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Abstract Variable neighborhood search (VNS) is a recent metaheuristic for solving combina-
torial and global optimization problems whose basic idea is systematic change of neighborhood
within a local search. In this survey paper we present basic rules of VNS and some of its exten-
sions. Moreover, applications are briefly summarized. They comprise heuristic solution of a
variety of optimization problems, ways to accelerate exact algorithms and to analyze heuristic
solution processes, as well as computer-assisted discovery of conjectures in graph theory.

Résumé La Recherche à voisinage variable (RVV) est une métaheuristique récente pour la réso-
lution de problèmes d’optimisation combinatoire et globale, dont l’idée de base est le changement
systématique de voisinage au sein d’une recherche locale. Dans ce chaptre, nous présentons
les règles de base de RVV et de certaines de ses extensions. De plus, des applications sont
brièvement résumées. Elles comprennent la résolution approchée d’un ensemble de problèmes
d’optimisation, des manières d’accélerer les algorithmes exacts et d’analyser le processus de
résolution des heuristiques ainsi qu’un système automatique de découverte de conjectures en
théorie des graphes.

S, X, x and f are solution space, feasible set, feasible solution and real valued function,
respectively. If S is a finite but large set a combinatorial optimization problem is defined.

1 INTRODUCTION

An optimization problem may be formulated as follows:
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If we talk about continuous optimization. Most optimization problems are
NP-hard and heuristic (suboptimal) solution methods are needed to solve them (at least
for large instances or as an initial solution for some exact procedure).

Metaheuristics, or general frameworks for building heuristics to solve problem (1),
are usually based upon a basic idea, or analogy. Then, they are developed, extended in
various directions and possibly hybridised. The resulting heuristics often get compli-
cated, and use many parameters. This may enhance their efficiency but obscures the
reasons of their success.

Variable Neighborhood Search (VNS for short), a metaheuristic proposed just a
few years ago [110,112], is based upon a simple principle: systematic change of neigh-
borhood within the search. Its development has been rapid, with several dozen papers
already published or to appear. Many extensions have been made, mainly to allow
solution of large problem instances. In most of them, an effort has been made to keep
the simplicity of the basic scheme.

In this paper, we survey these developments. The basic rules of VNS methods
are recalled in the next section. Extensions are considered in Section 3 and Hybrids in
Section 4. Applications are reviewed in Section 5, devoted to heuristic solution of com-
binatorial and global optimization problems, and Sections 6–8, which cover innovative
uses, i.e., tools for analysis of the solution process of standard heuristics, acceleration
of column generation procedures, and computer-assisted discovery in graph theory.

Desirable properties of metaheuristics are listed in Section 9 together with brief
conclusions.

Let us denote with a finite set of pre-selected neighborhood
structures, and with the set of solutions in the kth neighborhood of x. (Most local
search heuristics use only one neighborhood structure, i.e., ) Neighborhoods

may be induced from one or more metric (or quasi-metric) functions introduced
into a solution space S. An optimal solution (or global minimum) is a feasible
solution where a minimum of (1) is reached. We call a local minimum of (1)
with respect to (w.r.t. for short), if there is no solution such
that Metaheuristics (based on local search procedures) try to continue
the search by other means after finding the first local minimum. VNS is based on three
simple facts:

Fact 1 A local minimum w.r.t. one neighborhood structure is not necessary so with
another;

Fact 2 A global minimum is a local minimum w.r.t. all possible neighborhood
structures.

Fact 3 For many problems local minima w.r.t. one or several are relatively close
to each other.

This last observation, which is empirical, implies that a local optimum often pro-
vides some information about the global one. This may for instance be several variables
with the same value in both. However, it is usually not known which ones are such. An
organized study of the neighborhood of this local optimum is therefore in order, until
a better one is found.

2 BASIC SCHEMES
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In order to solve (1) by using several neighborhoods, facts 1–3 can be used in three
different ways: (i) deterministic; (ii) stochastic; (iii) both deterministic and stochastic.

(i) The Variable neighborhood descent (VND) method is obtained if change of
neighborhoods is performed in a deterministic way and its steps are presented on
Figure 6.1.

Most local search heuristics use in their descents a single or sometimes two neigh-
borhoods Note that the final solution should be a local minimum w.r.t. all

neighborhoods, and thus chances to reach a global one are larger than by using a
single structure. Beside this sequential order of neighborhood structures in VND above,
one can develop a nested strategy. Assume e.g. that then a possible nested
strategy is: perform VND from Figure 6.1 for the first two neighborhoods, in each point

that belongs to the third Such an approach is applied in [9,16,81].
(ii) The Reduced VNS (RVNS) method is obtained if random points are selected

from without being followed by descent, and its steps are presented on
Figure 6.2.

RVNS is useful for very large instances for which local search is costly. It is observed
that the best value for the parameter is often 2. In addition, the maximum number
of iterations between two improvements is usually used as stopping condition. RVNS is
akin to a Monte-Carlo method, but more systematic (see [114] where results obtained by
RVNS were 30% better than those of the Monte-Carlo method in solving a continuous
min–max problem). When applied to the p-Median problem, RVNS gave equally good
solutions as the Fast Interchange heuristic of [136] in 20–40 times less time [84].
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(iii) The Basic VNS (VNS) method [112] combines deterministic and stochastic
changes of neighborhood. Its steps are given on Figure 6.3.

The stopping condition may be e.g. maximum CPU time allowed, maximum number
of iterations, or maximum number of iterations between two improvements. Often
successive neighborhoods will be nested. Observe that point is generated at
random in step 2a in order to avoid cycling, which might occur if any deterministic rule
was used. Note also that the Local search step (2b) may be replaced by VND. Using
this VNS/VND approach led to the most successful applications recently reported (see
e.g. [3,16,24–29,81,124,125]).

3 EXTENSIONS

Several easy ways to extend the basic VNS are now discussed. The basic VNS is
a descent, first improvement method with randomization. Without much additional
effort it could be transformed into a descent-ascent method: in Step 2c set also

with some probability even if the solution is worse than the incumbent (or best
solution found so far). It could also be changed into a best improvement method:
make a move to the best neighborhood among all of them. Other variants
of the basic VNS could be to find solution in Step 2a as the best among b (a
parameter) randomly generated solutions from the kth neighborhood, or to introduce

and two parameters that control the change of neighborhood process: in the
previous algorithm instead of set and instead of set

While the basic VNS is clearly useful for approximate solution of many combi-
natorial and global optimization problems, it remains difficult or long to solve very
large instances. As often, size of problems considered is limited in practice by the
tools available to solve them more than by the needs of potential users of these
tools. Hence, improvements appear to be highly desirable. Moreover, when heuris-
tics are applied to really large instances their strengths and weaknesses become clearly
apparent. Three improvements of the basic VNS for solving large instances are now
considered.
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(iv) The Variable Neighborhood Decomposition Search (VNDS) method [84]
extends the basic VNS into a two-level VNS scheme based upon decomposition of the
problem. Its steps are presented on Figure 6.4.

Note that the only difference between the basic VNS and VNDS is in step 2b:
instead of applying some local search method in the whole solution space  (starting
from in VNDS we solve at each iteration a subproblem in some subspace

with When the local search used in this step is also VNS, the
two-level VNS-scheme arises.

VNDS can be viewed as embedding the classical successive approximation scheme
(which has been used in combinatorial optimization at least since the sixties, see,
e.g., [66]) in the VNS framework. Other simpler applications of this technique, where
the size of the subproblems to be optimized at the lower level is fixed, are Large
neighborhood search [128] and POPMUSIC [131].

(v) The Skewed VNS (SVNS) method [74], a second extension, addresses the
problem of exploring valleys far from the incumbent solution. Indeed, once the best
solution in a large region has been found it is necessary to go quite far to obtain
an improved one. Solutions drawn at random in far-away neighborhoods may differ
substantially from the incumbent and VNS can then degenerate, to some extent, into the
Multistart heuristic (in which descents are made iteratively from solutions generated at
random and which is known not to be very efficient). So some compensation fordistance
from the incumbent must be made and a scheme called Skewed VNS is proposed for
that purpose. Its steps are presented in Figure 6.5.

SVNS makes use of a function to measure distance between the incumbent
solution x and the local optimum found The distance used to define the as in the
above examples, could be used also for this purpose. The parameter must be chosen in
order to accept exploring valleys far from x when is larger than f(x) but not too
much (otherwise one will always leave x). A good value is to be found experimentally
in each case. Moreover, in order to avoid frequent moves from x to a close solution one
may take a large value for when is small. More sophisticated choices for a
function could be made through some learning process.

(vi) Parallel VNS (PVNS) methods are a third extension. Several ways for paral-
lelizing VNS have recently been proposed [32,106] in solving the p-Median problem.
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In [106] three of them are tested: (i) parallelize local search; (ii) augment the num-
ber of solutions drawn from the current neighborhood and do local search in parallel
from each of them and (iii) do the same as (ii) but updating the information about the
best solution found. The second version gave the best results. It is shown in [32] that
assigning different neighborhoods to each processor and interrupting their work as soon
as an improved solution is found gives very good results: best known solutions have
been found on several large instances taken from TSP-LIB [122]. Three Parallel VNS
strategies are also suggested for solving the Traveling purchaser problem in [116].

