
Chapter 8

GREEDY RANDOMIZED ADAPTIVE
SEARCH PROCEDURES

Mauricio G.C. Resende
AT&T Labs Research
E-mail: mgcr@research.att.com

Celso C. Ribeiro
Catholic University of Rio de Janeiro
E-mail: celso@inf.puc-rio.br

Abstract GRASP is a multi-start metaheuristic for combinatorial problems, in which each
iteration consists basically of two phases: construction and local search. The construction phase
builds a feasible solution, whose neighborhood is investigated until a local minimum is found
during the local search phase. The best overall solution is kept as the result. In this chapter, we first
describe the basic components of GRASP. Successful implementation techniques and parameter
tuning strategies are discussed and illustrated by numerical results obtained for different appli-
cations. Enhanced or alternative solution construction mechanisms and techniques to speed up
the search are also described: Reactive GRASP, cost perturbations, bias functions, memory and
learning, local search on partially constructed solutions, hashing, and filtering. We also discuss
in detail implementation strategies of memory-based intensification and post-optimization tech-
niques using path-relinking. Hybridizations with other metaheuristics, parallelization strategies,
and applications are also reviewed.

1 INTRODUCTION

We consider in this chapter a combinatorial optimization problem, defined by a finite
ground set E = {1,..., n}, a set of feasible solutions and an objective function

In the minimization version, we search an optimal solution
such that The ground set E, the cost function f, and the set
of feasible solutions F are defined for each specific problem. For instance, in the case
of the traveling salesman problem, the ground set E is that of all edges connecting the
cities to be visited, f(S) is the sum of the costs of all edges and F is formed by
all egde subsets that determine a Hamiltonian cycle.

The GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic
[38,39] is a multi-start or iterative process, in which each iteration consists of two
phases: construction and local search. The construction phase builds a feasible solu-
tion, whose neighborhood is investigated until a local minimum is found during the
local search phase. The best overall solution is kept as the result. An extensive survey of

220 M.G.C. Resende and C.C. Ribeiro

the literature is given in [44]. The pseudo-code in Figure 8.1 illustrates the main blocks
of a GRASP procedure for minimization, in which Max_Iterations iterations are
performed and Seed is used as the initial seed for the pseudorandom number generator.

Figure 8.2 illustrates the construction phase with its pseudo-code. At each iteration
of this phase, let the set of candidate elements be formed by all elements that can be
incorporated to the partial solution under construction without destroying feasibility.
The selection of the next element for incorporation is determined by the evaluation of
all candidate elements according to a greedy evaluation function. This greedy function
usually represents the incremental increase in the cost function due to the incorporation
of this element into the solution under construction. The evaluation of the elements by
this function leads to the creation of a restricted candidate list (RCL) formed by the best
elements, i.e. those whose incorporation to the current partial solution results in the
smallest incremental costs (this is the greedy aspect of the algorithm). The element to be
incorporated into the partial solution is randomly selected from those in the RCL (this is
the probabilistic aspect of the heuristic). Once the selected element is incorporated to the
partial solution, the candidate list is updated and the incremental costs are reevaluated
(this is the adaptive aspect of the heuristic). This strategy is similar to the semi-greedy
heuristic proposed by Hart and Shogan [55], which is also a multi-start approach based
on greedy randomized constructions, but without local search.

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usually

221Greedy Randomized Adaptive Search Procedures

improves the constructed solution. A local search algorithm works in an iterative fashion
by successively replacing the current solution by a better solution in the neighborhood of
the current solution. It terminates when no better solution is found in the neighborhood.
The pseudo-code of a basic local search algorithm starting from the solution Solution
constructed in the first phase and using a neighborhood N is given in Figure 8.3.

The effectiveness of a local search procedure depends on several aspects, such as the
neighborhood structure, the neighborhood search technique, the fast evaluation of the
cost function of the neighbors, and the starting solution itself. The construction phase
plays a very important role with respect to this last aspect, building high-quality starting
solutions for the local search. Simple neighborhoods are usually used. The neighbor-
hood search may be implemented using either a best-improving or a first-improving
strategy. In the case of the best-improving strategy, all neighbors are investigated and
the current solution is replaced by the best neighbor. In the case of a first-improving
strategy, the current solution moves to the first neighbor whose cost function value
is smaller than that of the current solution. In practice, we observed on many appli-
cations that quite often both strategies lead to the same final solution, but in smaller
computation times when the first-improving strategy is used. We also observed that
premature convergence to a non-global local minimum is more likely to occur with a
best-improving strategy.

2 CONSTRUCTION OF THE RESTRICTED CANDIDATE LIST

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned. Therefore, development can
focus on implementing efficient data structures to assure quick iterations. GRASP has
two main parameters: one related to the stopping criterion and another to the quality
of the elements in the restricted candidate list.

The stopping criterion used in the pseudo-code described in Figure 8.1 is determined
by the number Max_Iterations of iterations. Although the probability of finding a
new solution improving the currently best decreases with the number of iterations,
the quality of the best solution found may only improve with the latter. Since the
computation time does not vary much from iteration to iteration, the total computation
time is predictable and increases linearly with the number of iterations. Consequently,
the larger the number of iterations, the larger will be the computation time and the
better will be the solution found.

For the construction of the RCL used in the first phase we consider, without loss
of generality, a minimization problem as the one formulated in Section 1. We denote

222 M.G.C. Resende and C.C. Ribeiro

by c(e) the incremental cost associated with the incorporation of element into the
solution under construction. At any GRASP iteration, let and be, respectively,
the smallest and the largest incremental costs.

The restricted candidate list RCL is made up of elements with the best (i.e.,
the smallest) incremental costs c(e). This list can be limited either by the number of
elements (cardinality-based) or by their quality (value-based). In the first case, it is
made up of the p elements with the best incremental costs, where p is a parameter. In
this chapter, the RCL is associated with a threshold parameter The restricted
candidate list is formed by all “feasible” elements which can be inserted into
the partial solution under construction without destroying feasibility and whose quality
is superior to the threshold value, The case

corresponds to a pure greedy algorithm, while is equivalent to a random
construction. The pseudo-code in Figure 8.4 is a refinement of the greedy randomized
contruction pseudo-code shown in Figure 8.2. It shows that the parameter controls
the amounts of greediness and randomness in the algorithm.

GRASP may be viewed as a repetitive sampling technique. Each iteration produces a
sample solution from an unknown distribution, whose mean and variance are functions
of the restrictive nature of the RCL. For example, if the RCL is restricted to a single
element, then the same solution will be produced at all iterations. The variance of the
distribution will be zero and the mean will be equal to the value of the greedy solution.
If the RCL is allowed to have more elements, then many different solutions will be
produced, implying a larger variance. Since greediness plays a smaller role in this case,
the mean solution value should be worse. However, the value of the best solution found
outperforms the mean value and very often is optimal. The histograms in Figure 8.5
illustrate this situation on an instance of MAXSAT with 100 variables and 850 clauses,
depicting results obtained with 1000 independent constructions using the first phase
of the GRASP described in [83,84]. Since this is a maximization problem, the purely
greedy construction corresponds to whereas the random construction occurs
with We notice that when the value of increases from 0 to 1, the mean

Greedy Randomized Adaptive Search Procedures 223

solution value increases towards the purely greedy solution value, while the variance
approaches zero.

