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Part A: Background

1 INTRODUCTION

The term genetic algorithm, almost universally abbreviated nowadays to GA, was first
used by John Holland [1], whose book Adaptation in Natural and Aritificial Systems
of 1975 was instrumental in creating what is now a flourishing field of research and
application that goes much wider than the original GA. Many people now use the
term evolutionary computing or evolutionary algorithms (EAs), in order to cover the
developments of the last 10 years. However, in the context of metaheuristics, it is
probably fair to say that GAs in their original form encapsulate most of what one needs
to know.

Holland’s influence in the development of the topic has been very important, but
several other scientists with different backgrounds were also involved in developing
similar ideas. In 1960s Germany, Ingo Rechenberg [2] and Hans-Paul Schwefel [3]
developed the idea of the Evolutionsstrategie (in English, evolution strategy), while—
also in the 1960s—Bremermann, Fogel and others in the USA implemented their idea
for what they called evolutionary programming. The common thread in these ideas
was the use of mutation and selection—the concepts at the core of the neo-Darwinian
theory of evolution. Although some promising results were obtained, evolutionary
computing did not really take off until the 1980s. Not the least important reason for
this was that the techniques needed a great deal of computational power. Neverthe-
less, the work of these early pioneers is fascinating to read in the light of our current
knowledge; David Fogel (son of one of the early pioneers) has documented some of
this work in [4].

1975 was a pivotal year in the development of genetic algorithms. It was in that year
that Holland’s book was published, but perhaps more relevantly for those interested in
metaheuristics, that year also saw the completion of a doctoral thesis by one of Holland’s
graduate students, Ken DeJong [5]. Other students of Holland’s had completed theses
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in this area before, but this was the first to provide a thorough treatment of the GA’s
capabilities in optimization.

A series of further studies followed, the first conference on the nascent subject
was convened in 1985, and another graduate student of Holland’s, David Goldberg,
produced first an award-winning doctoral thesis on his application to gas pipeline
optimization, and then, in 1989, an influential book [6]—Genetic Algorithms in
Search, Optimization, and Machine Learning. This was the final catalyst in set-
ting off a sustained development of GA theory and applications that is still growing
rapidly.

Optimization has a fairly small place in Holland’s work on adaptive systems, yet the
majority of research on GAs tends to assume this is their purpose. DeJong, who initiated
this interest in optimization, has cautioned that this emphasis may be misplaced in a
paper [7] in which he contends that GAs are not really function optimizers, and that
this is in some ways incidental to the main theme of adaptation. Nevertheless, using
GAs for optimization is very popular, and frequently successful in real applications,
and to those interested in metaheuristics, it will undoubtedly be the viewpoint that is
most useful.

Unlike the earlier evolutionary algorithms, which focused on mutation and could
be considered as straightforward developments of hill-climbing methods, Holland’s
GA had an extra ingredient—the idea of recombination. It is interesting in this regard
to compare some of the ideas being put forward in the 1960s in the field of operational
research (OR).

OR workers had by that time begun to develop techniques that seemed able to
provide ‘good’ solutions, even if the quality was not provably optimal (or even near-
optimal). Such methods became known as heuristics. A popular technique, which
remains at the heart of many of the metaheuristics described in this handbook, was
that of neighbourhood search, which has been used to attack a vast range of combina-
torial optimization problems. The basic idea is to explore ‘neighbours’ of an existing
solution—these being defined as solutions obtainable by a specified operation on the
base solution.

One of the most influential papers in this context was that published by Lin [8], who
found excellent solutions to the traveling salesman problem by investigating neighbour-
hoods formed by breaking any 3 links of a tour and re-connecting them. Empirically,
Lin found that these ‘3-optimal’ solutions were of excellent quality—in the case of the
(rather small) problems he investigated, often close to the global optimum. However,
he also made another interesting observation, and suggested a way of exploiting it.
While starting with different initial permutations gave different 3-optimal solutions,
these 3-optimal solutions were observed to have a lot of features (links) in common.
Lin therefore suggested that search should be concentrated on those links about which
there was not a consensus, leaving the common characteristics of the solutions alone.
This was not a GA as Holland was developing it, but there are clear resonances. Much
later, after GAs had become more widely known, Lin’s ideas were re-discovered as
‘multi-parent recombination’ and ‘consensus operators’.

Other OR research of the same era took up these ideas. Roberts and Flores [9]
(apparently independently) used a similar approach to Lin’s for the TSP, while Nugent
et al. [10] applied this basic idea for the quadratic assignment problem. However, the
general principle was not adopted into OR methodology, and relatively little was done
to exploit the idea until GAs came on the OR scene in the 1990s.
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2 BASIC CONCEPTS

Assume we have a discrete search space and a function

The general problem is to find

where the function

It is usually desirable that c should be a bijection. (The important property of a bijection
is that it has an inverse, i.e., there is a unique vector x for every string s, and a unique
string s for every vector x.) In some cases the nature of this mapping itself creates
difficulties for a GA in solving optimization problems, as discussed in [11].

In using this device, Holland’s ideas are clearly distinct from the similar method-
ology developed by Rechenberg [2] and Schwefel [3], who preferred to work with the
original decision variables directly. Both Holland’s and Goldberg’s books claim that
representing the variables by binary strings (i.e., ) is in some sense ‘opti-
mal’, and although this idea has been challenged, it is still often convenient from a

Here x is a vector of decision variables, and f is the objective function. We assume
here that the problem is one of minimization, but the modifications necessary for a
maximization problem are nearly always obvious. Such a problem is commonly called
a discrete or combinatorial optimization problems (COP).