4 HYBRIDS

As change of neighborhood in the search for good solutions to (1) is a simple and a
very powerful tool, several authors have added such a feature to other metaheuristics
than VNS.

In this section we review the resulting Hybrids at a general level; more details
concerning specific applications are given in the next section.

(i) VNS and Tabu search Tabu search ([62,63,72]) is a metaheuristic that has a
huge number of applications (see, e.g., [64]). It explores different types of memories
in the search, i.e., recency based (short-term), frequency based, long-term memories
etc. Usually it uses one neighborhood structure and, with respect to that structure,
performs descent and ascent moves building a trajectory. In principle, there are two
ways of making hybrids of VNS and TS: use TS within VNS or use VNS within TS.
Recently four reports on hybrids of the first kind and two on hybrids of the second kind
have been proposed.

For solving the Route-median problem, TS is used instead of Local search within
VNS (step 2b of Figure 6.3) in [126] (the resulting method is called VNTS), while
in [20], in solving the Nurse rostering problem, in each among several neighborhoods
simple descent or TS are used alternatively. A Multi-level TS is proposed in [97]
for solving the Continuous min–max problem, where each level represents a ball of
different size in the vicinity of the current solution, i.e., different neighborhoods, and a
tabu list is constructed for each level. Reactive variable neighborhood descent (ReVND)



is proposed in [14] for solving the Vehicle routing problem with time windows. In
repeating a sequence of four proposed local searches, the information on unsuccessful
pairs of edges is memorized so that in the next repetition those pairs are not considered.
In that way the size of each neighborhood is reduced.

Note that nested VND can easily be used in a TS framework since cycling can
be avoided by controlling only one neighborhood. In solving the Multisource Weber
problem, several heuristics that use nested VND within TS are proposed in [16]. Moves
are considered as ‘tabu’ regarding the relocation neighborhood only, while for each
solution of that neighborhood reallocation and alternate moves are used in a sequence.
It is also observed in [37] that the same Tabu list can be used for several different
neighborhoods used sequentially (i.e., Or-opts and interchanges) for solving problems
where the solution is stored as a permutation of its attributes or variables. This makes
possible a hybrid of TS and VND, i.e., VND can be used within TS.

(ii) VNS and GRASP GRASP is a two phase metaheuristic [48]. In the first
phase solutions are constructed using a greedy randomized procedure and in the second,
solutions are improved by some local search or enumerative method. A natural way of
hybridizing GRASP and VNS is to use VNS in the second phase of GRASP. Such an
approach has been performed in solving the Steiner tree problem in graphs [108,125],
the Phylogeny problem [3], the Prize-collecting Steiner tree problem [24], the Traveling
purchaser problem [116] and the Max-Cut problem [49]. The results reported show
improvements of the GRASP/VNS hybrid over the pure GRASP.

(iii) VNS and Constraint programming In the last few years, Constraint pro-
gramming (CP) has attracted high attention among experts from many areas because
of its potential for solving hard real-life problems. A constraint is a logical relation
among several variables, each taking a value in a given domain. The important fea-
ture of constraints is their declarative manner, i.e., they specify what relationship must
hold without specifying a computational procedure to enforce it. One aim of CP is to
solve problems by stating constraints and finding solutions satisfying all these con-
straints. It has been noted that local search techniques can successfully be used in CP
(see, e.g., [118,119,128]). In [57], two operators have been suggested and used in a
local descent (VND), within Large neighborhood search (LNS) and CP framework for
solving the Vehicle routing problem with time windows (VRPTW). They are called
LNS-GENI and SMART (SMAll RouTing). The idea of LNS [128], which can be
seen as a general decomposition heuristic, is first to ‘destroy’ the current solution by
removing a given number of solution attributes and then rebuilt it in the best possi-
ble way by solving smaller problems. Both phases are problem dependent, but some
general rules are recommended in [128]. In [12], in order to minimize the total travel
costs of VRPTW, destruction of the solution is performed in a more systematic way:
it starts from k = 2 attributes, then 3, etc.; once the improvement in rebuilding phase
is obtained, k = 2 is set again. This version is very close to VNDS. A simpler version
of LNS (called LNS/CP/GR) is suggested in [105] for solving a Valued Constraint
satisfaction problem (VCSP). In VCSP the penalty (a valuation) must be paid for each
unsatisfied variable. Then the objective is to find values of variables such that the sum
of penalties is minimum. In rebuilding the solution, authors use a greedy procedure.
However, in future work, they could include VNS, which has been done recently by
other authors. In [107] so-called VNS/LDS + CP heuristic is proposed and tested on
the Frequency assignment problem.
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In this section and the three following ones, we review applications of VNS, the number
of which has rapidly increased since 1997, when the first paper on VNS was published.
We begin with traditional ones, i.e., finding good solutions to combinatorial and global
optimization problems, that is near optimal ones or possibly optimal ones but without
a proof of optimality. These applications are grouped by field and within each field
papers are considered chronologically.

We shall consider here Traveling salesman problem (TSP), Vehicle routing problem
(VRP), Arc routing problem (ARP) and some of their extensions that have been solved
by VNS.

Traveling salesman problem Given n cities with intercity distances, the traveling
salesman problem (TSP) is to find a minimum cost tour x (i.e., a permutation of the
cities which minimizes the sum of the n distances between adjacent cities in the tour).
It is a classical NP-hard problem.

A heuristic for the Euclidean TSP called GENIUS was developed in [59]. It is a
sophisticated insertion followed by local deletion/insertion and correction procedure.
The size of the neighborhood in GENIUS depends on a parameter p (the number of
cities already in the tour closest to the city that is considered for possible deletion or
insertion). We immediately get a set of neighborhood structures for VNS by denoting
with            all                                                                                                                 tours obtained by deletion/insertion with parameter value p. Details can
be found in [112] where results on the same type of test problems as reported in [59]
are given. VNS gives a 0.75% average improvement over GENIUS within a similar
CPU time. Moreover, improvements are obtained for all problem sizes.

Probably the most popular heuristic for solving TSP is 2-opt, where in turn two
links between cities in the current tour x are removed and these cities reconnected by
adding links in the only other way which gives a tour. Since 2-opt is a local search
descent heuristic, it stops in a local minimum. In [78] the basic VNS rules using
2-opt (or a quicker variant, in which only the shortest edges are used) as local search
routine, are applied. Average results for random Euclidean problems over 100 trials
for n = 100,...,500 and 10 trials for n = 600,..., 1000 are reported. Average
improvements in value of 2.73% and 4.43% over the classical 2-opt heuristic within a
similar computing time are obtained by these two versions respectively.

In [19] a new local search heuristic, the so-called k-hyperopt is proposed. Then a
VND heuristic uses 2-opt, 2-hyperopt and 3-hyperopt neighborhoods in descent, while
a VNS heuristic uses k-hyperopt for shaking and 2-hyperopt for a local search. The
new methods are compared with Iterated local search and Multistart 2-opt. Results are
reported on standard test instances. It appears that tours obtained are comparable with
iterated Lin-Kernighan [103] in terms of tour quality, but CPU time is larger.

In a work in progress [58], a similar VND heuristic is applied within two different
decomposition schemes, i.e., VNDS: on the one hand subproblems corresponding to k
successive points on the current tour are selected and re-optimized; on the other hand
the same is done but with the k closest points from a randomly chosen one. It appears
that the second decomposition gives the best results.
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Traveling salesman problem with back-hauls The GENIUS heuristic [59] was
applied to the TSP with back-hauls in [60]. In this problem customers (or cities) are
divided into three disjoint sets: depot, line-haul and back-haul customers. Starting from
the depot, a tour must be designed such that all line-haul customers are visited before
all back-haul customers. This time VNS gives a 0.40% average improvement over
GENIUS with a 30% increase in computing time [112]. Improvements are obtained
for all problem sizes.

Route-median problem Given a set of cities with inter-cities distances, the
Route-Median problem consists in choosing a subset of cities that are included in
a cycle and allocating the remaining ones each to the closest chosen city in order to
minimize the length of the route with an upper bound on the sum of the distances from
the cities not in the route to the cities to which they are assigned. An exact branch
and cut solution method has been proposed in [101]. A metaheuristic approach that
combines VNS and TS and uses several neighborhood structures is proposed in [126].

Vehicle routing problem with time windows The Vehicle routing problem
(VRP) consists in designing least cost routes from one depot to a given set of cus-
tomers. The routes must be designed in such a way that each customer is visited only
once by exactly one vehicle. There are usually capacity constraints on the load that can
be carried by a vehicle, and each customer has a known demand. The time window
variant to the problem (VRPTW) imposes the additional constraint that each customer
must be visited within a given time interval.

