
Chapter 17

PARALLEL STRATEGIES FOR META-HEURISTICS

Michel Toulouse
Department of computer science
University of Manitoba
Winnipeg (MB) Canada R3T 2N2
E-mail: toulouse@cs.umanitoba.ca

Abstract We present a state-of-the-art survey of parallel meta-heuristic developments and
results, discuss general design and implementation principles that apply to most meta-heuristic
classes, instantiate these principles for the three meta-heuristic classes currently most extensively
used—genetic methods, simulated annealing, and tabu search, and identify a number of trends
and promising research directions.

Keywords: Parallel computation, Parallelization strategies, Meta-heuristics, Genetic methods,
Simulated annealing, Tabu search, Co-operative search

1 INTRODUCTION

Meta-heuristics are widely acknowledged as essential tools to address difficult problems
in numerous and diverse fields, as this volume eloquently demonstrates. In fact, meta-
heuristics often offer the only practical approach to solving complex problems of
realistic scale.

Even using meta-heuristics, the limits of what may be solved in “reasonable” com-
puting times are still reached rapidly, however, at least much too rapidly for the growing
needs of research and industry alike. Heuristics do not, in general, guaranty optimality.
Moreover, the performance often depends on the particular problem setting and data.
Consequently, a major issue in meta-heuristic design and calibration is not only how to
build them for maximum performance, but also how to make them robust, in the sense
of offering a consistently high level of performance over a wide variety of problem
settings and characteristics.

Teodor Gabriel Crainic
Département de management et technologie
Université du Québec à Montréal and Centre de recherche sur les transports
Université de Montréal
C.P. 6128, Succursale Centre-ville
Montréal (QC) Canada H3C 3J7
E-mail: theo@crt.umontreal.ca

476 T.G. Crainic and M. Toulouse

Parallel meta-heuristics aim to address both issues. Of course, the first goal is to
solve larger problem instances in reasonable computing times. In appropriate settings,
such as co-operative multi-thread strategies, parallel meta-heuristics also prove to be
much more robust than sequential versions in dealing with differences in problem
types and characteristics. They also require less extensive, and expensive, parameter
calibration efforts.

The objective of this paper is to paint a general picture of the parallel meta-heuristic
field. Specifically, the goals are to (1) present a state-of-the-art survey of parallel meta-
heuristic developments and results, (2) discuss general design and implementation
principles that apply to most meta-heuristic classes, (3) instantiate these principles
for the three meta-heuristic classes currently most extensively used: genetic methods,
simulated annealing, and tabu search, and (4) identify a number of trends and promising
research directions.

The parallel meta-heuristic field is a very broad one, while the space available for
this paper imposes hard choices and limits the presentation. In addition to the references
provided in the following sections, a number of surveys, taxonomies, and syntheses
have been proposed and may prove of interest: Greening (1990), Azencott (1992),
Mühlenbein (1992), Shonkwiler (1993), Voß (1993), Lin et al. (1994), Pardalos et al.
(1995), Ram et al. (1995), Verhoeven and Aarts (1995), Laursen (1996), Crainic et al.
(1997), Glover and Laguna (1997), Holmqvist et al. (1997), Cantù-Paz (1998), Crainic
and Toulouse (1998), Crainic (2002), Cung et al. (2002).

The paper is organized as follows. Section 2 introduces the notation, describes
a generic meta-heuristic framework, and sets genetic, simulated annealing, and tabu
search methods within this framework. Section 3 is dedicated to a brief introduction to
parallel computing and the presentation of three main strategies used to build parallel
meta-heuristics. Sections 4, 5, and 6 are dedicated to the survey and discussion of
issues related to the parallelization of genetic approaches, simulated annealing, and
tabu search, respectively. Section 7 briefly treats a number of other meta-heuristic
approaches, draws a number of general conclusions, and points to research directions
and challenges.

2 HEURISTICS AND META-HEURISTICS

Sequential and parallel meta-heuristics are used in many disciplines—mathematics,
operations research, artificial intelligence—and numerous applications: design, plan-
ning, and operation of complex systems and networks (e.g., production, transportation,
telecommunication, etc.); management, allocation, scheduling, and utilization of
scarce resources; speech and image recognition and enhancement; VLSI design;
and so on. To simplify the presentation, and with no loss of generality, in the
following we adopt the notation and vocabulary of combinatorial optimization
formulations.

Given a set of objects, the value associated to each, and the rules specifying how
objects may be joined together, the combinatorial optimization formulation aims to
select a subset of objects such that the sum of their contributions is the highest/
lowest among all possible combinations. Many problems of interest may be cast as
combinatorial optimization formulations, including design, location, routing, and
scheduling. In most cases, such formulations are extremely difficult to solve for

Parallel Strategies for Meta-heuristics 477

realistically-sized problem instances, the main issue being the number of feasible
solutions—combinations of objects—that grows exponentially with the number of
objects in the initial set.

Combinatorial optimization problems are usually formulated as (mixed) integer
optimization programs. To define notation, assume that one desires to minimize (or
maximize) a function subject to The objective function may
be linear or not. The set summarizes constraints on the decision variables x and
defines the feasible domain. Decision variables are generally non-negative and all or
part of the elements of x may be compelled to take discrete values. One seeks a globally
optimal solution such that for all

Once various methods have been applied to re-formulate the problem and to bound
the region where the optimal solution is to be found, most solution methods are based
on some form of exploration of the set of feasible solutions. Explicit enumeration
is normally out of the question and the search for the optimal solution proceeds by
implicit enumeration. Branch-and-bound (and price, and cut, ...) methods are both
typical of such approaches and one of the methods of choice used in the search for
optimal solutions to combinatorial problems. Unfortunately, these methods fail for
many instances, even when parallel implementations are used. Thus, heuristics have
been, and continue to be, an essential component of the methodology used to address
combinatorial optimization formulations.

A heuristic is any procedure that identifies a feasible solution Of course,
one would like to be identical to x* (if the latter is unique) or to be equal to

For most heuristics, however, one can only hope (and for some, prove) that
is “close” to Heuristics have a long and distinguished track record in

combinatorial optimization. Often, heuristics are the only practical alternative when
dealing with problem instances of realistic dimensions and characteristics.

Many heuristics are improving iterative procedures that move from a given solution
to a solution in its neighbourhood that is better in terms of the objective function value
(or some other measure based on the solution characteristics). Thus, at each iteration,
such a local search procedure identifies and evaluates solutions in the neighbourhood
of the current solution, selects the best one relative to given criteria, and implements
the transformations required to establish the selected solution as the current one. The
procedure iterates until no further improvement is possible.

Formally, let represent the set of neighbours of a given solution that
may be reached by a simple transformation (e.g., complement the value of an integer-
valued variable) or a given sequence of operations (e.g., modifications of routes
in a vehicle routing problems). Let denote the application that corresponds to
these moves and that yields a solution Then, Figure 17.1 illustrates a simple
steepest descent heuristic where the objective function value is the only neighbour
evaluation criterion.

A major drawback of classical heuristic schemes is their inability to continue past
the first encountered local optimum. Moreover, such procedures are unable to react
and adapt to particular problem instances. Re-starting and randomization strategies, as
well as combinations of simple heuristics offer only partial and largely unsatisfactory
answers to these issues. The class of modern heuristics known as meta-heuristics aims
to address these challenges.

Meta-heuristics have been defined as master strategies (heuristics) to guide and
modify other heuristics to produce solutions beyond those normally identified by local

478 T.G. Crainic and M. Toulouse

search heuristics (Glover, 1986; see also Glover and Laguna, 1993). Compared to exact
search methods, such as branch-and-bound, meta-heuristics cannot generally ensure a
systematic exploration of the entire solution space. Instead, they attempt to examine
only parts thereof where, according to certain criteria, one believes good solutions
may be found. Well-designed meta-heuristics avoid getting trapped in local optima
or sequences of visited solutions (cycling) and provide reasonable assurance that the
search has not overlooked promising regions.

Meta-heuristics for optimization problems may be described summarily as a “walk
through neighbourhoods”, a search trajectory through the solution domain of the prob-
lem at hand. Similar to classical heuristics, these are iterative procedures that move
from a given solution to another solution in its neighbourhood. Thus, at each iteration,
one evaluates moves towards solutions in the neighbourhood of the current solution, or
in a suitably selected subset. According to various criteria (objective value, feasibility,
statistical measures, etc.), a number of good moves are selected and implemented.
Unlike classical heuristics, the solutions implemented by meta-heuristics are not nec-
essarily improving, however. Tabu search and simulated annealing methods usually
implement one move at each iteration, while genetic methods may generate several
new moves (individuals) at each iteration (generation). Moves may belong to only one
type (e.g., add an element to the solution) or to several quite different categories (e.g.,
evaluate both add and drop moves). Moves may marginally modify the solution or dras-
tically inflect the search trajectory. The first case is often referred to as local search.
The diversification phase of tabu search or the application of mutation operators in an
evolutionary process are typical examples of the second alternative. This last case may
also be described as a change in the “active” neighbourhood.

Each meta-heuristic has its own behaviour and characteristics. All, however, share
a number of fundamental components and perform operations that fall within a limited
number of categories. To facilitate the comparison of parallelization strategies for
various meta-heuristic classes, it is convenient to define these common elements:

1.

2.

3.

Initialization. A method to create an initial solution or set of problem configura-
tions that may be feasible or not.

Neighbourhoods. To each solution corresponds a set of neighbourhoods and
associated moves: where
i =1, . . . ,q .

A neighbourhood selection criterion is defined when more than one neighbour-
hood is included. This criterion must specify not only what neighbourhood to
choose but also when to select it. Alternatives range from “each iteration” (e.g.,

Parallel Strategies for Meta-heuristics 479

genetic methods) to “under given conditions” (e.g., the diversification moves of
tabu search).

4.

5.

6.

Candidate selection. Neighbourhoods may be very large. Then, often, only a
subset of moves are examined at each iteration. The corresponding candidate list

may be permanent and updated from iteration to iteration (e.g., tabu
search) or it may be constructed at each new iteration (e.g., genetic methods). In
all cases, a selection criterion specifies how solutions are picked for inclusion in
the candidate list.

Acceptance criterion. Moves are evaluated by applying a function g(x, y) based
on one or several attributes of the two solutions: objective function value, distance
from certain constraints, penalties for violating some others, etc. External factors,
such as random terms or biases from aggregated characteristics of past solutions
may also be included in the evaluation. The best solution with respect to this
criterion

is selected and implemented (unless forbidden by cycling-prevention
mechanisms).

Stopping criteria. Meta-heuristics may be stopped on a variety of criteria:
computing time, number of iterations, rate of improvement, etc. More than
one criterion may be defined to control various phases of the search (usually
corresponding to various neighbourhoods).

With these definitions, we introduce a generic meta-heuristic procedure illustrated
in Figure 17.2 and use it to describe the three main classes of meta-heuristics: genetic
methods, simulated annealing, and tabu search. These methodologies have been, and
continue to be, most oftenly used and parallelized. They are therefore treated in more
detail in the following sections. Other methods, such as scatter search, GRASP, ant
colony systems, and variable neighbourhood search have also been proposed and we
briefly discuss related parallelization issues in Section 7.

Genetic algorithms belong to the larger class of evolutionary methods and were
inspired by the evolution processes of biological organisms. In biology, when natural
populations are studied over many generations, they appear to evolve according to the
principles of natural selection and survival of the fittest to produce “well adapted”
individuals. Genetic algorithms mimic this process, attempting to evolve solutions to

480 T.G. Crainic and M. Toulouse

optimization problems (Holland, 1975; Goldberg, 1989; Whitley, 1994; Fogel, 1994;
Michalewicz, 1992; Michalewicz and Fogel, 2000). In recent years, the genetic algo-
rithm paradigm was considerably enriched, as it evolved to include hybridization with
local improvement heuristics and other meta-heuristics. Although the specialized litera-
ture is frequently replacing the term “genetic algorithms” with “evolutionary methods”,
we use the former in this paper to distinguish these methods from other strategies where
a population of solutions evolves through an iterative process (e.g., scatter search and
most co-operative parallel methods described later in this paper).

Genetic methods work on a population of solutions that evolves by generating new
individuals out of combinations of existing individuals. At each iteration a selection
operator applied to the current population identifies the parents to be used for the
generation of new individuals. Thus, in a genetic context, the candidate selection and
move evaluation is based solely on the value g(x), the fitness, of the parents (this may be
contrasted to the evaluations used in, for example, simulated annealing, tabu search, and
scatter search). Crossover operators are used to generate the new individuals. Mutation
and hill climbing (local search) operators modify the definition or characteristics of the
new individuals to improve their fitness and the diversity of the population. In several
variants, especially so for parallel genetic methods, the implementation of the move is
completed by a survival operation that determines which of the parents and offspring
advances to the next generation. Figure 17.3 displays the functions of the classical
genetic operators, while Figure 17.4 summarizes the main steps of a generic genetic
algorithm.

