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A genetic algorithm tutorial 
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This tutorial covers the canonical genetic algorithm as well as more experimental forms of 
genetic algorithms, including parallel island models and parallel cellular genetic algorithms. 
The tutorial also illustrates genetic search by hyperplane sampling. The theoretical foun- 
dations of genetic algorithms are reviewed, include the schema theorem as well as recently 
developed exact models of the canonical genetic algorithm. 

Keywords: Genetic algorithms, search, parallel algorithms 

I. Introduction 

Genetic algorithms are a family of  computational models 
inspired by evolution. These algorithms encode a potential 
solution to a specific problem on a simple chromosome-like 
data structure, and apply recombination operators to these 
structures in such a way as to preserve critical information. 
Genetic algorithms are often viewed as function optimizers, 
although the range of  problems to which genetic algorithms 
have been applied is quite broad. 

An implementation of a genetic algorithm begins with 
a population of (typically random) chromosomes. One 
then evaluates these structures and allocates reproductive 
opportunities in such a way that those chromosomes which 
represent a better solution to the target problem are given 
more chances to 'reproduce' than those chromosomes 
which are poorer solutions. The 'goodness' of  a solution 
is typically defined with respect to the current population. 

This particular description of a genetic algorithm is 
intentionally abstract because in some sense, the term 
genetic algorithm has two meanings. In a strict interpre- 
tation, the genetic algorithm refers to a model introduced 
and investigated by John Holland (1975) and his students 
(for example DeJong, 1975). It is still the case that most 
of the existing theory for genetic algorithms applies either 
solely or primarily to the model introduced by Holland, 
as well as variations on what will be referred to in this 
paper as the canonical genetic algorithm. Recent theoretical 
advances in modelling genetic algorithms also apply 
primarily to the canonical genetic algorithm (Vose, 1993). 

In a broader usage of  the term, a genetic algorithm is 
any population-based model that uses selection and 
recombination operators to generate new sample points in 
a search space. Many genetic algorithm models have been 
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introduced by researchers largely working from an experi- 
mental perspective. Many of  these researchers are appli- 
cation oriented and are typically interested in genetic 
algorithms as optimization tools. 

The goal of  this tutorial is to present genetic algorithms 
in such a way that students new to this field can grasp the 
basic concepts behind genetic algorithms as they work 
through the tutorial. It should allow the more sophisti- 
cated reader to absorb this material with relative ease. 
The tutorial also covers topics, such as inversion, which 
have sometimes been misunderstood and misused by 
researchers new to the field. 

The tutorial begins with a very low-level discussion of 
optimization to introduce basic ideas in optimization as 
well as basic concepts that relate to genetic algorithms. 
In Section 2 a canonical genetic algorithm is reviewed. In 
Section 3 the principle of  hyperplane sampling is explored 
and some basic crossover operators are introduced. In 
Section 4 various versions of the schema theorem are 
developed in a step-by-step fashion and other crossover 
operators are discussed. In Section 5 binary alphabets 
and their effects on hyperplane sampling are considered. In 
Section 6 a brief criticism of the schema theorem is con- 
sidered and in Section 7 an exact model of the genetic 
algorithm is developed. The last three sections of the 
tutorial cover alternative forms of  genetic algorithms and 
evolutionary computational models, including specialized 
parallel implementations. 

1.1. Encodings and optimization problems 

Usually there are only two main components of most 
genetic algorithms that are problem dependent: the prob- 
lem encoding and the evaluation function. 
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Consider a parameter optimization problem where we 
must optimize a set of variables either to maximize some 
target such as profit, or to minimize cost or some measure 
of error. We might view such a problem as a black box 
with a series of control dials representing different para- 
meters; the only output of  the black box is a value returned 
by an evaluation function indicating how well a particular 
combination of parameter settings solves the optimization 
problem. The goal is to set the various parameters so 
as to optimize some output. In more traditional terms, 
we wish to minimize (or maximize) some function 
F ( X 1 ,  X2,  . . . , X M ) .  

Most users of genetic algorithms are typically concerned 
with problems that are non-linear. This also often implies 
that it is not possible to treat each parameter as an indepen- 
dent variable which can be solved in isolation from the 
other variables. There are interactions such that the 
combined effects of the parameters must be considered in 
order to maximize or minimize the output of  the black 
box. In the genetic algorithm community, the interaction 
between variables is sometimes referred to as epistasis. 

The first assumption that is typically made is that the 
variables representing parameters can be represented by 
bit strings. This means that the variables are discretized in 
an a priori  fashion, and that the range of the discretization 
corresponds to some power of  2. For  example, with 10 bits 
per parameter, we obtain a range with 1024 discrete values. 
If the parameters are actually continuous then this discret- 
ization is not a particular problem. This assumes, of course, 
that the discretization provides enough resolution to make 
it possible to adjust the output with the desired level of  
precision. It also assumes that the discretization is in 
some sense representative of  the underlying function. 

If  some parameter can only take on an exact finite set of 
values, then the coding issue becomes more difficult. For  
example, what if there are exactly 1200 discrete values 
which can be assigned to some variable Xi.  We need at least 
11 bits to cover this range, but this codes for a total of 2048 
discrete values. The 848 unnecessary bit patterns may result 
in no evaluation, a default worst-possible evaluation, or 
some parameter settings may be represented twice so that 
all binary strings result in a legal set of  parameter values. 
Solving such coding problems is usually considered to be 
part of the design of the evaluation function. 

Aside from the coding issue, the evaluation function is 
usually given as part of  the problem description. On the 
other hand, developing an evaluation function can 
sometimes involve developing a simulation. In other 
cases, the evaluation may be performance based and may 
represent only an approximate or partial evaluation. For  
example, consider a control application where the system 
can be in any one of an exponentially large number of 
possible states. Assume a genetic algorithm is used to opti- 
mize some form of control strategy. In such cases, the state 
space must be sampled in a limited fashion and the resulting 

evaluation of control strategies is approximate and noisy 
(see for instance Fitzpatrick and Grefenstette, 1988). 

The evaluation function must also be relatively fast to 
compute. This is typically true for any optimization 
method, but it may particularly pose an issue for genetic 
algorithms. Since a genetic algorithm works with a popu- 
lation of  potential algorithms, it incurs the cost of evaluat- 
ing this population. Furthermore, the population is 
replaced (all or in part) on a generational basis. The 
members of the population reproduce, and their offspring 
must then be evaluated. If  it takes 1 hour to do an evalu- 
ation, then it takes over 1 year to do 10000 evaluations. 
This would be approximately 50 generations for a popu- 
lation of only 200 strings. 

1.2. How hard is hard? 

Assuming the interaction between parameters is non-linear, 
the size of  the search space is related to the number of bits 
used in the problem encoding. For  a bit string encoding of 
length L, the size of  the search space is 2 L and forms a 
hypercube. The genetic algorithm samples the corners of  
this L-dimensional hypercube. 

Generally, most test functions are at least 30 bits in 
length and most researchers would probably agree that 
larger test functions are needed. Anything much smaller 
represents a space which can be enumerated. (Considering 
for a moment that the national debt of  the United States 
in 1993 is approximately 242 dollars, 23o does not sound 
quite so large.) Of course, the expression 2 L grows expon- 
entially With respect to L. Consider a problem with an 
encoding of 400 bits. How big is the associated search 
space? A classic introductory textbook on artificial 
intelligence gives one characterization of  a space of  
this size. Winston (1992, p. 102) points out that 24oo is a 
good approximation of the effective size of  the search 
space of possible board configurations in chess. (This 
assumes that the effective branching factor at each possible 
move is 16 and that a game is made up of 100 moves; 
16 l~176 = (24) 100 = 2400.) Winston states that this is 'a ridicu- 
lously large number. In fact, if all the atoms in the universe 
had been computing chess moves at picosecond rates since 
the big bang (if any), the analysis would be just getting 
started.' 

The point is that as long as the number of 'good 
solutions' to a problem is sparse with respect to the size 
of the search space, then random search or search by 
enumeration of a large search space is not a practical 
form of problem solving. On the other hand, any search 
other than random search imposes some bias in terms of 
how it looks for better solutions and where it looks in 
the search space. Genetic algorithms indeed introduce a 
particular bias in terms of what new points in the space 
will be sampled. Nevertheless, a genetic algorithm belongs 
to the class of methods known as 'weak methods' in the 
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artificial intelligence community because it makes relatively 
few assumptions about the problem that is being solved. 

Of course, many optimization methods have been 
developed in mathematics and operations research. What 
role do genetic algorithms play as an optimization tool? 
Genetic algorithms are often described as a global search 
method that does not use gradient information. Thus, 
non-differentiable functions as well as functions with 
multiple local optima represent classes of problems to 
which genetic algorithms might be applied. Genetic 
algorithms, as a weak method, are robust but very gen- 
eral. If  there exists a good specialized optimization method 
for a specific problem, then a genetic algorithm may not be 
the best optimization tool for that application. On the other 
hand, some researchers work with hybrid algorithms that 
combine existing methods with genetic algorithms. 

2. The canonical genetic algorithm 

The first step in the implementation of any genetic algo- 
rithm is to generate an initial population. In the canonical 
genetic algorithm each member of this population will be 
a binary string of length L which corresponds to the prob- 
lem encoding. Each string is sometimes referred to as a 
genotype (Holland, 1975) or, alternatively, a chromosome 
(Schaffer, 1987). In most cases the initial population is 
generated randomly. After creating an initial population, 
each string is then evaluated and assigned a fitness value. 

The notions of evaluation and fitness are sometimes used 
interchangeably. However, it is useful to distinguish 
between the evaluation function and the fitness function 
used by a genetic algorithm. In this tutorial, the evaluation 
function, or objective function, provides a measure of perfor- 
mance with respect to a particular set of parameters. The 
fitness function transforms that measure of performance 
into an allocation of reproductive opportunities. The evalu- 
ation of a string representing a set of parameters is indepen- 
dent of the evaluation of any other string. The fitness of that 
string, however, is always defined with respect to other 
members of the current population. 

In the canonical genetic algorithm, fitness is defined by: 
f i / f  where f .  is the evaluation associated with string i and 
f is the average evaluation of all the strings in the popu- 
lation. Fitness can also be assigned based on a string's 
rank in the population (Baker, 1985; Whitley, 1989) or 
by sampling methods, such as tournament selection 
(Goldberg, 1990). 

It is helpful to view the execution of the genetic algorithm 
as a two-stage process. It starts with the current population. 
Selection is applied to the current population to create 
an intermediate population. Then recombination and 
mutation are applied to the intermediate population to 
create the next population. The process of going from the 
current population to the next population constitutes one 
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Fig. 1. One generation is broken down into a selection phase 
and recombination phase. This figure shows strings being assigned 
into adjacent slots during selection. In fact, they can be assigned 
slots randomly in order to shuffle the intermediate population. 
Mutation (not shown) can be applied after crossover 

generation in the execution of a genetic algorithm. Gold- 
berg (1989) refers to this basic implementation as a simple 
genetic algorithm (SGA). 