Four methods for solving VRPTW have recently been proposed that include VNS
ideas as well. In [57] two operators which make use of Constraint programming and
local search to explore their neighborhood are proposed. These operators are combined
in a VND framework. Computational results show that this method is comparable with
other heuristics, often producing better solutions in terms of distance traveled. Another
heuristic [14], in its third phase, uses four neighborhoods in descent. In addition, not-
improving neighborhood solutions are memorized, so that in the next pass they are
not visited. The resulting method is called Reactive VND (ReVND). The obvious fact
that a local minimum w.r.t. one objective is not necessary so for another, can also
be a powerful tool for escaping from the local minima trap. This has been explored
in [14]. In the second phase the objective is minimum number of vehicles, in the
third (where ReVNS is proposed) the objective is to minimize the total travel distance,
and in the last phase a new objective function is defined that considers both criteria
with given weights. Results are reported on standard data sets. It appears that the
proposed procedure outperforms other recent heuristics for VRPTW, and that four
new best known solutions are found. In [30] the same idea is used (i.e., escape from
the local minima trap by changing both the neighborhood structure and the objective
function), but with different local searches and in a different way: the classical k-opt
exchanges improve the solution (for ) in terms of number of vehicles and then
another objective is considered. Beside the two objectives mentioned above, two other
functions are used as well. No parameter tuning is required and no random choice is
made. The algorithm has been tested on benchmark problems with favorable results,
when compared with those obtained by most recent heuristics. In the most recent paper
for solving VRTPTW [12], the idea of changing both the objective function and the
neighborhoods within the search is explored further, and probably the best results to
date on Solomon’s benchmark instances are reported. The heuristic has two phases. In
the first one, five neighborhood structures (2-opt, Or-opt, relocation, interchange and
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cross-over) and three objective functions (number of routes, maximum of the sum-of-
squares route sizes, minimum of minimal delay) are considered. All five neighborhoods
are not used as in VND (not in a sequential nor nested way), i.e., a single one among
them is chosen at random and explored for all three objectives. The resulting procedure
uses the Simulated annealing framework. In the second phase the authors implement
a modified Large neighborhood search (LNS) [128] heuristic (minimizing the total
distance traveled) which, according to them, make it very close to VNS.

Vehicle routing problem with backhauls (VRPB) In this problem the vehicles
are not only required to deliver goods to (linehaul) customer, but also to pick up
goods at (backhaul) customers locations. In [33] Reactive tabu search (RTS) and VND
are developed and compared on some VRP test instances from the literature with
different percentage of linehaul customers (50%, 66% and 80%). VND uses insertion
and interchange moves in descent. It appears that RTS and VND are 1.8% and 5.3%
above known optimal value.

Arc routing problem In Arc routing problems the aim is to determine a least
cost traversal of all edges or arcs of a graph, subject to some side constraints. In the
Capacitated arc routing problem (CARP) edges have a non-negative weight and each
edge with a positive weight must be traversed by exactly one of several vehicles starting
and ending their trip at a depot, subject to the constraint that total weight of all edges
serviced by a vehicle cannot exceed its capacity. In [61] the VNS heuristic developed
in [109] for the undirected CARP was compared with a Tabu search heuristic [87].
The conclusions are as follows: (i) on small test instances TS and VNS
perform similarly (the deviation from optimality is identical and computing times are
about 20% smaller for VNS); (ii) on larger test instances VNS is better than TS in terms
of solution quality, but also faster (average deviation from optimality and computing
times on the 270 instances were 0.71% and 349.81 s for TS and 0.54% and 42.50s for
VNS).

Linear ordering problem Given a squared n × n matrix D, the Linear order-
ing problem (LOP) consists in finding permutations of rows and columns of D such
that the sum of all elements above the main diagonal is maximum. LOP has a large
number of applications such as triangulation of input-output matrices, archaeological
seriation, scheduling etc. In [65], a basic VNS heuristic for solving LOP is proposed.
Neighborhoods are derived by k row interchanges, and local searches performed using
the same neighborhood as in the TS approach from [102]. The outer loop of the basic
VNS has not been used, i.e., the procedure stops the first time all neighborhoods
were explored. It is shown, on the same 49 test instances, that both TS and VNS (
is set to 10) have similar performance: TS is slightly better in terms of the solution
quality (number of optimal solutions found by TS was 47 and 44 for VNS); VNS is
faster (average time was 0.93 seconds for TS and 0.87 for VNS).

Traveling purchaser problem (TPP) can be seen as an extension of TSP. Given
a set of m items to be purchased at n markets, the cost of item k at market j ( k =
1,.., m, j = 1,..,n) and inter-market travel costs  the problem is to purchase all m
products by visiting a subset of the markets in a tour (starting from the source j = 0),
such that the total travel and purchase costs are minimized. This problem includes many
well-known NP-hard problems such as uncapacitated facility location, set covering and
group Steiner tree problems as its special cases [121].

Several constructive heuristics for the TSP are adapted in the initial solution building
(within GRASP) and several neighborhoods are used for local search (within VND) for
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 p-Median problem Given a set L of m potential locations for p facilities and a set U
of given locations for n users, the p-Median problem (PM) is to locate simultaneously
the p facilities in order to minimize the total transportation distance (or cost) from users
to facilities, each user being served by the closest facility. Solutions of PM are thus
characterized by 0–1 vectors x with p components among |L| equal to 1 indicating
where facilities are located.

There are several papers that use VMS for solving the PM problem. In the first
one [77], the basic VNS is applied and extensive statistical analysis of various strategies
performed. Neighborhood structures are defined by moving facilities
and correspond to sets of 0–1 vectors at Hamming distance from x.
The descent heuristic used is 1–interchange, with the efficient Fast Interchange (FI)
computational scheme [136]. Results of a comparison of heuristics for OR-Lib and
some TSP-Lib problems are reported. It appears that VNS outperforms other heuristics.
In order to solve larger PM problem instances, in [84] both RVNS and VNDS are
applied. Subproblems with increasing number of users (that are solved by VNS) are
obtained by merging the sets of users (or market areas) associated with k (k = 1, . . . , p)
medians. Results on 1400, 3038 and 5934 users instances from the TSP library show
VNDS improves notably upon VNS in less computing time, and gives much better
results than FI, in the same time that FI takes for a single descent. Moreover, Reduced
VNS (RVNS), which does not use a descent phase, gives results similar to those of
FI in much less computing time. Two versions of Parallel VNS for PM are proposed
in [32,106] (see Section 3).

Multisource Weber problem The multisource Weber (MW) problem (also
known as continuous location-allocation problem) is the continuous counterpart of
PM: instead of locating the p facilities at some locations of L, they can be located
anywhere in the plane. An early application of VNS to MW is given in [17]. Several
other ones are discussed at length in [16]. It appears that the choice of neighborhoods
is crucial. Reassignment of customers to facilities a few at a time is a poor choice, as
it entails only marginal changes in the solutions considered. Much better results are
obtained when the facilities themselves are moved. As they may be located anywhere
in the plane target locations are needed. An easy and efficient choice is locations of
customers where there is no facility as yet. Using this neighborhood structure, several
basic TS and VNS heuristics were developed and an extensive empirical study car-
ried out to evaluate various heuristics—old, recent, and new—in a unified setting. The
different methods (i.e., Genetic search, three Tabu search variants, four VNS variants
etc.) were compared on the basis of equivalent CPU times. Results of this study indicate
that VNS can be effectively used to obtain superior solutions. For instance on a series
of 20 problems with 1060 users the average error (by comparison with best known
solution) is of 0.02% only for the best VNS, while it can rise to more than 20% for
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5.2 Location and Clustering Problems

solving TPP in [116,129]. Among many possible variants that have been investigated
in the sequential implementation are two from each class of heuristic (GRASP, VNS,
Hybrid GRASP/VNS and TS [135]) on 16 random test instances with 50–150 markets
and items. Each heuristic was restarted 5 times and average results reported. Among
8 sequential codes the GRASP/VNS hybrid had the best performance, while among 5
parallel methods, VNS was the best in average.



some well-known heuristics of the literature. Average error for a Genetic algorithm
was 1.27% and for the best TS 0.13%.

Minimum-sum-of-squares clustering problem Given a set of n points in Euclid-
ean q-dimensional space, the minimum sum-of-squares clustering problem (MSSC)
is to partition this set into classes, or clusters, such that the sum of squared distances
between entities and the centroids of their clusters is minimum. Among many heuristics
for MSSC, the k-Means local search heuristic [93] is the most popular. It is an inter-
change heuristic, where points are reassigned to another cluster than their own, one at a
time, until a local optimum is reached. Another popular heuristic, called H-Means [2],
selects an initial partition, computes the centroids of its clusters, then reassigns entities
to the closest centroid and iterates until stability. A new local search heuristic, called
J-Means is proposed in [81]: centroids are relocated at some of the given points, which
do not yet coincide with one of them. Results of a comparison of k-Means, H-Means,
H + K-Means (where H-Means and k-Means are applied in sequence) and two ver-
sions of VNS are given in [81]. VNS–1 is an extension of k-Means and gives slightly
better results than H + K -Means; VNS–2 which extends J -Means proves to be the
best heuristic.