One of the distinctive features of the GA approach is to allow the separation of
the representation of the problem from the actual variables in which it was origi-
nally formulated. In line with biological usage of the terms, it has become customary
to distinguish the ‘genotype’—the encoded representation of the variables, from the
‘phenotype’—the set of variables themselves. That is, the vector x is represented
by a string s, of length l, made up of symbols drawn from an alphabet     , using
a mapping

In practice, we may need to use a search space

to reflect the fact that some strings in the image of under c may represent invalid
solutions to the original problem. (This is a potential source of difficulty for GAs
in combinatorial optimization—a topic that is covered in [11].) The string length l
depends on the dimensions of both and and the elements of the string correspond
to ‘genes’, and the values those genes can take to ‘alleles’. This is often designated
as the genotype–phenotype mapping. Thus the optimization problem becomes one of
finding
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mathematical standpoint to consider the binary case. Certainly, much of the theoretical
work in GAs tends to make this assumption. In applications, many representations are
possible—some of the alternatives that can be used in particular COPs are discussed
in [11].

The original motivation for the GA approach was a biological analogy. In the selec-
tive breeding of plants or animals, for example, offspring are sought that have certain
desirable characteristics—characteristics that are determined at the genetic level by the
way the parents’ chromosomes combine. In the case of GAs, a population of strings is
used, and these strings are often referred to in the GA literature as chromosomes. The
recombination of strings is carried out using simple analogies of genetic crossover and
mutation, and the search is guided by the results of evaluating the objective function
f for each string in the population. Based on this evaluation, strings that have higher
fitness (i.e., represent better solutions) can be identified, and these are given more
opportunity to breed. It is also relevant to point out here that fitness is not necessarily to
be identified simply with the composition f(c(s)); more generally, fitness is h(f(c(s)))
where isa monotonic function.

Perhaps the most fundamental characteristic of genetic algorithms is that their use
of populations of many strings. Here again, the German school of ES initially did not
use populations, and focussed almost exclusively on ‘mutation’ operators which are
generally closer in concept to the types of operator used in neighbourhood search and
its extensions. Holland also used mutation, but in his scheme it is generally treated as
subordinate to crossover. Thus, in Holland’s GA, instead of the search moving from
point to point as in NS approaches, the whole set of strings undergoes ‘reproduction’
in order to generate a new population.

DeJong’s work established that population-based GAs using crossover and mutation
operators could successfully deal with optimization problems of several different types,
and in the years since this work was published, the application of GAs to COPs has
grown almost exponentially.

These operators and some developments of them are described more fully in part B.
At this point, however, it might be helpful to provide a very basic introduction.
Crossover is a matter of replacing some of the genes in one parent by correspond-
ing genes of the other. An example of one-point crossover would be the following.
Given the parents P1 and P2, with crossover point 3 (indicated by X), the offspring will
be the pair 01 and 02:

The other common operator is mutation, in which a subset of genes is chosen
randomly and the allele value of the chosen genes is changed. In the case of binary
strings, this simply means complementing the chosen bits. For example, the string
01 above, with genes 3 and 5 mutated, would become 1 0 0 1 1 0 1 . A simple
template for the operation of a genetic algorithm is shown in Figure 3.1. The individual
parts of this very general formulation will be discussed in detail in Part B.
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3 WHY DOES IT WORK?

Exactly how and why GAs work is still hotly debated. There are various schools of
thought, and none can be said to provide a definitive answer. A comprehensive survey
will be available shortly in [12]. Meanwhile, the following is a brief guide to the main
concepts that have been used.

3.1 The ‘traditional’ view

Holland’s explanation of why it is advantageous to search the space rather than
hinges on three main ideas. Central to this understanding is the concept of a schema.
A schema is a subset of the space in which all the strings share a particular set of
defined values. This can be represented by using the alphabet ; in the binary case,
1 * * 1, for example, represents the subset of the 4-dimensional hypercube
in which both the first and last genes take the value 1, i.e., the strings {1 0 0 1, 1
0 1 1, 1 1 0 1, 1 1 1 1}.

The first of Holland’s ideas is that of intrinsic (or implicit) parallelism—the notion
that information on many schemata can be processed in parallel. Under certain con-
ditions that depend on population size and schema characteristics, Holland estimated
that a population of size M contains information on schemata. However, these
schemata cannot actually be processed in parallel, because independent estimates of
their fitness cannot be obtained in general [13].

The second concept is expressed by the so-called Schema Theorem, in which
Holland showed that if there are N(S, t) instances of a given schema S in the pop-
ulation at time t, then at the next time step (following reproduction), the expected
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number of instances in the new population can be bounded by

where is the fitness of schema is the average fitness of the population, and
is a term which reflects the potential for genetic operators to destroy instances

of schema S.
By failing to appreciate the stochastic and dynamic nature of this relationship,

somewhat extravagant conclusions have been drawn from this theorem, expressed in
the frequently made statement that good schemata will receive exponentially increasing
numbers of trials in subsequent generations. However, it is clear that the Schema
Theorem is a result in expectation only, and then only for one generation. Thus, any
attempt to extrapolate this result for more than one generation is doomed to failure
because the terms are then no longer independent of what is happening in the rest of
the population. Also, given a finite population, it is clear that any exponential increase
cannot last very long.

Holland also attempted to model schema processing (or hyperplane competitions)
by means of an analogy to stochastic two-armed bandit problems. This is a well-
known statistical problem: we are given two ‘levers’ which if pulled give ‘payoff’
values according to different probability distributions. The problem is to use the results
of previous pulls in order to maximize the overall future expected payoff. In [1] it is
argued that a GA approximates an ‘optimal’ strategy which allocates an (exponentially)
increasing number of trials to the observed better lever; this is then used to contend
for the supposed efficiency of a GA in distinguishing between competing schemata or
hyperplanes.