For each value of we present in Figure 8.6 histograms with the results obtained by
applying local search to each of the 1000 constructed solutions. Figure 8.7 summarizes
the overall results of this experiment in terms of solution diversity, solution quality, and
computation time. We first observe that the larger the variance of the solution values
obtained in the construction phase, the larger is the variance of the overall solution
values, as shown in the top graph. The graph in the middle illustrates the relationship
between the variance of the solution values and the average solution values, and how
this affects the best solution found. It is unlikely that GRASP will find an optimal
solution if the average solution value is low, even if there is a large variance in the

M.G.C. Resende and C.C. Ribeiro224

overall solution values, such as is the case for On the other hand, if there is
little variance in the overall solution values, it is also unlikely that GRASP will find an
optimal solution, even if the average solution is high, as is the case for What
often leads to good solutions are relatively high average solution values in the presence
of a relatively large variance, such as is the case for The middle graph also
shows that the distance between the average solution value and the value of the best
solution found increases as the construction phase moves from more greedy to more
random. This causes the average time taken by the local search to increase, as shown
in the graph in the bottom. Very often, many GRASP solutions are generated in the
same amount of time required for the local optimization procedure to converge from a
single random start.

These results are illustrated in Table 8.1 and Figure 8.8, for another instance of
MAXSAT where 1000 iterations were run. For each value of ranging from 0 (purely

Greedy Randomized Adaptive Search Procedures 225

random construction) to 1 (purely greedy construction), we give in Table 8.1 the aver-
age Hamming distance between each solution built at the end of the construction phase
and the corresponding local optimum obtained after local search, the average number
of moves from the first to the latter, the local search time in seconds, and the total
processing time in seconds. Figure 8.8 summarizes the values observed for the total

226 M.G.C. Resende and C.C. Ribeiro

processing time and the local search time. We notice that both time measures consider-
ably decrease as tends to 1, approaching the purely greedy choice. In particular, we
observe that the average local search time taken by (purely random) is approxi-
mately 2.5 times that taken in the case (almost greedy). In this example, two
to three greedily constructed solutions can be investigated in the same time needed to
apply local search to one single randomly constructed solution. The appropriate choice
of the value of the RCL parameter is clearly critical and relevant to achieve a good
balance between computation time and solution quality.

Prais and Ribeiro [77] have shown that using a single fixed value for the value of
RCL parameter very often hinders finding a high-quality solution, which eventually

Greedy Randomized Adaptive Search Procedures 227

could be found if another value was used. They proposed an extension of the basic
GRASP procedure, which they call Reactive GRASP, in which the parameter is self-
tuned and its value is periodically modifed according with the quality of the solutions
obtained recently. In particular, computational experiments on the problem of traffic
assignment in communication satellites [78] have shown that Reactive GRASP found
better solutions than the basic algorithm for many test instances. These results motivated
the study of the behavior of GRASP for different strategies for the variation of the value
of the RCL parameter

(R) self tuned according with the Reactive GRASP procedure;

(E) randomly chosen from a uniform discrete probability distribution;

(H) randomly chosen from a decreasing non-uniform discrete probability
distribution; and

(F) fixed value of close to the purely greedy choice.

We summarize the results obtained by the experiments reported in [76,77]. These
four strategies were incorporated into the GRASP procedures developed for four dif-
ferent optimization problems: (P-1) matrix decomposition for traffic assignment in
communication satellite [78], (P-2) set covering [38], (P-3) weighted MAX-SAT
[83,84], and (P-4) graph planarization [85,87]. Let be the set of
possible values for the parameter for the first three strategies. The strategy for choos-
ing and self-tuning the value of in the case of the Reactive GRASP procedure (R)
is described later in Section 3. In the case of the strategy based on using the discrete
uniform distribution (E), all choice probabilities are equal to 1/m. The third case corre-
sponds to the a hybrid strategy (H), in which we typically consider

and
Finally, in the last strategy (F), the value of is fixed as recom-

mended in the original reference where this parameter was tuned for each problem. A
subset of the literature instances was considered for each class of test problems. The
results reported in [77] are summarized in Table 8.2. For each problem, we first list the
number of instances considered. Next, for each strategy, we give the number of times
it found the best solution (hits), as well as the average CPU time (in seconds) on an
IBM 9672 model R34. The number of iterations was fixed at 10,000.

Strategy (F) presented the shortest average computation times for three out of the
four problem types. It was also the one with the least variability in the constructed

M.G.C. Resende and C.C. Ribeiro228

solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the cost of
computation times that are longer than those of some of the other strategies. The high
number of hits observed by strategy (E) also illustrates the effectiveness of strategies
based on the variation of the RCL parameter.

3 ALTERNATIVE CONSTRUCTION MECHANISMS

One possible shortcoming of the standard GRASP framework is the independence of
its iterations, i.e., the fact that it does not learn from the history of solutions found
in previous iterations. This is so because the basic algorithm discards information
about any solution encountered that does not improve the incumbent. Information
gathered from good solutions can be used to implement memory-based procedures to
influence the construction phase, by modifying the selection probabilities associated
with each element of the RCL. In this section, we consider enhancements and alternative
techniques for the construction phase of GRASP. They include Reactive GRASP, cost
perturbations in place of randomized selection, bias functions, memory and learning,
and local search on partially constructed solutions.

3.1 Reactive GRASP

A first possible strategy to incorporate a learning mechanism in the memoryless con-
struction phase of the basic GRASP is the Reactive GRASP procedure introduced in
Section 2. In this case, the value of the RCL parameter is not fixed, but instead is
selected at each iteration from a discrete set of possible values. This selection is guided
by the solution values found along the previous iterations. One way to accomplish this
is to use the rule proposed in [78]. Let be the set of possible values
for The probabilities associated with the choice of each value are all initially made
equal to Furthermore, let z* be the incumbent solution and
let be the average value of all solutions found using The
selection probabilities are periodically reevaluated by taking with

The value of will be larger for values of leading
to the best solutions on average. Larger values of correspond to more suitable values
for the parameter The probabilities associated with these more appropriate values
will then increase when they are reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms
of robustness and solution quality, due to greater diversification and less reliance on
parameter tuning. In addition to the applications in [76–78], this approach has been
used in power system transmission network planning [20] and in a capacitated location
problem [29].

3.2 Cost Perturbations

The idea of introducing some noise into the original costs is similar to that in the
so-called “noising method” of Charon and Hudry [25,26]. It adds more flexibility
into algorithm design and may be even more effective than the greedy randomized
construction of the basic GRASP procedure, in circumstances where the construction
algorithms are not very sensitive to randomization. This is indeed the case for the

for

Greedy Randomized Adaptive Search Procedures 229

shortest-path heuristic of Takahashi and Matsuyama [95], used as one of the main
building blocks of the construction phase of the hybrid GRASP procedure proposed
by Ribeiro et al. [90] for the Steiner problem in graphs. Another situation where
cost perturbations can be effective appears when no greedy algorithm is available for
straight randomization. This happens to be the case of the hybrid GRASP developed
by Canuto et al. [22] for the prize-collecting Steiner tree problem, which makes use of
the primal-dual algorithm of Goemans and Williamson [52] to build initial solutions
using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [22], a new solution is built at each iteration using node prizes updated by a pertur-
bation function, according to the structure of the current solution. Two different prize
perturbation schemes are used:

Perturbation by eliminations: To enforce search diversification, the primal-dual
algorithm used in the construction phase is driven to build a new solution without
some of the nodes appearing in the solution constructed in the previous iteration.
This is done by changing to zero the prizes of some persistent nodes, which
appeared in the last solution built and remained at the end of the local search.
A parameter controls the fraction of the persistent nodes whose prizes are
temporarily set to zero.

