish to use 64 processors and 6400 strings. One way
to do this is to break the total population down into sub-
populations of 100 strings each. Each one of these sub-
populations could then execute as a normal genetic
algorithm. It could be a canonical genetic algorithm, or
Genitor, or CHC. Occasionally, perhaps every five gener-
ations or so, the subpopulations would swap a few strings.
This migration allows subpopulations to share genetic

C--

Fig. 6. An example of (a) an island model and (b) a cellular genetic
algorithm. The colouring of the cells in the cellular genetic algorithm
represents genetically similar material that forms virtual islands iso-
lated by distance. The arrows in the cellular model indicate that the
grid wraps around to form a torus

material (Whitley and Starkweather, 1990; Gorges-
Schleuter, 1991; Tanese, 1989; Starkweather et al., 1991).

Assume for a moment that one executes 16 separate
genetic algorithms, each using a population of 100 strings
without migration. In this case, 16 independent searches
occur. Each search will be somewhat different since the
initial populations will impose a certain sampling bias;
also, genetic drift will tend to drive these populations in
different directions. Sampling error and genetic drift are
particularly significant factors in small populations and,
as previously noted, are even more pronounced in genetic
algorithms such as Genitor and CHC when compared to
the canonical genetic algorithm.

By introducing migration, the island model is able to
exploit differences in the various subpopulations; this vari-
ation in fact represents a source of genetic diversity. Each
subpopulation is an island, and there is some designated
way in which genetic material is moved from one island
to another. If a large number of strings migrate each gener-
ation, then global mixing occurs and local differences
between islands will be driven out. If migration is too
infrequent, it may not be enough to prevent each small
subpopulation from prematurely converging.

10.3. Cellular genetic algorithms

Assume we have 2500 simple processors laid out on a
50 x 50 2-dimensional grid. Processors communicate only
with their immediate neighbours (e.g. north, south, east
and west: NSEW). Processors on the edge of the grid
wrap around to form a torus. How should one implement
a genetic algorithm on such an architecture?

One can obviously assign one string per processor or cell.
But global random mating would now seem inappropriate
given the communication restrictions. Instead, it is much
more practical to have each string (i.e. processor) seek a
mate close to home. Each processor can pick the best string
in its local neighbourhood to mate with, or alternatively,
some form of local probabilistic selection could be used.

84 Whit ley

In either case, only one offspring is produced, and becomes
the new resident at that processor. Several people have pro-
posed this type of computational model (Manderick and
Spiessens, 1989; Collins and Jefferson, 1991; Hillis, 1990;
Davidor, 1991). The common theme in cellular genetic
algorithms is that selection and mating are typically
restricted to a local neighbourhood.

There are no explicit islands in the model, but there is the
potential for similar effects. Assuming that mating is
restricted to adjacent processors, if one neighbourhood of
strings is 20 or 25 moves away from another neighbour-
hood of strings, these neighbourhoods are just as isolated
as two subpopulations on separate islands. This kind of
separation is referred to as isolated by distance (Wright,
1932; Mfihlenbein, 1991; Gorges-Schleuter, 1991). Of
course, neighbours that are only 4 or 5 moves away have
a greater potential for interaction.

After the first random population is evaluated, the
pattern of strings over the set of processors should also be
random. After a few generations, however, there emerge
many small local pockets of similar strings with similar
fitness values. Local mating and selection creates local
evolutionary trends, again due to sampling effects in the
initial population and genetic drift. After several genera-
tions, competition between local groups will result in fewer
and larger neighbourhoods.

11. Conclusions

One thing that is striking about genetic algorithms and the
various parallel models is the richness of this form of compu-
tation. What may seem like simple changes in the algorithm
often result in surprising kinds of emergent behaviour.
Recent theoretical advances have also improved our under-
standing of genetic algorithms and have opened the door
to using more advanced analytical methods.

Many other timely issues have not been covered in this
tutorial. In particular, the issue of deception has not been
discussed. The notion of deception, in simplistic terms,
deals with conflicting hyperplane competitions that have
the potential either to mislead the genetic algorithm, or to
simply confound the search because the conflicting hyper-
plane competitions interfere with the search process. For
an introduction to the notion of deception see Goldberg
(1987) and Whitley (1991); for a criticism of the work on
deception see Grefenstette (1993).

Acknowledgements

This tutorial represents information transmitted not only
through scholarly works, but also through conference
presentations, personal discussions, debates and even
disagreements. My thanks to the people in the genetic

algorithm community who have educated me over the
years. Any errors or errant interpretations of other works
are my own. Work presented in the tutorial was supported
by NSF grant IRI-9010546 and the Colorado Advanced
Software Institute.

References

Ackley, D. (1987). A Connectionist Machine for Genetic Hill-
climbing. Kluwer, Dordrecht.

Antonisse, H. J. (1989). A new interpretation of the schema
notation that overturns the binary encoding constraint. In
Proceedings of the 3rd International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo, CA.