We will first consider the construction of the intermediate 
population from the current population. In the first genera- 
tion the current population is also the initial population. 
After calculat ingf/ /f  for all the strings in the current popu- 
lation, selection is carried out. In the canonical genetic algo- 
rithm the probability that strings in the current population 
are copied (i.e. duplicated) and placed in the intermediate 
generation is proportional to their fitness. 

There are a number of ways to do selection. We might 
view the population as mapping onto a roulette wheel, 
where each individual is represented by a space that 
proportionally corresponds to its fitness. By repeatedly 
spinning the roulette wheel, individuals are chosen using 
stochastic sampling with replacement to fill the intermediate 
population. 

A selection process that will more closely match the 
expected fitness values is remainder stochastic sampling. 
For each string i whe re f / / f  is greater than 1.0, the integer 
portion of this number indicates how many copies of that 
string are directly placed in the intermediate population. 
All strings (including those with f . / f  less than 1.0) then 
place additional copies in the intermediate population 
with a probability corresponding to the fractional portion 
of f i / f .  For example, a string with f . / f  = 1.36 places 1 
copy in the intermediate population, and then receives a 
0.36 chance of placing a second copy. A string with a fit- 
ness o f f i / f  = 0.54 has a 0.54 chance of placing one string 
in the intermediate population. 

Remainder stochastic sampling is most efficiently imple- 
mented using a method known as stochastic universal 
sampling. Assume that the population is laid out in 
random order as in a pie graph, where each individual is 
assigned space on the pie graph in proportion to fitness. 
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Next an outer roulette wheel is placed around the pie with 
N equally spaced pointers. A single spin of the roulette 
wheel will now simultaneously pick all N members of the 
intermediate population. The resulting selection is also 
unbiased (Baker, 1987). 

After selection has been carried out the construction of 
the intermediate population is complete and recombi- 
nation can occur. This can be viewed as creating the next  

population from the intermediate population. Crossover is 
applied to randomly paired strings with a probability 
denoted Pc. (The population should already be sufficiently 
shuffled by the random selection process.) Pick a pair 
of strings. With probability Pc 'recombine' these strings 
to form two new strings that are inserted into the next 
population. 

Consider the following binary string: 1101001100101101. 
The string would represent a possible solution to some 
parameter optimization problem. New sample points in 
the space are generated by recombining two parent 
strings. Consider the string 1101001100101101 and 
another binary string, y x y y x y x x y y y x y x x y ,  in which the 
values 0 and 1 are denoted by x and y. Using a single 
randomly chosen recombination point, 1-point crossover 
occurs as follows: 

11010 \ /  01100101101 

y x y y x  / \  y x x y y y x y x x y  

Swapping the fragments between the two parents produces 
the following offspring: 

l l O l O y x x y y y x y x x y  and yxyyx01100101101 

After recombination, we can apply a mutation operator. 
For each bit in the population, mutate with some low prob- 
ability Pro. Typically the mutation rate is applied with less 
than 1% probability. In some cases, mutation is inter- 
preted as randomly generating a new bit, in which case, 
only 50% of the time will the 'mutation' actually change 
the bit value. In other cases, mutation is interpreted to 
mean actually flipping the bit. The difference is no more 
than an implementation detail as long as the user/reader 
is aware of the difference and understands that the first 
form of mutation produces a change in bit values only 
half as often as the second, and that one version of 
mutation is just a scaled version of the other. 

After the process of selection, recombination and 
mutation is complete, the next population can be evalu- 
ated. The process of evaluation, selection, recombination 
and mutation forms one generation in the execution of a 
genetic algorithm. 

2.1. Why does it work? Search spaces as hypercubes 

The question that most people who are new to the field of 
genetic algorithms ask at this point is why such a process 

should do anything useful. Why should one believe that 
this is going to result in an effective form of search or 
optimization? 

The answer which is most widely given to explain the 
computational behaviour of genetic algorithms came out 
of  John Holland's work. In his classic 1975 book, Adapta- 

tion in Natural and Artificial Systems, Holland develops sev- 
eral arguments designed to explain how a 'genetic plan' or 
'genetic algorithm' can result in complex and robust search 
by implicitly sampling hyperplane partitions of a search 
space. 

Perhaps the best way to understand how a genetic 
algorithm can sample hyperplane partitions is to consider 
a simple 3-dimensional space (see Fig. 2). Assume we 
have a problem encoded with just 3 bits; this can be repre- 
sented as a simple cube with the string 000 at the origin. The 
corners in this cube are numbered by bit strings and all 
adjacent corners are labelled by bit strings that differ by 
exactly 1 bit. An example is given in the top of Fig. 2. 
The front plane of the cube contains all the points that 
begin with 0. If  '*' is used as a 'don't  care' or wild card 
match symbol, then this plane can also be represented by 
the special string 0'*. Strings that contain * are referred 
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Fig. 2. A 3-dimensional cube and a 4-dimensional hypercube. The 
corners of  the inner cube and outer cube in the bottom 4-dimensional 
example are numbered in the same way as in the upper 3-dimensional 
cube, except a 1 is added as a prefix to the labels of  the inner cube 
and a 0 is added as a prefix to the labels of  the outer cube. Only 
select points are labelled in the 4-dimensional hypercube 
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to as schemata; each schema corresponds to a hyperplane in 
the search space. The 'order' of a hyperplane refers to the 
number of actual bit values that appear in its schema. 
Thus, 1"* is order 1 while 1"*1"*****0"* would be of 
order 3. 

The bottom of Fig. 2 illustrates a 4-dimensional space 
represented by a cube 'hanging' inside another cube. The 
points can be labelled as follows. Label the points in the 
inner cube and outer cube exactly as they are labelled in 
the top 3-dimensional space. Next, prefix each inner cube 
labelling with a 1 bit and each outer cube labelling with a 
0 bit. This creates an assignment to the points in hyper- 
space that gives the proper adjacency in the space between 
strings that are 1 bit different. The inner cube now 
corresponds to the hyperplane 1"** while the outer cube 
corresponds to 0"**. It is also rather easy to see that *0"* 
corresponds to the subset of points that corresponds to 
the fronts of both cubes. The order-2 hyperplane 10"* cor- 
responds to the front of the inner cube. 

A bit string matches a particular schema if that bit string 
can be constructed from the schema by replacing the * 
symbol with the appropriate bit value. In general, all bit 
strings that match a particular schema are contained in 
the hyperplane partition represented by that particular 
schema. Every binary encoding is a 'chromosome' which 
corresponds to a corner in the hypercube and is a member 
of 2 L _ 1 different hyperplanes, where L is the length of the 
binary encoding. (The string of all * symbols corresponds 
to the space itself and is not counted as a partition of the 
space: Holland, 1975, p. 72). This can be shown by taking 
a bit string and looking at all the possible ways that any 
subset of bits can be replaced by * symbols. In other 
words, there are L positions in the bit string and each 
position can be either the bit value contained in the string 
or the * symbol. 

It is also relatively easy to see that 3 L -  1 hyperplane 
partitions can be defined over the entire search space. For 
each of the L positions in the bit string we can have the 
value *, 1 or 0, which results in 3 L combinations. 

Establishing that each string is a member of 2 L -  1 
hyperplane partitions does not provide very much infor- 
mation if each point in the search space is examined in 
isolation. This is why the notion of a population based 
search is critical to genetic algorithms. A population of 
sample points provides information about numerous 
hyperplanes; furthermore, low-order hyperplanes should 
be sampled by numerous points in the population. (This 
issue is re-examined in more detail in subsequent sections 
of this paper). A key part of a genetic algorithm's intrinsic 
or implicit parallelism is derived from the fact that many 
hyperplanes are sampled when a population of strings is 
evaluated (Holland, 1975); in fact, it can be argued that 
far more hyperplanes are sampled than the number of 
strings contained in the population. Many different hyper- 
planes are evaluated in an implicitly parallel fashion each 

time a single string is evaluated (Holland, 1975, p. 74); 
but it is the cumulative effects of evaluating a population 
of points that provides statistical information about any 
particular subset of hyperplanes. (Holland initially used 
the term intrinsic parallelism in his 1975 monograph, then 
decided to switch to implicit parallelism to avoid confusion 
with terminology in parallel computing. Unfortunately, 
the term implicit parallelism in the parallel computing 
community refers to parallelism which is extracted from 
code written in functional languages that have no explicit 
parallel constructs. Implicit parallelism does not refer to 
the potential for running genetic algorithms on parallel 
hardware, although genetic algorithms are generally 
viewed as highly parallelizable algorithms.) 

Implicit parallelism implies that many hyperplane compe- 
titions are simultaneously solved in parallel. The theory 
suggests that through the process of reproduction and 
recombination, the schemata of competing hyperplanes 
increase or decrease their representation in the population 
according to the relative fitness of the strings that lie in 
those hyperplane partitions. Because genetic algorithms 
operate on populations of strings, one can track the propor- 
tional representation of a single schema representing a 
particular hyperplane in a population and indicate whether 
that hyperplane will increase or decrease its representation 
in the population over time when fitness-based selection is 
combined with crossover to produce offspring from exist- 
ing strings in the population. 

3. Two views of hyperplane sampling 

Another way of looking at hyperplane partitions is pre- 
sented in Fig. 3. A function over a single variable is plotted 
as a 1-dimensional space, with function maximization as a 
goal. The hyperplane 0"***...** spans the first half of the 
space and 1"***...** spans the second half of the space. 
Since the strings in the 0"***...** partition are on average 
better than those in the 1"***...** partition, we would like 
the search to be proportionally biased toward this partition. 
In the second graph the portion of the space corresponding 
to **1"*...** is shaded, which also highlights the inter- 
section of 0"***...** and **1"*...**, namely, 0"1".. .**. 
Finally, in the third graph, 0"10"*...** is highlighted. 

One of the points of Fig. 3 is that the sampling of hyper- 
plane partitions is not really effected by local optima. At the 
same time, increasing the sampling rate of partitions that 
are above average compared with other competing 
partitions does not guarantee convergence to a global 
optimum. The global optimum could be a relatively 
isolated peak, for example. Nevertheless, good solutions 
that are globally competitive should be found. 