Perturbation by prize changes: Another strategy to enforce the primal-dual algo-
rithm to build different, but still good solutions, consists in introducing some noise
into the node prizes, similarly to what is proposed in [25,26], so as to change the
objective function. For each node i, a perturbation factor is randomly gener-
ated in the interval [1 – a, 1 + a],where a is an implementation parameter. The
prize associated with node i is temporarily changed to where

is its original prize.

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [90] incorporate learning mechanisms associated with intensifica-
tion and diversification strategies, originally proposed in the context of tabu search. Let

denote the weight of edge e. Three distinct weight randomization methods (D, I, U)
are applied. At a given GRASP iteration i, the modified weight of each edge e is
randomly selected from a uniform distribution between and where the
coefficient depends on the selected weight randomization method applied at itera-
tion i. Let be the number of locally optimal solutions in which edge e appeared,
after i – 1 iterations of the hybrid GRASP procedure have been performed. Clearly,

Table 8.3 displays how the coefficients are computed by
each randomization method.

M.G.C. Resende and C.C. Ribeiro230

In method D, values of the coefficients are larger for edges which appeared
more frequently in previously found local optima. This scheme leads to a diversifica-
tion strategy, since more frequently used edges are likely to be penalized with stronger
augmentations. Contrarily, method I is an intensification strategy penalizing less fre-
quent edges with larger coefficients Finally, the third randomization method U
uses a uniform penalization strategy, independent of frequency information. The orig-
inal weights without any penalization are used in the first three iterations, combined
with three different construction heuristics. The weight randomization methods are
then cyclically applied, one at each of the remaining iterations, starting with method
I, next D, then U, then I again, and so on. The alternation between diversifying
(method D) and intensifying (method I) iterations characterizes a strategic oscilla-
tion approach [49]. The experimental results reported in [90] show that the strategy
combining these three perturbation methods is more robust than any of them used
isolated, leading to the best overall results on a quite broad mix of test instances with
different characteristics. The hybrid GRASP with path-relinking using this cost pertur-
bation strategy is among the most effective heuristics currently available for the Steiner
problem in graphs.

3.3 Bias Functions

In the construction procedure of the basic GRASP, the next element to be introduced
in the solution is chosen at random from the candidates in the RCL. The elements
of the RCL are assigned equal probabilities of being chosen. However, any probabil-
ity distribution can be used to bias the selection toward some particular candidates.
Another construction mechanism was proposed by Bresina [21], where a family of
such probability distributions is introduced. They are based on the rank assigned
to each candidate element according to its value of the greedy function. Several bias
functions are introduced, such as:

random bias: bias(r) = 1;

linear bias: bias(r) = 1/r;

log bias:

exponential bias:

polynomial bias of order n:

Let denote the rank of element and let be one of the bias function
defined above. Once these values have been evaluated for all elements of the RCL, the
probability of selecting element is

The evaluation of these bias functions may be restricted to the elements of the RCL.
Bresina’s selection procedure restricted to elements of the RCL was used in [19]. Note
that the standard GRASP uses a random bias function.

3.4 Intelligent Construction: Memory and Learning

Fleurent and Glover [46] observed that the basic GRASP does not use long-term mem-
ory (information gathered in previous iterations) and proposed a long-term memory

Greedy Randomized Adaptive Search Procedures 231

scheme to address this issue in multi-start heuristics. Long-term memory is one of the
fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction phase.
To become an elite solution, a solution must be either better than the best member of the
pool, or better than its worst member and sufficiently different from the other solutions
in the pool. For example, one can count identical solution vector components and set
a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding the
objective or changing significantly other valuables. A consistent variable is one that
receives a particular value in a large portion of the elite solution set. Let I(e) be a
measure of the strongly determined and consistent features of solution element
Then, I (e) becomes larger as e appears more often in the pool of elite solutions. The
intensity function I(e) is used in the construction phase as follows. Recall that c(e) is the
greedy function, i.e., the incremental cost associated with the incorporation of element

into the solution under construction. Let be a function of
the greedy and the intensification functions. For example, The
intensification scheme biases selection from the RCL to those elements with a
high value of K (e) by setting its selection probability to be

The function K(e) can vary with time by changing the value of e.g., initially may
be set to a large value that is decreased when diversification is called for. Procedures
for changing the value of are given by Fleurent and Glover [46] and Binato et al. [19].

3.5 POP in Construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions
at one level are likely to be found ‘close to’ good solutions at an adjacent level” [50].
Fleurent and Glover [46] provided a GRASP interpretation of this principle. They
suggested that imperfections introduced during steps of GRASP construction can be
“ironed-out” by applying local search during (and not only at the end of) the GRASP
construction phase.

Because of efficiency considerations, a practical implementation of POP to GRASP
is to apply local search during a few points in the construction phase and not during
each construction iteration. In Binato et al. [19], local search is applied after 40% and
80% of the construction moves have been taken, as well as at the end of the construction
phase.

4 PATH-RELINKING

Path-relinking is another enhancement to the basic GRASP procedure, leading to sig-
nificant improvements in solution quality. Path-relinking was originally proposed by
Glover [48] as an intensification strategy exploring trajectories connecting elite solu-
tions obtained by tabu search or scatter search [49–51]. Starting from one or more elite
solutions, paths in the solution space leading towards other elite solutions are gener-
ated and explored in the search for better solutions. This is accomplished by selecting
moves that introduce attributes contained in the guiding solutions. Path-relinking may
be viewed as a strategy that seeks to incorporate attributes of high quality solutions, by
favoring these attributes in the selected moves.

M.G.C. Resende and C.C. Ribeiro232

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Martí [62]. It was followed by several extensions, improvements, and successful
applications [4,22,86,90]. Two basic strategies are used:

path-relinking is applied as a post-optimization step to all pairs of elite solutions;
and

path-relinking is applied as an intensification strategy to each local optimum
obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum seems to
be more effective than simply using it as a post-optimization step. In this context, path-
relinking is applied to pairs of solutions, where is the locally optimal solution
obtained after local search and is one of a few elite solutions randomly chosen from
a pool with a limited number Max_Elite of elite solutions found along the search.
The pool is originally empty. Each locally optimal solution obtained by local search is
considered as a candidate to be inserted into the pool if it is sufficiently different from
every other solution currently in the pool. If the pool already has Max_Elite solutions
and the candidate is better than the worst of them, then the former replaces the latter.
If the pool is not full, the candidate is simply inserted.

The algorithm starts by computing the symmetric difference between
and resulting in the set of moves which should be applied to one of them

(the initial solution) to reach the other (the guiding solution). Starting from the initial
solution, the best move from still not performed is applied to the current
solution, until the guiding solution is attained. The best solution found along this
trajectory is also considered as a candidate for insertion in the pool and the incum-
bent is updated. Several alternatives have been considered and combined in recent
implementations:

do not apply path-relinking at every GRASP iteration, but only periodically;

explore two different trajectories, using first then as the initial solution;

explore only one trajectory, starting from either or and

do not follow the full trajectory, but instead only part of it (truncated path-
relinking).

All these alternatives involve the trade-offs between computation time and solution
quality. Ribeiro et al. [90] observed that exploring two different trajectories for each
pair takes approximately twice the time needed to explore only one of them,
with very marginal improvements in solution quality. They have also observed that if
only one trajectory is to be investigated, better solutions are found when path-relinking
starts from the best among and Since the neighborhood of the initial solution is
much more carefully explored than that of the guiding one, starting from the best of
them gives the algorithm a better chance to investigate in more detail the neighborhood
of the most promising solution. For the same reason, the best solutions are usually
found closer to the initial solution than to the guiding solution, allowing pruning the
relinking trajectory before the latter is reached.