Fuzzy clustering problem The Fuzzy clustering problem (FCP) is an important
one in pattern recognition. It consists in assigning (allocating) a set of patterns (or
entities) to a given number of clusters such that each of them belongs to one or more
clusters with different degrees of membership. The objective is to minimize the sum of
squared distances to the centroids, weighted by the degrees of membership. The fuzzy
clustering problem was initially formulated in [42] as a mathematical programming
problem and later generalized in [13]. The most popular heuristic for solving FCP is
the so-called Fuzzy C-means (F-CM) method [23]. It alternatively finds membership
matrices and centroids until there is no more improvement in the objective function
value. A new descent local search heuristic called Fuzzy J-means (F-JM) is proposed
in [9] where the neighborhood is defined by all possible centroid-to-entity relocations
(see also [16,81]). This ‘integer’ solution is then moved to a continuous one by an
alternate step, i.e., by finding centroids with given memberships. Fuzzy VNS rules are
applied as well (F-JM is used as local search subroutine).

p-Center problem The p-Center problem consists in locating p facilities and
assigning clients to them in order to minimize the maximum distance between a client
and the facility to which he (or she) is allocated (i.e., the closest facility). This model is
used for example in locating fire stations or ambulances, where the distance from the
facilities to their farthest allocated client should be minimum. In [111] basic VNS and
Tabu search (e.g., the so-called Chain substitution Tabu Search, [113]) heuristics are
presented. Both methods use the 1-interchange (or vertex substitution) neighborhood
structure. It is shown how this neighborhood can be used even more efficiently than
for solving the p-Median problem. Based on the same computing time, comparison
between the Multistart 1-interchange, the Chain interchange TS (with one and two Tabu
lists) and VNS are reported on standard test problems from the literature. It appears
that both TS and VNS outperform the Multistart approach and give similar results with
a slight edge in favor of VNS for the larger instances.

Quadratic assignment problem The Quadratic Assignment Problem can be
described as follows: Given two n × n matrices A and B, find a permutation
minimizing the sum of the A parameter free basic VNS ( is set to n)
is suggested in [130], where two new methods based on Fast Ant systems (FANT)
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and Genetic-Descent hybrid (GDH) are also proposed. All three methods use the same
simple descent local search procedure. On a series of structured instances from the
literature, results of good quality for all three methods are reported, i.e., the average
errors with respect to the best known solutions are 0.185%, 0.167% and 0.184% for
FANT, GDH and VNS respectively with time necessary for 1,000 calls to the improving
procedure of FANT. Best results, i.e., 0.104% error were obtained with the previous
Hybrid Ant system (HAS-QAP) of [56].

Balanced MBA student teams problem In some schools and universities, stu-
dents from the same grade must sometimes be divided into several teams within a
classroom in such a way that each team provides a good representation of the class-
room population. A problem is to form these teams and to measure the quality of their
balance. In [39] mathematical models are proposed that take into account the attributes
assigned to the students. Two different ways of measuring the balance among teams
are proposed: min–sum and min–max models. Two formulations are considered and
both exact and heuristic solution methods are developed. The exact method consists
in solving a Set Partitioning problem based on the enumeration of all possible teams.
In order to solve large problem instances, both VNS and VNDS heuristics are also
developed. In the basic VNS, interchange of student pairs is used
for the perturbation of an incumbent solution. The local search is performed within

and an initial solution is obtained by using a random partition. Since the gap was
larger than 1% on a 65 student instance with 19 attributes and 13 teams, VNDS was
tested as well. The use of this extended VNS scheme led to obtain results of better
quality (0.48% larger than optimum) in moderate time (29 s for VNDS versus 872 s for
the exact method).

Simple plant location problem The well-known simple plant location problem
(SPLP) is to locate facilities among a given set of cities in order to minimize the sum
of set-up costs and distribution cost from the facilities to a given set of users, whose
demand must be satisfied. The case where all fixed-costs are equal and the number of
facilities is fixed is the p-Median problem. In work in progress, VNS heuristics for
the p-median are extended to the SPLP. In addition to interchange moves, opening
and closing of facilities are considered and a VNDS similar to that one suggested
in [84] developed. Moreover, complementary slackness conditions are exploited to
find a bound on the error through solution of a reduced dual problem. In this way
solution within 0.04% of optimality could be obtained for problems with up to 15,000
users (see Table 6.1).

One-dimensional bin-packing problem (BPP) Packing items into boxes or bins
is a task that occurs frequently in distribution and production. BPP is the simplest bin-
packing problem: given a number of items i = 1 , . . . , n of integer sizes what is the
minimum number of bins, each having the same integer capacity c, necessary to pack
all items.

In developing the basic VNS for BPP, usual neighborhood structures are used in [52]:
add, drop and interchange (swap) of items between bins. By using sophisticated data
structure, neighborhoods considered are significantly reduced. In an intensified shaking
step an item is selected at random and its best position (w.r.t. add/drop/swap restricted
neighborhood) found; to get that belongs to this step is repeated k times. Local
search uses the same neighborhoods. In addition, since a characteristic of the BPP is
existence of large plateaus (many different configurations, in terms of assignment of
items to bins, correspond to the same number of bins), an auxiliary objective function is
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introduced, i.e., maximization of the sum of squared slacks of the bins. Initial solutions
for VNS are obtained by modification of an existing one (called MBS’), which already
produces good solutions. When tested on 1370 benchmark instances from two sources,
VNS proved capable of achieving the optimal solution for 1329 of them, and could find
for 4 instances solutions better than the best known ones. According to the authors,
this is a remarkable performance when set against other methods. For example, when
compared with the Tabu search heuristic from [127] on 1210 hardest test instances, it
appears that in 1010, 1125 and 1170 instances the best solutions are found by MBS’,
TS and MBS’ + VNS respectively.

5.3 Graphs and Networks

Let G = (V, E) be a connected (un)directed graph with vertex set V and edge set E.
Solution of many optimization problems on G correspond to some subset of vertices

or subset of edges that satisfies certain conditions. A usual way
to supply a solution space with some metric, and thus make possible development of
VNS heuristics, is to define a distance function as the cardinality of the (symmetric)
difference between any two solutions and or and i.e., node-based or
edge-based neighborhoods:

where denotes the symmetric difference operator. In the applications of VNS
that follow, or or both metrics are used for inducing different neighborhood
structures

Oil pipeline design problem Brimberg et al. [15] consider a given set of offshore
platforms and on-shore wells, producing known (or estimated) amounts of oil, to be
connected to a port. Connections may take place directly between platforms, well sites
and the port or may go though connection points at given locations. The configuration
of the network and sizes of pipes used must be chosen in order to minimize construction
costs. This problem is expressed as a mixed integer program, and solved both heuris-
tically by Tabu search and VNS methods and exactly by a branch-and-bound method.
Tests are made with data from the South Gabon oil field and randomly-generated
problems. VNS gives best solutions and TS is close.

Phylogeny problem The phylogeny (or evolutionary tree) problem, in its simplest
form, can be formulated as follows: given A, an n × m 0–1 matrix, construct a tree
with minimum number of ‘evolutionary’ steps, that satisfies the following conditions:
(i) each node of the tree corresponds to an n-dimensional 0–1 vector, where vectors
given by rows of A should be associated to leaves; (ii) degrees of all nodes that are not
leaves are equal to three; (iii) two nodes are connected by an edge if their corresponding
vectors differ in only one variable. The trees that satisfies (i)–(iii) and the criterion used
are called phylogeny and parsimony respectively. The leaves of an evolutionary tree
represent groups of species, populations of distinct species, etc. (denoted by taxons
as well), while interior nodes represent hypothetical (unknown) ancestors. In [3] a
VND method that uses three neighborhoods is developed, and compared with the best
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among three local searches used alone. It appears that VND is much faster and gives
solutions with better quality. In the same paper, the authors developed and compared
three metaheuristic approaches to the phylogeny problem: GRASP (with the best local
search among three for the second phase, hybrid GRASP with VND and VNS. The
method developed as VNS use the same three neighborhoods for Shaking as for VND

and does therefore not use the full potential of VNS. Nevertheless
it gives the best results. Comparative results on eight test problems are summarized in
Table 6.2 (taken from [3]).

Maximum clique problem Let G = (V, E) denote a graph with vertex set V =
and edge set A set of vertices is a

clique if any two of them are adjacent. A clique C is maximum if it has the largest
possible number of vertices. Finding the maximum clique is a classical problem in
applied graph theory. A basic VNS heuristic that combines greedy with the simplicial
vertex test in its descent step is proposed and tested on standard test problems from
the literature in [85]. Despite its simplicity, the proposed heuristic outperforms most of
the well-known approximate solution methods. One exception is the recent Reactive
Local Search (RLS) heuristic [7] which obtains results of equal quality in a quite
different way.