Early accounts of GAs suggested quite strongly that in a GA we had thus discov-
ered an algorithm that used the best available search strategy to solve not merely one,
but many hyperplane competitions at once: the ‘only case where combinatorial explo-
sion works in our favour’. Unfortunately, Wolpert and Macready’s ‘No-Free-Lunch’
Theorem (NFLT) [14] has rather destroyed such dreams.1

In fact, intrinsic parallelism turns out to be of strictly limited application; it merely
describes the number of schemata that are likely to be present in some numbers given
certain assumptions about string length, population size and (most importantly) the
way in which the population has been generated—and the last assumption is unlikely
to be true except at a very early stage of the search. Even then, only in very unusual
circumstances—that of orthogonal populations [13]—could the hyperplane competi-
tions actually be processed in parallel; normally, the competitions are not independent.
The two-armed bandit analogy also fails in at least two ways: first, Macready and
Wolpert [15] have recently argued that there is no reason to believe that the strategy
described by Holland as approximated by a GA is a optimal one. They also believe
there is in any case a flaw in Holland’s mathematics.

This is not to say that the Schema Theorem in particular, or the idea of a schema
in general, is useless, but that what it says is of limited and mainly short-term value—
principally, that certain schemata are likely to increase their presence in the next

1The NFLT, put simply, says that on the average, nothing—ant colonies, GAs, simulated annealing, tabu
search, etc.—is better than random search. Success comes from adapting the technique to the problem at
hand.
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population, and that those schemata will be on the average fitter, and less resistant
to destruction by crossover and mutation, than those that do not.

This brings us to the third assumption implicit in the implementation of a GA—that
the re-combination of small pieces of the genotype (good schemata)into bigger pieces
is indeed a sensible method of finding optimal solutions. Goldberg [6] calls this the
building-block hypothesis (BBH).There is certainly some negative evidence, in that
problems constructed to contain misleading building-blocks may indeed be hard for a
GA to solve. The failure of the BBH is often invoked as a explanation when a GA fails
to solve particular COPs.

However, the properties of these problems are not usually such that they are uniquely
difficult for GAs. Holland himself, with two other co-workers, looked for positive
evidence in favour of the building-block hypothesis [16] and found the results rather
problematical: functions constructed precisely to provide a ‘royal road’ made up of
building blocks of increasing size and fitness turned out to be much more efficiently
solved by ‘non-genetic’ methods.

3.2 Other Approaches

By writing his theorem in the form of a lower bound, Holland was able to make a state-
ment about schema S that is independent of what happens to other schemata. However,
in practice what happens to schema S will influence the survival (or otherwise) of other
schemata, and what happens to other schemata will affect what happens to S as is made
plain by the exact models of Vose [17] and Whitley [18].

Markov chain theory [17,18] has been applied to GAs [ 19,20] to gain a better under-
standing of the GA as a whole. However, while the results are fascinating in illuminating
some nuances of GA behaviour, the computational requirements are formidable for all
but the smallest of problems, as shown by Delong et al. [21], or Rees and Koehler [22],
for example.

Shapiro et al. [23] first examined GAs from a statistical mechanics perspective,
and there is a growing literature on this topic. Peck and Dhawan [24] have linked GAs
to global randomized search methods. But one of the difficulties in analysing GAs
is that there is not a single generic GA, the behaviour of which will characterize the
class of algorithms that it represents. In practice, there is a vast number of ways of
implementing a GA, as will be seen in the discussion in Part B, and what works in one
case may not work in another. Some workers have therefore tried to look for ways of
predicting algorithm performance for particular problem classes.

Reeves and Wright [13] summarize a perspective based on relating GAs to statistical
methods of experimental design, which draws upon the biological concept of epistasis.
This expresses the idea that the expression of a chromosome is not merely a sum of
the effects of its individual alleles, but that the alleles located in some genes influence
the expression of the alleles in others. From a mathematical viewpoint, epistasis is
equivalent to the existence of interactions in the fitness function. If we knew the extent
of these non-linearities, we might be able to choose an appropriate algorithm. Unfor-
tunately, as is explained in [25], it is unlikely that this approach will be successful,
although the literature surrounding the question of epistasis has produced some useful
insights into GAs.

Several authors [26–28] have pointed out connections between GAs and neighbour-
hood search methods, and this has led to a considerable literature on the analysis of



62 C. Reeves

problem landscapes. The concept of a landscape has been used informally for many
years, but recent work [29] has put the idea on a rigorous mathematical foundation
which is still being explored. Some of its uses in the context of GAs is described
in [30]. It appears that this way of thinking about algorithms has great potential for
unifying different metaheuristics and increasing our understanding of them.

4 APPLICATIONS AND SOURCES

There are numerous examples of the successful application of GAs to combinatorial
optimization problems. Books such as those by Davis [31] and Chambers [32,33] are
useful in displaying the range of problems to which GAs have been applied. In a chap-
ter such as this, it is impossible to give an exhaustive survey of relevant applications
of GAs, but [11] lists some of the more useful and accessible references that should
be of interest to people who are experimenting with metaheuristics. However, because
of the enormous growth in reported applications of GAs, this list is inevitably incom-
plete, as well as somewhat dated already. For a time, Alander attempted to maintain
a comprehensive bibliography: an early version of this is included in [33], while an
updated one was provided in [34]. However, this is one area where the phenonemon
of exponential growth is indubitable, and the sheer number of papers published in the
last 5 years seem to have overwhelmed this enterprise.

For more information on applications, and on GAs in general, the reader has several
useful books to choose from: the early ones by Holland, Goldberg and Michalewicz
[1,6,35] tend to be over-committed to the schema-processing point of view, but they
are all still excellent sources of information. Reeves [36] also reflects the state of the
theory at the time the book was written, although it covers other heuristic methods too.
More recently, Mitchell [37] and Falkenauer [38] demonstrate a more careful approach
to schemata, and Bäck [39] covers the wider field of evolutionary algorithms. All are
worth consulting. For a rigorous theoretical study, there is the book by Vose [40],
which deals mainly with the Markov chain and dynamical systems approach, while the
forthcoming text [12] will survey in some detail several other perspectives on GAs.