Simulated annealing methods are inspired by the annealing process of cooling mate-
rials in a heat bath. Here, solid materials are first heated past melting point. They are
then gradually cooled back to a solid state, the rate of cooling directly influencing on the

Parallel Strategies for Meta-heuristics 481

structural properties of the final product. The materials may be represented as systems
of particles and the whole process of heating and cooling may be simulated to evaluate
various cooling rates and their impact on the properties of the finished product. The
simulated annealing metaphor attempts to use similar statistical processes to guide
the search through feasible space (Metropolis et al., 1953; Kirkpatrick et al., 1983;
Laarhoven and Aarts, 1989; Aarts and Korst, 1989, 2002; etc.). A randomized scheme,
the temperature control, determines the probability of accepting non-improving solu-
tions. This mechanism aims to allow escaping from local optima. The cooling schedule
determines how this probability evolves: many non-improving solutions are accepted
initially (high temperature) but the temperature is gradually reduced such that few
(none) inferior solutions are accepted towards the end (low temperature). A generic
simulated annealing procedure is displayed in Figure 17.5.

One of the most appropriate tabu search metaphors is the capability of the human
brain to store, recall, and process information to guide and enhance the efficiency
of repetitive processes. Memory and memory hierarchy are major concepts in tabu
search, as are the memory-based strategies used to guide the procedure into various
search phases. Here, as elsewhere, a heuristic locally explores the domain by moving
from one solution to the best available solution in its neighbourhood. Inferior quality
solutions are accepted as a strategy to move away from local optima. Short-term tabu
status memories record recent visited solutions or their attributes to avoid repeating or
inverting recent actions. The tabu status of a move may be lifted if testing it against
an aspiration criterion signals the discovery of a high quality solution (typically, the
best one encountered so far). Medium to long-term memory structures record various
informations and statistics relative to the solutions already encountered (e.g., frequency
of certain attributes in the best solutions) to “learn” about the solution space and guide
the search. Intensification of the search around a good solution and its diversification
towards regions of the solution space not yet explored are two main ingredients in
tabu search. These two types of moves are based on medium and long-term memories
and are implemented using specific neighbourhoods. More details on the basic and
advanced features of tabu search may be found in Glover (1986, 1989, 1990, 1996),
Glover and Laguna(1993, 1997), Gendreau (2002). Figure 17.6 displays a generic tabu
search procedure.

482 T.G. Crainic and M. Toulouse

This very brief summary of three major meta-heuristics emphasizes the similari-
ties of the main activities used by the various methodologies to explore the solution
space of given problems. This similarity translates into “similar” requirements when
strategies for parallelization are contemplated. For example, all meta-heuristic proce-
dures encompass a rather computationally heavy stage where the neighbourhood (or
the population) is explored. Fortunately, the computational burden may be reduced

Parallel Strategies for Meta-heuristics 483

by performing the exploration in parallel and most implementations of the first paral-
lelization strategy discussed in the following section address this issue. This observation
explains our choice of discussing parallelization strategies not according to particular
meta-heuristic characteristics but rather following a few general principles.

3 PARALLEL COMPUTATION

The central goal of parallel computing is to speed up computation by dividing the
work load among several processors. From the view point of algorithm design, “pure”
parallel computing strategies exploit the partial order of algorithms (i.e., the sets of
operations that may be executed concurrently in time without modifying the solution
method and the final solution obtained) and thus correspond to the “natural” parallelism
present in the algorithm. The partial order of algorithms provides two main sources of
parallelism: data and functional parallelism.

To illustrate, consider the multiplication of two matrices. To perform this operation,
one must perform several identical operations executing sums of products of numbers.
It is possible to overlap the execution of these identical operations on different input
data. Among computer architectures with several arithmetic and logic units (ALUs),
Single Instruction stream, Multiple Data stream (SIMD) computers are particularly
suited to this type of parallelism as they can load the same operation on all ALUs
(single flow of instructions) and execute it on different input data (multiple flows of
data). The total number of computer operations required to compute the matrix product
is not reduced, but given the concurrency of several operations, the total wall-clock
computation time is reduced proportionally to the average number of overlapping sets
of operations during the computation. This is data parallelism.

Computations may also be overlapped even when operations are different. It is usu-
ally inefficient to exploit this parallelism at the fine-grain level of a single instruction.
Rather, the concurrent execution of different operations typically occurs at the coarse-
grain level of procedures or functions. This is functional parallelism. For example, one
process can compute the first derivative vector of a function while another computes
the second derivative matrix. The two processes can overlap at least partially in time.
When computations are complex and dimensions are large, this partial overlap may
yield interesting speedups. Parallel computers that are well adapted to perform func-
tional parallelism usually follow a MIMD (Multiple Instructions stream, Multiple Data
stream) architecture where both data and instructions flow concurrently in the system.
MIMD computers are often made up of somewhat loosely connected processors, each
containing an ALU and a memory module.

Parallel computation based on data or functional parallelism is particularly efficient
when algorithms manipulate data structures that are strongly regular, such as matrices
in matrix multiplications. Algorithms operating on irregular data structures, such as
graphs, or on data with strong dependencies among the different operations remain
difficult to parallelize efficiently using only data and functional parallelism. Meta-
heuristics generally belong to this category of algorithms that are difficult to parallelize.
Yet, as we will see, parallelizing meta-heuristics offers opportunities to find new ways
to use parallel computers and to design parallel algorithms.

484 T.G. Crainic and M. Toulouse

3.1 Parallelizing Meta-heuristics

From a computational point of view, meta-heuristics are just algorithms from which
we can extract functional or data parallelism. Unfortunately, data and functional
parallelism are in short supply for many meta-heuristics. For example, the local search
loop (Steps 3–7) of the generic tabu search in Figure 17.6 displays strong data dependen-
cies between successive iterations, particularly in the application of the tabu criterion
and the update of memories and tabu status. Similarly, the passage from one genera-
tion to another in standard genetic methods is essentially a sequential process, while
the replacement of the current solution of the generic simulated annealing procedure
(Step 5 in Figure 17.5) cannot be done in parallel, forcing the sequential execution of
the inner loop (Steps 4–6). As in other types of algorithms, however, operations inside
one step may offer some functional or data parallelism. Moreover, the exploration of
the solution space based on random restarts can be functionally parallelized since there
are no dependencies between successive runs. The set of visited solutions, as well as
the outcome of the search made up of random restarts are identical to those obtained
by the sequential procedure provided the set of initial solutions is the same for both the
sequential and parallel runs.

Meta-heuristics as algorithms may have limited data or functional parallelism but,
as problem solving methods, they offer other opportunities for parallel computing.
To illustrate, consider the well-known Branch-and-Bound technique. The branching
heuristic is one of the main factors affecting the way Branch-and-Bound algorithms
explore the search tree. Two Branch-and-Bound algorithms, each using a different
branching heuristic, will most likely perform different explorations of the search tree of
one problem instance. Yet, both will find the optimum solution. Thus, the utilization of
different Branch-and-Bound search patterns does not prevent the technique from finding
the optimal solution. This critical observation may be used to construct parallel Branch-
and-bound methods. For example, the parallel exploration of the search tree based on
distributing sub-trees will modify the data available to the branching heuristic and thus,
for the same problem instance, the parallel and sequential search patterns will differ.
Yet, the different search strategies will all find the optimal solution. Consequently,
the exploration of sub-trees may be used as a source of parallelism for Branch-and-
Bound algorithms. This source of parallelism is not related to data parallelism, since the
data (the variables of the optimization problem) is not partitioned. It is not functional
parallelism either, because the two computations, sequential and parallel, are different.
Although this difference makes comparative performance analyzes more difficult to
perform (since the parallel implementation does not do the same work as the sequential
one), sub-tree distribution remains a valuable and widely used parallelization strategy
for Branch-and-Bound algorithms.

Similar observations can be made relative to new sources of parallelism in meta-
heuristics. A meta-heuristic algorithm started from different initial solutions will almost
certainly explore different regions of the solution space and return different solutions.
The different regions of the solution space explored can then become a source of paral-
lelism for meta-heuristic methods. However, the analysis of parallel implementation of
meta-heuristic methods becomes more complex because often the parallel implemen-
tation does not return the same solution as the sequential implementation. Evaluation
criteria based on the notion of solution quality (i.e., does the method find a better

Parallel Strategies for Meta-heuristics 485

solution?) have then to be used to qualify the more classical acceleration (speedup)
measures.

We have classified the parallelization strategies applied to meta-heuristics according
to the source of parallelism used:

Type 1: This source of parallelism is usually found within an iteration of the heuris-
tic method. The limited functional or data parallelism of a move evaluation is
exploited or moves are evaluated in parallel. This strategy, also called low-level
parallelism, is rather straightforward and aims solely to speed up computations,
without any attempt at achieving a better exploration (except when the same
total wall-clock time required by the sequential method is allowed to the parallel
process) or higher quality solutions.

Type 2: This approach obtains parallelism by partitioning the set of decision variables.
The partitioning reduces the size of the solution space, but it needs to be repeated
to allow the exploration of the complete solution space. Obviously, the set of
visited solutions using this parallel implementation is different from that of the
sequential implementation of the same heuristic method.

Type 3: Parallelism is obtained from multiple concurrent explorations of the solution
space.

Type 1 parallelism Type 1 parallelizations may be obtained by the concurrent exe-
cution of the operations or the concurrent evaluation of several moves making up an
iteration of a search method. Type 1 parallelization strategies aim directly to reduce
the execution time of a given solution method. When the same number of iterations are
allowed for both sequential and parallel versions of the method and the same opera-
tions are performed at each iteration (e.g., the same set of candidate moves is evaluated
and the same selection criterion is used), the parallel implementation follows the same
exploration path through the problem domain as the sequential implementation and
yields the same solution. As a result, standard parallel performance measures apply
straightforwardly. To illustrate, consider the computation of the average fitness of a
population for genetic methods. Because the sequence used to compute the fitness of
the individuals is irrelevant to the final average fitness of the population, it can be
spartitioned and the partial sums of each subpopulation can be computed in paral-
lel. Both the parallel and sequential computations yield the same average fitness, the
parallel implementation just runs faster.

Some implementations modify the sequential method to take advantage of the extra
computing power available, but without altering the basic search method. For example,
one may evaluate in parallel several moves in the neighbourhood of the current solution
instead of only one. In Figure 17.5, one can choose several y variables in Step 4 and then
perform Step 5 in parallel for each selected y. In tabu search, one may probe for a few
moves beyond each immediate neighbour to increase the available knowledge when
selecting the best move (Step 4 of Figure 17.6). The resulting search patterns of the serial
and parallel implementations are different in most cases. Yet, under certain conditions,
the fundamental algorithmic design is not altered, therefore these approaches still
qualify as Type 1 parallelism.

Type 2 parallelism In Type 2 strategies, parallelism comes from the decomposition
of the decision variables into disjoint subsets. The particular heuristic is applied to each

486 T.G. Crainic and M. Toulouse

subset and the variables outside the subset are considered fixed. Type 2 strategies are
generally implemented in some sort of master-slave framework:

A master process partitions the decision variables. During the search, the master
may modify the partition. Modifications may be performed at intervals that are
either fixed before or determined during the execution, or, quite often, are adjusted
when restarting the method.

Slaves concurrently and independently explore their assigned partitions. Moves
may proceed exclusively within the partition, the other variables being considered
fixed and unaffected by the moves which are performed, or the slaves may have
access to the entire set of variables.

When slaves have access to the entire neighbourhood, the master must perform
a more complex operation of combining the partial solutions obtained from each
subset to form a complete solution to the problem.

Note that a decomposition based on partitioning the decision variables may leave
large portions of the solution space unexplored. Therefore, in most applications, the
partitioning is repeated to create different segments of the decision variable vector and
the search is restarted.

Type 3 parallelism The first two parallelization strategies yield a single search path.
Parallelization approaches that consist of several concurrent searches in the solu-
tion space are classified as Type 3 strategies. Each concurrent thread may or may
not execute the same heuristic method. They may start from the same or different
initial solutions and may communicate during the search or only at the end to iden-
tify the best overall solution. The latter are known as independent search methods,
while the former are often called co-operative multi-thread strategies. Communica-
tions may be performed synchronously or asynchronously and may be event-driven or
executed at predetermined or dynamically decided moments. These strategies belong
to the p-control class according to the taxonomy proposed by Crainic, Toulouse,
and Gendreau (1997), and are identified as multiple-walks by Verhoeven and Aarts
(1995).

To speed up computation by using a multi-thread strategy, one generally tries to
make each thread perform a shorter search than the sequential procedure. This tech-
nique is implemented differently for each class of meta-heuristic. Let p be the number
of processors. For tabu search, each thread performs T / p iterations, where T is the
number of iterations of the corresponding sequential procedure. For simulated anneal-
ing, the total number of iterations of the inner loop (Steps 4 to 6 in Figure 17.5) is
reduced proportionally from L to L / p. For genetic algorithms, it is not the number of
generations which is generally reduced. Rather, the size N of the sequential population
is reduced to N / p for each genetic thread.