Steiner tree problem on graphs Given a graph G = (V, E), nonnegative weights
associated with the edges (i, j) of E and a subset of terminal nodes, the

Steiner problem (SPG) is to find a minimum weighted subtree of G which spans all
terminal nodes. The solution X and corresponding tree are called Steiner nodes and
Steiner minimum tree respectively. Application can be found in many areas, such as
telecommunication network design, computational biology, VLSI design, etc. (see,
e.g., [90] for a survey).

In [108] and later in [125], two types of neighborhoods, i.e., node-based (N) (2) and
path-based (P) [134], are successfully used for solving SPG as in VND. For example,
the average % of improvement over a constructive initial solution on 454 instances
was 10.24% for the N–P order, while only P local search led to a 2.59% improvement.
Computing time for both heuristics was the same. This N–P procedure is used within
parallel GRASP in [108] and improved by Path relinking in [125], but no attempt was
made to develop a full VNS, which could be an interesting task for future work.

Degree-constrained minimum spanning tree problem (DCMST) consists in
finding a minimum spanning tree such that the degree of each vertex of the tree is less
than or equal to a given integer for all i. Note that for the problem becomes
the Hamiltonian path problem. In [124] three neighborhood structures based on the
k-edge exchange operator, k = 1,2,3 (or k-elementary tree transformations) are used
in developing local search procedures within a VND heuristic. This procedure is then



embedded into a VNS as a local search, where again k-edge exchange moves are used
for perturbation (shaking) with parameter VNS stops the first time

has been explored without improvement. VNS and VND are then extensively
compared with known methods from the literature, i.e., a genetic search, problem space
search heuristics and simulated annealing, on four different sets of randomly generated
problems: CRD, SYM, STR and SHRD. VND and VNS were better and much faster on
almost all test instances. Some observations from their empirical study are as follows:
(i) VND alone succeeded in finding optimal solutions for all problems already solved
exactly (in the STR class) in less than one second of processing time, while the best
among three other heuristics, i.e., the problem space search heuristic, found suboptimal
solutions within up to 300 s; (ii) on SHRD class of instances, VND reduced the average
relative error of Local search (with a single neighborhood k = 1) from 4.79% to 0.27%
with a very small increase in computing time; (iii) for the same series of instances, VNS
found 23 out of 24 best solutions; (iv) for instances CRD and SYM, VNS got optimal
solution on 69 out of 70 instances; (v) VNS found optimal or best known solutions
for all instances of class STR; it improved the average best solution values found by
GA-F [99] for 35 out of the 45 pairs of instances considered. Some of the results that
compare GA-F and VNS on STR instances are given in Table 6.3 (a part of Table 5.7
from [124]).

Max-cut problem Given an undirected graph G = (V,E) and weights on
the edges the Max-cut problem is to find a subset of vertices S
that maximizes the sum of the edge weights in the cut This problem has wide
applications including VLSI design. Three heuristics for solving Max-cut are developed
and compared in [49]: GRASP, basic VNS and a hybrid of GRASP and VNS (G-VNS).
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Solutions are represented as binary |V |-vectors and neighborhood structures for VNS
are induced from the Hamming distance introduced into the solution space. Local search
is performed in the neighborhood with distance 1. G-VNS uses VNS in the local search
phase of GRASP. Results on 4 instances from the literature are reported. Preliminary
computational results indicate VNS is a robust heuristic for Max-Cut. Indeed VNS is
not very sensitive to the choice of initial solution, and thus, G-VNS did not perform
better than VNS for the same number of iterations.

Cable layout problem Given the plan of buildings, the location of the equipment
and a structure of cable supports of fixed capacities, cables of all kind have to be
routed (voltage, communication, etc.). The Cable layout problem (CLP) consists in
finding the design of cables that minimize the total cost, such that numerous technical
requirements are met. If the cost of a cable is a linear function of its length, then the
CLP can be considered as a capacitated multi-path problem. This property is used
in [31] to decompose the problem, and then a VNDS heuristic is proposed. Each sub-
problem consists in solving several min-cost multi-paths problems. Graphs with up to
1,000 nodes are randomly generated with up to 4% edge density (which is close to real
problems) in order to compare VNDS with a previously suggested TS based heuristic
[86]. Solutions obtained by VNDS were belter than TS in 15 out of 16 instances,
in much less computing times. Moreover, for larger instances, it is shown (from the
dual bounds obtained from Lagrangian relaxation), that the duality gap is always less
than 1%.

k-Cardinality tree problem Given an undirected weighted graph G = (V, E)
with vertex set V, edge set E and weights associated to V or to E, the Minimum
weighted k-Cardinality tree problem (k-CARD for short) consists of finding a subtree
of G with exactly k edges whose sum of weights is minimum. There are two versions
of this problem: vertex-weighted and edge-weighted, if weights are associated to V
or to E respectively. The k-CARD problem is strongly NP-hard [51]. However, if
G is a tree then it is polynomially solvable [51]. In [115] two VNS methods for the
edge-weighted k-CARD problem, are proposed: the basic VNS (denoted by VNS-1)
and VNS that uses VND as a local search (VNS-2). In VNS-1 the solution space (i.e.
the set of all trees with k edges) is supplied with a distance function based on edge
difference between any two trees and all neighborhood structures are induced from it.
Since the minimal weighted k-cardinality tree is a spanning tree on any subgraph of
G with k + 1 vertices, the solution space may be reduced to the set of all spanning
trees and the set of spanning trees may be supplied with another metric, i.e., as the
cardinality of the difference of their vertex sets. In developing their VND method for
k-CARD, the authors use three neighborhood structures.

The first two neighborhoods are induced by edge distance, and the third one is
induced by a vertex distance. In Table 6.4 comparative results of VNS heuristics, two
Tabu search methods (TS-1 and TS-2 for short) and the Dynamic-Dijkstra-Path (DDP
for short) constructive heuristic are given. (In [45] it is shown that DDP has the best
performance when compared with several others constructive heuristics). TS-1 is an
implementation of Chain interchange TS rules suggested in [113] and the second TS
(denoted by TS-2) is taken from [104].

Test instances include random graphs with 500, 1000, 1500 and 2000 vertices,
where degree of each node is set to 20 (see [104] for details). In Table 6.4 average
results on 10 random instances for each n and k are reported. Large problem instances
could not be solved by DDP and TS-2 in reasonable time and for that reason we did
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not report on them in Table 6.4. It appears that VNS-2 performs best in average for all
but one sizes of problems.

Prize-collecting Steiner tree problem on graphs Given a graph G = (V, E),
nonnegative weights associated with the edges (i, j) of E and a nonnegative
prizes associated with the vertices i of V, the Prize-collecting Steiner tree problem
(PCSTP), is to find a subtree of G which minimizes the sum of the weights of its
edges, plus the prizes of vertices not spanned. If the subset of vertices X to be spanned
is known, we have the Steiner tree problem. PCSTP has an important application in
design telecommunication of local access networks. In [24], among other heuristics,
VNS has been proposed for PCSTP. In the solution space, represented by all spanning
trees with cardinality k = 1,2,..., |V |, the neighborhood of T(X) is defined as a set
of spanning trees having one different vertex or The
kth ordered neighborhood is also defined by vertex deletions or additions. Each tree
considered is always transformed into another tree by a so-called peeling algorithm,
which iteratively eliminates leaves whose weights are larger than corresponding prizes.
The basic VNS developed is used as a post-optimization procedure, i.e., it starts with
a solution obtained by a known constructive (2-approximation primal-dual) algorithm
(denoted with GW) plus iterative improvement with two types of perturbations (It.
Impr.) plus local search with path-relinking (LS + PR). Summary results from [24] on
three known classes of hard instances are given in Table 6.5. It appears that in each
class, VNS improved the best known solution for three instances.
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5.4 Scheduling

Single machine scheduling problems Given a set of n jobs that has to be processed
without any interruption on a single machine, which can only process one job at a
time, several NP-hard versions of Single machine scheduling problem that differ in
objective function are solved by VND and VNS in [10]. Since the solution can be
represented as a permutation of jobs, three neighborhoods of different cardinalities
are used within VND, i.e., 1-opt (or transpose), insert (or Or-opt) and interchange
neighborhoods have cardinalities n – 1 , or n(n – 1)/2, respectively. They
are used in sequence, without return to the smallest one after improvement (as in the
basic VND). It appears, from extensive computations, that VND significantly improves
solutions compared with those obtained by single neighborhood local searches in small
additional computing time.

Another interesting observation is that ordering 1-opt, Or-opt, interchange is better
than 1-opt, interchange, Or-opt, despite the fact that the cardinality of the Or-opt
neighborhood is larger than that of the interchange one.

Nurse rostering problems (NRP) consist of assigning varying shift types to
hospital personnel with different skills and work regulations, over a certain planning
period.