There are now also many conferences on GAs and related topics—too many to list
in detail. The proceedings of the original biennial series of International Conferences
on Genetic Algorithms [41–47], which is still of considerable historical interest,2 has
become an annual event (GECCO), while the IEEE has established an alternative series
under the title of the Congress on Evolutionary Computation. In Europe, there are two
biennial series of somewhat wider scope: the Parallel Problem-Solving from Nature
series [48–53], and the International Conference on Artificial Neural Networks and
Genetic Algorithms [54–57]. For the theoretically minded, there is a biennial workshop
to consider—the Foundations of Genetic Algorithms [58–63].

There are also many journals now publishing GA-related research. The major
GA journals are Evolutionary Computation (MIT Press) and IEEE Transactions
on Evolutionary Computation (IEEE); other theoretical articles appear in journals
related to AI or to complex systems. Most OR journals—INFORMS Journal on
Computing, Computers and OR, Journal of the OR Society, European Journal

2 Apart from the intrinsic worth of these papers, it is well worth checking to see if someone has tried your
bright new idea already.
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of OR etc.—have frequent papers on GAs, mainly applications. There are news-
groups on the internet (comp.ai.genetic) and the moderated news digest at
GA-List-Request@aic.nrl.navy.mil.

Part B: Guidelines

The basic principles of a GA were shown in Figure 3.1, but as usual, the details are all
important. The various stages involved in implementing a GA will now be described.

5 INITIAL POPULATION

The major questions to consider are firstly the size of the population, and secondly
the method by which the individuals are chosen. The size of the population has been
approached from several theoretical points of view, although the underlying idea is
always of a trade-off between efficiency and effectiveness. Intuitively, it would seem
that there should be some ‘optimal’ value for a given string length, on the grounds that
too small a population would not allow sufficient room for exploring the search space
effectively, while too large a population would so impair the efficiency of the method
that no solution could be expected in a reasonable amount of time. Goldberg [64, 65]
was probably the first to attempt to answer this question, using the idea of schemata,
as outlined in the next chapter. Unfortunately, from this viewpoint, it appeared that
the population size should increase as an exponential function of the string length.
Experimental evidence [66,67] suggested that populations of the size proposed by
Goldberg’s theory are not necessary.

A slightly different question that we could ask is regarding a minimum population
size for a meaningful search to take place. In Reeves [68], the initial principle was
adopted that, at the very least, every point in the search space should be reachable from
the initial population by crossover only. This requirement can only be satisfied if there
is at least one instance of every allele at each locus in the whole population of strings.
On the assumption that the initial population is generated by a random sample with
replacement (which is a conservative assumption in this context), the probability that
at least one allele is present at each locus can be found. For binary strings this is easily
seen to be

from which we can calculate that, for example, a population of size 17 is enough to
ensure that the required probability exceeds 99.9% for strings of length 50. For q-ary
alphabets, the calculation is somewhat less straightforward, but expressions are given
in [68] that can be converted numerically into graphs for specified confidence levels.
The results of this work suggested that a population size of would be sufficient
to cover the search space.

Finally, as to how the population is chosen, it is nearly always assumed that initial-
ization should be random. Rees and Koehler [22], using a model-based approach that
draws on the theoretical work of Vose [17], have demonstrated that sampling without
replacement is preferable in the context of very small populations. More generally,
it is obvious that randomly chosen points do not necessarily cover the search space
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uniformly, and there may be advantages in terms of coverage if we use more sophisti-
cated statistical methods, especially for non-binary alphabets. One such simple idea is
a generalization of the Latin hypercube which can be illustrated as follows.

Suppose each gene has 5 alleles, labelled We choose the population size
to be a multiple of 5, say m, and the alleles in each ‘column’ are generated as an
independent random permutation of which is then taken modulo 5.
Figure 3.2 shows an example for a population of size 10. To obtain search space
coverage at this level with simple random initialization would need a much larger
population.

Another point to mention here is the possibility of ‘seeding’ the initial population
with known good solutions. Some reports (e.g. in [69,70]) have found that including
a high-quality solution, obtained from another heuristic technique, can help a GA find
better solutions rather more quickly than it can from a random start. However, there is
also the possibility of inducing premature convergence [71,72].

6 TERMINATION

Unlike simple neighbourhood search methods that terminate when a local optimum
is reached, GAs are stochastic search methods that could in principle run for ever. In
practice, a termination criterion is needed; common approaches are to set a limit on the
umber of fitness evaluations or the computer clock time, or to track the population’s
diversity and stop when this falls below a preset threshold. The meaning of diversity
in the latter case is not always obvious, and it could relate either to the genotype or the
phenotype, or even, conceivably, to the fitnesses, but the most common way to measure
it is by genotype statistics. For example, we could decide to terminate a run if at every
locus the proportion of one particular allele rose above 90%.

7 CROSSOVER CONDITION

Given the stress on recombination in Holland’s original work, it might be thought that
crossover should always be used, but in fact there is no reason to suppose that it has
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to be so. Further, while we could follow a strategy of crossover-AND-mutation to
generate new offspring, it is also possible to use crossover-OR-mutation. There are
many examples of both in the literature. The first strategy initially tries to carry out
crossover, then attempts mutation on the off spring (either one or both). It is conceivable
that in some cases nothing actually happens at all with this strategy—the offspring are
simply clones of the parents. Others always do something, either crossover of mutation,
but not both. (Even then, cloning is still possible with crossover if the parents are too
alike.)

The mechanism for implementing such choices is customarily a randomized rule,
whereby the operation is carried out if a pseudo-random uniform deviate exceeds a
threshold value. In the case of crossover, this is often called the crossover rate, often
denoted by the symbol For mutation, we have a choice between describing the
number of mutations per string, or per bit; bit-wise mutation, at a rate denoted by is
more common.