Type 3 parallelization strategies are often used to perform a more thorough explo-
ration of the solution space. Several studies have shown that multi-thread procedures
yield better solutions than the corresponding sequential meta-heuristics, even when the
exploration time permitted to each thread is significantly lower than that of the sequen-
tial computation. Studies have also shown that the combination of several threads that
implement different parameter settings increases the robustness of the global search

Parallel Strategies for Meta-heuristics 487

relative to variations in problem instance characteristics. We review some of these
results in Sections 4–6.

It is noteworthy that the application of classical performance measures (e.g., Barr
and Hickman, 1993) to multi-thread, parallel meta-heuristics is somewhat problem-
atic. For example, it is generally difficult to eliminate or control the overlap between
the search paths (to adequately control the search overlap would involve such high
levels of search synchronization and information exchanges that all benefits of paral-
lelization would be lost). Thus, one cannot measure correctly the search efficiency in
terms of the work performed. Moreover, many Type 3 parallelizations are based on
asynchronous interactions among threads. As asynchronous computations are time
dependent, such computations can produce different outputs for the same input.
Classical speedup measures are ill-defined to compare the performances of asyn-
chronous parallel meta-heuristics with sequential ones. In fact, several asynchronous
Type 3 parallel meta-heuristics are so different from the original sequential proce-
dure that one can hardly consider the two implementations to belong to the same
meta-heuristic class.

3.2 Other Taxonomies

The classification described above is sufficiently general to apply to almost any meta-
heuristic and parallelization strategy. Moreover, the lessons learned by comparing
within the same class the implementations and performances of particular meta-
heuristics are of general value and may be extended to search methods not covered
in depth in this paper. Most taxonomies proposed in the literature are, however, related
to a specific type of meta-heuristic.

Greening (1990) divides simulated annealing parallelization strategies according
to the degree of accuracy in the evaluation of the cost function associated with a move.
Parallel algorithms that provide an error-free evaluation are identified as synchronous
while the others are asynchronous. The synchronous category is divided further between
parallel simulated annealing algorithms that maintain the convergence properties of the
sequential method (serial-like) and those that have an accurate cost evaluation but differ
from the sequential computation in the search path generation (altered generation).
Type 1 parallelism completely covers the serial-like category. The altered generation
category overlaps with the Type 1 and Type 2 strategies. Asynchronous algorithms are
those that tolerate some error in the cost function in order to get better speedups and
correspond to a subset of the Type 2 category. No Type 3 algorithms are considered in
this work.

Cantù-Paz (1995) provides a classification of parallel genetic algorithms. The first
category, called global parallelization is identical to the Type 1 parallelization. Two
other categories classify genetic algorithms according to the size of the populations that
evolve in parallel, the so-called coarse-grained and fine-grained parallelization strate-
gies. There is also a class for hybrid genetic algorithm parallelizations. For example,
global parallelization applied to subpopulations of a coarse-grained parallel algorithm
is one instance of an hybrid algorithm. The union of these three groups forms the Type 3
category described in this paper. No Type 2 strategies are considered in Cantù-Paz’s
taxonomy.

Verhoeven and Aarts (1995) define local search as the class of approximation meth-
ods based on the exploration of neighbourhoods of solutions, including tabu search,

488 T.G. Crainic and M. Toulouse

simulated annealing, and genetic algorithms. Their taxonomy divides parallel methods
between single-walk and multiple-walk strategies. The former corresponds to Type 1
and Type 2 parallelism. The latter includes multiple independent walks and multi-
ple interacting walks and thus corresponds to the Type 3 parallelism of this paper.
Single-walk methods are further classified as single-step or multiple-step strategies.
The former corresponds to the simple parallel neighbourhood evaluation of Type 1. The
latter includes probing and Type 2 strategies. The taxonomy explicitly distinguishes
between synchronous and asynchronous approaches. Cung et al. (2002) present a clas-
sification of parallel meta-heuristic strategies based on that of Verhoeven and Aarts
(1995).

Currently, the most comprehensive taxonomy of parallel tabu search methods is
offered by Crainic et al. (1997) and Crainic (2002). The classification has three dimen-
sions. The first dimension, control cardinality, explicitly examines how the global
search is controlled, by a single process (as in master-slave implementations) or
collegially by several processes. The four classes of the second dimension indicate
the search differentiation: do search threads start from the same or different solu-
tions and do they make use of the same or different search strategies? Finally, the
control type dimension addresses the issue of information exchange and divides meth-
ods into four classes: rigid synchronization (e.g., simple neighbourhood evaluation
in Type 1 strategies), knowledge synchronization (e.g., probing in Type 1 strategies
and synchronous information exchanges in Type 3 methods), and, finally, collegial
and knowledge collegial. The last two categories correspond to Type 3 strategies
but attempt to differentiate methods according to the quantity and quality of infor-
mation exchanged, created, and shared. Although introduced for tabu search, this
classification applies to many other meta-heuristics and may form the basis for a
comprehensive taxonomy of meta-heuristics. It refines, in particular, the classifica-
tion used in this paper, which is based on the impact of parallelization on the search
trajectory.

4 GENETIC ALGORITHMS

At each iteration k, genetic algorithms compute the average fitness
of the N strings in the current population (Step 3 in Figure 17.4). The

time-consuming part of this operation is performing the summation Obvi-
ously, this computation can be distributed over several processors and, since there are
no dependencies among operations, it is a good candidate for efficient data, Type 1 par-
allelization. This summation has indeed been the first component of genetic algorithms
to be parallelized (Grefenstette, 1981).

Intuitively, one expects almost linear speedups from this parallelization of the
average fitness evaluation. Surprisingly, however, most experiments report signifi-
cant sub-linear speedups due to the latencies of low-speed communication networks
(Fogarty and Huang, 1990; Hauser and Männer, 1994; Chen et al., 1996; Abramson
and Abela, 1992; Abramson et al., 1993). The implementations of the selection and
crossover operators are also based on simple iterative loops, but each involves relatively
few computations. Therefore, considering the impact of the communication overhead

Parallel Strategies for Meta-heuristics 489

on a time-consuming operation like the fitness evaluation, Type 1 parallelization of the
genetic operators has received little attention.

Genetic algorithms are acknowledged to be inherently parallel. This inherent par-
allelism is limited to Type 1, however. We are not aware of any Type 2 parallelization
strategy for genetic algorithms and, although many known parallel genetic algorithms
are of Type 3, most of them are not strictly derived from the standard genetic paradigm.
Standard genetic methods are based on single panmictic population, and computation
is usually initiated on a new generation only after the old one has died out, thus pre-
venting the occurrence of parallelism across generations. Parallel genetic models, on
the other hand, find more opportunities for parallelism such as, concurrent computa-
tions across different generations or among different subpopulations. The literature on
parallel genetic methods often identifies two categories of Type 3 approaches: coarse-
grained and fine-grained. However, some Type 3 parallel genetic algorithms do not
display such clear cut characterization (e.g., Moscato and Norman, 1992).

Coarse-grained parallelizations usually refer to methods where the same sequen-
tial genetic algorithm is run on p subpopulations (each of size N / p), although some
researchers (e.g., Schlierkamp-Voosen and Mühlenbein, 1994; Herdy, 1992) have
pondered the possibility of using different strategies for each subpopulation. In such
models, each subpopulation is relatively small in comparison with the initial popu-
lation. This has an adverse impact on the diversity of the genetic material, leading
to premature convergence of the genetic process associated to each subpopulation. To
favor a more diversified genetic material in each subpopulation, a new genetic operator,
the migration operator, is provided.

The migration operator defines strategies to exchange individuals among subpop-
ulations. This operator has several parameters: the selection process that determines
which individuals will migrate (e.g., best-fit, randomly, randomly among better than
average individuals), the migration rate that specifies the number of strings migrated,
the migration interval that determines when migration may take place (usually defined
in terms of a number of generations), and the immigration policy that indicates how
individuals are replaced in the receiving subpopulation. Information exchanges are
further determined by the neighbourhood structure. In the island model, individuals
may migrate towards any other subpopulation, while in the stepping-stone model only
direct neighbours are reachable. Often the connection structure of the parallel com-
puter determines how subpopulations are logically linked. Finally, migration may be
performed either synchronously or asynchronously.

Since a genetic algorithm is associated with each subpopulation, coarse-grained
parallel strategies can exploit parallelism across generations, provided each generation
is related to a different subpopulation, And, it is always possible to combine Type 1 and
Type 3 parallelism by computing the average fitness within each subpopulation using
the Type 1 strategy as described above. MIMD computers are well adapted to coarse-
grained parallel genetic methods. Migration rate and frequency are such that, in general,
the quantity of data exchanged is small and can be handled efficiently even by low-
speed interconnection networks. Furthermore, since the workload of each processor is
significant (running a sequential genetic algorithm), latencies due to communications
(if any) can be hidden by computations in asynchronous implementations. Therefore,
linear speedups could be expected. Yet, few reports detail the speedups of coarse-
grained parallel genetic algorithms. To some extent, this is explained by the fact that
speedups do not tell the whole story regarding the performance of coarse-grained

490 T.G. Crainic and M. Toulouse

parallelizations, since one also needs to consider the associated convergence behavior.
Therefore, to this day, most efforts regarding coarse-grained parallelizations have been
focused on studying the best migration parameter settings. Most studies conclude that
migration is better than no migration, but that the degree of migration needs to be
controlled.

Schnecke and Vornberger (1996) analyze the convergence behaviour of coarse-
grained parallel genetic algorithms using a Type 3 strategy where a different genetic
algorithm is assigned to each subpopulation and search strategies, rather than solutions,
are migrated between subpopulations. At fixed intervals, the different genetic methods
are ranked (using the response to selection method of Mühlenbein and Schlierkamp-
Voosen, 1994) and the search strategies are adjusted according to the “best” one by
importing some of the “best” one’s characteristics (mutation rate, crossover rate, etc).
The paper contains references to several other works where self-adapting parallel
genetic evolution strategies are analyzed. Lis (1996), in particular, applies self-
adaptation to the mutation rate. The author implements a farming model where a master
processor manages the overall population and sends the same set of best individuals
to slave processors, each of which has a different mutation probability. Periodically,
according to the mutation rate of the process that obtained the best results, the muta-
tion rates of all slave processors are shifted one level up or down and populations are
recreated by the master processor using the best individuals of the slave processors.
Starkweather et al. (1991; see also Whitley and Starkweather, 1990a,b) also suggest
that an adaptive mutation rate might help achieve better convergence for coarse-grained
parallel genetic algorithms.

A more conceptually focused approach to improve the convergence of coarse-
grained parallel genetic strategies may be derived from co-evolutionary genetic
algorithm ideas. Schlierkamp-Voosen and Mühlenbein (1994), e.g., use competing
subpopulations as a means to adapt the parameters controlling the genetic algorithm
associated with each subpopulation. In the general setting of co-evolutionary genetic
methods, each subpopulation may have a different optimization function that either
competes with other subpopulations (as in a prey-predator or host-parasite relationship,
Hillis, 1992) or may co-operate with the other subpopulations by specializing on sub-
problems that are later combined to yield the full solution (Potter and De Jong, 1994).
In the competitive scheme proposed by Hillis, a population of solutions competes with
a population of evolving problems (test cases). Fitness and selection pressure favors
individuals that make life difficult in the other population. For example, fit individuals
in the population of solutions are those that can solve many test cases, while fit test
cases are those that only few individuals in the solution population can solve correctly.
In the co-operative scheme, the selection pressure favors individuals that co-operate
well to solve the global problem. The co-evolutionary setting provides the concept of
complementary sub-problems as a way to improve the convergence of coarse-grained
parallel genetic algorithms. To this day, however, this avenue has not been widely
explored.

Fine-grained strategies for parallel genetic algorithms divide the population into a
large number of small subsets. Ideally, subsets are of cardinality one, each individ-
ual being assigned to a processor. Each subset is connected to several others in its
neighbourhood. Together, a subset and its neighbouring subsets form a subpopulation
(or deme). Genetic operators are applied using asynchronous exchanges between indi-
viduals in the same deme only. Demes may be defined according to a fixed topology

Parallel Strategies for Meta-heuristics 491

(consisting of individuals residing in particular processors), obtained by a random walk
(applying a given Hamming distance among individuals), etc. Neighbourhoods overlap
to allow propagation of individuals or individual characteristics and mutations across
subpopulations. This overlapping plays a similar role to that of the migration operator
for coarse-grained parallel genetic algorithms. Fine-grained parallel genetic algorithms
are sometimes identified as cellular algorithms, because a fine-grained method with
fixed topology deme and relative fitness policy may be shown to be equivalent to finite
cellular automata with probabilistic rewrite rules and an alphabet equal to the set of
strings in the search space (see Whitley, 1993).