It is also a useful exercise to look at an example of a 
simple genetic algorithm in action. In Table 1, the first 3 
bits of each string are given explicitly while the remainder 
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Table 1. A population with fitness assigned to strings according to 
rank. R is a random number which determines whether or not a copy 
of a string is awarded for the fractional remainder of  the fitness 

String Fitness R Copies 

001bl,4...bl,L 
10162,4...b2,L 
l l lb3,4. . .b3,L 
010b4,4...b4,L 
lllbs,4...bs,L 
101b6, 4 ...b6, L 
01 lb7, 4 . . .by, L 
001b8,4 b8,L 
000b9,4 b9,L 
100blo,4 blo, L 
010bll,4 bll,L 
01 lb12,4 blz, L 
000b13,4 b13, L 
110b14,4 bla, L 
110b15,4 �9 bls,L 
100b16,4 ..bl6,L 
011b17,4 ..bl7,L 
000b18,4 ..bILL 
001b19,4 ..bl9,L 
100b20,4...b20,L 
010b21,4... b21,L 

2.0 - 2 
1.9 0.93 2 
1.8 0.65 2 
1.7 0.02 1 
1.6 0.51 2 
1.5 0.20 1 
1.4 0.93 2 
1.3 0.20 1 
1.2 0.37 1 
1.1 0.79 1 
1 . 0  - 1 

0.9 0.28 1 
0.8 0.13 0 
0.7 0.70 1 
0.6 0.80 1 
0.5 0.51 1 
0.4 0.76 1 
0.3 0.45 0 
0.2 0.61 0 
0.1 0.07 0 
0 . 0  - 0 

Fig. 3. A function and various partitions of  hyperspace. Fitness is 
sealed to a 0 to 1 range in this diagram 

of the bit positions are unspecified. The goal is to look at 
only those hyperplanes defined over the first 3 bit positions 
in order to see what actually happens during the selection 
phase when strings are duplicated according to fitness. 
The theory behind genetic algorithms suggests that the 
new distribution of points in each hyperplane should 
change according to the average fitness of the strings in 
the population that are contained in the corresponding 
hyperplane partition. Thus, even though a genetic algo- 
rithm never explicitly evaluates any particular hyperplane 
partition, it should change the distribution of string copies 
as if it had. 

The example population in Table 1 contains only 21 
(partially specified) strings. Since we are not particularly 
concerned with the exact evaluation of these strings, the fit- 
ness values are assigned according to rank. (The notion of 
assigning fitness by rank rather than by fitness propor- 
tional representation has not been discussed in detail, but 
the current example relates to change in representation 
due to fitness and not how that fitness is assigned.) The 
table includes information on the fitness of each string 
and the number of copies to be placed in the intermediate 
population. In this example, the number of copies pro- 
duced during selection is determined by automatically 
assigning the integer part, then assigning the fractional 
part by generating a random value between 0.0 and 1.0 (a 
form of remainder stochastic sampling). If  the random 

value is greater than (1 -remainder),  then an additional 
copy is awarded to the corresponding individual. 

Genetic algorithms appear to process many hyperplanes 
implicitly in parallel when selection acts on the population. 
Table 2 enumerates the 27 hyperplanes (33) that can be 
defined over the first three bits of the strings in the popu- 
lation and explicitly calculates the fitness associated with 
the corresponding hyperplane partition. The true fitness 
of the hyperplane partition corresponds to the average fit- 
ness of all strings that lie in that hyperplane partition. 
The genetic algorithm uses the population as a sample for 
estimating the fitness of that hyperplane partition. Of 
course, the only time the sample is random is during the 
first generation. After this, the sample of new strings 
should be biased toward regions that have previously 
contained strings that were above average with respect to 
previous populations. 

If  the genetic algorithm works as advertised, the number 
of copies of strings that actually fall in a particular hyper- 
plane partition after selection should approximate the 
expected number of copies that should fall in that partition. 

In Table 2, the expected number of strings sampling a 
hyperplane partition after selection can be calculated by 
multiplying the number of hyperplane samples in the 
current population before selection by the average fitness 
of the strings in the population that fall in that partition. 
The observed number of copies actually allocated by selec- 
tion is also given. In most cases the match between 
expected and observed sampling rate is fairly good: the 
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Table 2. The average fitnesses (Mean) associated with the samples 
from the 27 hyperplanes defined over the first three bit positions 
are explicitly calculated. The expected representation (Expect) 
and observed representation (Obs) are shown. Count refers to the 
number of  strings in hyperplane H before selection 

Schema Mean Count Expect Obs 

101' ...* 1.70 2 3.4 3 
111' ...* 1.70 2 3.4 4 
1"1" ...* 1.70 4 6.8 7 
*01" ...* 1.38 5 6.9 6 
**1" ...* 1.30 10 13.0 14 
*11' ...* 1.22 5 6.1 8 
11"* ...* 1.175 4 4.7 6 
001" ...* 1.166 3 3.5 3 
1"**...* 1.089 9 9.8 11 
O* 1" ...* 1.033 6 6.2 7 
10"* ...* 1.020 5 5.1 5 
*1"* ...* 1.010 10 10.1 12 
.... ...* 1.000 21 21.0 21 
*0"* ...* 0.991 11 10.9 9 
00"* ...* 0.967 6 5.8 4 
0'** ...* 0.933 12 11.2 10 
011" ...* 0.900 3 2.7 4 
010"...* 0.900 3 2.7 2 
01'* ...* 0.900 6 5.4 6 
0"0" ...* 0.833 6 5.0 3 
* 10" ...* 0.800 5 4.0 4 
000" ...* 0.767 3 2.3 1 
**0" ...* 0.727 11 8.0 7 
*00" ...* 0.667 6 4.0 3 
110"...* 0.650 2 1.3 2 
1"0" ...* 0.600 5 3.0 4 
100" ...* 0.566 3 1.70 2 

error is a result of sampling error due to the small popu- 
lation size. 

It is useful to begin formalizing the idea of  tracking 
the potential sampling rate o f a  hyperplane, H. Let M ( H ,  t) 
be the number of strings sampling H at the current gener- 
ation t in some population. Let (t + intermediate) index 
the generation t after selection (but before crossover and 
mutation), and f ( H ,  t) be the average evaluation of the 
sample of strings in partition H in the current population. 
Formally, the change in representation according to fitness 
associated with the strings that are drawn from hyperplane 
H is expressed by: 

M ( H , t § intermediate) : M ( H , t ) f ( f  ' t ) . 

Of course, when strings are merely duplicated no new 
sampling o f  hyperplanes is actually occurring since no 
new samples are generated. Theoretically, we would like 
to have a sample of  new points with this same distri- 
bution. In practice, this is generally not possible. Recombi- 
nation and mutation, however, provide a means of  

generating new sample points while partially preserving 
distribution of  strings across hyperplanes that is observed 
in the intermediate population. 

3.1. Crossover operators and schemata 

The observed representation of hyperplanes in Table 2 
corresponds to the representation in the intermediate popu- 
lation after selection but before recombination. What does 
recombination do to the observed string distributions? 
Clearly, order-1 hyperplane samples are not affected by 
recombination, since the single critical bit is always 
inherited by one of the offspring. However, the observed 
distribution of potential samples from hyperplane par- 
titions of order 2 and higher can be affected by crossover. 
Furthermore, all hyperplanes of  the same order are not 
necessarily affected with the same probability. Consider 
1-point crossover. This recombination operator is nice 
because it is relatively easy to quantify its effects on differ- 
ent schemata representing hyperplanes. To keep things 
simple, assume we are working with a string encoded with 
just 12 bits. Now consider the following two schemata: 

1 1 . * * * * * * * * *  and 1 . * * * * * * * * * 1  

The probability that the bits in the first schema will be 
separated during 1-point crossover is only 1 / L -  1, since 
in general there are L -  1 crossover points in a string of 
length L. The probability that the bits in the second right- 
most schema are disrupted by 1-point crossover however 
is (L - 1)/(L - 1), or 1.0, since each of the L - 1 crossover 
points separates the bits in the schema. This leads to a 
general observation: when using 1-point crossover the posi- 
tions of  the bits in the schema are important in determining 
the likelihood that those bits will remain together during 
crossover. 

3.1.1. 2-point crossover 

What happens if a 2-point crossover operator is used? A 
2-point crossover operator uses two randomly chosen 
crossover points. Strings exchange the segment that falls 
between these two points. Ken DeJong first observed 
(1975) that 2-point crossover treats strings and schemata 
as if they form a ring, which can be illustrated as follows: 

b7 b6 b5 * * * 
b8 b4 * * 

b9 b3 * * 
blO b2 * * 

b l l  b12 b l  * 1 1 

where bl  to b12 represents bits 1 to 12. When viewed in this 
way, 1-point crossover is a special case of  2-point crossover 
where one of  the crossover points always occurs at the 
wrap-around position between the first and last bit. Maxi- 
mum disruptions for order-2 schemata now occur when 
the 2 bits are at complementary positions on this ring. 
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For 1-point and 2-point crossover it is clear that 
schemata which have bits that are close together on the 
string encoding (or ring) are less likely to be disrupted by 
crossover. More precisely, hyperplanes represented by 
schemata with more compact representations should be 
sampled at rates that are closer to those potential sampling 
distribution targets achieved under selection alone. For 
current purposes a compact representation with respect to 
schemata is one that minimizes the probability of dis- 
ruption during crossover. Note that this definition is opera- 
tor dependent, since both of the two order-2 schemata 
examined in Section 3.1 are equally and maximally com- 
pact with respect to 2-point crossover, but are maximally 
different with respect to 1-point crossover. 

3.1.2. Linkage and defining length 
Linkage refers to the phenomenon whereby a set of bits act 
as 'coadapted alleles' that tend to be inherited together as a 
group. In this case an allele would correspond to a par- 
ticular bit value in a specific position on the chromosome. 
Of course, linkage can be seen as a generalization of 
the notion of a compact representation with respect to 
schema. Linkage is sometimes defined by physical 
adjacency of bits in a string encoding; this implicitly 
assumes that l-point crossover is the operator being used. 
Linkage under 2-point crossover is different and must be 
defined with respect to distance on the chromosome when 
treated as a ring. Nevertheless, linkage usually is equated 
with physical adjacency on a ring, as measured by defining 
length. 

The defining length of a schemata is based on the distance 
between the first and last bits in the schema with value 
either 0 or 1 (i.e. not a * symbol). Given that each position 
in a schema can be 0, 1 or *, then scanning left to right, if Ix 
is the index of the position of the rightmost occurrence of 
either a 0 or 1 and Iy is the index of the leftmost occurrence 
of either a 0 or 1, then the defining length is merely Ix - Iy. 
Thus, the defining length of ****1"*0"*10"* is 12 - 5 = 7. 
The defining length of a schema representing a hyperplane 
H is denoted here by A(H).  The defining length is a direct 
measure of how many possible crossover points fall within 
the significant portion of a schemata. I f  1-point crossover is 
used, then A ( H ) / L -  1 is also a direct measure of how 
likely crossover is to fall within the significant portion of 
a schemata during crossover. 

3.1.3. Linkage and inversion 
Along with mutation and crossover, inversion is often con- 
sidered to be a basic genetic operator. Inversion can change 
the linkage of bits on the chromosome such that bits with 
greater non-linear interactions can potentially be moved 
closer together on the chromosome. 

Typically, inversion is implemented by reversing a random 
segment of the chromosome. However, before one can start 
moving bits around on the chromosome to improve linkage, 

the bits must have a position-independent decoding. A 
common error that some researchers make when first imple- 
menting inversion is to reverse bit segments of a directly 
encoded chromosome. But just reversing some random 
segment of bits is nothing more than large-scale mutation 
if the mapping from bits to parameters is position dependent. 