In the -OR- case, there is the further possibility of modifying the relative proportions
of crossover and mutation as the search progresses. Davis [31] has argued that different
rates are appropriate at different times: high crossover at the start, high mutation as
the population converges. He has further suggested that the operator proportions could
be adapted online, in accordance with their track record in finding new high-quality
chromosomes.

8 SELECTION

The basic idea of selection is that it should be related to fitness, and the original scheme
for its implementation is commonly known as the roulette-wheel method. It uses a
probability distribution for selection in which the selection probability of a given string
is proportional to its fitness. Figure 3.3 provides a simple example of roulette-wheel
selection (RWS). Pseudo-random numbers are used one at a time to choose strings for
parenthood. For example, in Figure 3.3, the number 0.13 would select string 1, the
number 0.68 would select string 4.
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Finding the appropriate number for a given pseudo-random number r requires
searching an array for values that bracket r—this can be done in time for a
population of size M. However, RWS has a high stochastic variability, and the actual
number of times that chromosome C is selected in any generation may be very
different from its expected value For this reason, sampling without replacement
may be used, to ensure that at least the integral part of is achieved, with fractions
being allocated using random sampling.

In practice, Baker’s [73] stochastic universal selection (SUS) is a particularly effec-
tive way of realizing this outcome. Instead of a single choice at each stage, we imagine
that the roulette wheel has an equally spaced multi-armed spinner. Spinning the wheel
produces simultaneously the values for all the chromosomes in the population.
From the viewpoint of statistical sampling theory, this corresponds to systematic sam-
pling [74]. Experimental work by Hancock [75] clearly demonstrates the superiority
of this approach, although much published work on applications of GAs still appears
to rely on the basic roulette-wheel method.3

An associated problem is that of finding a suitable measure of fitness for the
members of the population. Simply using the objective function values f (x) is rarely
sufficient, because the scale on which f (x) is measured is important. (For example,
values of 10 and 20 are much more clearly distinguished than 1010 and 1020.) Further,
if the objective is minimization rather than maximization, a transformation is clearly
required.

Some sort of scaling is thus usually applied, and Goldberg [6] gives a simple algo-
rithm to deal with both minimization and maximization. The method is cumbersome,
however, and it needs continual re-scaling as the search progresses. Two alternatives
provide more elegant solutions.

8.1 Ranking

Ranking the chromosomes in fitness order loses some information, but there is no
need for re-scaling, and selection algorithm is simpler and more efficient. Suppose the
probability of selecting the string that is ranked kth in the population is denoted by
P[k]. In the case of linear ranking, we assume that

where and are constants. The requirement that P[k] be a probability distribution
gives us one condition:

which leaves us free to choose the other parameter in a way that tunes the selection
pressure. This term is loosely used in many papers and articles on GAs. Here, we mean
the following.

3 Note that SUS does not necessarily reduce the total of random numbers needed. Having generated a
multiset of size M as our ‘mating pool’, we still have to use random numbers to decide which pairs mate
together, whereas in RWS we can simply pair them in the order generated.
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Definition 3.1. Selection pressure

In the case of linear ranking, we interpret the average as meaning the median string,
so that

(This assumes the population size is odd—however, the analysis holds mutatis mutandis
for the case of an even number.) Some simple algebra soon establishes that

which implies that With this framework, it is easy to see that the cumulative
probability distribution can be stated in terms of the sum of an arithmetic progression,
so that finding the appropriate k for a given pseudo-random number r is simply a
matter of solving a quadratic equation for k, which can be done simply in O(1) time.
The formula is

Other functions can be used besides linear ranking [75,76] but the above scheme is
sufficiently flexible for most applications.

8.2 Tournament Selection

The other alternative to strict fitness-proportional selection is tournament selection in
which a set of chromosomes is chosen and compared, the best one being selected for
parenthood. This approach has similar properties to linear ranking for It is easy
to see that the best string will be selected every time it is compared, while the median
string will be chosen with probability Thus the selection pressure is given by

which for is similar to linear ranking when
One potential advantage of tournament selection over all other forms is that it only

needs a preference ordering between pairs or groups of strings, and it can thus cope
with situations where there is no formal objective function at all—in other words, it
can deal with a purely subjective objective function!

However, we should point out again that tournament selection is also subject to
arbitrary stochastic effects in the same way as roulette-wheel selection—there is no
guarantee that every string will appear in a given cycle. Indeed, using sampling with
replacement there is a probability of approximately that a given string
will not appear at all. One way of coping with this, at the expense of a little extra
computation, is to use a variance reduction technique from simulation theory. Saliby
[77] distinguishes between the set effect and the sequence effect in drawing items from
a finite population. In applying his ideas here, we know that we need items to be drawn
M times, so we simply construct random permutations4 of the numbers
the indices of the individuals in the population. These are concatenated into one long

4 There is a simple algorithm for doing this efficiently—see Nijenhuis and Wilf [78], e.g., or look at the
Stony Brook Algorithm Repository [79]
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sequence which is then chopped up into M pieces, each containing the indices of the
individuals to be used in the consecutive tournaments. If M is not an exact multiple of

there is the small chance of some distortion where the permutations join, but this is
a relatively minor problem.

9 CROSSOVER

Crossover is simply a matter of replacing some of the genes in one parent by the
corresponding genes of the other. Suppose we have 2 strings a and b, each consisting
of 6 variables, i.e.

which represent two possible solutions to a problem. (Note that we have chosen here
to leave the alphabet unspecified, to emphasize that binary representation is not a
critical aspect of GAs.) One-point crossover (1X) has been described earlier; two-point
crossover (denoted by 2X), is very similar. Two crosspoints are chosen at random from
the numbers and a new solution produced by combining the pieces of the
the original ‘parents’. For instance, if the crosspoints were 2 and 4, the ‘offspring’
solutions would be

A similar prescription can be given for m-point crossover where m > 1.
An early and thorough investigation of multi-point crossovers is that by Eshelman

et al. [80], who examined the biasing effect of traditional one-point crossover, and
considered a range of alternatives. Their central argument is that two sources of bias
exist to be exploited in a genetic algorithm: positional bias, and distributional bias.
Simple crossover has considerable positional bias, in that it relies on the building-block
hypothesis, and if this is invalid, the bias may prevent the production of good solutions.