Fine-grained parallel genetic algorithms evolve a single population that spawns
over several generations. This enables parallelism across generations. A “generation
gap” (signaled by different iteration counts) tends to emerge in the population because
the selection and crossover operators in one deme are not synchronized with the other
demes. In effect, it is still a single population, due to the overlap among demes. Yet,
the global dynamics of fine-grained parallel genetic algorithms are quite different from
those of general genetic methods. In a single panmictic population, individuals are
selected based on a global average fitness value and the selected individuals have the
same probability of interacting with each other through the crossover operator. In
fine-grained parallel strategies, average fitness values (or whatever stand for them)
are local to demes. Consequently, individuals in the population do not have the same
probability to mate and the genetic information can only propagate by diffusion through
overlapping demes.

Diffusion is channeled by the overlapping structure of the demes, which is often
modeled on the interconnection network of the parallel computer. Consequently, net-
work topology is an important issue for fine-grained parallelization strategies, because
the diameter of the network (the maximum shortest path between two nodes) deter-
mines how long it takes for good solutions to propagate over all of the demes. Long
diameters isolate individuals, giving them little chance of combining with other good
individuals. Short diameters prevent genotypes (solution vectors) from evolving, since
good solutions rapidly dominate, which leads to premature convergence. Individual
fitness values are relative to their deme and thus individuals on processing units not
directly connected may have no chance to be involved together in the same crossover
operator. Schwehm (1992) implemented a fine-grained parallel genetic algorithm on
a massively parallel computer to investigate which network topology is best-suited
to fine-grained parallel genetic algorithms. Compared with a ring and three cubes of
various dimensions, a torus yielded the best results. Baluja (1993) conducted studies
regarding the capability of different topologies to prevent demes of fine-grained parallel
genetic algorithms to be dominated by the genotype of strong individuals. Three differ-
ent topologies were studied and numerical results suggest that 2D arrays are best suited
to fine-grained parallel genetic algorithms. See also the recent work of Kohlmorgen
et al. (1999).

Fine-grained parallel genetic methods have been hybridized with hill-climbing
strategies. Mühlenbein et al. (1987, 1988), among others, have designed hybrid
strategies for several optimization problems and obtained good performance. Memetic
algorithms (e.g., Moscato, 1989; Moscato and Norman, 1992) belong to the same cat-
egory. Hybrid schemes construct selection and crossover operators in a similar manner
to regular fine-grained parallelizations but a hill-climbing heuristic is applied to each
individual. When the computational cost of the hill-climbing heuristic (or any other

492 T.G. Crainic and M. Toulouse

heuristic) is substantial (in Memetic algorithms, for example), the population size has
to be small and the computing units powerful. Such hybrids appear to be closer to
coarse-grained parallelism, except that the selection and crossover operators are those
usually associated with fine-grained parallelization mechanisms. Interesting comments
about fine-grained parallel genetic strategies, their design and application as well as
the role of hill-climbing heuristics, can be found in Mühlenbein (1991, 1992, 1992a).

Research on parallel genetic algorithms is still active and prolific. Unlike other
meta-heuristics, parallelizations of Type 1, that exploit the inherent parallelism of stan-
dard genetic methods, are still quite competitive in terms of performance, degree of
parallelism, adaptation to current parallel computer architectures, and ease of imple-
mentation. In terms of research directions, innovation in algorithmic design, and
capacity for hybridization with other search methods, Type 3 parallelism is currently
the most active area. However, good models to compare the performance of different
Type 3 parallel strategies for genetic algorithms are still missing.

5 SIMULATED ANNEALING

A simulated annealing iteration consists of four main steps (Steps 4 to 6 in Figure 17.5):
select a move, evaluate the cost function, accept or reject the move, update (replace)
the current solution if the move is accepted. Two main approaches are used to obtain
Type 1 parallel simulated annealing algorithms: single-trial parallelism where only
one move is computed in parallel, and multiple-trial strategies where several moves
are evaluated simultaneously.

The evaluation of the cost function for certain applications may be quite computa-
tionally intensive, thus suggesting the possible exploitation of functional parallelism.
Single-trial strategies exploit functional parallelism by decomposing the evaluation
of the cost function into smaller problems that are assigned to different processors.
Single-trial strategies do not alter the algorithmic design nor the convergence proper-
ties of the sequential simulated annealing method. The resulting degree of parallelism
is very limited, however, and thus single-trial parallelization strategies do not speedup
computation significantly.

Multiple-trial parallelizations distribute the iterations making up the search among
different processors. Each processor fully performs the four steps of each iteration
mentioned above. This distribution does not raise particular issues relative to the first
three steps since these tasks are essentially independent with respect to different poten-
tial moves. Solution replacement is, however, a fundamentally sequential operation.
Consequently, the concurrent execution of several replacement steps may yield erro-
neous evaluations of the cost function because these evaluations could be based on
outdated data.

Type 1 multiple-trial strategies for simulated annealing enforce the condition that
parallel trials always result in an error-free cost function evaluation. This may be
achieved when solution updating is restricted to a single accepted move or to moves
that do not interact with each other. The latter approach, referred to as the serializ-
able subset method, accepts only a subset of moves that always produces the same
result when applied to the current state of the system, independent of the order of
implementation (a trivial serializable subset contains only rejected moves). To imple-
ment the former approach, one processor is designated to be the holder of the current

Parallel Strategies for Meta-heuristics 493

solution. Once a processor accepts a move, it sends the new solution to the holder,
which then broadcasts it to all processors. Any new move accepted during the update
of the current solution is rejected. Performance varies with the temperature parame-
ter. At high temperatures, when many potential moves are accepted, communications,
synchronization, and rejection of moves generate substantial overheads. At low tem-
peratures, fewer moves are accepted and speedups improve. Yet, performance is not
very satisfactory in most cases.

Most multiple-trial parallelization strategies for simulated annealing follow a Type 2
approach and partition the variables into subsets. A master-slave approach is generally
used, as illustrated in Figure 17.7. To initiate the search, the master processor partitions
the decision variables into p initial sets. The appropriate set is sent to each processor
together with the initial values for the temperature and the number of iterations to
be executed. In Step 2, each slave processor i executes the simulated annealing search
at temperature on its set of variables and sends its partial configuration of the
entire solution to the master processor. Once the information from all slaves has been
received, the master processor merges the partial solutions into a complete solution and
verifies the stopping criterion. If the search continues, it generates a new partition of
the variables such that and sends it to the slave processors together with
new values for and

Felten et al. (1985) applied this strategy to a 64-city travelling salesman problem
(TSP) using up to 64 processors of a hypercube computer. An initial tour was randomly
generated and partitioned into p subsets of adjacent cities, which were assigned to
p processors. Each processor performed local swaps on adjacent cities for a given
number of iterations, followed by a synchronization phase where cities were rotated
among processors. Parallel moves did not interact due to the spatial decomposition
of the decision variables. Moreover, each synchronization ensured the integrity of the
global state. Hence, there was no error and almost linear speedups were observed.

In most cases, however, error-free strategies cannot be efficiently implemented. It
is often difficult, for example, to partition variables such that parallel moves do not

494 T.G. Crainic and M. Toulouse

interact. Therefore, the two main issues in Type 2 parallel simulated annealing are
“how important is the error?” and “how can errors be controlled?”.

Algorithms executed on shared-memory systems can regularly and quite efficiently
update the global state of the current solution so that errors do not accumulate dur-
ing the computation. However, the issue is significantly more difficult for distributed
memory systems because each processor has its own copy of the data, including the
“current” solution, and global updates are costly in communication time. Trade-offs,
therefore, must be made between the frequency of the global state updates and the level
of error one is ready to tolerate during the parallel simulated annealing computation,
while acknowledging the possibility that significant errors might accumulate locally.
It has been observed, however, that errors tend to decrease as temperatures decrease,
because solution updates occur less frequently at low temperatures. Jayaraman and
Darema (1988) and Durand (1989) specifically address the issue of error tolerance for
parallel simulated annealing. As expected, they conclude that the error increases as
the frequency of synchronizations decreases and the number of processors increases.
In their studies, the combined error due to synchronization and parallelism had a sig-
nificant impact on the convergence of the simulated annealing algorithm. Of the two
factors, parallelism emerged as the most important.

One of the reasons for partitioning variables among processors is to prevent the
same variable from being simultaneously involved in more than one move. This goal
can also be achieved by locking the variables involved in a move. A locking mechanism
permits only the processor that owns the lock to update a given variable. Any other
processor that attempts to execute a move involving a locked variable must either wait
for the variable to become available or attempt a different move. However, the use
of locks results in a communication overhead which increases with the number of
processors (e.g., Darema et al., 1987).

Rather than having several processors execute moves from the same current solution
or subset of decision variables, processors could work independently using different
initial solutions and cooling schedules, or simply using the probabilistic nature of sim-
ulated annealing to obtain different search paths. This is Type 3 parallelism. Numerous
efforts to develop Type 3 parallel simulated annealing strategies using independent or
co-operative search threads are reported in the literature. An interesting recent devel-
opment involves the systematic inclusion of principles and operators from genetic
algorithms in simulated annealing multi-thread procedures. This hybrid approach tends
to perform very well.

The first Type 3 parallelizalion strategy to emerge was the division strategy pro-
posed by Aarts et al. (1986). Let L be the number of iterations executed by a sequential
simulated annealing program before reaching equilibrium at temperature The divi-
sion strategy executes L / p iterations on p processors at temperature Here, a single
initial solution and cooling strategy is used and it is assumed that the search paths will
not be the same due to the different probabilistic choices made by each processor. At the
L / p-th iteration, processors can either synchronize and choose one of the solutions as
the initial configuration for the next temperature, or continue from their last configura-
tions at the preceding temperature level. When synchronization is used, the procedure
corresponds to a synchronous co-operative scheme with global exchange of informa-
tion (otherwise, it is equivalent to an independent search approach). Unfortunately, the
length of the chain can not be reduced arbitrarily without significantly affecting the con-
vergence properties of the method. This is particularly true at low temperatures, where

Parallel Strategies for Meta-heuristics 495

many steps are required to reach equilibrium. To address this problem, the authors clus-
tered the processors at low temperatures and applied multi-trial parallelism of Type 1
within each cluster. Kliewer and Tschöke (2000) have addressed practical issues such
as the proper length of parallel chains and the best time to cluster processors.

An alternative to the division strategy is to run each processor with its own cooling
schedule in an independent search framework. The Multiple Independent Runs (MIR,
Lee 1995) and the Multiple Markov Chains (MMC, Lee and Lee 1996) schemes are
Type 3 parallelizations based on this approach. When there are no interactions among
processors, performance is negatively affected by idle processors which are waiting
for the longest search path to terminate. The MIR strategy addresses this problem by
calculating estimates of the total run length, and then using these estimates to end
computation on all processing units. The MMC scheme addresses the same issue by
allowing processes to interact synchronously and asynchronously at fixed or dynamic
intervals. The authors of this co-operating multi-thread strategy observe that commu-
nication overheads from co-operation are largely compensated for by the reduction of
processor idle time.

A different Type 3 initiative to increase the degree of parallelism of simulated
annealing algorithms consists of moving the methodology closer to genetic algorithms
by considering a population of simulating annealing threads. Laursen (1994) proposed
such a population scheme based on the selection and migration operators of parallel
genetic algorithms. Each processor concurrently runs k simulated annealing procedures
for a given number of iterations. Processors are then paired and each processor migrates
(copies) its solutions to its paired processor. Thus, after the migration phase, each
processor has 2k initial solutions and this number is reduced to k by selection. These
new k solutions become the initial configurations of the k concurrent simulated anneal-
ing threads, and the search restarts on each processor. Pairing is dynamic and depends
on the topology of the parallel machine. For example, in a grid topology, processors can
pair with any of their corner neighbours. Because processors are dynamically paired
and neighbourhoods overlap, information propagates in the network of processors sim-
ilar to the stepping-stone coarse-grained model for parallel genetic methods. Mahfoud
and Goldberg (1995) also propose to evaluate concurrently a population of n Markov
chains. The general idea proceeds as follows: after n / 2 iterations, two parents are
selected from the population of the n current solutions. Two children are generated
using a genetic crossover operator, followed by a mutation operator. Probabilistic trial
competitions are held between children and parents and the replacement step is per-
formed according to the outcome of the competition. The temperature is lowered when
the population reaches equilibrium. There are different ways to parallelize this algo-
rithm. The asynchronous parallelization described in Mahfoud and Goldberg (1995)
follows the Type 3 coarse-grained parallel genetic algorithm approach. The population
of n Markov chains is divided into p subpopulations of n / p Markov chains. Crossover,
mutation, and probability trials are applied to individuals of each local subpopulation.
Asynchronous migration enables sharing of individuals among subpopulations.

The literature on parallel simulated annealing methods has continued to flourish in
recent years. Recent research focuses on applying parallel simulated annealing to new
problems and developing software packages, rather than on discovering new paral-
lelization strategies. The relatively poor performance of Type 1 and Type 2 approaches
have been noticed and, consequently, there have been few applications of these strate-
gies. The most actively applied parallelization strategies are of Type 3: hybridation

496 T.G. Crainic and M. Toulouse

with hill-climbing (e.g., Du et al., 1999) or with genetic methods (e.g., Kurbel et al.,
1995); co-operative multi-threads (e.g., Chu et al., 1999); and massive parallelism (e.g.,
Mahfoud and Goldberg, 1995; Bhandarkar et al., 1996). We believe methods of Type 3
will continue to offer the best performance for parallel simulated annealing.