Typical shift types are Morning, Day and Night shift. There are many constraints
in the NRP which are divided (in [20]) into hard (which can never be violated and
expressed in the set of constraints) and soft (which are preferably not violated). The
objective is to minimize the number of violated soft constraints. The commercial nurse
rostering package Plane, which is implemented in many Belgian hospitals, makes use
of Tabu search [18]. For the same problem VNS is applied in [20], where several
neighborhoods are constructed in order to especially satisfy some of the constraints.
It appears that VND enables the system to find schedules which are hidden for single
neighborhood heuristics. Moreover, the authors conclude that “it is often more bene-
ficial to apply simple descent heuristics with [a] variety of neighborhoods than to use
sophisticated heuristics which are blind for large parts of the search space”.

Multiprocessor scheduling problem with communication delays This problem
consists in finding a static schedule of an arbitrary task graph onto a homogeneous mul-
tiprocessor system, such that the makespan (i.e., the time when all tasks are finished)
is minimum. The task graph contains a precedence relation as well as communica-
tion delays (or data transferring time) between tasks if they are executed on different
processors. The multiprocessor architecture is assumed to contain identical processors
with a given distance matrix (i.e., the number of processors along the shortest path)
between each two processors [35]. For solving this NP-hard problem [133], a basic



VNS heuristic is developed in [36], where a k-swap neighborhood structure is used
for shaking and a reduced 1-swap for local search. It is compared with Multistart
local search (MLS), Tabu search (TS) [36] and Genetic algorithms [1] (PSGA). Initial
solutions for all methods are obtained by modification of the well-known constructive
heuristic critical path (CP). Starting from it a swap local search is run (LS). Two types
of task graphs are generated: (i) with known optimal solution on the 2-dimensional
hypercube (i.e. with 4 processors) and given density as proposed in [100]; (ii) with
given density 0.2, 0.4, 0.5, 0.6 and 0.8. It appears that for both types of random test
instances VNS performs best.

Resource-constrained scheduling problem (RCPSP) is concerned with n non-
preemptive activities and m renewable resources. Given the availability of each resource

processing time for each activity j in time units amount of resource k
needed for activity j, during and for each activity j a sets of immediate
predecessors or a set of immediate successors find for each activity j its start
time such that the makespan of the project is minimum.

Since the RCPSP is an important and difficult NP-hard problem, a considerable
amount of research on it has appeared in the literature (for a recent survey see, e.g., [21]).
In [53], a VNS heuristic is developed for the RCPSP. The solution is represented as a
feasible sequence of activities (that respect precedence conditions), and in order to find
makespan, an additional procedure is used. The disadvantage of such a representation
is that the same schedule could be obtained from several permutations. Neighborhood
for a local search is defined as a sequence of feasible 1-opt (or transpose) moves, i.e., an
activity is inserted between its two closest ones (to the left and to the right) in the current
permutation until all left activities are from or right activities from In addition,
this neighborhood is reduced by a parameter which defines the maximum number of
such 1-opt moves. These moves allow an efficient updating of the objective function.
In order to derive a solution from the same sequence of moves is repeated k times.
In the Shaking step, k (instead of one, as in the basic VNS) solutions are generated
and the best among them is used as an initial solution for the Local search. Very good
results by VNS are reported on 4 classes of problems from the literature: J30 (480
instances), J60 (480), J90 (480), J120 (600). Some average comparative results, given
in Table 6.6, include GA as well, which was identified in [96] as the most effective.

Capacitated lot-sizing problem with setup times (CLSP-ST) The trend towards
just-in-time manufacturing has led to a drastic reduction of setup times in many man-
ufacturing processes. Given are a fixed costs for producing item i in period t
(i = 1,..,n;t = 1,..,T), variable costs (per unit production cost and per unit inventory
holding cost in period t), the demand for each item in each period and the amount of
each resource available. In the CLSP-ST it is required to determine the lot sizes of
each item in each time period, such that the total cost is minimized and the capacity
constraints satisfied.
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Weighted Max-SAT problem The satisfiability problem, in clausal form, consists
in determining if a given set of m clauses (all in disjunctive or all in conjunctive form)
built upon n logical variables has a solution or not [55]. The maximum satisfiabil-
ity problem consists in finding a solution satisfying the largest possible number of
clauses. In the weighted maximum satisfiability problem (WMAXSAT) [123] positive
weights are assigned to the clauses and a solution maximizing the sum of weights
of satisfied clauses is sought. Results of comparative experiments with VNS and TS
heuristics on instances having 500 variables, 4500 clauses and 3 variables per clause,
in direct or complemented form, are given in Table 6.8 [74]. It appears that using a
restricted neighborhood consisting of a few directions of steepest descent or mildest
ascent in the Shaking step does not improve results, but using this idea in conjunction
with SVNS improves notably upon results of basic VNS and also upon those of a TS
heuristic.

Learning Bayesian networks Let us consider a set of random variables V =
and a set of parameters which together specify a joint probability dis-

tribution over the random variables. Bayesian networks (BNs), also known as Belief or
Causal networks, are knowledge representation tools able to manage the dependence
and independence relationships among the random variables [117]. BN is represented
by a directed acyclic graph (dag). Once the BN is specified, it constitutes an efficient
device to perform inference tasks. The problem is to develop automatic methods for

5.5 Artificial Intelligence

Very few papers address the CLSP-ST. Usually Lagrangian relaxation with sub-
gradient optimization is employed to calculate a lower bound and different heuristics
are developed in attempt to find good feasible solutions. In[88], beside Lagrangian
relaxation, a new smoothing heuristic (SM) followed by a VNS is suggested. In the
Shaking step, the k setups corresponding to k smallest additional costs are switched off
(and the corresponding transshipment problem is solved), while SM is used again as a
local search within VNS. Only one loop of the basic VNS is applied with
i.e., the first time k reaches 7, the procedure stops. All tests were carried out on a subset
of the 751 benchmark test instances. Five methods were tested, two known and three
new: TTM [132], DBKZ [40], M-DBKZ (modification of DBKZ), SM and SM+VNS.
It appears that, among 492 hardest problem instances, SM and SM+VNS improve 437
and 447 solutions, being 13 and 10 times worse, respectively. In Table 6.7 comparative
aggregate results w.r.t. TTM on 492 hardest problem instances are reported.
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building BNs capable of learning directly from given data
containing m instances of V ), as an alternative or a complement to the method of
eliciting opinions from experts. This NP-hard problem is receiving increasing atten-
tion in Artificial intelligence. In [22] the current dag (solution) is represented by a
permutation of n variables. The quality of an ordering is measured by the so-called
scoring metric, f, i.e., a function, defined for dags and a search in the space
of dags compatible with performed. Then the basic VNS scheme (called VNS based
on ordering, VNSO for short) is applied. The set of neighborhood structures is defined
by k–interchange moves in and local search performed for k = 1. VNSO has been
successfully compared with two other methods from the literature.

Bilinear programming problem Structured global optimization problems, while
having several and often many local optima, possess some particular structure which
may be exploited in heuristics or exact algorithms. One such problem, of consider-
able generality, is the bilinear programming problem (BLP) with bilinear constraints.
This problem has three sets of variables, x, y and z, with cardinalities and
respectively. When all variables of y are fixed it becomes a linear program in x and z.
When all variables of z are fixed it becomes a linear program in x and y. This property
suggests the well-known Alternate heuristic:

1. Initialization: Choose values of variables of z (or y);

2. LP-1: solve the linear program in (x, y) (or in (x, z));

3. LP-2: For y (or z) found in the previous step, solve the linear program in (x, z)
(or in( x , y ) ) ;

4. If stability is not reached (within a given tolerance) return to 2.

Obviously this algorithm may be used in a Multistart framework. To apply VNS one may
observe that neighborhoods of a solution (x, y, z) are easy to define. They
correspond to k pivots of the linear program in (x, y) or in (x, z), for
One can then apply the basic VNS of Figure 3 in a straightforward way. The local search
routine is the alternate heuristic described above. Results on randomly generated test
problems are presented in Table 6.9 from [6]. It appears that VNS improves in almost
all cases and sometimes very substantially upon the solution provided by the Multistart
Alternate heuristic.
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Pooling problem The pooling problem, which is fundamental to the the petro-
leum industry, describes a situation where products possessing different attribute
qualities are mixed together in a series of pools in such a way that the attribute qualities
of the blended products of the end pools must satisfy given requirements. It is well
known that the pooling problem can be modeled through bilinear programming. A sim-
ple alternating procedure and a VNS heuristic are developed to solve large instances,
and compared with the well-known method of successive linear programming[6]. This
is an application of BBLP above.

Continuous Min–Max problem The so-called multi-level Tabu search (MLTS)
heuristic has been proposed in [97] for solving a continuous min–max optimization
problem (in with m periodic functions) of spread spectrum radar polyphase code
design problem [43]. Improvements obtained with the basic VNS in both solution qual-
ity and computing time on the same set of test problems are reported in [114] and [82].
Different neighborhoods are derived from the Euclidean distance. A random point is
selected from such neighborhoods in the Shaking step; then the gradient (feasible direc-
tion) local search with a given step size is performed on the functions that are active
(functions that have a maximum value in the current point); this step is repeated until
the number of active functions in the current point is equal to n (with some tolerance).
It appears that VNS outperforms MLTS on all test instances.