On the other hand, 1X has no distributional bias, in that the crossover point is
chosen randomly using the uniform distribution. But this lack of bias is not necessarily
a good thing, as it limits the exchange of information between the parents. In [80],
the possibilities of changing these biases, in particular by using multi-point crossover,
were investigated and empirical evidence strongly supported the suspicion that one-
point crossover is not the best option. In fact, the evidence was somewhat ambiguous,
but seemed to point to an 8-point crossover operator as the best overall, in terms of the
number of function evaluations needed to reach the global optimum.

Another obvious alternative, which removes any bias, is to make the crossover
process completely random—the so-called uniform crossover. This can be seen most
easily by observing that the crossover operator itself can be written as a binary string
or mask—in fact, when implementing crossover in a computer algorithm, this is the
obvious way to do it. For example, the mask

represents the 2-point crossover used above, where a 1 means that the alleles are taken
from the first parent, while a 0 means they come from the second.

1 1 0 0 1 1

and

and
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By generating the pattern of 0s and 1s stochastically (using a Bernoulli distribution)
we thus get uniform crossover (UX), which might generate a mask such as

1 0 1 0 0 1

which implies that the 1st, 3rd and 6th alleles are taken from the first parent, the others
from the second. This idea was first used by Syswerda [81], who implicitly assumed
that the Bernoulli parameter p = 0.5. Of course, this is not necessary: we can bias UX
towards one or other of the parents by choosing p appropriately.

DeJong and Spears [82] produced a theoretical analysis that was able to characterize
the amount of disruption introduced by a given crossover operator exactly. In particular,
the amount of disruption in UX can be tuned by choosing different values of p.

Of course, there are also many practical considerations that influence the imple-
mentation of crossover. How often do we apply it? Some always do, others use a
stochastic approach, applying crossover with a probability Do we generate one
offspring or two? In many cases there are natural ‘twin’ offspring resulting, but in more
sophisticated problems it may be that only one offspring arises. When we choose only
one from two, how do we do it? In accordance with the stochastic nature of the GA, we
may well decide to choose either of the offspring at random. Alternatively, we could
bias the decision by making use of some other property such as the fitness of the new
individuals, or the loss (or gain) in diversity that results in choosing one rather than the
other.

Booker [83] reported significant gains from using an adaptive crossover rate: the
rate was varied according to a characteristic called percent involvement. This is simply
the percentage of the current population that is producing offspring—too small a value
is associated with loss of diversity and premature convergence.

9.1 Non-linear Crossover

In cases of non-linear encodings, crossover has to be reinterpreted. One of the most
frequently occulting problems is where the solution space is the space of permutations

of the numbers 1, . . . , l—well-known examples of this include many scheduling
problems, and the famous travelling salesman problem (TSP).

For instance, the simple-minded application of 1X in the following case produces
an infeasible solution:

P1 1 6 3 4 5 2 01 1 6 1 2 6 5
X

P2 4 3 1 2 6 5 02 4 3 3 4 5 2

If this represents a TSP, the first offspring visits cities 1 and 6 twice, and never gets
to cities 3 or 4. A moment’s thought is enough to realize that this type of behaviour
will be the rule, not an exception. Clearly we need to think of something rather smarter
if we are to be able to solve such problems.

One of the first ideas for such problems was the PMX (partially mapped crossover)
operator [84]. Two crossover points are chosen uniformly at random between 1 and l.
The section between these points defines an interchange mapping. Thus, in the example
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above, PMX might proceed as follows:

P1 1 6 3 4 5 2 01 3 5 1 2 6 4
X Y

P2 4 3 1 2 6 5 02 2 1 3 4 5 6

Here the crossover points X and Y define an interchange mapping

on their respective strings, which means that the cut blocks have been swapped and
now appear in different contexts from before. Another possibility is to apply a binary
mask, as in linear crossover, but with a different meaning. Such a mask, generated as
with UX say, might be the following

1 0 1 0 0 1

which is applied to the parents in turn. First the components corresponding to 1s are
copied from one parent, and then those that correspond to 0s are taken in the order
they appear from the second parent in order to fill the gaps. Thus the above example
generates the following pairs of strings:

10 MUTATION

Firstly, we note that in the case when crossover-OR-mutation is used, we must first
decide whether any mutation is carried out at all. Assuming that it is, the concept of
mutation is even simpler than crossover, and again, this can easily be represented as a
bit-string. We generate a mask such as

using a Bernoulli distribution at each locus—with a small value of p in this case. (The
above example would then imply that the 2nd and 6th genes are assigned new allele
values.) However, there are different ways of implementing this simple idea that can
make a substantial difference to the performance of a GA. The naive idea would be
to draw a random number for every gene in the string and compare it to but this is
potentially expensive in terms of computation if the strings are long and the population
is large. An efficient alternative is to draw a random variate from a Poisson distribution
with parameter where is the average number of mutations per chromosome. A
common value for is 1—in other words, if l is the string length, the (bit-wise)
mutation rate is which as early as 1964 [85] was shown to be in some sense
an ‘optimal’ mutation rate. Having decided that there are (say) m mutations, we draw
m random numbers (without replacement) uniformly distributed between 1 and l in
order to specify the loci where mutation is to take place.

In the case of binary strings, mutation simply means complementing the chosen
bit(s). More generally, when there are several possible allele values for each gene, if

0 1 0 0 0 1
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we decide to change a particular allele, we must provide some means of deciding what
its new value should be. This could be a random choice, but if (as in some cases) there
is some ordinal relation between allele values, it may be more sensible to restrict the
choice to alleles that are close to the current value, or at least to bias the probability
distribution in their favour.