A position-independent encoding requires that each bit 
be tagged in some way. For example, consider the follow- 
ing encoding composed of pairs where the first number is 
a bit tag which indexes the bit and the second represents 
the bit value: 

((90) (60)(2 1)(7 1)(5 1)(8 1)(30)(1 0)(40)). 

The linkage can now be changed by moving around the 
tag-bit pairs, but the string remains the same when 
decoded: 010010110. One must now also consider how 
recombination is to be implemented. Goldberg and 
Bridges (1990), Whitley (1991) as well as Holland (1975) 
discuss the problems of exploiting linkage and the recombi- 
nation of tagged representations. 

4. The schema theorem 

A foundation has now been laid to develop the fundamen- 
tal theorem of genetic algorithms. The schema theorem 
(Holland, 1975) provides a lower bound on the change in 
the sampling rate for a single hyperplane from generation 
t to generation t + 1. 

Consider again what happens to a particular hyperplane, 
H when only selection occurs: 

M(H, t + intermediate) = M(H, t ) f ( f  ' t) 

To calculate M(H, t + 1) we must consider the effects of 
crossover as the next generation is created from the inter- 
mediate generation. First we consider that crossover is 
applied probabilistically to a portion of the population. 
For that part of the population that does not undergo cross- 
over, the representation due to selection is unchanged. When 
crossover does occur, then we must calculate losses due to its 
disruptive effects: 

M(H, t + 1) = (1 -pe)M(H,  t ) f ( f  ' t) 

+ p c [ M ( H , t ) ~ ( 1 -  losses) +gains]. 

In the derivation of the schema theorem a conservative 
assumption is made at this point. It is assumed that cross- 
over within the defining length of the schema is always 
disruptive to the schema representing H. In fact, this is 
not true and an exact calculation of the effects of crossover 
is presented later in this paper. For example, assume we are 
interested in the schema 11"****. If  a string such as 
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1110101 were recombined between the first two bits with a 
string such as 1000000 or 0100000, no disruption would 
occur in hyperplane ll***** since one of the offspring 
would still reside in this partition. Also, if 1000000 and 
0100000 were recombined exactly between the first and 
second bit, a new independent offspring would sample 
11"****; this is the source of gains that is referred to in 
the above calculation. To simplify things, gains are ignored 
and the conservative assumption is made that crossover 
falling in the significant portion of a schema always leads 
to disruption. Thus, 

M(H, t + 1) > (1 -pc)M(H, t ) f ( f  t) 

+ p e [ M ( H , t ) ~ (1-  disruptions) l 

where disruptions overestimates losses. We might wish to 
consider one exception: if two strings that both sample H 
are recombined, then no disruption occurs. Let P(H, t) 
denote the proportional representation of H obtained by 
dividing M(H, t) by the population size. The probability 
that a randomly chosen mate samples H is just P(H, t). 
Recall that A(H) is the defining length associated with 
1-point crossover. Disruption is therefore given by 

A(H) (1 - P(H, t)). 

At this point, the inequality can be simplified. Both sides 
can be divided by the population size to convert this into an 
expression for P(H, t + 1), the proportional representation 
of H at generation t + 1. Furthermore, the expression can 
be rearranged with respect to Pc: 

P(H,t+ I) >P(H, t ) f (H-  't) 1-pc P(H,t)) 
- " f L - t "  

We now have a useful version of the schema theorem 
(although it does not yet consider mutation); but it is not 
the only version in the literature. For example, both 
parents are typically chosen based on fitness. This can be 
added to the schema theorem by merely indicating the alter- 
native parent is chosen from the intermediate population 
after selection: 

P(H, t + l) > P(H, t) f(H' t) 
- . f 

A ( a ) ( 1 - e ( H , t ) ~ )  1. 
• [1-pc-fiZZ_ 1 

Finally, mutation is included. Let o(H) be a function that 
returns the order of the hyperplane H. The order of H 
exactly corresponds to a count of the number of bits in 
the schema representing H that have value 0 or 1. Let the 
mutation probability be Pm where mutation always flips 
the bit. The probability that mutation does not affect the 
schema representing H is (1 -pro) ~ This leads to the 

following expression of the schema theorem: 

P(H, t + 1) > P(H, t ) f ( f  ' t) 

• [1-pc-~--Z-- i- 

x (1 --pm) ~ 

4 . 1 .  Crossover ,  muta t ion  and  p r e m a t u r e  convergence  

Clearly the schema theorem places the greatest emphasis on 
the role of crossover and hyperplane sampling in genetic 
search. To maximize the preservation of hyperplane 
samples after selection, the disruptive effects of crossover 
and mutation should be minimized. This suggests that 
mutation should perhaps not be used at all, or at least 
used at very low levels. 

The motivation for using mutation, then, is to prevent 
the permanent loss of any particular bit or allele. After 
several generations it is possible that selection will drive 
all the bits in some position to a single value: either 0 or 
1. If this happens without the genetic algorithm converging 
to a satisfactory solution, then the algorithm has prema- 
turely converged. This may particularly be a problem 
if one is working with a small population. Without a 
mutation operator, there is no possibility for reintroducing 
the missing bit value. Also, if the target function is non- 
stationary and the fitness landscape changes over time 
(which is certainly the case in real biological systems), 
then there needs to be some source of continuing genetic 
diversity. Mutation, therefore acts as a background 
operator, occasionally changing bit values and allowing 
alternative alleles (and hyperplane partitions) to be 
retested. 

This particular interpretation of mutation ignores its 
potential as a hill-climbing mechanism: from the strict 
hyperplane sampling point of view imposed by the schema 
theorem mutation is a necessary evil. But this is perhaps a 
limited point of view. Several experimental researchers 
have pointed out that genetic search using mutation and 
no crossover often produces a fairly robust search. And 
there is little or no theory that has addressed the inter- 
actions of hyperplane sampling and hill-climbing in genetic 
search. 

Another problem related to premature convergence is the 
need for scaling the population fitness. As the average 
evaluation of the strings in the population increases, the 
variance in fitness decreases in the population. There may 
be little difference between the best and worst individuals 
in the population after several generations, and the selec- 
tive pressure based on fitness is correspondingly reduced. 
This problem can partially be addressed by using some 
form of fitness scaling (Grefenstette, 1986; Goldberg, 
1989). In the simplest case, one can subtract the evaluation 
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of the worst string in the population from the evaluations of 
all strings in the population. One can now compute the 
average string evaluation as well as fitness values using 
this adjusted evaluation, which will increase the resulting 
selective pressure. Alternatively, one can use a rank-based 
form of selection. 

4.2. How recombination moves through a hypercube 

The nice thing about 1-point crossover is that it is easy to 
model analytically. But it is also easy to show analytically 
that if one is interested in minimizing schema disruption, 
then 2-point crossover is better. However, operators that 
use many crossover points should be avoided because of 
extreme disruption to schemata. This is again a point of 
view imposed by a strict interpretation of the schema 
theorem. On the other hand, disruption may not be the 
only factor affecting the performance of a genetic 
algorithm. 

4.2.1. Uniform crossover 

The operator that has received the most attention in recent 
years is uniform crossover. Uniform crossover was studied 
in some detail by Ackley (1987) and popularized by 
Syswerda (1989). Uniform crossover works as follows: for 
each bit position 1 to L, randomly pick each bit from either 
of the two parent strings. This means that each bit is 
inherited independently from any other bit and that there 
is, in fact, no linkage between bits. It also means that 
uniform crossover is unbiased with respect to defining 
length. In general the probability of disruption is 
1 -  (1/2) ~ where o(H) is the order of the schema 
we are interested in. (It does not matter which offspring 
inherits the first critical bit, but all other bits must be 
inherited by that same offspring. This is also a worst-case 
probability of disruption which assumes no alleles 
found in the schema of interest are shared by the 
parents.) Thus, for any order-3 schema the probability of 
uniform crossover separating the critical bits is always 
1 -  (1/2) 2 =  0.75. Consider for a moment a string of 9 
bits. The defining length of a schema must equal 6 before 
the disruptive probabilities of 1-point crossover match 
those associated with uniform crossover (6/8 = 0.75). We 
can define 84 different order-3 schemata over any particu- 
lar string of 9 bits (i.e. 9 choose 3). Of these schemata, 
only 19 of the 84 order-2 schemata have a disruption 
rate higher than 0.75 under 1-point crossover. Another 
15 have exactly the same disruption rate, and 50 of the 
84 order-2 schemata have a lower disruption rate. It is 
relatively easy to show that, while uniform crossover is 
unbiased with respect to defining length, it is also generally 
more disruptive than 1-point crossover. Spears and DeJong 
(1991) have shown that uniform crossover is in every 
case more disruptive than 2-point crossover for order-3 
schemata for all defining lengths. 

Despite these analytical results, several researchers have 
suggested that uniform crossover is sometimes a better 
recombination operator. One can point to its lack of repre- 
sentational bias with respect to schema disruption as a pos- 
sible explanation, but this is unlikely since uniform 
crossover is uniformly worse than 2-point crossover. 
Spears and DeJong (1991, p. 314) speculate that, 'With 
small populations, more disruptive crossover operators 
such as uniform or n-point (n >> 2) may yield better 
results because they help overcome the limited information 
capacity of smaller populations and the tendency for more 
homogeneity'. Eshelman (1991) has made similar argu- 
ments outlining the advantages of disruptive operators. 

There is another sense in which uniform crossover 
is unbiased. Assume we wish to recombine the bit 
strings 0000 and 1111. We can conveniently lay out the 
4-dimensional hypercube as shown in Fig. 4. We can also 
view these strings as being connected by a set of minimal 
paths through the hypercube; pick one parent string as 
the origin and the other as the destination. Now change a 
single bit in the binary representation corresponding to 
the point of origin. Any such move will reach a point that 
is one move closer to the destination. In Fig. 4 it is easy 
to see that changing a single bit is a move up or down in 
the graph. 

All of the points between 0000 and 1111 are reachable by 
some single application of uniform crossover. However, 
1-point crossover only generates strings that lie along two 
complementary paths (in the figure, the leftmost and right- 
most paths) through this 4-dimensional hypercube. In 
general, uniform crossover will draw a complementary 
pair of sample points with equal probability from all points 
that lie along any complementary minimal paths in the 
hypercube between the two parents, while 1-point cross- 
over samples points from only two specific complementary 
minimal paths between the two parent strings. It is also easy 

1111 

0111 1011 1101 1110 

0011 0101 0110 1001 1010 1100 

0001 0010 0100 1000 
~ oOO~ "" ~ ~  . ~ 1 7 6 1 7 6 1 7 6 1 7 6  

0000 
Fig. 4. This graph illustrates paths through 4-dimensional space. A 
1-point crossover of 1111 and 0000 can only generate offspring that 
reside along the dashed paths at the edges of this graph 
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to see that 2-point crossover is less restrictive than 
1-point crossover. Note that the number of  bits that are 
different between two strings is just the Hamming 
distance, W. Not  including the original parent strings, uni- 
form crossover can generate 2 ~ - 2 different strings, while 
1-point crossover can generate 2 ( J g -  1) different strings 
since there are Y g -  1 crossover points that produce 
unique offspring (see the discussion in the next section) 
and each crossover produces 2 offspring. The 2-point cross- 
over operator can generate 2 (~ )  = ~gr _ NV different off- 
spring since there are #t ~ choose 2 different crossover 
points that will result in offspring that are not copies of 
the parents and each pair of  crossover points generates 2 
strings. 