6 UNDERSTANDING HEURISTICS AND METAHEURISTICS

The advent of metaheuristics has led, for a large variety of problems, to the design of
heuristics with a much improved empirical performance, without however that theoret-
ical reasons for such improvements be clearly understood. First steps towards a better
understanding are to study the topography of local optima, and valleys or mountains,
for given classes of problems, as well as the trajectories followed by the heuristics and
the resulting phases of improvement or deterioration. We next describe two new tools,



When applying VNS, the descent from the randomly selected solution can lead back
to the local optimum x around which the current neighborhoods are centered, or to
another local optimum the value of which can be better or not than that of x. It is
thus natural to study the probabilities of these three outcomes as a function of distance
from x to It is also worthwhile to observe whether is closer to x than (which
may be interpreted as belonging to the same large valley, with local rugosities in
relief) or not (which may be viewed as indicating a new large valley has been found).
Mountain profiles give such information on the basis of 1000 ascents from points in
each successive neighborhood. Examples of such profiles for the weighted maximum
satisfiability problem are given in Figure 6.6, from [74].

Profiles appear to vary considerably with the quality of the local optimum x: when
it is bad it suffices to go a little away from x to obtain, with high probability, a better
local optimum. When it is good, or very good, one must go quite far to find a new large
valley and, moreover, the probability of finding a solution better than the incumbent
is then low. This illustrates a weakness of the basic VNS scheme, already mentioned
above: it tends to degenerate into Multistart when the distance from x to becomes
large. The solution, also presented above, is to resort to the SVNS scheme.
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6.1 Mountain or Valley Profiles

i.e., mountain (or valley) profiles and distance-to-target visualization which have been
found helpful in deriving better heuristics or variants of basic schemes for VNS. We
then turn to the study of an unexpected phenomenon, i.e., that when selecting moves in
a heuristic first improvement can be better than best improvement. Finding the reason
why this is so does not lead directly to a competitive heuristic for the problem under
study, i.e., the traveling salesman problem, but does pinpoint a potential defect of many
heuristics.



When designing heuristics for well studied classes of problems, small to medium size
instances for which the optimal solution is known are often available. Such instances
are used to find how often the optimal solution is reached, or what is the average
percentage of error of the heuristic. But much more information can be obtained if
the optimal solutions themselves are considered, and not only their values. In ongoing
work on a VNS approach to the Traveling salesman problem [58] a distance-to-target
visualization tool has been developed. This tool presents on screen the optimal solution
for the training instance under study, the current solution and the symmetric difference
between these two solutions. This indicates how much improvement is to be made and
where. Moreover, a routine allows also the representation of the difference of solutions
at an iteration of the heuristic and at the next. Finally, as representations of solutions
for large instances may be hard to read, and many problems, in particular Euclidean
ones, allow for a natural decomposition, a focusing routine allows representations of
the above-mentioned information for chosen subproblems, e.g., in some region of the
plane.

Visualizing successive steps in VND and VNS show their strengths and weaknesses,
e.g., that after 2-opt is applied within VNS for the TSP much work remains to be done.
Suggestions for further neighborhoods to use may then be obtained from a careful study
of remaining differences between solution and target.

It is well known that many combinatorial optimization problems such as the p-median
or the Multisource Weber problem [41], the clustering or partitioning problem with
various objectives [44,73], the air-crew scheduling problem [38], etc. can be solved
by combining column generation with integer programming. As the optimal solution

6.2      Distance-to-target Visualization
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6.3 First versus Best Improvement

In addition to using the visualization tools described above, one can proceed to a step-
by-step evaluation of the work done by a VNS or other heuristic. Moreover, variants at
each of these steps can be studied. Detailed information, which would not be apparent
from the global performance of the heuristic, can then be gathered. It can lead to the
discovery of unexpected phenomena and the insight provided by their explanation can
in turn lead to principles for building better heuristics. A typical case is the observation
that when applying the 2-opt heuristic to the TSP [79], selecting at each iteration the first
improvement, i.e., the first exchange of two edges which reduces the objective function
value gives better results than selecting the best improvement, i.e., the exchange of two
edges which reduces most the objective function (beginning from a randomly chosen
solution). An explanation, corroborated by further detailed analysis, is easily obtained:
if the best exchange is chosen, two edges of small but not necessarily very small
length are introduced in the tour and are difficult to remove at later iterations; if a
first improvement is chosen, due to ranking of edges by order of increasing lengths, a
very small edge and an average length edge are introduced in the tour and the latter is
easy to remove at a later iteration. Systematic study of such phenomena in a variety
of heuristics could lead to many improvements.



of the linear relaxation is often highly degenerate, convergence may be slow and even
when it is found many iterations may be needed to prove that it is indeed optimal. The
dual of the column generation procedure is the outer approximation method of [95].
Slow convergence comes from the generation of many hyper-planes far from the cone
vertexed at the optimal dual solution. One would therefore want to estimate this last
solution and focus the generation procedure by penalizing hyperplanes far from it. If
extracting the optimal dual solution is difficult, then the current dual values can be used
to stabilize the generation procedure instead of focusing it.

Consider a primal problem P and its dual D, solved by column generation:
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In [41] a stabilization scheme is proposed which remains entirely within the linear
programming column generation framework. It merges a perturbation and an exact
penalty method.

A primal problem and its dual are defined as follows:

In the primal and are vectors of slack and surplus variables with upper bounds
and respectively. These variables are penalized in the objective function by

vectors When applying column generation, after finding no more column
with negative reduced cost, the parameters and are updated following problem-
specific rules.

For this stabilized column generation scheme to work well, good estimates of the
optimal dual variables should be obtained at the outset. Ways to find heuristically ranges
for these dual variables by sensitivity analysis are sketched in [41] for a few problems.
For the p-Median problem this led to exact solution of instances with over 3000 users
versus 900 in the literature; for its counterpart in the plane, i.e., the Multisource Weber
problem ([75,98]) it led to exact solution of instances with over 1000 users versus
30 in the literature. For the minimum sum-of-squares clustering problem combining
stabilized column generation, with the ACCPM interior point method, hyperbolic 0-1
programming quadratic 0-1 programming and VNS in several steps [44] led to exact



solution of problems with up to 150 entities, including the famous 150 iris example
of [50].

The AutoGraphiX system Recall that a graph invariant is a variable defined on the
family of all graphs (or on an appropriate sub-family) and the value of which does not
depend on the numbering of vertices or edges. Numerous problems in graph theory can
be viewed, or involve, optimization of invariants on a possibly constrained family of
graphs. Therefore, VNS can be used for approximate solution of such problems. This
led to the development of the AutoGraphiX (AGX) system and to a series of papers,
next reviewed, on its principles and applications.

As explained in [29], AGX uses the basic schemes of both VNS and VND. The
descent is done by first drawing a graph G at random (with a given number of vertices
and edges), computing its value for the invariant under study and then examining the
effect on this value of bringing some elementary change to G: removal or addition of
an edge, displacement of an edge, detour, i.e., replacement of an edge between two
vertices by a path of length 2 joining them through some non-adjacent vertex, and so
on. Neighborhoods so defined are ranked from the smallest to the largest. The best
move is determined in each of them in turn and if it improves the value of the invariant
studied the corresponding change is made in G. After a local optimum has been found,
neighborhoods are defined using the Hamming distance, i.e., by considering removal
or addition of edges to G, and VNS is applied. The only parameter is the maximum
number of edges to be removed or added.

AGX can be applied to the following problems: (a) find a graph satisfying given
constraints; (b) find optimal or near optimal values for an invariant subject to con-
straints; (c) refute a conjecture; (d) suggest a conjecture (or sharpen one); (e) suggest a
proof. For instance, three conjectures of the system Graffiti [46,47] are refuted in [29],
several strengthened and one of these proved, for the particular case of trees, exploiting
knowledge of moves needed to find local optima.

Automated conjecture finding Study of a set of extremal or near-extremal graphs
G obtained with AGX taking the numbers n of vertices and m of edges as parameters
often suggests conjectures. Moreover, there can be corroborated or refuted by perform-
ing various changes interactively. However, it would be preferable to have an entirely
automated system. Three ways to automate conjecture finding are outlined in [28]: (a) a
numerical method, which exploits the mathematics of Principal Component Analysis
in order to find a basis of affine relations between graph invariants; (b) a geometric
method which consists in finding the convex hull of the points representing extremal
or near-extremal graphs in invariants space, with a ‘gift-wrapping’ algorithm. Hyper-
planes of this convex hull correspond to conjectures; (c) a geometric approach, which
consists in recognizing the families of graphs to which belong the extremal ones and
using known relations between graph invariants in those families to find new relations.