It is often suggested that mutation has a somewhat secondary function, that of
helping to preserve a reasonable level of population diversity—an insurance policy
which enables the process to escape from sub-optimal regions of the solution space, but
not all authors agree. Proponents of evolutionary programming, for example, consider
crossover to be an irrelevance, and mutation plays the major role [86]. Perhaps it is
best to say that the balance between crossover and mutation is often a problem-specific
one, and definite guidelines are hard to give.

However, several authors have suggested some type of adaptive mutation: for exam-
ple, Fogarty [87] experimented with different mutation rates at different loci. Reeves
[69] varied the mutation probability according to the diversity in the population (mea-
sured in terms of the coefficient of variation of fitnesses). More sophisticated procedures
are possible, and anecdotal evidence suggests that many authors use some sort of
diversity maintenance policy.

11 NEW POPULATION

Holland’s original GA assumed a generational approach: selection, recombination
and mutation were applied to a population of M chromosomes until a new set of
M individuals had been generated. This set then became the new population. From an
optimization viewpoint this seems an odd thing to do—we may have spent considerable
effort obtaining a good solution, only to run the risk of throwing it away and thus
preventing it from taking part in further reproduction. For this reason, De Jong [5]
introduced the concepts of élitism and population overlaps. His ideas are simple—an
élitist strategy ensures the survival of the best individual so far by preserving it and
replacing only the remaining (M – 1) members of the population with new strings.
Overlapping populations take this a stage further by replacing only a fraction G (the
generation gap) of the population at each generation. Finally, taking this to its logical
conclusion produces the so-called steady-state or incremental strategies, in which only
one new chromosome (or sometimes a pair) is generated at each stage. Davis [31 ] gives
a good general introduction to this type of GA.

Slightly different strategies are commonly used in the ES community, which tradi-
tionally designates them either In the first case, offspring are
generated from parents, and the best of these offspring are chosen to start the next
generation. For the + strategy, offspring are generated and the best individualsare
chosen from the combined set of parents and offspring.

In the case of incremental reproduction it is also necessary to select members of
the population for deletion. Some GAs have assumed that parents are replaced by their
children. Many implementations, such as Whitley’s GENITOR [76], delete the worst
member of the population. Goldberg and Deb [88] have pointed out that this exerts a
very strong selective pressure on the search, which may need fairly large populations
and high mutation rates to prevent a rapid loss of diversity. A milder prescription is to
delete one of the worst P% of the population (for example, Reeves [69] used P = 50,
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i.e., selection from those worse than the median). This is easily implemented when
rank-based selection is used. Yet another approach is to base deletion on the age of the
strings.

11.1 Diversity Maintenance

As hinted above, one of the keys to good performance (in nature as well as in GAs) is
to maintain the diversity of the population as long as possible. The effect of selection
is to reduce diversity, and some methods can reduce diversity very quickly. This can be
mitigated by having larger populations, or by having greater mutation rates, but there
are also other techniques that are often employed.

A popular approach, commonly linked with steady-state or incremental GAs, is to
use a ‘no-duplicates’ policy [31]. This means that the offspring are not allowed into the
population if they are merely clones of existing individuals. The downside, of course,
is the need to compare each current individual with the new candidate, which adds to
the computational effort needed—an important consideration with large populations.
(In principle, some sort of ‘hashing’ approach could be used to speed this process up,
but whether this was used in [31] is not clear.)

We can of course take steps to reduce the chance of cloning before offspring are
generated. For instance, with 1X, the two strings

1 1 0 1 0 0 1
1 1 0 0 0 1 0

will generate only clones if the crossover point is any of the first three positions. Booker
[83] suggested that before applying crossover, we should examine the selected parents
to find suitable crossover points. This entails computing an ‘exclusive-OR’ (XOR)
between the parents, so that only positions between the outermost 1s of the XOR string
(the ‘reduced surrogate’) should be considered as crossover points. Thus in the example
above, the XOR string is

0 0 0 1 0 1 1

so that, as previously stated, only the last 3 crossover points will give rise to a different
string.

12 REPRESENTATION

As remarked in part A, the focus in this handbook is on using GAs as optimizers in a
search space, given a suitable encoding and fitness function. We now consider how the
search space might be constructed in some generic cases.

12.1 Binary Problems

In some problems a binary encoding might arise naturally. Consider the operational
research problem known as the knapsack problem, stated as follows.

Example 3.1 (The 0–1 knapsack problem). A set of n items is available to be packed
into a knapsack with capacity C units. Item i has value and uses up units of capacity.
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Determine the subset I of items which should be packed in order to maximize

such that

If we define

the knapsack problem can be re-formulated as an integer program:

from which it is clear that we can define a solution as a binary string of length n. In
this case there is thus no distinction between genotype and phenotype.

However, such problems are not necessarily easy to solve with a GA. In this case,
the presence of constraints is likely to cause difficulties—two feasible parents may not
produce feasible offspring, unless special crossover operators are constructed. In fact,
such problems as these are really subset selection problems, which are best tackled by
other means [89], despite the seductiveness of the binary encoding. It is now widely
recognised that ‘natural’ binary encodings nearly always bring substantial problems
for simple GAs.

12.2 Discrete (but not Binary) Problems

There are cases in which a discrete alphabet of higher cardinality than 2 might be
appropriate. The rotor stacking problem, as originally described by McKee and Reed
[90], is a good example.

Example 3.2. A set of n rotors is available, each of which has k holes drilled in it.
The rotors have to be assembled into a unit by stacking them and bolting them together,
as in Figure 1.4. Because the rotors are not perfectly flat, stacking them in different
orientations will lead to assemblies with different characteristics in terms of deviations
from true symmetry, with the consequent effect (in operation) that the assembled unit
will wobble as it spins. The objective is to find which of all the possible combinations
of orientations produces the least deviation.