Detailed computational results illustrating the trade-offs between these strategies
for the problem of routing private virtual circuits in frame-relay services are reported by
Resende and Ribeiro [86]. In this case, the set of moves corresponding to the symmetric

Greedy Randomized Adaptive Search Procedures 233

difference between any pair of solutions is the subset of private virtual
circuits routed through different routes (i.e., using different edges) in and We
summarize below some of these results, obtained on an SGI Challenge computer (with
28 196-MHz MIPS R10000 processors) with 7.6 Gb of memory. We considered four
variants of the GRASP and path-relinking schemes previously discussed:

G: This variant is a pure GRASP with no path-relinking.

GPRf: This variant adds to G a one-way (forward) path-relinking starting from
a locally optimal solution and using a randomly selected elite solution as the
guiding solution.

GPRb: This variant adds to G a one way (backwards) path-relinking starting from
a randomly selected elite solution and using a locally optimal solution as the
guiding solution.

GPRfb: This variant combines GPRf and GPRb, performing path-relinking in both
directions.

These variants are evaluated and compared in terms of their trade-offs between
computation time and solution quality.

To study the effect of path-relinking on GRASP, we compared the four variants on
two instances: att and fr750a, see [86] for details. Two hundred independent runs
for each variant were performed for each problem. Execution was terminated when
a solution of value less than or equal to a given parameter value look4 was found.
The sub-optimal values chosen for this parameter were such that the slowest variant
could terminate in a reasonable amount of computation time. Empirical probability
distributions for the time to target solution value are plotted in Figures 8.9 and 8.10. To
plot the empirical distribution for each algorithm and each instance, we associate with
the i-th smallest running time a probability and plot the points

for i = 1, . . . , 200. Due to the time taken by the pure GRASP procedure,
we limited its plot in Figure 8.10 to 60 points.

These plots show a similar relative behavior of the four variants on the two instances.
Since instance fr750a is harder for all variants and the associated computation times
are longer, its plot is more discerning. For a given computation time, the probability of
finding a solution at least as good as the target value increases from G to GPRf, from
GPRf to GPRfb, and from GPRfb to GPRb. For example, there is a 9.25% probability for
GPRfb to find a target solution value in less than 100s, while this probability increases
to 28.75% for GPRb. For G, there is a 8.33% probability of finding a target solution value
within 2000s, while for GPRf this probability increases to 65.25%. GPRb finds a target
solution value in at most 129 s with 50% probability. For the same probability, this time
increases to 172, 1727, and 10933 s, respectively, for variants GPRfb, GPRf, and G.
In accordance with these results, variant GPRb, which does path-relinking backwards
from an elite solution to a locally optimal solution, seems to be the most effective,
confirming the preliminary findings reported in [90]. To further illustrate the behavior
of GRASP and path-relinking, we depict in Figure 8.11 four plots representing the
behavior of variant GPRb (GRASP with backwards path-relinking) on instance att
with the variation of the target solution value. As before, 200 runs were performed
for each target value decreasing from 126,600 to 126,000 by steps of 200. A similar
behavior was observed for all other variants, with or without path-relinking, as well as
for other instances and classes of test problems.

234 M.G.C. Resende and C.C. Ribeiro

Greedy Randomized Adaptive Search Procedures 235

As a final experiment, once again we made use of the different GRASP variants for
the problem of routing private virtual circuits to illustrate the effect of path-relinking
in improving the solutions obtained by a pure GRASP approach, with only the con-
struction and local search phases. This experiment was also performed using the same
SGI Challenge computer (with 28,196-MHz MIPS R10000 processors) with 7.6 Gb of
memory. For each of ten different seeds, we ran twice each variant for instance att ,
enforcing two different time limits: 10 and 100 s of processing time. The numerical
results are reported in Table 8.4. For each variant and for each time limit, we give the
average and the best solution values over the ten runs. We first note that both versions
with backwards path-relinking performed systematically better, since they found better
solutions for both time limits. Variants GPRb (GRASP with backwards path-relinking)
and GPRfb (GRASP with path-relinking in both directions) showed similar behav-
iors, as it could be anticipated from the empirical probability distributions depicted in
Figure 8.9. Variant GPRb obtained better results (in terms of both the average and the

236 M.G.C. Resende and C.C. Ribeiro

best solution values found) within the time limit of 10 s, while variant GPRfb performed
better for the time limit of 100 s. In the first case, GPRb found the best solution among
the two variants in seven runs, while GPRfb did better for only two runs. However,
when the time limit was increased to 100 s, GPRb found the best solutions in four runs,
while GPRfb did better for five runs.

Path-relinking is a quite effective strategy to introduce memory in GRASP, leading
to very robust implementations. The results reported above can be further illustrated by
those obtained with the hybrid GRASP with path-relinking algorithm for the Steiner
problem in graphs described in [90], which in particular improved the best known
solutions for 33 out of the 41 still open problems in series i640 of the SteinLib
repository [99] on May 1, 2001.

5 EXTENSIONS

In this section, we comment on some extensions, implementation strategies, and hybrids
of GRASP.

The use of hashing tables to avoid cycling in conjunction with tabu search was
proposed by Woodruff and Zemel [100]. A similar approach was later explored by
Ribeiro et al. [88] in their tabu search algorithm for query optimization in relational
databases. In the context of GRASP implementations, hashing tables were first used
by Martins et al. [66] in their multineighborhood heuristic for the Steiner problem in
graphs, to avoid the application of local search to solutions already visited in previous
iterations.

Filtering strategies have also been used to speed up the iterations of GRASP, see,
e.g., [40,66,78]. In these cases, local search is not applied to all solutions obtained at the
end of the construction phase, but instead only to some promising unvisited solutions,
defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and

rely almost entirely on the randomization of the local search to
escape from local optima. With respect to this issue, GRASP and variable neighbor-
hood strategies may be considered as complementary and potentially capable of leading
to effective hybrid methods. A first attempt in this direction was done by Martins
et al. [66]. The construction phase of their hybrid heuristic for the Steiner problem in
graphs follows the greedy randomized strategy of GRASP, while the local search phase
makes use of two different neighborhood structures as a VND procedure [54,69]. Their
heuristic was later improved by Ribeiro et al. [90], one of the key components of the
new algorithm being another strategy for the exploration of different neighborhoods.
Ribeiro and Souza [89] also combined GRASP with VND in a hybrid heuristic for the
degree-constrained minimum spanning tree problem. Festa et al. [45] studied different
variants and combinations of GRASP and VNS for the MAX-CUT problem, finding
and improving the best known solutions for some open instances from the literature.

GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP is applied to
generate the initial population for a genetic algorithm. We may cite e.g., the genetic
algorithm of Ahuja et al. [3] for the quadratic assignment problem, which makes use

Greedy Randomized Adaptive Search Procedures 237

of the GRASP proposed by Li et al. [63] to create the initial population of solutions.
A similar approach was used by Armony et al. [11], with the initial population made
up by both randomly generated solutions and those built by a GRASP.

The hybridization of GRASP with tabu search was first studied by Laguna and
González-Velarde [61]. Delmaire et al. [29] considered two approaches. In the first,
GRASP is applied as a powerful diversification strategy in the context of a tabu
search procedure. The second approach is an implementation of the Reactive GRASP
algorithm presented in Section 3.1, in which the local search phase is strengthened
by tabu search. Results reported for the capacitated location problem show that the
hybrid approaches perform better than the isolated methods previously used. Two two-
stage heuristics are proposed in [1] for solving the multi-floor facility layout problem.
GRASP/TS applies a GRASP to find the initial layout and tabu search to refine it.