Chemical graph theory. 1. Energy The energy E is defined in
chemical graph theory as the sum of absolute values of the eigenvalues of the adja-
cency matrix [68]. It has been extensively studied by chemists and mathematicians.
As explained in [25] AGX led to the discovery of several simple, but as yet unknown
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which were easily proved.
Chemical graph theory. 2. index The index [120] and its gen-

eralization are probably the most studied invariants of Chemical graph theory. Assign
to each edge of a graph G a weight equal to the inverse of the geometric mean of the
degrees of its vertices. Then, the index of G is the sum of all such weights.
AGX was used to find extremal trees for this index [27]. Maximum values are obtained
by paths and minimal ones by two kinds of caterpillars and one of modified caterpillars
with an appended 4-star. This last result was proved by an original way of using linear
programming. Indeed, variables are associated with the numbers of edges with given
degrees of end vertices (in chemical graphs these degrees are bounded by 4). This proof
technique has already been used in three other papers of Chemical graph theory.

In [5] are presented several bounds on the index of chemical trees in terms
of this index for general trees and of the ramification index, which is the sum for all
vertices of the excess of their degree over 2. Use of AGX [76] leads to correct some of
these results and obtain much strengthened and best possible versions of the others.

Chemical graph theory. 3. Polyenes with maximum HOMO–LUMO gap
Using AGX, [54] a study was made of fully conjugated acyclic systems with maxi-
mum HOMO-LUMO gap. In the simplest Hückel model, this property of the eigenvalue
spectrum of the adjacency matrix of the corresponding chemical tree corresponds to
reactivity. AGX gives for all even n a ’comb’, i.e., a path on n/2 vertices to each of
which is appended a single pendant edge. From this, the conjecture that the maximum
gap tends to when n goes to infinity can be deduced.

Trees with maximum index Trees are bipartite and hence bicolorable, say in
black and white. Color-constrained trees have given numbers of black and white ver-
tices. In [34] AGX is used to study color-constrained trees with extremal index, or
largest eigenvalue of the adjacency matrix. Six conjectures are obtained, five of which
are proved.

Applying the numerical method for automated conjecture finding to the extremal
trees found gave the conjecture

relations, including the following:
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and

where is the stability number, the number of pendant vertices, D the diameter and
r the radius of the tree. It is unlikely that a conjecture with so many invariants would
be obtained without computer aid.

Trees with palindromic Hosaya polynomial The Hosaya (or distance) polyno-
mial of a graph is defined by

where and (k = 3,. . . , D) is the number of pairs of vertices at
distance k. It was conjectured in [67] and [69] that there is no tree with a palindromic
Hosaya polynomial, i.e., such that and so on. AGX refuted this
conjecture [26]. All counter-examples have D even. This case is easier to satisfy than



that where D is odd. Indeed, in the former case, there is a free coefficient in the center,
and in the latter not. Then, define the distance to the palindrome condition as

AGX gives for all n = 10 to n = 50 trees with (and higher values, due
to border effects for The conjecture

Heuristics are an essential tool in applied optimization, and for many large and often
messy problems encountered in practice the only applicable one. Their main aim is to
provide, in reasonable time, near-optimal solutions to constrained or unconstrained
optimization problems. Moreover, they may also be very useful within complex
exact algorithms, to accelerate many steps. Finally, they are an important building
block in optimization-based knowledge discovery systems. Optimization problems are
ubiquitous in Operations Research and its applications to numerous fields. Artificial
intelligence tends to focus more on constraint satisfaction problems. Heuristics then
seek a feasible solution. Both types of problems are less different than might appear at
first view as Constraint satisfaction problems can be expressed as optimization problems
in a variety of ways, e.g., as minimization of a sum of artificial variables representing
constraint violations.

While traditional heuristics, such as, e.g., simple descent methods, are blocked
in the first local optimum found, this is not the case for heuristics built within the
metaheuristics paradigms. All of them provide methods, deterministic or stochastic,
for getting out of poor local optima. As such local optima often differ considerably in
value from the global optimum, particularly if there are many, the practical impact of
metaheuristics has been immense. In contrast to this success, the theory of metaheuris-
tics is lagging. While good heuristics are often obtained, with some ingenuity and a

appears to be hard to prove.
Graffiti 105 The transmission of distance of a vertex of a graph G is the sum

of distances from that vertex to all others. Conjecture 105 of Graffiti [47] is that in
all trees the range of degrees does not exceed the range of transmission of distances.
In [4] AGX is used to get hints on how to prove this conjecture and study variants of
it. Minimizing range of transmission minus range of degrees always gives stars. It is
then easy to prove that the conjecture holds with equality for stars only. Moreover, one
gets the conjectures: (a) if T is not a star then range of transmission minus range of
degree is at least and (b) if T has maximum degree then range of
transmission minus range of degree is not less than n – 3D – 1.

These results are easily proved, and, with a little more work, the extremal graphs
characterized.

These examples illustrate the help the VNS-based system AGX can bring to
discovery in graph theory. Many further ones are given in the cited papers.

174 P. Hansen and

9 CONCLUSIONS



lot of parameter setting, the reason(s) why they work as well as they do are largely
unknown. In this respect, the situation is even worse for hybrids. So, some reflection on
desirable properties of metaheuristics, which would guarantee both their practical and
theoretical interest, may be in order. A tentative list of such properties is the following:

(i) Simplicity: the metaheuristic should be based on a simple and clear principle,
which should be largely applicable;

(ii) Precision: steps of the metaheuristic should be formulated in precise mathe-
matical terms, independent from the possible physical or biological analogy
which was an initial source of inspiration. Meaningless statements (e.g.,
“kicking the function”) or overly vague ones (e.g., “choosing a point based
on the history of the search”) should be avoided;

(iii) Coherence: all steps of heuristics for particular problems should follow
naturally from the metaheuristic’s principle;

(iv) Efficiency: heuristics for particular problems should provide optimal or near-
optimal solutions for all or at least most realistic instances. Preferably, they
should find optimal solutions for most problems of benchmarks for which
such solutions are known, when available;

(v) Effectiveness: heuristics for particular problems should take moderate com-
puting time to provide optimal or near-optimal solutions;

(vi) Robustness: performance of heuristics should be consistent over a variety of
instances, i.e., not just fine-tuned to some training set and less good elsewhere;

(vii) User-friendliness: heuristics should be clearly expressed, easy to understand
and, most important, easy to use. This implies they should have as few
parameters as possible and ideally none;

(viii) Innovation: preferably, the metaheuristic’s principle and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of
applications.

Variable Neighborhood Search (VNS) is a recent metaheuristic which strives to
obtain the qualities listed above. It is based on a simple and relatively unexplored
principle: systematic change of neighborhood during the search. (Note that precise
rules for such change are crucial; several authors have proposed on occasion to combine
different types of moves, or neighborhoods, within the same heuristic, without however
doing so systematically, nor that being the main idea of their heuristics.)

Reviewing the eight desirable properties of metaheuristics, it appears that VNS
possesses them to a large degree. Indeed, its principle is simple and all steps of the basic
and extended schemes rely upon it. Moreover, they are state in precise mathematical
terms. VNS has proved efficient in solving the problems of several benchmarks with
optimal or very close to optimal results, and within moderate (or at least reasonable)
computing times. Moreover, its performance appears to be robust, its basic principles
are easy to apply, and very easy to use, parameters being kept to a minimum and
sometimes absent. Simplicity is probably its main feature. Indeed, VNS gets as good
or better results than most other metaheuristics on many problems and in a much simpler
way. This explains its potential for innovation already illustrated by several new type of
applications: analysis of moves and their selection for the TSP, stabilized or focussed
column generation and the computer-aided scientific discovery program AGX.

Variable Neighborhood Search 175



Metaheuristics are a fairly young research field, with many new ideas and frequent
recourse to intuition rather than deduction. Attempts at organizing this field are numer-
ous, but as the main concepts are rarely precisely defined and there are as yet very
few significant theorems, no framework has gained general acceptance. Rather, each
metaheuristic has its own viewpoint and ability to explain many heuristics in its own
vocabulary as well as to absorb ideas from the whole field (notably under the form of
hybrids). Moreover, priority claims tend to proliferate. They are often based on such
vague evidence that they are hard to evaluate.

Focusing for instance, on descent methods or memory structures corresponds to
different viewpoints and metaheuristics. The closest one to VNS appears to be Iterated
local search (ILS) ([11,91,92]). At the price of completely forgetting VNS’s main
idea—systematic change of neighborhood—one can squeeze it into the ILS framework.
Conversely, one could view ILS heuristics as either badly defined (as the crucial step
of perturbation of local optima is often not specified or described by some vague
metaphor) or particular cases of VNS, with usually a single neighborhood. This would
be equally arbitrary. It appears that the babelian character of research in metaheuristics
is a, hopefully temporary, mild evil. While it lasts, clear-cut successes on particular
problems will be probably more important to evaluate metaheuristics than lengthy
controversies. Finally, when considering the eight desirable qualities listed above, we
believe that comparative efficiency should not have the dominant, sometimes exclusive
role, it gets in many papers. The aim of research should be insight, not competition. In
our view other qualities of heuristics and metaheuristics than efficiency can be more
important in the long run, particularly, simplicity, precision, coherence and above all,
innovation.
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