In this case a k-ary coding is natural. A solution is represented by a string of length n,
each gene corresponding to a rotor and the alleles, drawn from {1,. . . , k}, representing
the orientation (relative to a fixed datum) of the holes. Thus, the string (1322) represents
a solution to a 4-rotor problem where hole 1 of the first rotor is aligned with hole 3 of
the second and hole 2 of the third and fourth. Of course, it would be possible to encode
the alleles as binary strings, but there seems little point in so doing—particularly if k
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is not a power of 2, as there will then be some binary strings that do not correspond to
any actual orientation.

This seems very straightforward, but there is a subtle point here that could be
overlooked. The assignment of labels to the holes is arbitrary, and this creates the
problem of ‘competing conventions’ as it has been called.5 For example, given a
natural order for labelling each rotor, the string (3211) represents the same solution as
(1322). This can be alleviated in this case by fixing the labeling for one rotor, so that a
solution can be encoded by a string of length (n – 1).

As far as the operators are concerned, standard crossovers can be used here, but
mutation needs careful consideration, as outlined above in Section 10.

12.3 Permutation Problems

There are also some problems where the ‘obvious’ choice of representation is defined,
not over a set, but over a permutation. The TSP is one of many problems for which this
is true. As another example, consider the permutation flowshop sequencing problem
(PFSP).

Example 3.3. Suppose we have n jobs to be processed on m machines, where the
processing time for job i on machine j is given by p(i, j). For a job permutation

we calculate the completion times as follows:

The PFSP is then to find a permutation in the set of all permutations such that

(Several performance measures are possible; common ones are the maximum or
mean completion time.)

Here the natural encoding (although not the only one) is simply the permutation
of the jobs as used to calculate the completion times. So the solution (1462537), for
example, simply means that job 1 is first on each machine, then job 4, job 6, etc.

5This phenomenon is a common one whenever the coding function c( · ) is not injective. It has been
observed in problems ranging from optimizing neural nets to the TSP. Radcliffe, who calls it ‘degeneracy’
[91] has presented the most thorough analysis of this problem and how to treat it.
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Unfortunately, the standard crossover operators patently fail to preserve the per-
mutation except in very fortunate circumstances, as discussed in Section 9.1. Some
solutions to this problem were outlined there; more comprehensive discussion of possi-
ble methods of attack are contained in [92,93], while [69,94] describe some approaches
of particular relevance to the PFSP.

12.4 Non-binary Problems

In many cases the natural variables for the problem are not binary, but integer or real-
valued. In such cases a transformation to a binary string is required first. (Note that this is
a different situation from the rotor-stacking example, where the integers were merely
labels: here the values are assumed to be meaningful as numbers.) While the main
thrust of metaheuristics research and application is directed to discrete optimization, it
is perhaps appropriate to mention these other problems here.

Example 3.4. It is required to maximize

To use the conventional form of genetic algorithm here, we would use a string
of 5 binary digits with the standard binary to integer mapping, i.e., (0, 0, 0, 0, 0) =
0,..., (1, 1, 1, 1, 1) = 31. Of course, in practice we could solve such a problem easily
without recourse to encoding the decision variable in this way, but it illustrates neatly
the sort of optimization problem to which GAs are often applied. Such problems assume
firstly that we know the domain of each of our decision variables, and secondly that we
have some idea of the precision with which we need to specify our eventual solution.
Given these two ingredients, we can determine the number of bits needed for each
decision variable, and concatenate them to form the chromosome. However, problems
involving continuous variables can more easily be handled within the ES framework.

13 RANDOM NUMBERS

As GAs are stochastic in nature, it is clear that a reliable random number source is
very important. Most computer systems have built-in rand()functions, and that is the
usual method of generating random numbers. Not all random number generators are
reliable, however, as Ross [95] has pointed out, and it is a good idea to use one that has
been thoroughly tested, such as those described in the Numerical Recipes series [96].

14 CONCLUSIONS

While this exposition has covered the basic principles of GAs, the number of variations
that have been suggested is enormous. Probably everybody’s GA is unique! Many vari-
ations in population size, in initialization methods, in fitness definition, in selection and
replacement strategies, in crossover and mutation are obviously possible. Some have
added information such as age, or artificial tags, to chromosomes; others have allowed

over the search space the solution x* is required to
be an integer in the range [0, 31].
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varying population sizes, or induced the formation of multiple populations in ‘niches’.
It is in the nature of GAs that parallel processing can often be used to advantage, and
here again, there are many possibilities, ranging from simple parallelization of func-
tion evaluations in a generational GA, to very sophisticated implementations that add
a spatial aspect to the algorithm.

The GA community has yet to reach a consensus on any of these things, and in
the light of the NFLT, this is perhaps not surprising. However, some ideas do emerge
as a reasonable set of recommendations. From a practitioner’s viewpoint, Levine [72]
made the following observations:

1.

2.

3.

4.

5.

Not everyone will agree with this particular list, and there is a conflict inherent in the
first two points, since SUS functions best in a generational setting. Broadly speaking,
however, it is one with which many researchers could be comfortable. Two other points
could be added:

6.

7.

Make diversity maintenance a priority.

Don’t be afraid to run the GA several times.

Why this last point? Statements are frequently made that GAs can find global
optima. Well, they can—but in practice there are many other ‘attractors’ to which they
may converge, and these may be some distance from global optimality, so it makes
sense to explore several alternatives.

In conclusion, this chapter has presented a brief survey of the history, theory and
issues of implementation relating to one of the most popular metaheuristics. It is hoped
that sufficient guidance has been given for newcomers to the field, while also perhaps
suggesting new avenues to explore for those who have been acquainted with GAs for
some time.
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