4.3.  Reduced surrogates 

Consider crossing the following two strings and a 'reduced' 
version of  the same strings, where the bits the strings share 
in common have been removed. 

0001111011010011 . . . .  1 1 - - -  1 . . . . .  1 

0001001010010010 . . . .  0 0 - - - 0 . . . . .  0 

Both strings lie in the hyperplane 0001"*101"01001" 
The flip side of  this observation is that crossover is 
really restricted to a subcube defined over the bit positions 
that are different. We can isolate this subcube by removing 
all of  the bits that are equivalent in the two parent 
structures. Booker (1987) refers to strings such as 

. . . .  1 1 - - - 1  . . . . .  1 

and 

. . . .  0 0 - - - 0  . . . . .  0 

as the 'reduced surrogates'  of  the original parent chromo- 
somes. 

When viewed in this way, it is clear that recombination of 
these particular strings occurs in a 4-dimensional subcube, 
more or less identical to the one examined in the previous 
example. Uniform crossover is unbiased with respect to 
this subcube in the sense that uniform crossover will still 
sample in an unbiased, uniform fashion from all of  the 
pairs of  points that lie along complementary minimal 
paths in the subcube defined between the two original 
parent strings. On the other hand, simple l-point or 
2-point crossover will not. To help illustrate this idea, we 
recombine the original strings, but examine the offspring 
in their ' reduced'  forms. For  example, simple 1-point 
crossover will generate offspring . . . .  11- - -1 . . . . .  0 and 
. . . .  0 0 - - - 0 . . . . .  1 with a probability of  6/15 since there 
are 6 crossover points in the original parent strings between 
the third and fourth bits in the reduced subcube and 
L -  1 = 15. On the other hand, - - - -10- - -0 . . . . .  0 
and . . . .  01- - -1 . . . . .  1 are sampled with a probability 
of  only 1/15 since there is only a single crossover point in 

the original parent structures that falls between the first 
and second bits that define the subcube. 

One can remove this particular bias, however. We apply 
crossover on the reduced surrogates. Crossover can now 
exploit the fact that there is really only 1 crossover point 
between any significant bits that appear in the reduced 
surrogate forms. There is also another benefit. I f  at least 1 
crossover point falls between the first and last significant 
bits in the reduced surrogates, the offspring are guaranteed 
not to be duplicates of  the parents. (This assumes the 
parents differ by at least two bits.) Thus, new sample points 
in hyperspace are generated. 

The debate on the merits of  uniform crossover and opera- 
tors such as 2-point reduced surrogate crossover is not a 
closed issue. To understand fully the interaction between 
hyperplane sampling, population size, premature conver- 
gence, crossover operators, genetic diversity and the role of  
hill-climbing by mutation requires better analytical methods. 

5.  T h e  c a s e  for  b i n a r y  a l p h a b e t s  

The motivation behind the use of  a minimal binary alpha- 
bet is based on relatively simple counting arguments. A 
minimal alphabet maximizes the number of  hyperplane 
partitions directly available in the encoding for schema 
processing. These low-order hyperplane partitions are 
also sampled at a higher rate than would occur with an 
alphabet of  higher cardinality. 

Any set of  order-1 schemata such as 1"** and 0"** cuts 
the search space in half. Clearly, there are L pairs of  order-1 
schemata. For  order-2 schemata, there are (L) ways to pick 
locations in which to place the 2 critical bit positions, and 
there are 22 possible ways to assign values to those bits. 
In general, if we wish to count how many schemata repre- 
senting hyperplanes exist at some order i, this value is 
given by 2i()) where ()) counts the number of  ways to pick i 
positions that will have significant bit values in a string of  
length L and 2 i is the number of  ways to assign values to 
those positions. This ideal can be illustrated for order-1 
and order-2 schemata as follows: 

Order 1 schemata Order 2 schemata 

0"** *0"* **0" ***0 00"* 0"0" 0"*0 *00" *0"0 **00 
1 *3* 313" **1" ***1 01 *3 0'13 0"*1 *01" *0"1 **01 

10"* 1'0" 1"'0 *10" *1'0 **10 
11"* 1"1" 1"'1 *11" *1"1 **11 

These counting arguments naturally lead to questions 
about the relationship between population size and the 
number of  hyperplanes that are sampled by a genetic algo- 
rithm. One can take a very simple view of this question and 
ask how many schemata of  order 1 are sampled and how 
well are they represented in a population of size N. These 
numbers are based on the assumption that we are inter- 
ested in hyperplane representations associated with the 
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initial random population, since selection changes the 
distributions over time. In a population of size N there 
should be N/2 samples of each of the 2L order-1 hyper- 
plane partitions. Therefore 50% of the population falls 
in any particular order-1 partition. Each order-2 partition 
is sampled by 25% of the population. In general then, 
each hyperplane of order i is sampled by (1/2) / of the 
population. 

5.1. The N 3 argument 

These counting arguments set the stage for the claim that a 
genetic algorithm processes on the order of N 3 hyperplanes 
when the population size is N. The derivation used here is 
based on work found in the appendix of Fitzpatrick and 
Grefenstette (1988). 

Let 0 be the highest order of hyperplane which is 
represented in a population of size N by at least ~b copies; 
0 is given by log(N/~b). We wish to have at least ~b samples 
of a hyperplane before claiming that we are statistically 
sampling that hyperplane. 

Recall that the number of different hyperplane partitions 
of order 0 is given by 2~ which is just the number of dif- 
ferent ways to pick 0 different positions and to assign all 
possible binary values to each subset of the 0 positions. 
Thus, we now need to show 

2 ~  >_N 3 which implies 20(0  ) _>(2~ 3 

since 0 = log(N/~b) and N = 2~ Fitzpatrick and Grefen- 
stette now make the following arguments. Assume L > 64 
and 26 <_ N _< 220. Pick ~b = 8, which implies 3 < 0 < 17. 
By inspection, the number of schemata processed is greater 
than N 3. 

This argument does not hold in general for any popu- 
lation of size N. Given a string of length L, the number 
of hyperplanes in the space is finite. However, the popu- 
lation size can be chosen arbitrarily. The total number of 
schemata associated with a string of length L is 3 L. Thus 
if we pick a population size where N = 3 L then at most N 
hyperplanes can be processed (Michael Vose, personal 
communication). Therefore, N must be chosen with 
respect to L to make the N 3 argument reasonable. At the 
same time, the range of values 26 _< N < 220 does represent 
a wide range of practical population sizes. 

Still, the argument that N 3 hyperplanes are usefully pro- 
cessed assumes that all of these hyperplanes are processed 
with some degree of independence. Notice that the current 
derivation counts only those schemata that are exactly of 
order 0. The sum of all schemata from order 1 to order 0 
that should be well represented in a random initial popu- 
lation is given by: o 2x(L) By only counting schemata ~ x = l  ~x*" 
that are exactly of order 0 we might hope to avoid 
arguments about interactions with lower-order schemata. 

Whitley 

However, all the N 3 argument really shows is that there 
may be as many as N 3 hyperplanes that are well repre- 
sented given an appropriate population size. But a simple 
static count of the number of schemata available for pro- 
cessing fails to consider the dynamic behaviour of the 
genetic algorithm. 

As discussed later in this tutorial, dynamic models of 
the genetic algorithm now exist (Vose and Liepins, 1991; 
Whitley et al., 1992). There has not yet, however, been 
any real attempt to use these models to look at complex 
interactions between large numbers of hyperplane com- 
petitions. It is obvious in some vacuous sense that knowing 
the distribution of the initial population as well as the 
fitnesses of these strings (and the strings that are subse- 
quently generated by the genetic algorithm) is sufficient 
information for modelling the dynamic behaviour of the 
genetic algorithm (Vose, 1993). This suggests that we only 
need information about those strings sampled by the 
genetic algorithm. However, this micro-level view of the 
genetic algorithm does not seem to explain its macro-level 
processing power. 

5.2. The case for non-binary alphabets 

There are two basic arguments against using higher- 
cardinality alphabets. First, there will be fewer explicit 
hyperplane partitions. Second, the alphabetic character 
(and the corresponding hyperplane partitions) associated 
with a higher-cardinality alphabet will not be as well repre- 
sented in a finite population. This either forces the use of 
larger population sizes or the effectiveness of statistical 
sampling is diminished. 

The arguments for using binary alphabets assume that 
the schemata representing hyperplanes must be explicitly 
and directly manipulated by recombination. Antonisse 
(1989) has argued that this need not be the case and 
that higher-order alphabets offer as much richness in 
terms of hyperplane samples as lower-order alphabets. For 
example, using an alphabet of the four characters A, B, C, 
D one can define all the same hyperplane partitions in a bin- 
ary alphabet by defining partitions such as (A and B), (C 
and D), etc. In general, Antonisse argues that one can 
look at the all subsets of the power set of schemata as 
also defining hyperplanes. Viewed in this way, higher- 
cardinality alphabets yield more hyperplane partitions 
than binary alphabets. Antonisse's arguments fail to show 
however, that the hyperplanes that correspond to the sub- 
sets defined in this scheme actually provide new indepen- 
dent sources of information which can be processed in a 
meaningful way by a genetic algorithm. This does not dis- 
prove Antonisse's claims, but does suggest that there are 
unresolved issues associated with this hypothesis. 

There are other arguments for non-binary encodings. 
Davis (1991) argues that the disadvantages of non-binary 
encodings can be offset by the larger range of operators 
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that can be applied to problems, and that more problem- 
dependent aspects of the coding can be exploited. Schaffer 
and Eshelman (1992) as well as Wright (1991) present 
interesting arguments for real-valued encodings. Goldberg 
(1991) suggests that virtual minimal alphabets that 
facilitate hyperplane sampling can emerge from higher- 
cardinality alphabets. 

6. Criticisms of the schema theorem 

There are some obvious limitations of the schema theorem 
which restrict its usefulness. First, it is an inequality. By 
ignoring string gains and undercounting string losses, a 
great deal of information is lost. The inexactness of the 
inequality is such that if one were to try to use the schema 
theorem to predict the representation of a particular hyper- 
plane over multiple generations, the resulting predictions 
would in many cases be useless or misleading (e.g. Grefen- 
stette, 1993; Vose, personal communication, 1993). Second, 
the observed fitness of a hyperplane H at time t can change 
dramatically as the population concentrates its new samples 
in more specialized subpartitions of hyperspace. Thus, 
looking at the average fitness of all the strings in a particu- 
lar hyperplane (or using a random sample to estimate this 
fitness) is only relevant to the first generation or two 
(Grefenstette and Baker, 1989). After this, the sampling 
of strings is biased and the inexactness of the schema 
theorem makes it impossible to predict computational 
behaviour. 