B~ick, T., Hoffmeister, F. and Schwefel, H. P. (1991). A survey of
evolution strategies. In Proceedings of the 4th International
Conference on Genetic Algorithms, Morgan Kaufmann, San
Mateo, CA.

Baker, J. (1985). Adaptive selection methods for genetic algo-
rithms. In Proceedings of the International Conference on
Genetic Algorithms and Their Applications, ed. J. Grefen-
stette. Lawrence Erlbaum, Hillsdale, NJ.

Baker, J. (1987). Reducing bias and inefficiency in the selection
algorithm. In Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference, ed. J.
Grefenstette. Lawrence Erlbaum.

Booker, L. (1987). Improving search in genetic algorithms. In
Genetic Algorithms and Simulating Annealing, ed, L. Davis,
pp. 61-73. Morgan Kaufmann, San Mateo, CA.

Bridges, C. and Goldberg, D. (1987). An analysis of reproduction
and crossover in a binary-coded genetic algorithm. In
Proceedings of the Second International Conference on
Genetic Algorithms and Their Applications, ed. J. Grefen-
stette. Lawrence Erlbaum.

Collins, R. and Jefferson, D. (1991). Selection in massively parallel
genetic algorithms. In Proceedings of the 4th International
Conference on Genetic Algorithms, pp. 249-256. Morgan
Kaufmann, San Mateo, CA.

Davidor, Y. (1991). A naturally occurring niche and species
phenomenon: the model and first results, In Proceedings of
the Fourth International Conference on Genetic Algorithms,
pp. 257-263. Morgan Kaufmann, San Mateo, CA.

Davis, L. D. (1991). Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, New York.

DeJong, K. (1975). An Analysis of the Behavior of a Class of
Genetic Adaptive Systems. PhD Dissertation, Department
of Computer and Communication Sciences, University of
Michigan, Ann Arbor.

Eshelman, L. (1991). The CHC adaptive search algorithm. In
Foundations of Genetic Algorithros, ed. G. Rawlins, pp.
256-283. Morgan Kaufmann, San Mateo, CA.

Fitzpatrick, J. M. and Grefenstette, J. J. (1988). Genetic algo-
rithms in noisy environments. Machine Learning, 3, 101-120.

Fogel, D. and Atmar, J. W. (eds.) (1992). First Annual Conference
on Evolutionary Programming.

Fogel, L. J., Owens, A. J. and Walsh, M J. (1966). Artificiallntelli-
gence Through Simulated Evolution. John Wiley, New York.

Goldberg, D. (1987). Simple genetic algorithms and the minimal,

A genetic algorithm tutorial 85

deceptive problem. In Genetic Algorithms and Simulated
Annealing, ed. L. Davis. Pitman, London.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA.

Goldberg, D. (1990). A note on Boltzmann tournament selection
for genetic algorithms and population-oriented simulated
annealing. TCGA 90003, Engineering Mechanics, Univer-
sity of Alabama.

Goldberg, D. (1991). The theory of virtual alphabets. In Parallel
Problem Solving from Nature. Springer-Verlag, New York.

Goldberg, D. and Bridges, C. (1990). An analysis of a reordering
operator on a GA-hard problem. Biological Cybernetics, 62,
397-405.

Goldberg, D. and Deb, K. (1991). A comparative analysis of selec-
tion schemes used in genetic algorithms. In Foundations of
Genetic Algorithms, ed. G. Rawlins, pp. 69-93. Morgan
Kaufmann, San Mateo, CA.

Gorges-Schleuter, M. (1991). Explicit parallelism of genetic algo-
rithms through population structures. In Parallel Problem Sol-
ving from Nature, pp. 150-159. Springer-Verlag, New York.

Grefenstette, J. J. (1986). Optimization of control parameters for
genetic algorithms. IEEE Transactions on Systems, Man, and
Cybernetics, 16, 122-128.

Grefenstette, J. J. (1993). Deception considered harmful. In Foun-
dations of Genetic Algorithms 2, ed. D. Whitley, pp. 75 91.
Morgan Kaufmann, San Mateo, CA.

Grefenstette, J. J. and Baker, J. (1989). How genetic algorithms
work: a critical look at implicit parallelism. In Proceedings
of the Third International Conference on Genetic Algorithms.
Morgan Kaufmann, San Mateo, CA.

Hillis, D. (1990). Co-evolving parasites improve simulated evol-
ution as an optimizing procedure. Physica D, 42, 228-234.

Holland, J. (1975). Adaptation In Natural and Artificial Systems.
University of Michigan Press, Ann Arbor.

Liepins, G. and Vose, M. (1990). Representation issues in genetic
algorithms. Journal of Experimental and Theoretical Artificial
Intelligence, 2, 101 115.

Manderick, B. and Spiessens, P. (1989). Fine grained parallel
genetic algorithms. In Proceedings of the Third International
Conference on Genetic Algorithms, pp. 428-433. Morgan
Kaufmann, San Mateo, CA.