6 PARALLEL GRASP

Even though parallelism is not yet systematically used to speed up or to improve the
effectiveness of metaheuristics, parallel implementations are very robust and abound
in the literature; see e.g., Cung et al. [27] for a recent survey.

Most parallel implementations of GRASP follow the multiple-walk independent
thread strategy, based on the distribution of the iterations over the processors [6,7,40,
63,65,67,70,73,74]. In general, each search thread has to perform Max_Iterations/p
iterations, where p and Max_Iterations are, respectively, the number of processors
and the total number of iterations. Each processor has a copy of the sequential algorithm,
a copy of the problem data, and an independent seed to generate its own pseudorandom
number sequence. To avoid that the processors find the same solutions, each of them
must use a different sequence of pseudorandom numbers. A single global variable is
required to store the best solution found over all processors. One of the processors
acts as the master, reading and distributing problem data, generating the seeds which
will be used by the pseudorandom number generators at each processor, distributing
the iterations, and collecting the best solution found by each processor. Since the
iterations are completely independent and very little information is exchanged, linear
speedups are easily obtained provided that no major load imbalance problems occur.
The iterations may be evenly distributed over the processors or according with their
demands, to improve load balancing.

Martins et al. [67] implemented a parallel GRASP for the Steiner problem in graphs.
Parallelization is achieved by the distribution of 512 iterations over the processors,
with the value of the RCL parameter randomly chosen in the interval [0.0,0.3] at
each iteration. The algorithm was implemented in C on an IBM SP-2 machine with
32 processors, using the MPI library for communication. The 60 problems from series
C, D, and E of the OR-Library [18] have been used for the computational experiments.
The parallel implementation obtained 45 optimal solutions over the 60 test instances.
The relative deviation with respect to the optimal value was never larger than 4%.
Almost-linear speedups observed for 2, 4, 8, and 16 processors with respect to the
sequential implementation are illustrated in Figure 8.12.

Path-relinking may also be used in conjunction with parallel implementations of
GRASP. In the case of the multiple-walk independent-thread implementation described

M.G.C. Resende and C.C. Ribeiro238

by Aiex et al. [4] for the 3-index assignment problem, each processor applies path-
relinking to pairs of elite solutions stored in a local pool. Computational results
using MPI on an SGI Challenge computer with 28 R10000 processors showed linear
speedups.

Alvim and Ribeiro [6,7] have shown that multiple-walk independent-thread
approaches for the parallelization of GRASP may benefit much from load balanc-
ing techniques, whenever heterogeneous processors are used or if the parallel machine
is simultaneously shared by several users. In this case, almost-linear speedups may be
obtained with a heterogeneous distribution of the iterations over the p processors in

packets. Each processor starts performing one packet of
iterations and informs the master when it finishes its packet of iterations. The master
stops the execution of each slave processor when there are no more iterations to be
performed and collects the best solution found. Faster or less loaded processors will
perform more iterations than the others. In the case of the parallel GRASP implemented
for the problem of traffic assignment described in [78], this dynamic load balancing
strategy allowed reductions in the elapsed times of up to 15% with respect to the times
observed for the static strategy, in which the iterations were uniformly distributed over
the processors.

The efficiency of multiple-walk independent-thread parallel implementations of
metaheuristics, based on running multiple copies of the same sequential algorithm, has
been addressed by some authors. A given target value for the objective function is
broadcasted to all processors which independently execute the sequential algorithm.
All processors halt immediately after one of them finds a solution with value at least as
good as The speedup is given by the ratio between the times needed to find a solution
with value at least as good as using respectively the sequential algorithm and the

Greedy Randomized Adaptive Search Procedures 239

parallel implementation with p processors. Some care is needed to ensure that no
two iterations start with identical random number generator seeds. These speedups are
linear for a number of metaheuristics, including simulated annealing [31,71]; iterated
local search algorithms for the traveling salesman problem [33]; tabu search, provided
that the search starts from a local optimum [17,94]; and WalkSAT [93] on hard random
3-SAT problems [56]. This observation can be explained if the random variable time
to find a solution within some target value is exponentially distributed, as indicated by
the following proposition [98].

Proposition 8.1. Let be the probability of not having found a given target
solution value in t time units with independent processes. If with

corresponding to an exponential distribution, then

This proposition follows from the definition of the exponential distribution. It
implies that the probability of finding a solution within a given target value
in time with a sequential algorithm is equal to the probability of finding a solution
at least as good as that in time t using independent parallel processors. Hence, it is
possible to achieve linear speedups in the time to find a solution within a target value
by multiple independent processors. An analogous proposition can be stated for a two
parameter (shifted) exponential distribution.

Proposition 8.2. Let be the probability of not having found a given target
solution value in t time units with independent processors. If with

and corresponding to a two parameter exponential distribution, then

Analogously, this proposition follows from the definition of the two-parameter
exponential distribution. It implies that the probability of finding a solution within a
given target value in time with a sequential algorithm is equal to
while the probability of finding a solution at least as good as that in time t using
independent parallel processors is If then both probabilities
are equal and correspond to the non-shifted exponential distribution. Furthermore,
if then the two probabilities are approximately equal and it is possible to
approximately achieve linear speedups in the time to find a solution within a target
value using multiple independent processors.

Aiex et al. [5] have shown experimentally that the solution times for GRASP also
have this property, showing that they fit a two-parameter exponential distribution.
Figure 8.13 illustrates this result, depicting the superimposed empirical and theoretical
distributions observed for one of the cases studied along the computational experi-
ments reported by the authors, which involved 2400 runs of GRASP procedures for
each of five different problems: maximum independent set [40,81], quadratic assign-
ment [63,82], graph planarization [85,87], maximum weighted satisfiability [84], and
maximum covering [79]. The same result still holds when GRASP is implemented in
conjunction with a post-optimization path-relinking procedure [4].

In the case of multiple-walk cooperative-thread strategies, the search threads run-
ning in parallel exchange and share information collected along the trajectories they
investigate. One expects not only to speed up the convergence to the best solution
but, also, to find better solutions than independent-thread strategies. The most difficult
aspect to be set up is the determination of the nature of the information to be shared or
exchanged to improve the search, without taking too much additional memory or time to

240 M.G.C. Resende and C.C. Ribeiro

be collected. Cooperative-thread strategies may be implemented using path-relinking,
by combining elite solutions stored in a central pool with the local optima found by each
processor at the end of each GRASP iteration. Canuto et al. [22] used path-relinking
to implement a parallel GRASP for the prize-collecting Steiner tree problem. Their
strategy is truly cooperative, since pairs of elite solutions from a centralized unique
central pool are distributed to the processors which perform path-relinking in paral-
lel. Computational results obtained with an MPI implementation running on a cluster
of 32,400-MHz Pentium II processors showed linear speedups, further illustrating the
effectiveness of path-relinking procedures used in conjunction with GRASP to improve
the quality of the solutions found by the latter.

7 APPLICATIONS

The first application of GRASP described in the literature concerns the set covering
problem [38]. The reader is referred to Festa and Resende [44] for an annotated bibliog-
raphy of GRASP and its applications. We conclude this chapter by summarizing below
some references focusing the main applications of GRASP to problems in different
areas:

routing [9,12,16,24,59];

logic [30,74,80,83];

covering and partition [8,10,38,47,53];

Greedy Randomized Adaptive Search Procedures 241

location [1,29,57,96,97];

minimum Steiner tree [23,65–67,90];

optimization in graphs [2,40,60,72,79,85,87];

assignment [37,46,63,64,68,70,73,75,78];

timetabling, scheduling, and manufacturing [13–15,19,28,32,34–36,41,42,58,91,
92,101];

transportation [9,34,37];

power systems [20];

telecommunications [2,11,57,64,78,79,86];

graph and map drawing [43,62,85,87]; and

VLSI [8], among other areas of application.