In general, the schema theorem provides a lower bound 
that holds for only one generation into the future. There- 
fore, one cannot predict the representation of a hyperplane 
H over multiple generations without considering what is 
simultaneously happening to the other hyperplanes being 
processed by the genetic algorithm. 

These criticisms imply that the views of hyperplane 
sampling presented in Section 3 of this tutorial may be 
good rhetorical tools for explaining hyperplane sampling, 
but they fail to capture the full complexity of the genetic 
algorithm. This is partly because the discussion in Section 
3 focuses on the impact of selection without considering 
the disruptive and generative effects of crossover. The 
schema theorem does not provide an exact picture of the 
genetic algorithm's behaviour and cannot predict how a 
specific hyperplane is processed over time. In the next 
section, an introduction is given to an exact version of the 
schema theorem. 

7. An executable model of the genetic algorithm 

Consider the complete version of the schema theorem 
before dropping the gains term and simplifying the losses 

calculation: 

V(z t) 
P(Z, t + 1) = P(Z, t ) a ' - -  ' (1 - {Pc losses}) 

" f 

+ {po gains}. 

In the current formulation, Z will refer to a string. 
Assume we apply this equation to each string in the search 
space. The result is an exact model of the computational 
behaviour of a genetic algorithm. Since modelling strings 
models the highest-order schemata, the model implicitly 
includes all lower-order schemata. Also, the fitnesses of 
strings are constants in the canonical genetic algorithm 
using fitness proportional reproduction and one need not 
worry about changes in the observed fitness of a hyperplane 
as represented by the current population. Given a specifi- 
cation of Z, one can exactly calculate losses and gains. 
Losses occur when a string crosses with another string 
and the resulting offspring fails to preserve the original 
string. Gains occur when two different strings cross and 
independently create a new copy of some string. For 
example, if Z = 000 then recombining 100 and 001 will 
always produce a new copy of 000. Assuming 1-point cross- 
over is used as an operator, the probability of 'losses' and 
'gains' for the string Z = 000 are calculated as follows: 

losses = P l o J ~  P( l l  1, t) + P l o a ~  P( IO1, t) 

gains = PIO~ P(OOl,t)f(f O) P( lO0 ,  t) 

+ Pzlf(O- lO)f P(OIO, t ) ~ P ( l O 0 ,  t) 

+ P I 2 ~ P ( O O I , t ) ~ P ( l l O ,  t) 
J J 

+  loo , 

, t). 

The use of Pi0 in the preceding equations represents 
the probability of crossover in any position on the corre- 
sponding string or string pair. Since Z is a string, it follows 
that P~0 = 1.0 and crossover in the relevant cases will 
always produce either a loss or a gain (depending on the 
expression in which the term appears). The probability 
that 1-point crossover will fall between the first and second 
bit will be denoted by P11. In this case, crossover must fall 
in exactly this position with respect to the corresponding 
strings to result in a loss or a gain. Likewise, PI2 will 
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denote the probability that 1-point crossover will fall 
between the second and third bit and the use of PI2 in the 
computation implies that crossover must fall in this 
position for a particular string or string pair to effect the 
calculation of losses or gains. In the above illustration, 
PI1 = PI2 = 0.5. 

The equations can be generalized to cover the remaining 
7 strings in the space. This translation is accomplished using 
bitwise addition modulo 2 (i.e. a bitwise exclusive-or 
denoted by (9. See Fig. 4 and Section 6.4). The function 
(Si | Z) is applied to each string, Si, contained in the 
equation presented in this section to produce the appropri- 
ate corresponding strings for generating an expression for 
computing all terms of the form P(Z, t + 1). 

7.1. A generalized form based on equation generators 

The 3-bit equations are similar to the 2-bit equations devel- 
oped by Goldberg (1987). The development of a general 
form for these equations is illustrated by generating the 
loss and gain terms in a systematic fashion (Whitley et al., 
1992). Because the number of terms in the equations is 
greater than the number of strings in the search space, it 
is only practical to develop equations for encodings of 
approximately 15 bits. The equations need only be defined 
once for one string in the space; the standard form of the 
equation is always defined for the string composed of all 
zero bits. Let S represent the set of binary strings of length 
L, indexed by i. In general, the string composed of all zero 
bits is denoted S O . 

7.2. Generating string losses for 1-point crossover 

Consider two strings 00000000000 and 00010000100. Using 
1-point crossover, if the crossover occurs before the first 
1 bit or after the last 1 bit, no disruption will occur. Any 
crossover between the 1 bits, however, will produce disrup- 
tion: neither parent will survive crossover. Also note that 
recombining 00000000000 with any string of the form 
0001# # # #100 will produce the same pattern of disrup- 
tion. We will refer to this string as a generator: it is like a 
schema, but # is used instead of * to distinguish better 
between a generator and the corresponding hyperplane. 
Bridges and Goldberg (1987) formalize the notion of a 
generator as follows. Consider strings B and B '  where the 
first x bits are equal, the middle (6 + 1)b i t s  have the 
pattern b # # . . .  #b  for B and 6 # # . . .  #b  for B'. Given 
that the strings are of length L, the last (L - 6 - x - 1) 
bits are equivalent. The 6 bits are referred to as sentry bits 
and they are used to define the probability of disruption. 
In standard form, B = So and the sentry bits must be 1. 
The following directed acyclic graph illustrates all genera- 
tors for 'string losses' for the standard form of a 5-bit 
equation for So: 

1 # # # 1  
/ \ 

/ \ 
01##1 1##10 

/ \ / \ 
/ \ / \ 

001#1 01#10 1#100 
/ \ / \ / \ 

/ \ / \ / \ 
00011 00110 01100 11000 

The graph structure allows one to visualize the set of all 
generators for string losses. In general, the root of this 
graph is defined by a string with a sentry bit in the first 
and last bit positions, and the generator token # in all other 
intermediate positions. A move down and to the left in the 
graph causes the leftmost sentry bit to be shifted right; a 
move down and to the right causes the rightmost sentry 
bit to be shifted left. All bits outside the sentry positions 
are 0 bits. Summing over the graph, one can see that there 
are ~L--11j.2L-j-1 or (2 L -  L - 1 )  strings generated as 
potential sources of string losses. 

For each string Si produced by one of the 'middle' gener- 
ators in the above graph structure, a term of the following 
form is added to the losses equations: 

6(Si) f(S=i) P(Si, t) 
L - l f  

where 6(Si) is a function that counts the number of cross- 
over points between sentry bits in string Si. 

7.3. Generating string gains for I-point crossover 

Bridges and Goldberg (1987) note that string gains for a 
string B are produced from two strings Q and R which 
have the following relationship to B" 

Region ~ beginning middle end 
Length ~ a r w 

Q characteristics # # . . .  # 6  = = 
R characteristics = = 6 # . . .  # 

The = symbol denotes regions where the bits in Q and R 
match those in B; again B = So for the standard form of the 
equations. Sentry bits are located such that 1-point cross- 
over between sentry bits produces a new copy of B, while 
crossover of Q and R outside the sentry bits will not pro- 
duce a new copy of B. 

Bridges and Goldberg define a beginning function A [B, a] 
and ending function f~[B, co], assuming L - w  > a -  1, 
where for the standard form of the equations: 

AlSo, c~] = # # . . .  ##1~_1%. . .  0L-1 
and 

~'~[S0, co] = 0 0 . . .  OL_w_ 11L_~o # # . . .  # #. 

These generators can again be presented as a directed 
acyclic graph structure composed of paired templates 
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which will be referred to as the upper A-generator and 
lower f~-generator. The following are the generators in a 
5-bit problem: 

10000 
00001 

/ \ 
/ \ 

#1000 10000 
00001 0001# 

/ \ / \ 
/ \ / \ 

##100 #1000 10000 
00001 001## 

/ \ / \ 
t \ / \ 

0001# 
/ \ 

/ \ 
# # # 1 0  ##100  #1000 10000 

00001 0001# 001## 0 1 # # #  

In this case, the root of  the directed acyclic graph is 
defined by starting with the most specific generator 
pair. The A-generator of the root has a 1 bit as the sentry 
bit in the first position, and all other bits are 0. The f~- 
generator of the root has a 1 bit as the sentry bit in the 
last position, and all other bits are 0. A move down and 
left in the graph is produced by shifting the left sentry bit 
of the current upper A-generator to the right. A move 
down and right is produced by shifting the right sentry 
bit of the current lower f~-generator to the left. Each 
vacant bit position outside of the sentry bits which results 
from a shift operation is filled using the # symbol. 

For  any level k of  the directed graph there are k genera- 
tors and the number of string pairs generated at that level is 
2 k-1 for each pair of generators (the root is level 1). There- 
fore, the total number of string pairs that must be included 
in the equations to calculate string gains for So of  length L 

v-~L-l t. 2k-1 
i s  Z . ~ k = l  n. 

Let S~+x and S~+y be two strings produced by a genera- 
tor pair, such that S~+x was produced by the A-generator 
and has a sentry bit at location a - 1 and S~+y was pro- 
duced by the f~-generator with a sentry bit at L - w. (The 
x and y terms are correction factors added to a and w in 
order to index uniquely a string in S.) Let the critical cross- 
over region associated with S~+x and S~+y be computed by 
the function p(S~+x, S~+y) = L - w - (a - 1). For  each 
string pair S~+x and S~+y a term of the following form is 
added to the gains equations: 

p(Sc~+x , S~+y) f ( S~_+ x) P(S~+x, t) f(S~-+y) P(S~+y, t) 
L - 1  f f 

where p(S~+x,S~+y) counts the number of crossover 
points that fall in the critical region defined by the sentry 
bits located at a - 1 and L - w. 

The generators are used as part of a two-stage compu- 
tation where the generators are first used to create an exact 
equation in standard form. A simple transformation func- 
tion maps the equations to all other strings in the space. 

7.4. The Vose and Liepins models 

The executable equations developed by Whitley (1993a) 
represent a special case of the model of a simple genetic 
algorithm introduced by Vose and Liepins (1991). In the 
Vose and Liepins model, the vector s t E IR represents the 
tth generation of the genetic algorithm and the ith com- 
ponent of  s t is the probability that the string i is selected 
for the gene pool. Using i to refer to a string in s can some- 
times be confusing. The symbol S has already been used to 
denote the set of binary strings, also indexed by i. This 
notation will be used where appropriate to avoid con- 
fusion. Note that s t corresponds to the expected distri- 
bution of strings in the intermediate population in the 
generational reproduction process (after selection has 
occurred, but before recombination). 

In the Vose and Liepins formulation, 

s I ~ P(Si, t)f(Si) 

where ~ is the equivalence relation such that x ~ y if and 
only if 37 > 0Ix = 7Y. In this formulation, the term I / f ,  
which would represent the average population fitness nor- 
mally associated with fitness proportional reproduction, 
can be absorbed by the 7 term. 