Michalewicz, Z. (1992). Genetic Algorithms+Data Structures=
Evolutionary Programs. Springer-Verlag, New York.

Mfihlenbein, H. (1991). Evolution in time and space--the parallel
genetic algorithm. In Foundations of Genetic Algorithms, ed.
G. Rawlins, pp. 316-337. Morgan Kaufmann, San Mateo,
CA.

Mfihlenbein, H. (1992). How genetic algorithms really work: I.
Mutation and hillclimbing. In Parallel Problem Solving
from Nature 2, eds. R. M/inner and B. Manderick. North
Holland, Amsterdam.

Nix, A. and Vose, M. (1992). Modelling genetic algorithms with
Markov chains. Annals of Mathematics and Artificial Intelli-
gence, 5, 79-88.

Rechenberg, I. (1973). Evolutionsstrategie." Optimierung tech-
nischer Systeme naeh Prinzipien der biologischen Evolution.
Frommann-Holzboog, Stuttgart.

Schaffer, J. D. (1987). Some effects of selection procedures on
hyperplane sampling by genetic algorithms. In Genetic Algo-

rithms and Simulated Annealing, ed. L. Davis. Pitman, London.
Schaffer, J. D. and Eshelman, L. (1993). Real-coded genetic algo-

rithms and interval schemata. Foundations of Genetic Algo-
rithms, 2, ed. D. Whitley. Morgan Kaufmann, San Marco, CA.

Schwefel, H. P. (1975). Evolutionsstrategie und numerische
Optimierung. Dissertation, Technische Universit/it Berlin.

Schwefel, H. P. (1981). Numerical Optimization of Computer
Models. John Wiley, New York.

Spears, W. and DeJong, K. (1991). An analysis of multi-point
crossover. In Foundations of Genetic Algorithms, ed. G.
Rawlins. Morgan Kaufmann, San Mateo, CA.

Syswerda, G. (1989). Uniform crossover in genetic algorithms.
Proceedings of the Third International Conference on Genetic
Algorithms, pp. 2 9. Morgan Kaufmann, San Mateo, CA.

Syswerda, G. (1991). A study of reproduction in generational and
steady-state genetic algorithms. In Foundations of Genetic
Algorithms, ed. G. Rawlins, pp. 94 101. Morgan Kauf-
mann, San Mateo, CA.

Starkweather, T., Whitley, D. and Mathias, K. (1991). Optimiz-
ation using distributed genetic algorithms. In Parallel Prob-
lem Solving from Nature. Springer-Verlag, New York.

Tanese, R. (1989). Distributed genetic algorithms. Proceedings of
the Third International Conference on Genetic Algorithms,
pp. 434-439. Morgan Kaufmann, San Mateo, CA.

Vose, M. (1993). Modeling simple genetic algorithms. In Foun-
dations of Genetic Algorithms 2, ed. D. Whitley, pp. 63-73.
Morgan Kaufmann, San Mateo, CA.

Vose, M. and Liepins, G. (1991). Punctuated equilibria in genetic
search. Complex Systems, 5, 31-44.

Whitley, D. (1989). The GENITOR algorithm and selective
pressure. Proceedings of the Third International Conference
on Genetic Algorithms, pp. 116-121. Morgan Kaufmann,
San Marco, CA.

Whitley, D. (1991). Fundamental principles of deception in
genetic search. In Foundations of Genetic Algorithms, ed. G.
Rawlins. Morgan Kaufmann, San Mateo, CA.

Whitley, D. (1993a). An executable model of a simple genetic algo-
rithm. In Foundations of Genetic Algorithms 2, ed. D. Whitley.
Morgan Kaufmann, San Mateo, CA.

Whitley, D. (1993b). Cellular genetic algorithms. In Proceedings of
the Fifth International Conference on Genetic Algorithms.
Morgan Kaufmann, San Mateo, CA.

Whitley, D. and Kauth, J. (1988). GENITOR: a different genetic
algorithm. In Proceedings of the Rocky Mountain Conference
on Artificial Intelligence, Denver, CO, pp. 118-130.

Whitley, D. and Starkweather, T. (1990). Genitor II: a distributed
genetic algorithm. Journal of Experimental and Theoretical
Artificial Intelligence, 2, 189-214.

Whitley, D., Das, R. and Crabb, C. (1992). Tracking primary
hyperplane competitors during genetic search. Annals of
Mathematics and Artificial Intelligence, 6, 367 388.

Winston, P. (1992). Artificial Intelligence, 3rd edn. Addison-
Wesley, Reading, MA.

Wright, A. (1991). Genetic algorithms for real parameter
optimization. In Foundations of Genetic Algorithms, ed. G.
Rawlins. Morgan Kaufmann, San Mateo, CA.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreed-
ing, and selection in evolution. Proceedings of the Sixth Inter-
national Congress on Genetics, pp. 356-366.