6 TABU SEARCH

Tabu search has proved a fertile ground for innovation and experimentation in the
area of parallel meta-heuristics. Most parallel strategies introduced in Section 3 have
been applied to tabu search for a variety of applications, and a number of interesting
parallelization concepts have been introduced while developing parallel tabu search
methods.

Similar to most other meta-heuristics, low-level, Type 1 parallelism has been the first
strategy to be applied to tabu search methods. The usual target in this case is the
acceleration of the neighbourhood exploration (Step 4 of Figure 17.6). Following the
ideas summarized in Section 3, most Type 1 implementations correspond to a master
process that executes a sequential tabu procedure and dispatches, at each iteration, the
possible moves in the neighbourhood of the current solution to be evaluated in parallel
by slave processes. Slaves may either evaluate only the moves in the set they receive
from the master process, or may probe beyond each move in the set. The master receives
and processes the information resulting from the slave operations and then selects and
implements the next move. The master also gathers all the information generated during
the tabu exploration, updates the memories, and decides whether to activate different
search strategies or stop the search.

The success of Type 1 strategies for tabu search appears more significant than for
genetic or simulated annealing methods. Indeed, very interesting results have been
obtained when neighbourhoods are very large and the time to evaluate and perform
a given move is relatively small, such as in quadratic assignment (QAP: Chakrapani
and Skorin-Kapov, 1992, 1993, 1995; Taillard (1991, 1993a), travelling salesman
(Chakrapani and Skorin-Kapov, 1993a) and vehicle routing (VRP: Garcia et al., 1994)
applications. For the same quality of solution, near-linear speedups are reported using
a relatively small number of processors. Moreover, historically (the first half of the
90’s), Type 1 parallel tabu search strategies permitted improvements to the best-known
solutions to several problem instances proposed in the literature.

Similarly to the other meta-heuristics, Type 1 tabu search implementations depend
heavily upon the problem characteristics. Thus, performance results are less interesting
when the time required by one serial iteration is relatively important compared to the
total solution time, resulting in executions with only a few hundred moves compared
to the tens of thousands required by a typical VRP tabu search procedure. This was
illustrated by the comparative study of several synchronous tabu search parallelization
strategies performed by Crainic, Toulouse, and Gendreau (1995a) for the location-
allocation problem with balancing requirements. With respect to Type 1 parallelization
approaches, two variants were implemented: (1) slaves evaluate candidate moves only;
(2) probing: slaves also perform a few local search iterations. The second variant per-
formed marginally better. However, both variants were outperformed by co-operative
multi-thread (Type 3) implementations, which attempt a more thorough exploration of
the solution space.

Parallel Strategies for Meta-heuristics 497

Typical tabu search implementations of Type 2 parallelization strategies partition
the vector of decision variables and perform a search on each subset. This approach
was part of the preliminary experimentation in the study by Crainic, Toulouse, and
Gendreau (1995a). It performed poorly, mainly because of the nature of the class of
problems considered; multicommodity location with balancing requirements requires
a significant computation effort to evaluate and implement moves, resulting in a limited
number of moves that may be performed during the search.

As with Type 1 implementations, Type 2 parallel methods were more successful for
problems for which numerous iterations may be performed in a relatively short time and
restarting the method with several different partitions does not require unreasonable
computational efforts. TSP and VRP formulations belong to this class of applications.
Fiechter (1994) proposed a method for the TSP that includes an intensification phase
during which each process optimizes a specific slice of the tour. At the end of the
intensification phase, processes synchronize to recombine the tour and modify (shift
part of the tour to a predetermined neighbouring process) the partition. To diversify,
each process determines from among its subset of cities a candidate list of most promis-
ing moves. The processes then synchronize to exchange these lists, so that all build
the same final candidate list and apply the same moves. Fiechter reports near-optimal
solutions to large problems (500, 3000 and 10000 vertices) and almost linear speedups
(less so for the 10000 vertex problems). Porto and Ribeiro (1995, 1996) studied the
task scheduling problem for heterogeneous systems and proposed several synchronous
parallel tabu search procedures where a master process determines and modifies parti-
tions, synchronizes slaves, and communicates best solutions. Interesting results were
reported, even for strategies involving a high level of communications. Almost lin-
ear speedups were observed, better performances being observed for larger problem
instances.

Taillard (1993) studied parallel tabu search methods for vehicle routing problems. In
Taillard’s approach, the domain is decomposed into polar regions, to which vehicles are
allocated, and each subproblem is solved by an independent tabu search. All processors
synchronize after a certain number of iterations (according to the total number of
iterations already performed) and the partition is modified: tours, undelivered cities, and
empty vehicles are exchanged between adjacent processors. Taillard reports very good
results for the epoch. However, enjoying the benefit of hindsight, the main contribution
of this paper is to mark the evolution towards one of the most successful sequential
meta-heuristics for the VRP: a tabu search method called adaptive memory (Rochat
and Taillard, 1995; Glover, 1996).

According to an adaptive memory approach, cities are initially separated into sev-
eral subsets, and routes are built using a construction heuristic. Initial routes are then
stored in a structure called an adaptive memory. Then, a combination procedure builds a
complete solution using the routes in the memory, and the solution is further improved
using a tabu search method. The routes of “good” solutions are then deposited into
the same memory, which thus adapts to reflect the current state of knowledge of the
search. The process then re-starts with a new solution built from the routes stored in the
adaptive memory. The method stops when a pre-specified number of calls to the adap-
tive memory have been performed. This approach clearly implements the principles of
Type 2 decomposition using a serial procedure; See also the interesting developments
in vocabulary building strategies for tabu search proposed by Glover (1996). Adap-
tive memory principles have now been successfully applied to other problem classes

498 T.G. Crainic and M. Toulouse

and are opening interesting research avenues (Glover, 1996). However, interestingly,
most parallel applications of this approach are now found in co-operative multi-thread
strategies (Type 3).

Type 3 parallelizations for tabu search methods follow the same basic pattern
described in Section 3: p threads search through the same solution space, starting
from possibly different initial solutions and using possibly different tabu (or other)
search strategies. Historically, independent and synchronous co-operative multi-thread
methods were proposed first. However, currently, asynchronous procedures are being
increasingly developed. Consequently, one observes an increased awareness of the
issues related to the definition and modelling of co-operation.

Battiti and Tecchiolli (1992, for the QAP) and Taillard (the main study is found in
his 1994 paper on parallel tabu methods for job shop scheduling problems) studied inde-
pendent multi-thread parallelization schemes, where the independent search processes
start the exploration from different, randomly generated, initial configurations. Both
studies empirically established the efficiency of independent multi-thread procedures
when compared to the best heuristics proposed at the time for their respective prob-
lems. Both studies also attempted to establish some theoretical justifications for the
efficiency of independent search. Battiti and Tecchiolli derived probability formulas
that tended to show that the probability of “success” increases, while the correspond-
ing average time to “success” decreases, with the number of processors (provided the
tabu procedure does not cycle). On the other hand, Taillard showed that the conditions
required for the parallel method to be “better” than the sequential one are rather strong,
where “better” was defined as “the probability the parallel algorithm achieves success
with respect to some condition (in terms of optimality or near-optimality) by time t
is higher than the corresponding probability of the sequential algorithm by time pt”.
However, the author also mentions that, in many cases, the empirical probability func-
tion of iterative algorithms is not very different from an exponential one, implying that
independent multi-thread parallelization is an efficient strategy. The results for the job
shop problem seemed to justify this claim. Similar results may also be found in Eikelder
et al. (1999).

Malek et al. (1989, for the TSP), De Falco et al. (1994, for the QAP), and De Falco
et al. (1995, for the mapping problem) proposed co-operative parallel strategies where
the individual search threads are rather tightly synchronized. The implementation
proposed by Malek et al. (1989) proceeds with one main process that controls the
co-operation, and four child processes that run serial tabu search algorithms with dif-
ferent tabu conditions and parameters. The child processes are stopped after a specified
time interval, solutions are compared, bad areas of solution space are eliminated, and
the searches are restarted with a good solution and an empty tabu list. This implementa-
tion was part of a comparative study of serial and parallel simulated annealing and tabu
search algorithms for the TSP. The authors report that the parallel tabu search imple-
mentation outperformed the serial one and consistently produced comparable or better
results than sequential or parallel simulated annealing. De Falco and colleagues imple-
mented a multi-thread strategy, where each process performs a local search from its
best solution. Then, processes synchronize and best solutions are exchanged between
processes that run on neighbouring processors. Local best solutions are replaced with
imported ones only if the latter are better. The authors indicate that better solutions
were obtained when co-operation was included compared to an independent thread
strategy. Super-linear speedups are reported.

Parallel Strategies for Meta-heuristics 499

Rego and Roucairol (1996) proposed a tabu search method for the VRP based
on ejection chains and implemented an independent multi-thread parallel version, each
thread using a different set of parameter settings but starting from the same solution. The
method is implemented in a master-slave setting, where each slave executes a complete
sequential tabu search. The master gathers the solutions found by the threads, selects
the overall best, and reinitializes the threads for a new search. Low-level (Type 1)
parallelism accelerates the move evaluations of the individual searches, as well as
the post-optimization phase. Experiments show the method to be competitive on the
standard VRP problem set (Christofides et al., 1979).

Asynchronous co-operative multi-thread search methods are being proposed in
continuously increasing numbers. All such developments we have identified use some
form of central memory for inter-thread communications. Each individual search thread
starts from a different initial solution and generally follows a different search strategy.
Exchanges are performed asynchronously and are done through the central memory.
One may classify co-operative multi-thread search methods according to the type of
information stored in the central memory: complete or partial solutions. In the latter
case, one often refers to adaptive memory strategies, while central memory, pool of
solutions, or solution warehouse methods are used for the former.

Very successful Type 3 co-operative multi-thread parallel tabu search methods are
based on adaptive memory concepts. This strategy has been particularly used for real-
time routing and vehicle dispatching problems (Gendreau et al., 1999), as well as for
VRP with time window restrictions (Taillard et al., 1997; Badeau et al., 1997). A gen-
eral implementation framework of adaptive memory strategies begins with each thread
constructing an initial solution and improving it through a tabu search or any other
procedure. Each thread deposits the routes of its improved solution into the adaptive
memory. Each thread then constructs a new initial solution out of the routes in the
adaptive memory, improves it, communicates its routes to the adaptive memory, and
repeats the process. A “central” process manages the adaptive memory and oversees
communication among the independent threads. It also stops the procedure based on
the number of calls to the adaptive memory, the number of successive calls which show
no improvement in the best solution, or a time limit. In an interesting development,
Gendreau et al. (1999) also exploited parallelism within each search thread by decom-
posing the set of routes along the same principles proposed in Taillard’s work (1993).
Good results have been obtained by using this approach on a network of workstations,
especially when the number of processors is increased. Another interesting variant on
the adaptive memory idea may be found in the work of Schulze and Fahle (1999).
Here, the pool of partial solutions is distributed among processes to eliminate the need
for a “master”. The elements of the best solutions found by each thread are broadcast
to ensure that each search has still access to all the information when building new
solutions. Implemented on a limited number of processors, the method performed well
(it is doubtful, however, that it would perform equally well for a larger number of
processors).

As far as we can tell, Crainic, Toulouse, and Gendreau (1997) proposed the first
central memory strategy for tabu search as part of their taxonomy. The authors also
presented a thorough comparison of various parallelization strategies based on this
taxonomy (Crainic et al., 1995a,b). The authors implemented several Type 1 and 2
strategies, one independent multi-thread approach, and a number of synchronous
and asynchronous co-operative multi-thread methods. They used the multicommodity

500 T.G. Crainic and M. Toulouse

location problem with balancing requirements for experimentation. The authors report
that the parallel versions achieved better quality solutions than the sequential ones
and that, in general, asynchronous methods outperformed synchronous strategies. The
independent threads and the asynchronous co-operative approaches offered the best
performance.

Crainic and Gendreau (2001) proposed a co-operative multi-thread parallel tabu
search for the fixed cost, capacitated, multicommodity network design problem. In their
study, the individual tabu search threads differed in their initial solution and parameter
settings. Communications were performed asynchronously through a central memory
device. The authors compared five strategies of retrieving a solution from the pool
when requested by an individual thread. The strategy that always returns the overall
best solution displayed the best performance when few (4) processors were used. When
the number of processors was increased, a probabilistic procedure, based on the rank of
the solution in the pool, appears to offer the best performance. The parallel procedure
improves the quality of the solution and also requires less (wall clock) computing
time compared to the sequential version, particularly for large problems with many
commodities (results for problems with up to 700 design arcs and 400 commodities
are reported). The experimental results also emphasize the need for the individual
threads to proceed unhindered for some time (e.g., until the first diversification move)
before initiating exchanges of solutions. This ensures that local search histories can
be established and good solutions can be found to establish the central memory as an
elite candidate set. By contrast, early and frequent communications yielded a totally
random search that was ineffective. The authors finally report that the co-operative
multi-thread procedure also outperformed an independent search strategy that used the
same search parameters and started from the same initial points. Other implementations
of asynchronous co-operative multi-thread parallel tabu search methods are presented
by Andreatta and Ribeiro (1994; see also Aiex et al., 1996; Martins et al., 1996) for the
problem of partitioning integrated circuits for logical testing as well as by Cavalcante
et al. (2002) for labor scheduling problems.