Let V = 2 L, the number of  strings in the search space. 
The vectorp t E ~ v is defined such that the kth component 
of the vector is equal to the proportional representation of 
string k at generation t before selection occurs. The k com- 
ponent o f p  t would be the same as P(Sk, t) in the notation 
more commonly associated with the schema theorem. 
Finally, let ri,j(k ) be the probability that string k results 
from the recombination of  strings i and j. Now, using g 
to denote expectation, 

gp~+l:}-~sls~ri,j(k). 
i , j  

To generalize this model further, the function ri,j(k ) is 
used to construct a mixing matrix M where the i , j th entry 
mi,  j : ri, j(O). Note that this matrix gives the probabilities 
that crossing strings i an d j  will produce the string So. Tech- 
nically, the definition of ri,j(k ) assumes that exactly one 
offspring is produced. But note that M has two entries for 
each string pair i,j where i :fij, which is equivalent to 
producing two offspring. For  current purposes, assume no 
mutation is used and 1-point crossover is used as the 
recombination operator. The matrix M is symmetric 
and is zero everywhere on the diagonal except for entry 
m0,0 which is 1.0. Note that M is expressed entirely in 
terms of  string gain information. Therefore, the first row 
and column of the matrix has entries inversely related to 
the string losses probabilities, each entry is given by 
1 -  ( 0 . 5 ~ ( S i ) / L -  1), where each string in the set S is 
crossed with So. For  completeness, ~5(Si) for strings 
not produced by the string loss generators is 0 and, thus, 
the probability of  obtaining So during reproduction is 
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1.0. The remainder of the matrix entries are given by 
0.5[p(So+x, S~+y)/(L - 1)]. For each pair of strings pro- 
duced by the string gains generators determine their index 
and enter the value returned by the function into the corre- 
sponding location in M. For completeness, p(Sj, Sk )=  0 
for all pairs of strings not generated by the string gains 
generators (i.e. mj-,k = 0). 

Once defined M does not change since it is not affected by 
variations in fitness or proportional representation in the 
population. Thus, given the assumption of no mutations, 
that s is updated each generation to correct for changes in 
the population average, and that 1-point crossover is 
used, then the standard form of the executable equations 
corresponds to the following portion of the Liepins and 
Vose model (T denotes transpose): 

sTMs. 

An alternative form of M denoted M ~ can be defined by 
having only a single entry for each string pair i,j where 
i e j. This is done by doubling the value of the entries in 
the lower triangle and setting the entries in the upper 
triangle of the matrix to 0.0. Assuming each component 
ofs  is given by s; = P(Si, t ) ( f ( S i ) / f ) ,  this has the rhetori- 
cal advantage that 

sTM '(:, 1)So = P(So, t ) ( f ( S o ) / f  )(1 - losses). 

where M ~(:, 1) is the first column of M ~ and So is the first 
component of s. Not including the above subcomputation, 
the remainder of the computation of sTM~s calculates 
string gains. 

Vose and Liepins formalize the notion that bitwise 
exclusive-or can be used to remap all the strings in the 
search space, in this case represented by the vector s. 
They show that if recombination is a combination of cross- 
over and mutation then 

A transform function to redefine equations 

000 @010=~010 

001 | 

010 |  

011 0010=~001 

100| 

101GOIO=~lll  

110| 

111| 

Fig. 5. The operator | is bit-wise exclusive-or. Let ri,j(k ) be 
the probability that k results from the recombination of  
strings i and j. I f  recombination is a combination of  crossover 
and mutation then ri,j(k @ 0) =riek, j| ). The strings are 
reordered with respect to 010 

algorithm goes from generation t to t + 1 (after selection, 
but before recombination). To complete the cycle and 
reach a point at which the Vose and Liepins models can 
be executed in an iterative fashion, fitness information is 
now explicitly introduced to transform the population at 
the beginning of iteration t + 1 to the next intermediate 
population. A fitness matrix F is defined such that fitness 
information is stored along the diagonal; the i, ith element 
is given byf( i)  wheref  is the evaluation function. 

The transformation from the vector pt+l to the next 
intermediate population represented by s t+l is given as 
follows: 

st+ I ~ F ~ ( s  l) 

Vose and Liepins give equations for calculating the 
mixing matrix M which not only includes probabilities 
for 1-point crossover, but also mutation. More complex 
extensions of the Vose and Liepins model include finite 
population models using Markov chains (Nix and Vose, 
1992). Vose (1993) surveys the current state of this research. 

ri, j (k | q) = r iek , j ,k (q  ) 
and specifically 

r i , A k )  = r , , A k  �9 0) = 

This allows one to reorder the elements in s with respect 
to any particular point in the space. This reordering is 
equivalent to remapping the variables in the executable 
equations (see Fig. 5). A permutation function, a, is 
defined as follows: 

~/So , . . .  ,sv_l)  T = (Silo, . . .  ,sj| T 

where the vectors are treated as columns and V = 2 L, the 
size of the search space. A general operator dg can be 
defined over s which remaps sTMs to cover all strings in 
the space: 

= + 

Recall that s denoted the representation of strings in the 
population during the intermediate phase as the genetic 

8. Other models of evolutionary computation 

There are several population-based algorithms that are 
either spin-offs of Holland's genetic algorithm, or which 
were developed independently. Evolution strategies and 
Evolutionary programming are two computational para- 
digms that use a population-based search. 

Evolutionary programming is based on the early book by 
Fogel et al. (1966) entitled Artificial Intelligence Through 
Simulated Evolution. The individuals, or 'organisms' in 
this study were finite-state machines. Organisms that best 
solved some target function obtained the opportunity to 
reproduce, and parents were mutated to create offspring. 
There has been renewed interest in evolutionary program- 
ming as reflected by the 1992 First Annual Conference on 
Evolutionary Programming (Fogel and Atmar, 1992). 

Evolution strategies (ES) are based on the work of 
Rechenberg (1973) and Schwefel (1975; 1981) and are 
discussed in a survey by B/ick et al. (1991). Two examples 
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of ES are the (# + A)-ES and (#, A)-ES. In (# + A)-ES # 
parents produce A offspring; the population is then 
reduced again to # parents by selecting the best solutions 
from among both the parents and offspring. Thus, parents 
survive until they are replaced by better solutions. The 
(/z, A)-ES is closer to the generational model used in canoni- 
cal genetic algorithms; offspring replace parents and then 
undergo selection. Recombination operators for evolution- 
ary strategies also tend to differ from Holland-type cross- 
over, allowing operations such as averaging parameters, 
for example, to create an offspring. 

8.1. Genitor 

Genitor (Whitley, 1989; Whitley and Kauth, 1988) was the 
first of what Syswerda (1989) has termed 'steady state' 
genetic algorithms. The name 'steady state' is somewhat 
misleading, since these algorithms show more variance 
than canonical algorithms in terms of hyperplane sampling 
behaviour (Syswerda, 1991) and are therefore more suscep- 
tible to sampling error and genetic drift. The advantage is 
that the best points found in the search are maintained in 
the population. This results in a more aggressive search 
that in practice is often quite effective. 

There are three differences between Genitor-style 
algorithms and canonical genetic algorithms. First, repro- 
duction produces one offspring at a time. Two parents are 
selected for reproduction and produce an offspring that is 
immediately placed back into the population. The second 
major difference is in how that offspring is placed back in 
the population. Offspring do not replace parents, but 
rather the least fit (or some relatively less fit) member of 
the population. In Genitor, the worst individual in the 
population is replaced. The third difference between 
Genitor and most other forms of genetic algorithms is 
that fitness is assigned according to rank rather than by 
fitness proportionate reproduction. Ranking helps to 
maintain a more constant selective pressure over the 
course of search. 

Goldberg and Deb (1991) have shown replacing the 
worst member of the population generates much higher 
selective pressure than random replacement. But higher 
selective pressure is not the only difference between 
Genitor and the canonical genetic algorithm. To borrow 
terminology used by the ES community (as suggested by 
Larry Eshelman), Genitor is a (# + A) strategy while the 
canonical genetic algorithm is a (#, A) strategy. Thus, the 
accumulation of improved strings in the population is 
monotonic. 

8.2. CHC 

Another genetic algorithm that monotonicall~r collects the 
best strings found so far is the CHC algorithm developed 
by Eshelman (1991). CHC stands for cross-generational 

elitist selection, heterogeneous recombination (by incest 
prevention) and cataclysmic mutation, which is used to 
restart the search when the population starts to converge. 

CHC explicitly borrows from the (# + A) strategy of ES. 
After recombination, the N best unique individuals are 
drawn from the parent population and offspring popu- 
lation to create the next generation. Duplicates are 
removed from the population. As Goldberg has shown 
with respect to Genitor, this kind of 'survival of the 
fittest' replacement method already imposes considerable 
selective pressure, so that there is no real need to use any 
other selection mechanisms. Thus CHC uses random selec- 
tion, except restrictions are imposed on which strings are 
allowed to mate. Strings with binary encodings must be a 
certain Hamming distance away from one another before 
they are allowed to reproduce. This form of 'incest pre- 
vention' is designed to promote diversity. Eshelman also 
uses a form of uniform crossover called HUX where 
exactly half of the differing bits are swapped during cross- 
over. CHC is typically run using small population sizes 
(e.g. 50); thus using uniform crossover in this context is 
consistent with Spears and DeJong's (1991) conjecture 
that uniform crossover can provide better sampling cover- 
age in the context of small populations. 

The rationale behind CHC is to have a very aggressive 
search (by using monotonic selection through survival of 
the best strings) and to offset the aggressiveness of the 
search by using highly disruptive operators such as 
uniform crossover. With such small population sizes, 
however, the population converges to the point that it 
begins more or less to reproduce many of the same 
strings. At this point the CHC algorithm uses cataclysmic 
mutation. All strings undergo heavy mutation, except that 
the best string is preserved intact. After mutation, genetic 
search is restarted using only crossover. 

8.3. Hybrid algorithms 

L. 'Dave' Davis states in the Handbook of Genetic Algo- 
rithms, 'Traditional genetic algorithms, although robust, 
are generally not the most successful optimization algo- 
rithm on any particular domain' (1991, p. 59). Davis 
argues that hybridizing genetic algorithms with the most 
successful optimization methods for particular problems 
gives one the best of both worlds: correctly implemented, 
these algorithms should do no worse than the (usually 
more traditional) method with which the hybridizing is 
done. Of course, it also introduces the additional compu- 
tational overhead of a population-based search. 

Davis often uses real-valued encodings instead of 
binary encodings, and employs 'recombination operators' 
that may be domain specific. Other researchers, such as 
Michalewicz (1992) also use non-binary encodings and 
specialized operations in combination with a genetic-based 
model of search. Mfihlenbein takes a similar opportunistic 
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view of hybridization. In a description of a parallel genetic 
algorithm Mfihlenbein (1991, p. 320) states, after the initial 
population is created, 'Each individual does local hill- 
climbing'. Furthermore, after each offspring is created, 
'The offspring does local hill-climbing'. 