8 CONCLUDING REMARKS

The results described in this chapter reflect successful applications of GRASP to a large
number of classical combinatorial optimization problems, as well as to those that arise
in real-world situations in different areas of business, science, and technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks: solution construction procedures and local search methods,
which often are readily available. Contrary to what occurs with other metaheuristics,
such as tabu search or genetic algorithms, which use a large number of parameters in
their implementations, the basic version of GRASP requires the adjustment of a single
parameter.

Recent developments, presented in this chapter, show that different extensions to the
basic procedure allow further improvement to the solutions found by GRASP. Among
these, we highlight: reactive GRASP, which automates the adjustments of the restricted
candidate list parameter; variable neighborhoods, which permit accelerated and inten-
sified local search; and path-relinking, which beyond allowing the implementation of
intensification strategies based on the memory of elite solutions, opens the way for
development of very effective cooperative parallel strategies.

These and other extensions make up a set of tools that can be added to simpler
heuristics to find better-quality solutions. To illustrate the effect of additional extensions
on solution quality, Figure 8.14 shows some results obtained for the prize-collecting
Steiner tree problem, as discussed in [22]. We consider the 40 instances of series C.
The lower curve represents the results obtained exclusively with the primal-dual con-
structive algorithm (GW) of Goemans and Williamson [52]. The second curve shows
the quality of the solutions produced with an additional local search (GW + LS), corre-
sponding to the first iteration of GRASP. The third curve is associated with the results
obtained after 500 iterations of GRASP with path-relinking (GRASP + PR). Finally,
the top curve shows the results found by the complete algorithm, using variable neigh-
borhood search as a post-optimization procedure (GRASP + PR + VNS). For a given
relative deviation with respect to the optimal value, each curve indicates the number
of instances for which the corresponding algorithm found a solution within that qual-
ity range. For example, we observe that the number of optimal solutions found goes
from six, using only the constructive algorithm, to a total of 36, using the complete

242 M.G.C. Resende and C.C. Ribeiro

algorithm described in [22]. The largest relative deviation with respect to the optimal
value decreases from 36.4% in the first case, to only 1.1 % for the complete algorithm.
It is easy to see the contribution made by each additional extension.

Parallel implementations of GRASP are quite robust and lead to linear speedups both
in independent and cooperative strategies. Cooperative strategies are based on the col-
laboration between processors using path-relinking and a global pool of elite solutions.
This allows the use of more processors to find better solutions in less computation time.

BIBLIOGRAPHY

S. Abdinnour-Helm and S.W. Hadley (2000) Tabu search based heuristics for
multi-floor facility layout. International Journal of Production Research, 38,
365–383.

J. Abello, P.M. Pardalos and M.G.C. Resende (1999) On maximum clique
problems in very large graphs. In: J. Abello and J. Vitter (eds.), External Memory
Algorithms and Visualization, volume 50 of DIMACS Series on Discrete Math-
ematics and Theoretical Computer Science. American Mathematical Society,
pp. 199–130.

R.K. Ahuja, J.B. Orlin and A. Tiwari (2000) A greedy genetic algorithm for
the quadratic assignment problem. Computers and Operations Research, 27,
917–934.

R.M. Aiex, M.G.C. Resende, P.M. Pardalos and G. Toraldo (2000) GRASP with
path-relinking for the three-index assignment problem. Technical report, AT&T
Labs–Research.

[1]

[2]

[3]

[4]

Greedy Randomized Adaptive Search Procedures 243

R,M. Aiex, M.G.C. Resende and C.C. Ribeiro (2002) Probability distribution of
solution time in GRASP: an experimental investigation. Journal of Heuristics,
8, 343–373.

A.C. Alvim (1998) Parallelization strategies for the metaheuristic GRASP.
Master’s thesis, Department of Computer Science, Catholic University of
Rio de Janeiro, Brazil (in Portuguese).

A.C. Alvim and C.C. Ribeiro (1998) Load balancing for the parallelization of
the GRASP metaheuristic. In: Proceedings of the X Brazilian Symposium on
Computer Architecture, Búzios, pp. 279–282 (in Portuguese).

S. Areibi and A. Vannelli (1997) A GRASP clustering technique for circuit par-
titioning. In: J. Gu and P.M. Pardalos (eds.), Satisfiability Problems, Volume 35
of DIMACS Series on Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, pp. 711–724.

M.F. Argüello, J.F. Bard and G. Yu (1997) A GRASP for aircraft routing in
response to groundings and delays. Journal of Combinatorial Optimization, 1,
211–228.

M.F. Argüello, T.A. Feo and O. Goldschmidt (1996) Randomized methods for
the number partitioning problem. Computers and Operations Research, 23,
103–111.

M. Armony, J.C. Klincewicz, H. Luss and M.B. Rosenwein (2000) Design of
stacked self-healing rings using a genetic algorithm. Journal of Heuristics, 6,
85–105.

J.B. Atkinson (1998) A greedy randomised search heuristic for time-constrained
vehicle scheduling and the incorporation of a learning strategy. Journal of the
Operational Research Society, 49, 700–708.

J.F. Bard and T.A. Feo (1989) Operations sequencing in discrete parts manufac-
turing. Management Science, 35, 249–255.

J.F. Bard and T.A. Feo (1991) An algorithm for the manufacturing equipment
selection problem. IIE Transactions, 23, 83–92.

J.F. Bard, T.A. Feo and S. Holland (1996) A GRASP for scheduling printed
wiring board assembly. IIE Transactions, 28, 155–165.

J.F. Bard, L. Huang, P. Jaillet and M. Dror (1998) A decomposition approach to
the inventory routing problem with satellite facilities. Transportation Science,
32, 189–203.

R. Battiti and G. Tecchiolli (1992) Parallel biased search for combinatorial
optimization: Genetic algorithms and tabu. Microprocessors and Microsystems,
16, 351–367.

J.E. Beasley (1990) OR-Library: Distributing test problems by electronic mail.
Journal of the Operational Research Society, 41, 1069–1072.

S. Binato, W.J. Hery, D, Loewenstern and M.G.C. Resende (2002) A GRASP for
job shop scheduling. In: C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys
in Metaheuristics. Kluwer Academic Publishers, pp. 59–79.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

244 M.G.C. Resende and C.C. Ribeiro

S. Binato and G.C. Oliveira (2002) A reactive GRASP for transmission network
expansion planning. In: C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys
in Metaheuristics. Kluwer Academic Publishers, pp. 81–100.

J.L. Bresina (1996) Heuristic-biased stochastic sampling. In: Proceedings
of the Thirteenth National Conference on Artificial Intelligence. Portland,
pp. 271–278.

S.A. Canuto, M.G.C. Resende and C.C. Ribeiro (2001) Local search with
perturbations for the prize-collecting Steiner tree problem in graphs. Networks,
38, 50–58.

S.A. Canuto, C.C. Ribeiro and M.G.C. Resende (1999) Local search with
perturbations for the prize-collecting Steiner tree problem. In: Extended
Abstracts of the Third Metaheuristics International Conference. Angra dos Reis,
pp. 115–119.

C. Carreto and B. Baker (2002) A GRASP interactive approach to the vehicle
routing problem with backhauls. In: C.C. Ribeiro and P. Hansen (eds.), Essays
and Surveys in Metaheuristics. Kluwer Academic Publishers, pp. 185–199.