Crainic and Gendreau (1999) report the development of a hybrid search strategy
combining their co-operative multi-thread parallel tabu search method with a genetic
engine. The genetic algorithm initiates its population with the first elements from the
central memory of the parallel tabu search. Asynchronous migration (migration rate =
1) subsequently transfers the best solution of the genetic pool to the parallel tabu
search central memory, as well as solutions of the central memory towards the genetic
population. The hybrid appears to perform well, especially on larger problems where
the best known solutions are improved. It is noteworthy that the genetic algorithm
alone was not performing well and that it was the parallel tabu search procedure that
identified the best results once the genetic method contributed to the quality of the
central memory.

Recently, Le Bouthiller and Crainic (2001) took this approach one step further and
proposed a central memory parallel meta-heuristic for the VRP with time windows
where several tabu search and genetic algorithm threads co-operate. In this model,
the central memory constitutes the population common to all genetic threads. Each
genetic algorithm has its own parent selection and crossover operators. The offspring
are returned to the pool to be enhanced by a tabu search procedure. The tabu search
threads follow the same rules as in the work of Crainic and Gendreau (2001). Only
preliminary results are currently available, but they are extremely encouraging. Without

Parallel Strategies for Meta-heuristics 501

any particular calibration, the parallel meta-heuristic obtains solutions whose quality
is comparable to the best meta-heuristics available, and demonstrates almost linear
speedups.

To conclude, Type 1 (and in some cases Type 2) parallelization strategies may
still prove of value, especially for the evaluation of large neighbourhoods, or when
used in hierarchical implementations to speedup computations of meta-heuristics
involved in co-operative explorations. As illustrated above, Type 3, co-operative
multi-thread strategies offer the most interesting perspectives. They do require, how-
ever, some care when they are designed and set up as will be discussed in the next
section.

7 PERSPECTIVES AND RESEARCH DIRECTIONS

We have presented the main meta-heuristic parallelization strategies and their instan-
tiation in the context of three major classes of methods: genetic algorithms, simulated
annealing, and tabu search. Beyond the peculiarities specific to each methodology class
and application domain, a number of general principles emerge:

Meta-heuristics often have strong data dependencies. Therefore, straightforward
data or functional parallelization techniques can identify only limited parallelism.

Nevertheless, parallelization is very often beneficial. The evaluation of neigh-
bouring solutions is a prime example of meta-heuristic algorithmic components
that permit significant computational gains. Moreover, the concurrent exploration
of the solution space by co-operating meta-heuristics often yields gains in solution
quality, computational efficiency, and robustness of the search.

Type 1 parallelization techniques are particularly useful for computation-intensive
tasks, such as the evaluation of potential moves in the neighbourhood of a given
solution. Moreover, such strategies may be advantageously incorporated into hier-
archical parallel schemes where the higher level either explores partitions of the
solution domain (Type 2 parallelism) or implements a co-operating multi-thread
search (Type 3 parallelism).

Hybridization, the incorporation of principles and strategies proper to one class of
meta-heuristics into the algorithmic design of another, may improve performance
of sequential and parallel meta-heuristics alike.

When implemented properly, co-operating multi-thread parallel meta-heuristics
appear to be the most promising strategy.

We have focussed on genetic methods, simulated annealing, and tabu search to
reflect their wide-spread utilization in both sequential and parallel settings. Several
other meta-heuristics have also been proposed in the literature, and some have proven
quite successful for certain problem types. They include scatter search (Glover, 1994;
Glover and Laguna, 1997), GRASP (Feo and Resende, 1995; Festa and Resende, 2002),
variable neighbourhood search (Hansen and Mladenovic, 1997, 1999, 2002), ant
colony systems (Colorni et al., 1991; Dorigo et al., 1996; Maniezzo and Carbonaro,
2002), as well as a host of ad-hoc methods based on neighbourhood exploration, which,
in some surveys, are lumped together under the “local search” heading. Several of

502 T.G. Crainic and M. Toulouse

these methods also implement some sort of hybridization scheme where, typically, the
current incumbent solution is enhanced by a local improvement procedure. In most
cases, the basic working principle of the method may be cast in the generic meta-
heuristic framework illustrated in Figure 17.2. Thus, the main principles and strategies
described in this paper apply to the parallelization of these meta-heuristics as well, as
illustrated by the parallelization efforts that have been reported for these methods (e.g.,
Kindervater et al., 1993; Pardalos et al., 1995; Sondergeld and Voß, 1999; Verhoeven
and Severens, 1999). Of course, the most efficient applications of these principles and
strategies to each of these meta-heuristics have yet to be established, which constitutes
a most interesting research subject.

Co-operation and multi-thread parallelization appear to offer the most interesting
perspectives for meta-heuristics. However, several issues and challenges remain to be
addressed.

Synchronous implementations, where information is exchanged at regular inter-
vals, have been reported for the three classes of meta-heuristics examined in this paper.
In general, these implementations outperform the serial methods in solution quality.
For tabu search (Crainic et al., 1995) and simulated annealing (Graffigne, 1992), syn-
chronous co-operative methods appear to be outperformed, however, by independent
search procedures. Yet, the study by Lee and Lee (1992) contradicts this trend. Their
results show the independent thread approach to be outperformed by two strategies of
synchronous co-operating parallel threads. Similar finds have been reported for genetic
algorithms: Cohoon et al. (1987) and Cohoon et al. (1991a,b) report that parallel search
with migration operators applied at regular intervals outperforms the same method with-
out migration. These results point to interesting research issues that should be further
investigated, especially since Lee and Lee used a dynamically adjusted synchronization
interval that modified the traditional synchronous parallelism paradigm.

Asynchronous co-operative multi-thread search strategies appear to have been less
studied but are being increasingly proposed. In fact, this strategy is probably the
strongest current trend in parallel meta-heuristics, as illustrated by the development
of memetic algorithms, of methods that evolve populations of simulated annealing
threads, of the adaptive and central memory concepts initiated within the tabu search
community but displaying general applicability characteristics. The results reported in
the literature seem to indicate that asynchronous co-operative multi-thread paralleliza-
tion strategies offer better results than synchronous and independent searches. More
theoretical and empirical work is still required in this field, however.

An important issue for parallel meta-heuristic development and success concerns
the definition of co-operation schemes and their impact on search behaviour and
performance. A number of basic communication issues in designing multi-thread par-
allel meta-heuristics are discussed by Toulouse et al. (1996). More thorough analysis
(Toulouse et al., 1997, 1999, 2000; Toulouse et al., 1998) shows that co-operative
parallel meta-heuristics form dynamic systems and that the evolution of these systems
may be more strongly determined by the co-operation scheme than by the optimization
process. The selection of the information exchanged, and the part of it that is propa-
gated past the initial exchange, significantly impacts the performance of co-operating
procedures. The determination for each search thread of both when to import external
information and how to use it (e.g., restart from the imported solution and clean up
all history contrasted to the use of imported global information to bias local selection

Parallel Strategies for Meta-heuristics 503

mechanisms) are equally important ingredients in the design of co-operating multi-
thread parallel schemes. The application of these principles forms the basis of a new
co-operation scheme, called multi-level co-operative search (Toulouse et al., 1999;
see also Toulouse et al., 1998; Ouyang et al., 2000, 2000a), which has proven very
successful for graph partitioning problems.

The solutions exchanged by co-operating search threads form populations that do
not evolve according to genetic principles, but rather follow the information exchange
mechanisms that define the co-operation. Of course, genetic operators may be used
to control this evolution, as seen in some co-operative simulated annealing schemes.
Scatter search and ant colony systems offer alternate co-operation mechanisms. In this
respect, it is noteworthy that ant systems and, more generally, swarm-based meth-
ods (Bonabeau et al., 1999) appear as one of the first nature-inspired co-operation
mechanisms. Yet, for now, despite the interest of its fundamental idea of trend enforce-
ment/dilution, the co-operation principle underlying these methods appears much too
rigid to offer a general purpose method. Scatter search, on the other hand, offers
context-related combination mechanisms and memories for medium and long term
steering of the evolution of the population. New mechanisms need to be developed,
however, to relate this information to the search threads that make up the co-operating
parallel algorithm. In fact, we believe that no single mechanism may adequately cover
all possibilities and hybrid mechanisms will have to be defined.

Parallel co-operating methods do not have to include strategies belonging to only
one meta-heuristic class. In fact, a number of recent studies (e.g., Le Bouthillier and
Crainic, 2001) tend to demonstrate that combining different meta-heuristics yields
superior results. At the parallel computing level, this approach generalizes the trend
towards hybrid development observed in meta-heuristic communities. It also opens up
an exciting field of enquiry. What meta-heuristics to combine? What role can each
type of meta-heuristic play? What information is exchanged and how it is used in this
context? These are only a few of the questions that need to be answered.

Last but not least, recall an earlier remark that co-operating parallel mechanisms
bear little, if any, resemblance to the initial meta-heuristic one attempts to parallelize.
This remark is even more true when different meta-heuristics combine their efforts.
In fact, more and more authors argue that co-operating multi-thread parallel methods
should form a “new”, very broadly defined, class of meta-heuristics. If true, which
we believe it is, we are left with the challenge of properly defining this meta-heuristic
class. For example, memory mechanisms appear appropriate to record statistics on both
the attributes of the solutions exchanged (or present in the solution population) and the
performance of individual searches. How can this information be used to globally direct
the search? What interactions are most appropriate between global and local (for each
thread) information (memories)? These are among the most interesting challenges we
face in this respect.

To conclude, parallel meta-heuristics offer the possibility to address problems
more efficiently, both in terms of computing efficiency and solution quality. A
rather limited number of strategies exist and this paper aims to both put these
strategies into perspective and to briefly describe them. The study of parallel meta-
heuristics design and performance still constitutes an exciting and challenging research
domain with much opportunity for experimentation and development of important
applications.

504 T.G. Crainic and M. Toulouse

ACKNOWLEDGMENTS

Funding for this project has been provided by the Natural Sciences and Engineering
Council of Canada, and by the Fonds F.C.A.R. of the Province of Québec.

REFERENCES

Aarts, E. and Korst, J. (2002) Selected topics in simulated annealing. In: C. Ribeiro
and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers, Norwell, MA, pp. 1–57.

Aarts, E.H.L, de Bont, F.M.J., Habers, J.H.A. and van Laarhoven, P.J.M. (1986)
Parallel implementations of statistical cooling algorithms. Integration, The VLSI
Journal, 3, 209–238.

Aarts, E.H.L. and Korst, J.H.M. (1989) Simulated Annealing and Boltzmann Machines.
John Wiley & Sons, New York, NY.

Abramson, D. and Abela, J. (1992) A parallel genetic algorithm for solving the school
timetabling problem. In: G. Gupta and C. Keen (eds.), 15th Australian Computer
Science Conference. Department of Computer Science, University of Tasmania,
pp. 1–11.

Abramson, D., Mills, G. and Perkins, S. (1993) Parallelization of a genetic algorithm
for the computation of efficient train schedules. In: D. Arnold, R. Christie, J. Day
and P. Roe (eds.), Proceedings of the 1993 Parallel Computing and Transputers
Conference. IOS Press, pp. 139–149.

Aiex, R.M., Martins, S.L., Ribeiro, C.C. and Rodriguez, N.R. (1996) Asynchro-
nous parallel strategies for tabu search applied to the partitioning of VLSI circuits.
Monografias em ciência da computação, Pontifícia Universidade Católica de Rio de
Janeiro.

Andreatta, A. A. and Ribeiro C.C. (1994) A graph partitioning heuristic for the parallel
pseudo-exhaustive logical test of VLSI combinational circuits. Annals of Operations
Research, 50, 1–36.

Azencott, R. (1992) Simulated Annealing Parallelization Techniques. John Wiley &
Sons, New York, NY.

Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y. and Taillard, É.D. (1997) A par-
allel tabu search heuristic for the vehicle routing problem with time windows.
Transportation Research C: Emerging Technologies, 5(2), 109–122.

Baluja, S. (1993) Structure and performance of fine-grain parallelism in genetic algo-
rithms. In: S. Forrest (ed.), Proceedings of the Fifth International Conference on
Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 155–162.

Barr, R.S. and Hickman, B.L. (1993) Reporting computational experiments with paral-
lel algorithms: issues, measures, and experts opinions. ORSA Journal on Computing,
5(1), 2–18.

Battiti, R. and Tecchiolli, G. (1992) Parallel based search for combinatorial optimiza-
tion: genetic algorithms and TABU. Microprocessors and Microsystems, 16(7),
351–367.