Experimental researchers and theoreticians are particu- 
larly divided on the issue of hybridization. By adding 
hill-climbing or hybridizing with some other optimization 
methods, learning is being added to the evolution process. 
Coding the learned information back onto the chromosome 
means that the search utilizes a form of Lamarckian evol- 
ution. The chromosomes improved by local hill-climbing 
or other methods are placed in the genetic population and 
allowed to compete for reproductive opportunities. 

The main criticism is that ~f we wish to preserve the 
schema processing capabilities of the genetic algorithm, 
then Lamarckian learning should not be used. Changing 
information in the offspring inherited from the parents 
results in a loss of inherited schemata. This alters the sta- 
tistical information about hyperplane partitions that is 
implicitly contained in the population. Therefore using 
local optimization to improve each offspring undermines 
the genetic algorithm's ability to search via hyperplane 
sampling. 

Despite the theoretical objections, hybrid genetic algo- 
rithms typically do well at optimization tasks. There may 
be several reasons for this. First, the hybrid genetic algo- 
rithm is hill-climbing from multiple points in the search 
space. Unless the objective function is severely multimodal 
it may be likely that some strings (offspring) will be in the 
basin of attraction of the global solution, in which case 
hill-climbing is a fast and effective form of search. Second, 
a hybrid strategy impairs hyperplane sampling, but does 
not disrupt it entirely. For example, using local optimiz- 
ation to improve the initial population of strings only 
biases the initial hyperplane samples, but does not interfere 
with subsequent hyperplane sampling. Third, in general, 
hill-climbing may find a small number of significant 
improvements, but may not dramatically change the off- 
spring. In this case, the effects on schemata and hyperplane 
sampling may be minimal. 

9. Hill-climbers or hyperplane samplers? 

In a recent paper entitled, 'How genetic algorithms really 
work: I. Mutation and Hill-climbing', Mtihlenbein shows 
that an ES algorithm using only mutation works quite 
well on a relatively simple test suite. Mtihlenbein states 
that for many problems 'many nonstandard genetic 
algorithms work well and the standard genetic algorithm 
performs poorly' (1992, p. 24). 

This raises a very interesting issue. When is a genetic algo- 
rithm a hyperplane sampler and when is it a hill-climber? 
This is a non-trivial question since it is the hyperplane 
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sampling abilities of genetic algorithms that are usually 
touted as the source of global sampling. On the other 
hand, some researchers argue that crossover is unnecessary 
and that mutation is sufficient for robust and effective 
search. All the theory concerning hyperplane sampling has 
been developed with respect to the canonical genetic 
algorithm. Alternative forms of genetic algorithms often 
use mechanisms such as monotonic selection of the best 
strings which could easily lead to increased hill-climbing. 
Vose's work (personal communication, June 1993) with 
exact models of the canonical genetic algorithm indicates 
that even low levels of mutation can have a significant 
impact on convergence and change the number of fixed 
points in the space. (For the functions Vose has examined 
so far mutation always reduces the number of fixed points.) 

In practice there may be clues as to when hill-climbing is 
a dominant factor in a search. Hyperplane sampling 
requires larger populations. Small populations are much 
more likely to rely on hill-climbing. A population of 20 
individuals just does not provide very much information 
about hyperplane partitions, except perhaps very low- 
order hyperplanes (there are only 5 samples of each 
order-2 hyperplane in a population of 20). Second, very 
high selective pressure suggests hill-climbing may domi- 
nate the search. If the 5 best individuals in a population 
of 100 strings reproduce 95% of the time, then the effective 
population size may not be large enough to support hyper- 
plane sampling. 

10. Parallel genetic algorithms 

Part of the biological metaphor used to motivate genetic 
search is that it is inherently parallel. In natural popu- 
lations, thousands or even millions of individuals exist in 
parallel. This suggests a degree of parallelism that is 
directly proportional to the population size used in genetic 
search. In this paper, three different ways of exploiting 
parallelism in genetic algorithms will be reviewed. First, a 
parallel genetic algorithm similar to the canonical genetic 
algorithm is reviewed; next an island model using distinct 
subpopulations is presented. Finally, a fine-grain massively 
parallel implementation that assumes one individual resides 
at each processor is explored. It can be shown that the fine- 
grain models are a subclass of cellular automata (Whitley, 
1993b). Therefore, while these algorithms have been 
referred to by a number of somewhat awkward names 
(e.g. fine-grain genetic algorithms, or massively parallel 
genetic algorithms) the name cellular genetic algorithm is 
used in this tutorial. 

In each of the following models, strings are mapped to 
processors in a particular way. Usually this is done in a 
way that maximizes parallelism while avoiding unnecessary 
processor communication. However, any of these models 
could be implemented in a massively parallel fashion. 
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What tends to be different is the role of  local versus global 
communication. 

10.1. Global populations with parallelism 

The most direct way to implement a parallel genetic algo- 
rithm is to implement something close to a canonical 
genetic algorithm. The only change is that selection is 
done by tournament selection (Goldberg, 1990; Goldberg 
and Deb, 1991). 

Tournament selection implements a noisy form of rank- 
ing. Recall that the implementation of one generation in a 
canonical genetic algorithm can be seen as a two-step 
process. First, selection is used to create an intermediate 
population of duplicate strings selected according to 
fitness. Second, crossover and mutation are applied to 
produce the next generation. Instead of  using fitness- 
proportionate reproduction or directly using ranking, 
tournaments are held to fill the intermediate population. 
Assume two strings are selected out of the current popu- 
lation after evaluation. The better of the two strings is 
then placed in the intermediate population. This process 
of randomly selecting two strings from the current popu- 
lation and placing the best in the intermediate population 
is repeated until the intermediate population is full. 
Goldberg and Deb (1991) show analytically that this form 
of tournament selection is the same in expectation as 
ranking using a linear 2.0 bias. If a winner is chosen 
probabilistically from a tournament of 2, then the ranking 
is linear and the bias is proportional to the probability 
with which the best string is chosen. 

With the addition of tournament selection, a parallel form 
of the canonical genetic algorithm can now be implemented 
in a fairly direct fashion. Assume the processors are 
numbered 1 to N / 2  and the population size, N, is even; 2 
strings reside at each processor. Each processor holds two 
independent tournaments by randomly sampling strings in 
the population and each processor then keeps the winners 
of  the two tournaments. The new strings that now reside in 
the processors represent the intermediate generation. Cross- 
over and evaluation can now occur in parallel. 

10.2. Island models 

One motivation for using island models is to exploit a more 
coarse-grain parallel model. Assume we wish to use 16 
processors and have a population of 1600 strings; or we 
might wish to use 64 processors and 6400 strings. One way 
to do this is to break the total population down into sub- 
populations of 100 strings each. Each one of these sub- 
populations could then execute as a normal genetic 
algorithm. It could be a canonical genetic algorithm, or 
Genitor, or CHC. Occasionally, perhaps every five gener- 
ations or so, the subpopulations would swap a few strings. 
This migration allows subpopulations to share genetic 

C-- 

Fig. 6. An example of (a) an island model and (b) a cellular genetic 
algorithm. The colouring of the cells in the cellular genetic algorithm 
represents genetically similar material that forms virtual islands iso- 
lated by distance. The arrows in the cellular model indicate that the 
grid wraps around to form a torus 

material (Whitley and Starkweather, 1990; Gorges- 
Schleuter, 1991; Tanese, 1989; Starkweather et al., 1991). 

Assume for a moment that one executes 16 separate 
genetic algorithms, each using a population of 100 strings 
without migration. In this case, 16 independent searches 
occur. Each search will be somewhat different since the 
initial populations will impose a certain sampling bias; 
also, genetic drift will tend to drive these populations in 
different directions. Sampling error and genetic drift are 
particularly significant factors in small populations and, 
as previously noted, are even more pronounced in genetic 
algorithms such as Genitor and CHC when compared to 
the canonical genetic algorithm. 

By introducing migration, the island model is able to 
exploit differences in the various subpopulations; this vari- 
ation in fact represents a source of genetic diversity. Each 
subpopulation is an island, and there is some designated 
way in which genetic material is moved from one island 
to another. If a large number of strings migrate each gener- 
ation, then global mixing occurs and local differences 
between islands will be driven out. If  migration is too 
infrequent, it may not be enough to prevent each small 
subpopulation from prematurely converging. 

10.3. Cellular genetic algorithms 

Assume we have 2500 simple processors laid out on a 
50 x 50 2-dimensional grid. Processors communicate only 
with their immediate neighbours (e.g. north, south, east 
and west: NSEW). Processors on the edge of the grid 
wrap around to form a torus. How should one implement 
a genetic algorithm on such an architecture? 

One can obviously assign one string per processor or cell. 
But global random mating would now seem inappropriate 
given the communication restrictions. Instead, it is much 
more practical to have each string (i.e. processor) seek a 
mate close to home. Each processor can pick the best string 
in its local neighbourhood to mate with, or alternatively, 
some form of  local probabilistic selection could be used. 



84 Whit ley  

In either case, only one offspring is produced, and becomes 
the new resident at that processor. Several people have pro- 
posed this type of computational model (Manderick and 
Spiessens, 1989; Collins and Jefferson, 1991; Hillis, 1990; 
Davidor, 1991). The common theme in cellular genetic 
algorithms is that selection and mating are typically 
restricted to a local neighbourhood. 

There are no explicit islands in the model, but there is the 
potential for similar effects. Assuming that mating is 
restricted to adjacent processors, if one neighbourhood of 
strings is 20 or 25 moves away from another neighbour- 
hood of strings, these neighbourhoods are just as isolated 
as two subpopulations on separate islands. This kind of 
separation is referred to as isolated by distance (Wright, 
1932; Mfihlenbein, 1991; Gorges-Schleuter, 1991). Of 
course, neighbours that are only 4 or 5 moves away have 
a greater potential for interaction. 

After the first random population is evaluated, the 
pattern of strings over the set of processors should also be 
random. After a few generations, however, there emerge 
many small local pockets of  similar strings with similar 
fitness values. Local mating and selection creates local 
evolutionary trends, again due to sampling effects in the 
initial population and genetic drift. After several genera- 
tions, competition between local groups will result in fewer 
and larger neighbourhoods. 

11. Conclusions 

One thing that is striking about genetic algorithms and the 
various parallel models is the richness of this form of compu- 
tation. What may seem like simple changes in the algorithm 
often result in surprising kinds of emergent behaviour. 
Recent theoretical advances have also improved our under- 
standing of genetic algorithms and have opened the door 
to using more advanced analytical methods. 

Many other timely issues have not been covered in this 
tutorial. In particular, the issue of deception has not been 
discussed. The notion of deception, in simplistic terms, 
deals with conflicting hyperplane competitions that have 
the potential either to mislead the genetic algorithm, or to 
simply confound the search because the conflicting hyper- 
plane competitions interfere with the search process. For  
an introduction to the notion of deception see Goldberg 
(1987) and Whitley (1991); for a criticism of the work on 
deception see Grefenstette (1993). 
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