I. Charon and O. Hudry (1993) The noising method: a new method for
combinatorial optimization. Operations Research Letters, 14, 133–137.

I. Charon and O. Hudry (2002) The noising methods: a survey. In: C.C. Ribeiro
and C.C. Ribeiro (eds.), Essays and Surveys in Metaheuristics. Kluwer
Academic Publishers, pp. 245–261.

V.-D. Cung, S.L. Martins, C.C. Ribeiro and C. Roucairol (2002) Strategies for
the parallel implementation of metaheuristics. In: C.C. Ribeiro and C.C. Ribeiro
(eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers,
pp. 263–308.

P. De, J.B. Ghosj and C.E. Wells (1994) Solving a generalized model for
con due date assignment and sequencing. International Journal of Production
Economics, 34, 179–185.

H. Delmaire, J.A. Díaz, E. Fernández and M. Ortega (1999) Reactive GRASP
and Tabu Search based heuristics for the single source capacitated plant location
problem. INFOR, 37, 194–225.

A.S. Deshpande and E. Triantaphyllou (1998) A greedy randomized adap-
tive search procedure (GRASP) for inferring logical clauses from examples in
polynomial time and some extensions. Mathematical Computer Modelling, 27,
75–99.

N. Dodd (1990) Slow annealing versus multiple fast annealing runs: an empirical
investigation. Parallel Computing, 16, 269–272.

A. Drexl and F. Salewski (1997) Distribution requirements and compactness
constraints in school timetabling. European Journal of Operational Research,
102, 193–214.

H.T. Eikelder, M. Verhoeven, T. Vossen and E. Aarts (1996) A probabilistic
analysis of local search. In: I. Osman and J. Kelly (eds.), Metaheuristics: Theory
and Applications. Kluwer Academic Publishers, pp. 605–618.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Greedy Randomized Adaptive Search Procedures 245

T.A. Feo and J.F. Bard (1989) Flight scheduling and maintenance base planning.
Management Science, 35, 1415–1432.

T.A. Feo and J.F. Bard (1989) The cutting path and tool selection problem in
computer-aided process planning. Journal of Manufacturing Systems, 8, 17–26.

T.A. Feo, J.F. Bard and S. Holland (1995) Facility-wide planning and scheduling
of printed wiring board assembly. Operations Research, 43, 219–230.

T.A. Feo and J.L. González-Velarde (1995) The intermodal trailer assign-
ment problem: models, algorithms, and heuristics. Transportation Science, 29,
330–341.

T.A. Feo and M.G.C. Resende (1989) A probabilistic heuristic for a com-
putationally difficult set covering problem. Operations Research Letters, 8,
67–71.

T.A. Feo and M.G.C. Resende (1995) Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6, 109–133.

T.A. Feo, M.G.C. Resende and S.H. Smith (1994) A greedy randomized adap-
tive search procedure for maximum independent set. Operations Research, 42,
860–878.

T.A. Feo, K. Sarathy and J. McGahan (1996) A GRASP for single machine
scheduling with sequence dependent setup costs and linear delay penalties.
Computers and Operations Research, 23, 881–895.
T.A. Feo, K. Venkatraman and J.F. Bard (1991) A GRASP for a difficult
single machine scheduling problem. Computers and Operations Research, 18,
635–643.

E. Fernández and R. Martí (1999) GRASP for seam drawing in mosaicking of
aerial photographic maps. Journal of Heuristics, 5, 181–197.

P. Festa and M.G.C. Resende (2002) GRASP: an annotated bibliography.
In: C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics.
Kluwer Academic Publishers, pp. 325–367.

P. Festa, M.G.C. Resende, P. Pardalos and C.C. Ribeiro (2001) GRASP and VNS
for Max-Cut. In: Extended Abstracts of the Fourth Metaheuristics International
Conference. Porto, pp. 371–376.

C. Fleurent and F. Glover (1999) Improved constructive multistart strategies for
the quadratic assignment problem using adaptive memory. INFORMS Journal
on Computing, 11, 198–204.

J.B. Ghosh (1996) Computatinal aspects of the maximum diversity problem.
Operations Research Letters, 19, 175–181.

F. Glover (1996) Tabu search and adaptive memory programming—advances,
applications and challenges. In: R.S. Barr, R.V. Helgason and J.L. Kenning-
ton (eds.), Interfaces in Computer Science and Operations Research. Kluwer,
pp. 1–75.
F. Glover (2000) Multi-start and strategic oscillation methods—principles to
exploit adaptive memory. In: M. Laguna and J.L. Gonzáles-Velarde (eds.),
Computing Tools for Modeling, Optimization and Simulation: Interfaces in
Computer Science and Operations Research. Kluwer, pp. 1–24.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

246 M.G.C. Resende and C.C. Ribeiro

F. Glover and M. Laguna (1997) Tabu Search. Kluwer.

F. Glover, M. Laguna and R. Martí (2000) Fundamentals of scatter search and
path relinking. Control and Cybernetics, 39, 653–684.

M.X. Goemans and D.P. Williamson (1996) The primal dual method for
approximation algorithms and its application to network design problems.
In: D. Hochbaum (ed.), Approximation Algorithms for NP-hard Problems. PWS
Publishing Co., pp. 144–191.

P.L. Hammer and D.J. Rader, Jr. (2001) Maximally disjoint solutions of the set
covering problem. Journal of Heuristics, 7, 131–144.

P. Hansen and (2002) Developments of variable neighbor-
hood search. In: C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in
Metaheuristics. Kluwer Academic Publishers, pp. 415–439.

J.P. Hart and A.W. Shogan (1987) Semi-greedy heuristics: an empirical study.
Operations Research Letters, 6, 107–114.

H. Hoos and T. Stützle (1999) Towards a characterisation of the behaviour of
stochastic local search algorithms for SAT. Artificial Intelligence, 112, 213–232.

J.G. Klincewicz (1992) Avoiding local optima in the p–hub location problem
using tabu search and GRASP. Annals of Operations Research, 40, 283–302.

J.G. Klincewicz and A. Rajan (1994) Using GRASP to solve the component
grouping problem. Naval Research Logistics, 41, 893–912.

G. Kontoravdis and J.F. Bard (1995) A GRASP for the vehicle routing problem
with time windows. ORSA Journal on Computing, 7, 10–23.

M. Laguna, T.A. Feo and H.C. Elrod (1994) A greedy randomized adap-
tive search procedure for the two–partition problem. Operations Research, 42,
677–687.

M. Laguna and J.L. González-Velarde (1991) A search heuristic for just-in-
time scheduling in parallel machines. Journal of Intelligent Manufacturing, 2,
253–260.

M. Laguna and R. Martí (1999) GRASP and path relinking for 2-layer straight
line crossing minimization. INFORMS Journal on Computing, 11, 44–52.

Y. Li, P.M. Pardalos and M.G.C. Resende (1994) A greedy randomized adaptive
search procedure for the quadratic assignment problem. In: P.M. Pardalos and
H. Wolkowicz (eds.), Quadratic Assignment and Related Problems, volume 16
of DIMACS Series on Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, pp. 237–261.

X. Liu, P.M. Pardalos, S. Rajasekaran and M.G.C. Resende (2000) A GRASP
for frequency assignment in mobile radio networks. In: B.R. Badrinath, F. Hsu,
P.M. Pardalos and S. Rajasekaran (eds.), Mobile Networks and Computing, vol-
ume 52 of DIMACS Series on Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, pp. 195–201.