Parallel Strategies for Meta-heuristics 505

Bhandarkar, S.M. and Chirravuri, S. (1996) A study of massively parallel simulated
annealing algorithms for chromosome reconstruction via clone ordering. Parallel
Algorithms and Applications, 9, 67–89.

Bonabeau, E., Dorigo, M. and Theraulaz, G. (eds.) (1999) Swarm Intelligence—From
Natural to Artificial Systems. Oxford University Press, New York, NY.

Cantú-Paz, E. (1995) A summary of research on parallel genetic algorithms. Report
95007, University of Illinois at Urbana-Champain.

Cantú-Paz, E. (1998) A survey of parallel genetic algorithms. Calculateurs Parallèles,
Réseaux et Systèmes répartis, 10(2), 141–170.

Cavalcante, C.B.C., Cavalcante, V.F., Ribeiro, C.C. and de Souza, C.C. (2002) Parallel
cooperative approaches for the labor constrained scheduling problem. In: C. Ribeiro
and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers, Norwell, MA, pp. 201–225.

Chakrapani, J. and Skorin-Kapov, J. (1992) A connectionist approach to the
quadratic assignment problem. Computers & Operations Research, 19(3/4),
287–295.

Chakrapani, J. and Skorin-Kapov, J. (1993) Massively parallel tabu search for the
quadratic assignment problem. Annals of Operations Research, 41, 327–341.

Chakrapani, J. and Skorin-Kapov, J. (1993a) Connection machine implementation of
a tabu search algorithm for the traveling salesman problem. Journal of Computing
and Information Technology, 1(1), 29–36.

Chakrapani, J. and Skorin-Kapov, J. (1995) Mapping tasks to processors to mini-
mize communication time in a multiprocessor system. In: The Impact of Emerging
Technologies of Computer Science and Operations Research. Kluwer Academic
Publishers, Norwell, MA, pp. 45–64.

Chen, Y.-W., Nakao, Z. and Fang, X. (1996) Parallelization of a genetic algorithm for
image restoration and its performance analysis. In: IEEE International Conference
on Evolutionary Computation, pp. 463–468.

Christofides, N., Mingozzi A. and Toth, P. (1979) The vehicle routing problem.
In: N. Christofides, A. Mingozzi, P. Toth and C. Sandi (eds.), Combinatorial
Optimization. John Wiley, New York, pp. 315–338.

Chu, K., Deng, Y. and Reinitz, J. (1999) Parallel simulated annealing algorithms by
mixing states. Journal of Computational Physics, 148, 646–662.

Cohoon, J., Hedge, S., Martin, W. and Richards, D. (1987) Punctuated equilibria:
a parallel genetic algorithm. In: J. Grefenstette (ed.), Proceedings of the Second
International Conference on Genetic Algorithms and their Applications. Lawrence
Erlbaum Associates, Hillsdale, NJ, pp. 148–154.

Cohoon, J., Martin, W. and Richards, D. (199la) Genetic algorithm and punctuated
equilibria in VLSI. In: H.-P. Schwefel and R. Männer (eds.), Parallel Problem
Solving from Nature, Lecture Notes in Computer Science 496. Springer-Verlag,
Berlin, pp. 134–144.

Cohoon, J., Martin, W. and Richards, D. (1991b) A multi-population genetic algorithm
for solving the k-partition problem on hyper-cubes. In: R. Belew and L. Booker

506 T. G. Crainic and M. Toulouse

(eds.), Proceedings of the Fourth International Conference on Genetic Algorithms.
Morgan Kaufmann, San Mateo, CA, pp. 134–144.

Colorni, A., Dorigo, M. and Maniezzo, V. (1991) Distributed optimization by ant
colonies. In: Proceedings of the 1991 European Conference on Artificial Life.
North-Holland, Amsterdam, pp. 134–142.

Crainic, T.G. (2002) Parallel computation, co-operation, tabu search. In: C. Rego and
B. Alidaee (eds.), Adaptive Memory and Evolution: Tabu Search and Scatter Search.
Kluwer Academic Publishers, Norwell, MA (forthcoming).

Crainic, T.G. and Gendreau, M. (1999) Towards an evolutionary method—cooperating
multi-thread parallel tabu search hybrid. In: S. Voß, S. Martello, C. Roucairol and
I.H. Osman (eds.), Mela-Heuristics 98: Theory & Applications. Kluwer Academic
Publishers, Norwell, MA, pp. 331–344.

Crainic, T.G. and Gendreau, M. (2001) Cooperative parallel tabu search for capacitated
network design. Journal of Heuristics (forthcoming).

Crainic, T.G. and Toulouse, M. (1998) Parallel metaheuristics. In: T.G. Crainic and
G. Laporte (eds.), Fleet Management and Logistics. Kluwer Academic Publishers,
Norwell, MA, pp. 205–251.

Crainic, T.G., Toulouse, M. and Gendreau, M. (1995a) Parallel asynchronous tabu
search for multicommodity location–allocation with balancing requirements. Annals
of Operations Research, 63, 277–299.

Crainic, T.G., Toulouse, M. and Gendreau, M. (1995b) Synchronous tabu search
parallelization strategies for multicommodity location–allocation with balancing
requirements. OR Spektrum, 17(2/3), 113–123.

Crainic, T.G., Toulouse, M. and Gendreau, M. (1997) Towards a taxonomy of parallel
tabu search algorithms. INFORMS Journal on Computing, 9(1), 61–72.

Cung, V.-D., Martins, S.L., Ribeiro, C.C. and Roucairol, C. (2002) Strategies for the
parallel implementations of metaheuristics. In: C. Ribeiro and P. Hansen (eds.),
Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA,
pp. 263–308.

Darema, F., Kirkpatrick, S. and Norton, V.A. (1987) Parallel algorithms for chip
placement by simulated annealing. IBM Journal of Research and Development, 31,
391–102.

De Falco, I., Del Balio, R. and Tarantino, E. (1995) Solving the mapping prob-
lem by parallel tabu search. Report, Istituto per la Ricerca sui Sistemi Informatici
Paralleli-CNR.

De Falco, I., Del Balio, R., Tarantino, E. and Vaccaro, R. (1994) Improving search
by incorporating evolution principles in parallel tabu search. In: Proceedings
International Conference on Machine Learning, pp. 823–828.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996) The ant system: optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics—Part B, 26(1), 29–41.

Du, Z., Li, S., Li, S., Wu, M. and Zhu, J. (1999) Massively parallel simulated
annealing embedded with downhill—a SPMD algorithm for cluster computing.

Parallel Strategies for Meta-heuristics 507

In: Proceedings of the 1st IEEE Computer Society International Workshop on
Cluster Computing. IEEE Computer Society Press, Washington, DC.

Durand, M.D. (1989) Parallel simulated annealing: accuracy vs. speed in placement.
IEEE Design & Test of Computers, 6(3), 8–34.

Durand, M.D. (1989a) Cost function error in asynchronous parallel simu-
lated annealing algorithms. Technical Report CUCS-423–89, University of
Columbia.

Felten, E., Karlin, S. and Otto, S. W. (1985) The traveling salesman problem on a hyper-
cube, MIMD computer. In Proceedings 1985 of the International Conference on
Parallel Processing, pp. 6–10.

Feo, T.A. and Resende, M.G.C. (1995) Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2), 109–133.

Festa, P. and Resende, M.G.C. (2002) GRASP: an annotated bibliography. In:
C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer
Academic Publishers, Norwell, MA, pp. 325–367.

Fiechter, C.-N. (1994) A parallel tabu search algorithm for large travelling salesman
problems. Discrete Applied Mathematics, 51(3), 243–267.

Fogarty, T.C. and Huang, R. (1990) Implementing the genetic algorithm on transputer
based parallel systems. In: H.-P. Schwefel and R. Männer (eds.), Proceedings of the
1st Workshop on Parallel Problem Solving from Nature. Springer-Verlag, Berlin,
pp. 145–149.

Fogel, D.B. (1994) Evolutionary programming: an introduction and some current
directions. Statistics and Computing, 4, 113–130.

Garcia, B.L., Potvin, J.-Y. and Rousseau, J.M. (1994) A parallel implementation of
the tabu search heuristic for vehicle routing problems with time window constraints.
Computers & Operations Research, 21(9), 1025–1033.

Gendreau, M. (2002) Recent advances in tabu search. In: C. Ribeiro and P. Hansen
(eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers,
Norwell, MA, pp. 369–377.

Gendreau, M., Guertin, F., Potvin, J.-Y. and Taillard, É.D. (1999) Tabu search
for real-time vehicle routing and dispatching. Transportation Science, 33(4),
381–390.

Glover, F. (1986) Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 1(3), 533–549.

Glover, F. (1989) Tabu search—part I. ORSA Journal on Computing, 1(3),
190–206.

Glover, F. (1990) Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.

Glover, F. (1994) Genetic algorithms and scatter search: unsuspected potentials.
Statistics and Computing, 4, 131–140.

Glover, F. (1996) Tabu search and adaptive memory programming—advances, appli-
cations and challenges. In: R. Barr, R. Helgason and J. Kennington (eds.), Interfaces
in Computer Science and Operations Research. Kluwer Academic Publishers,
Norwell, MA, pp. 1–75.

508 T.G. Crainic and M. Toulouse

Glover, F. and Laguna, M. (1993) Tabu search. In: C. Reeves (ed.), Modern Heuristic
Techniques for Combinatorial Problems. Blackwell Scientific Publications, Oxford,
pp. 70–150.

Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer Academic Publishers,
Norwell, MA.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA.

Graffigne, C. (1992) Parallel annealing by periodically interacting multiple searches:
an experimental study. In: R. Azencott (ed.), Simulated Annealing Parallelization
Techniques. John Wiley & Sons, New York, NY, pp. 47–79.

Greening, D.R. (1990) Parallel simulated annealing techniques. Physica D, 42,
293–306.

Grefenstette, J. (1981) Parallel adaptive algorithms for function optimization.
Technical Report CS-81–19, Vanderbilt University, Nashville.

Hansen, P. and Mladenovic, N. (1997) Variable neighborhood search. Computers &
Operations Research, 24, 1097–1100.

Hansen, P. and Mladenovic, N. (1999) An introduction to variable neighborhood
search. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.), Meta-Heuristics
98: Theory & Applications. Kluwer, Norwell, MA, pp. 433–458.

Hansen, P. and Mladenovic, N. (2002) Developments of variable neighborhood search.
In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer
Academic Publishers, Norwell, MA, pp. 415–439.

Hauser, R. and Männer, R. (1994) Implementation of standard genetic algorithm
on MIMD machines. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Par-
allel Problem Solving from Nature III, Lecture Notes in Computer Science 866.
Springer-Verlag, Berlin, pp. 504–514.

Herdy, M. (1992) Reproductive isolation as strategy parameter in hierarchical orga-
nized evolution strategies. In: R. Männer and B. Manderick (eds.), Parallel Problem
Solving from Nature, 2. North-Holland, Amsterdam, pp. 207–217.

Hillis, D.W. (1992) Co-evolving parasites improve simulated evolution as an opti-
mization procedure. In: C.E.A. Langton (ed.), Artificial Life II. Addison-Wesley,
pp. 313–324.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

Holmqvist, K. and Migdalas, A. and Pardalos, P.M. (1997) Parallelized heuristics
for combinatorial search. In: A. Migdalas, P. Pardalos and S. Storoy (eds.), Par-
allel Computing in Optimization. Kluwer Academic Publishers, Norwell, MA,
pp. 269–294.

Jayaraman, R. and Darema, F. (1988) Error tolerance in parallel simulated tech-
niques. In: Proceedings of the IEEE International Conference on Computer-
Aided Design: ICCAD-88. IEEE Computer Society Press, Washington, DC,
pp. 545–548.

Parallel Strategies for Meta-heuristics 509

Kindervater, G.A.P, Lenstra, J.K. and Savelsberg, M.W.P. (1993) Sequential and par-
allel local search for the time constrained traveling salesman problem. Discrete
Applied Mathematics, 42, 211–225.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated
annealing. Science, 220, 671–680.

Kliewer, G. and Tschoke, S. (2000) A general parallel simulated annealing library
and its application in airline industry. In: Proceedings of the 14th International
Parallel and Distributed Processing Symposium (IPDPS 2000). Cancun, Mexico,
pp. 55–61.

Kohlmorgen, U., Schmeck, H. and Haase, K. (1999) Experiences with fine-grained
parallel genetic algorithms. Annals of Operations Research, 90, 203–219.

Kurbel, K., Schneider, B. and Singh, K. (1995) VLSI standard cell placement by paral-
lel hybrid simulated annealing and genetic algorithm. In: D.W. Pearson, N.C. Steele
and R. F. Albrecht (eds.), Proceedings of the Second International Conference
on Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, Berlin,
pp. 491–494.

Laarhoven, P. and Aarts, E.H.L. (1987) Simulated Annealing: Theory and Applica-
tions. Reidel, Dordrecht.