S.L. Martins, P.M. Pardalos, M.G.C. Resende and C.C. Ribeiro (1999) Greedy
randomized adaptive search procedures for the steiner problem in graphs.
In: P.M. Pardalos, S. Rajasekaran and J. Rolim (eds.), Randomization Methods in

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Greedy Randomized Adaptive Search Procedures 247

Algorithmic Design, volume 43 of DIMACS Series on Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, pp. 133–145.

S.L. Martins, M.G.C. Resende, C.C. Ribeiro and P. Pardalos (2000) A paral-
lel GRASP for the Steiner tree problem in graphs using a hybrid local search
strategy. Journal of Global Optimization, 17, 267–283.

S.L. Martins, C.C. Ribeiro and M.C. Souza (1998) A parallel GRASP for
the Steiner problem in graphs. In: A. Ferreira and J. Rolim (eds.), Proceed-
ings of IRREGULAR’98—5th International Symposium on Solving Irregularly
Structured Problems in Parallel, volume 1457 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 285–297.

T. Mavridou, P.M. Pardalos, L.S. Pitsoulis and M.G.C. Resende (1998)
A GRASP for the biquadratic assignment problem. European Journal of
Operational Research, 105, 613–621.

and P. Hansen (1997) Variable neighborhood search. Computers
and Operations Research, 24, 1097–1100.

R.A. Murphey, P.M. Pardalos and L.S. Pitsoulis (1998) A parallel GRASP for the
data association multidimensional assignment problem. In: P.M. Pardalos (ed.),
Parallel Processing of Discrete Problems, volume 106 of The IMA Volumes in
Mathematics and Its Applications, Springer-Verlag, pp. 159–180.

L. Osborne and B. Gillett (1991) A comparison of two simulated annealing
algorithms applied to the directed Steiner problem on networks. ORSA Journal
on Computing, 3, 213–225.

P.M. Pardalos, T. Qian and M.G.C. Resende (1999) A greedy randomized
adaptive search procedure for the feedback vertex set problem. Journal of
Combinatorial Optimization, 2, 399–412.

P.M. Pardalos, L.S. Pitsoulis and M.G.C. Resende (1995) A parallel GRASP
implementation for the quadratic assignment problem. In: A. Ferreira and
J. Rolim (eds.), Parallel Algorithms for Irregularly Structured Problems—
Irregular’94. Kluwer Academic Publishers, pp. 115–133.

P.M. Pardalos, L.S. Pitsoulis and M.G.C. Resende (1996) A parallel GRASP for
MAX-SAT problems. Lecture Notes in Computer Science, 1184, 575–585.

L.S. Pitsoulis, P.M. Pardalos and D.W. Hearn (2001) Approximate solutions to
the turbine balancing problem. European Journal of Operational Research, 130,
147–155.

M. Prais and C.C. Ribeiro (1999) Parameter variation in GRASP imple-
mentations. In: Extended Abstracts of the Third Metaheuristics International
Conference. Angra dos Reis, pp. 375–380.

M. Prais and C.C. Ribeiro (2000) Parameter variation in GRASP procedures.
Investigación Operativa, 9, 1–20.

M. Prais and C.C. Ribeiro (2000) Reactive GRASP: an application to a matrix
decomposition problem in TDMA traffic assignment. INFORMS Journal on
Computing, 12, 164–176.

M.G.C. Resende (1998) Computing approximate solutions of the maximum
covering problem using GRASP. Journal of Heuristics, 4, 161–171.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

M.G.C. Resende and C.C. Ribeiro248

M.G.C. Resende and T.A. Feo (1996) A GRASP for satisfiability. In:
D.S. Johnson and M.A. Trick (eds.), Cliques, Coloring, and Satisfiability:
The Second DIMACS Implementation Challenge, volume 26 of DIMACS
Series on Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, pp. 499–520.

M.G.C. Resende, T.A. Feo and S.H. Smith (1998) Algorithm 787: Fortran sub-
routines for approximate solution of maximum independent set problems using
GRASP. ACM Transactions on Mathematical Software, 24, 386–394.

M.G.C. Resende, P.M. Pardalos and Y. Li (1996) Algorithm 754: Fortran sub-
routines for approximate solution of dense quadratic assignment problems using
GRASP. ACM Transactions on Mathematical Software, 22, 104–118.

M.G.C. Resende, L.S. Pitsoulis and P.M. Pardalos (1997) Approximate solution
of weighted MAX-SAT problems using GRASP. In: J. Gu and P.M. Pardalos
(eds.), Satisfiability Problems, volume 35 of DIMACS Series on Discrete Math-
ematics and Theoretical Computer Science, American Mathematical Society,
pp. 393–405.

M.G.C. Resende, L.S. Pitsoulis and P.M. Pardalos (2000) Fortran subroutines
for computing approximate solutions of MAX-SAT problems using GRASP.
Discrete Applied Mathematics, 100, 95–113.

M.G.C. Resende and C.C. Ribeiro (1997) A GRASP for graph planarization.
Networks, 29, 173–189.

M.G.C. Resende and C.C. Ribeiro (2001) A GRASP with path-relinking for
private virtual circuit routing. Technical report, AT&T Labs Research.

C.C. Ribeiro and M.G.C. Resende (1999) Algorithm 797: Fortran subroutines
for approximate solution of graph planarization problems using GRASP. ACM
Transactions on Mathematical Software, 25, 342–352.

C.C. Ribeiro, C.D. Ribeiro and R.S. Lanzelotte (1997) Query optimization in
distributed relational databases. Journal of Heuristics, 3, 5–23.

C.C. Ribeiro and M.C. Souza (2002) Variable neighborhood search for the degree
constrained minimum spanning tree problem. Discrete Applied Mathematics,
118, 43–54.

C.C. Ribeiro, E. Uchoa and R.F. Werneck (2002) A hybrid GRASP with per-
turbations for the Steiner problem in graphs. INFORMS Journal on Computing,
14, 228–246.

R.Z. Ríos-Mercado and J.F. Bard (1998) Heuristics for the flow line problem
with setup costs. European Journal of Operational Research, 76–98.

R.Z. Ríos-Mercado and J.F. Bard (1999) An enhanced TSP-based heuristic for
makespan minimization in a flow shop with setup costs. Journal of Heuristics,
5, 57–74.

B. Selman, H. Kautz and B. Cohen (1994) Noise strategies for improving
local search. In: Proceedings of the Twelfth National Conference on Artificial
Intelligence. Seattle, MIT Press, pp. 337–343.

E. Taillard (1991) Robust taboo search for the quadratic assignment problem.
Parallel Computing, 7, 443–455.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Greedy Randomized Adaptive Search Procedures 249

H. Takahashi and A. Matsuyama (1980) An approximate solution for the Steiner
problem in graphs. Mathematica Japonica, 24, 573–577.

T.L. Urban (1998) Solution procedures for the dynamic facility layout problem.
Annals of Operations Research, 323–342.

T.L. Urban, W.-C. Chiang and R.A. Russel (2000) The integrated machine
allocation and layout problem. International Journal of Production Research,
2913–2930.

M.G.A. Verhoeven and E.H.L. Aarts (1995) Parallel local search. Journal of
Heuristics, 1, 43–65.

S. Voss, A. Martin and T. Koch (2001) Steinlib testdata library. Online document
at http://elib.zib.de/steinlib/steinlib.html, last visited on May 1.

D.L. Woodruff and E. Zemel (1993) Hashing vectors for tabu search. Annals of
Operations Research, 41, 123–137.

J. Yen, M. Carlsson, M. Chang, J.M. Garcia and H. Nguyen (2000) Constraint
solving for inkjet print mask design. Journal of Imaging Science and Technology,
44, 391–397.

[95]

[96]

[97]

[98]

[99]

[100]

[101]