Laursen, P.S. (1994) Problem-independent parallel simulated annealing using selection
and migration. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Paral-
lel Problem Solving from Nature III, Lecture Notes in Computer Science 866.
Springer-Verlag, Berlin, pp. 408–417.

Laursen, P.S. (1996) Parallel heuristic search—introductions and a new approach.
In: A. Ferreira and P. Pardalos (eds.), Solving Combinatorial Optimization Prob-
lems in Parallel, Lecture Notes in Computer Science 1054. Springer-Verlag, Berlin,
pp. 248–274.

Le Bouthillier, A. and Crainic, T.G. (2001) Parallel co-operative multi-thread meta-
heuristic for the vehicle routing problem with time window constraints. Publication,
Centre de recherche sur les transports, Université de Montréal, Montréal, QC,
Canada.

Lee, F.-H.A. (1995) Parallel Simulated Annealing on a Message-Passing Multi-
Computer. Ph.D. thesis, Utah State University.

Lee, K.-G. and Lee, S.-Y. (1992a) Efficient parallelization of simulated annealing
using multiple markov chains: an application to graph partitioning. In: T. Mudge
(ed.), Proceedings of the International Conference on Parallel Processing, volume
III: Algorithms and Applications. CRC Press, pp. 177–180.

Lee, K.-G. and Lee, S.-Y. (1995) Synchronous and asynchronous parallel simulated
annealing with multiple markov chains. Lecture Notes in Computer Science 1027,
pp. 396–408.

Lin, S.-C., Punch, W. and Goodman, E. (1994) Coarse-grain parallel genetic algo-
rithms: categorization and new approach. In: Sixth IEEE Symposium on Parallel
and Distributed Processing. IEEE Computer Society Press, pp. 28–37.

Lis, J. (1996) Parallel genetic algorithm with the dynamic control parameter. In: IEEE
1996 International Conference on Evolutionary Computation, pp. 324–328.

510 T.G. Crainic and M. Toulouse

Mahfoud, S.W. and Goldberg, D.E. (1995) Parallel recombinative simulated annealing:
a genetic algorithm. Parallel Computing, 21, 1–28.

Malek, M., Guruswamy, M., Pandya, M. and Owens, H. (1989) Serial and parallel
simulated annealing and tabu search algorithms for the traveling salesman problem.
Annals of Operations Research, 21, 59–84.

Maniezzo, V. and Carbonaro, A. (2002) Ant colony optimization: an overview. In:
C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer
Academic Publishers, Norwell, MA, pp. 469–492.

Martins, S.L., Ribeiro, C.C. and Rodriguez, N.R. (1996) Parallel programming tools
for distributed memory environments. Monografias em Ciência da Computação
01/96, Pontifícia Universidade Católica de Rio de Janeiro.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953)
Equation of state calculation by fast computing machines. Journal of Chemical
Physics, 21, 1087–1092.

Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin.

Michalewicz, Z. and Fogel, D.B. (2000) How to Solve It: Modern Heuristics.
Springer-Verlag, Berlin.

Moscato, P. (1989) On evolution, search, optimization, genetic algorithms and mar-
tial arts: towards memetic algorithms. Publication Report 790, Caltech Concurrent
Computation Program.

Moscato, P. and Norman, M.G. (1992) A “memetic” approach for the traveling
salesman problem. Implementation of a computational ecology for combinator-
ial optimization on message-passing systems. In: M. Valero, E. Onate, M. Jane, J.
Larriba and B. Suarez (eds.), Parallel Computing and Transputer Applications. IOS
Press, Amsterdam, pp. 187–194.

Mühlenbein, H. (1991) Evolution in time and space—the parallel genetic algorithm. In:
G. Rawlins (ed.), Foundations of Genetic Algorithm & Classifier Systems. Morgan
Kaufman, San Mateo, CA, pp. 316–338.

Mühlenbein, H. (1992) Parallel genetic algorithms in combinatorial optimization.
In: O. Balci, R. Sharda and S. Zenios (eds.), Computer Science and Operations
Research. Pergamon Press, New York, NY, pp. 441–56.

Mühlenbein, H. (1992a) How genetic algorithms really work: mutation and hill-
climbing. In: R. Manner and B. Manderick (eds.), Parallel Problem Solving from
Nature, 2. North-Holland, Amsterdam, pp. 15–26.

Muhlenbein, H., Gorges-Schleuter, M. and Krämer, O. (1987) New solutions to the
mapping problem of parallel systems—the evolution approach. Parallel Computing,
6, 269–279.

Mühlenbein, H., Gorges-Schleuter, M. and Krämer, O. (1988) Evolution algorithms
in combinatorial optimization. Parallel Computing, 7(1), 65–85.

Mühlenbein, H. and Schlierkamp-Voosen, D. (1994) The science of breeding and its
application to the breeder genetic algorithm BGA. Evolutionary Computation, 1(4),
335–360.

Parallel Strategies for Meta-heuristics 511

Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F. and Deogun, J.S. (2000a)
Multi-level cooperative search: application to the netlist/hypergraph partitioning
problem. In: Proceedings of International Symposium on Physical Design. ACM
Press, pp. 192–198.

Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F. and Deogun, J.S. (2000b)
Multilevel cooperative search for the circuit/hypergraph partitioning problem. IEEE
Transactions on Computer-Aided Design, (to appear).

Pardalos, P.M., Pitsoulis, L., Mavridou, T., and Resende, M.G.C. (1995) Parallel
search for combinatorial optimization: genetic algorithms, simulated annealing, tabu
search and GRASP. In: A. Ferreira and J. Rolim (eds.), Proceedings of Workshop on
Parallel Algorithms for Irregularly Structured Problems, Lecture Notes in Computer
Science 980. Springer-Verlag, Berlin, pp. 317–331.

Pardalos, P.M., Pitsoulis, L. and Resende, M.G.C. (1995) A parallel GRASP imple-
mentation for the quadratic assignment problem. In: A. Ferreira and J. Rolim
(eds.), Solving Irregular Problems in Parallel: State of the Art. Kluwer Academic
Publishers, Norwell, MA.

Porto, S.C.S. and Ribeiro, C.C. (1995) A tabu search approach to task scheduling
on heteregenous processors under precedence constraints. International Journal of
High-Speed Computing, 7, 45–71.

Porto, S.C.S. and Ribeiro, C.C. (1996) Parallel tabu search message-passing syn-
chronous strategies for task scheduling under precedence constraints. Journal of
Heuristics, 1(2), 207–223.

Potter, M. and De Jong, K. (1994) A cooperative coevolutionary approach to function
optimization. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Parallel Problem
Solving from Nature III, Lecture Notes in Computer Science 866. Springer-Verlag,
Berlin, pp. 249–257.

Ram, D.J., Sreenivas, T.H. and Subramaniam, K.G. (1996) Parallel simulated
annealing algorithms. Journal of Parallel and Distributed Computing, 37,
207–212.

Rego, C. and Roucairol, C. (1996) A parallel tabu search algorithm using ejection
chains for the VRP. In: I. Osman and J. Kelly (eds.), Meta-Heuristics: Theory &
Applications. Kluwer Academic Publishers, Norwell, MA, pp. 253–295.

Rochat, Y. and Taillard, É.D. (1995) Probabilistic diversification and intensification in
local search for vehicle routing. Journal of Heuristics, 1(1), 147–167.

Schlierkamp-Voosen, D. and Mühlenbein, H. (1994) Strategy adaptation by competing
subpopulations. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Parallel
Problem Solving from Nature III, Lecture Notes in Computer Science 866. Springer-
Verlag, Berlin, pp. 199–208.

Schnecke, V. and Vornberger, O. (1996) An adaptive parallel genetic algorithm for
VLSI-layout optimization. In: Y. Davidor, H.-P. Schwefel and R. Manner (eds.),
Parallel Problem Solving from Nature III, Lecture Notes in Computer Science 866.
Springer-Verlag, Berlin, pp. 859–868.

Schulze, J. and Fahle, T. (1999) A parallel algorithm for the vehicle routing problem
with time window constraints. Annals of Operations Reseach, 86, 585–607.

512 T.G. Crainic and M. Toulouse

Schwehm, M. (1992) Implementation of genetic algorithms on various intercon-
nection networks. In: M. Valero, E. Onate, M. Jane, J. Larriba and B. Suarez
(eds.), Parallel Computing and Transputers Applications. IOS Press, Amsterdam,
pp. 195–203.

Shonkwiler, R. (1993) Parallel genetic algorithms. In: S. Forrest (ed.), Proceedings
of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA, pp. 199–205.

Sondergeld, L. and Voß, S. (1999) Cooperative intelligent search using adaptive mem-
ory techniques. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.),
Meta-Heuristics 98: Theory & Applications. Kluwer, Norwell, MA, pp. 297–312.

Starkweather, T., Whitley, D. and Mathias, K. (1991) Optimization using distributed
genetic algorithms. In: H.-P. Schwefel and R. Männer (eds.), Parallel Problem
Solving from Nature, Lecture Notes in Computer Science 496. Springer-Verlag,
Berlin, pp. 176–185.

Taillard, É.D. (1991) Robust taboo search for the quadratic assignment problem.
Parallel Computing, 17, 443–455.

Taillard, É.D. (1993a) Parallel iterative search methods for vehicle routing problems.
Networks, 23, 661–673.

Taillard, É.D. (1993b) Recherches itératives dirigées parallèles. Ph.D. thesis, École
Polytechnique Fédérate de Lausanne.

Taillard, É.D. (1994) Parallel taboo search techniques for the job shop scheduling
problem. ORSA Journal on Computing, 6(2), 108–117.

Taillard, É.D., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.-Y. (1997) A
tabu Search heuristic for the vehicle routing problem with soft time windows.
Transportation Science, 31, 170–186.

ten Eikelder, H.M.M., Aarts, B.J.M., Verhoeven, M.G.A. and Aarts, E.H.L. (1999)
Sequential and parallel local search for job shop scheduling. In: S. Voß, S. Martello,
C. Roucairol and I.H. Osman (eds.), Meta-Heuristics 98: Theory & Applications.
Kluwer, Norwell, MA, Montréal, QC, Canada, pp. 359–371.

Toulouse, M., Crainic, T.G. and Gendreau, M. (1996) Communication issues in design-
ing cooperative multi thread parallel searches. In: I.H. Osman and J.P. Kelly (eds.),
Meta-Heuristics: Theory & Applications. Kluwer Academic Publishers, Norwell,
MA, pp. 501–522.

Toulouse, M., Crainic, T.G. and Sansó, B. (1997) Systemic behavior of cooperative
search algorithms. Publication CRT-97-55, Centre de recherche sur les transports,
Université de Montréal, Montréal, QC, Canada.

Toulouse, M., Crainic, T.G. and Sansó, B. (1999a) An experimental study of systemic
behavior of cooperative search algorithms. In: S. Voß, S. Martello, C. Roucairol and
I.H. Osman (eds.), Meta-Heuristics 98: Theory & Applications. Kluwer Academic
Publishers, Norwell, MA, pp. 373–392.

Toulouse, M., Crainic, T.G., Sansó, B. and Thulasiraman, K. (1998a) Self-organization
in cooperative search algorithms. In: Proceedings of the 1998 IEEE International
Conference on Systems, Man, and Cybernetics. Omnipress, pp. 2379–2385.

Parallel Strategies for Meta-heuristics 513

Toulouse, M., Crainic, T.G. and Thulasiraman, K. (2000) Global optimization
properties of parallel cooperative search algorithms: a simulation study. Parallel
Computing, 26(1), 91–112.

Toulouse, M., Glover, F. and Thulasiraman, K. (1998b) A multi-scale cooperative
search with an application to graph partitioning. Report, School of Computer
Science, University of Oklahoma, Norman, OK.

Toulouse, M., Thulasiraman, K. and Glover, F. (1999b) Multi-level cooperative search.
In: P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé, L. Giraud and D. Ruiz
(eds.), 5th International Euro-Par Parallel Processing Conference, volume 1685 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 533–542.

Verhoeven, M.G.A. and Severens, M.M.M. (1999) Parallel local search for steiner
trees in graphs. Annals of Operations Research, 90, 185–202.

Verhoeven, M.G.A. and Aarts, E.H.L (1995) Parallel local search. Journal of
Heuristics, 1(1), 43–65.

Voß, S. (1993) Tabu search: applications and prospects. In: D.-Z. Du and P. Pardalos
(eds.), Network Optimization Problems. World Scientific Publishing Co., Singapore,
pp. 333–353.

Whitley, D. (1993) Cellular genetic algorithms. In: S. Forrest (eds.), Proceedings
of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA, pp. 658–658.

Whitley, D. and Starkweather, T. (1990a) Optimizing small neural networks using a
distributed genetic algorithm. In: Proceedings of the International Conference on
Neural Networks. IEEE Press, pp. 206–209.

Whitley, D. and Starkweather, T. (1990b) GENITOR II: a distributed genetic algorithm.
Journal of Experimental and Theoretical Artificial Intelligence, 2(3), 189–214.

Whitley, L.D. (1994) A genetic algorithm tutorial. Statistics and Computing, 4, 65–85.

