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Abstract In this paper, we propose a population-based,
four-step, real-parameter optimization algorithm-gener-
ator. The approach divides the task of reaching near the
optimum solution into four independent plans of (i)
selecting good solutions from a solution base, (ii) gen-
erating new solutions using the selected solutions, (iii)
choosing inferior or spurious solutions for replacement,
and (iv) updating the solution base with good new or old
solutions. Interestingly, many classical and evolutionary
optimization algorithms are found to be representable
by this algorithm-generator. The paper also recommends
an efficient optimization algorithm with the possibility of
using a number of different recombination plans and
parameter values. With a systematic parametric study,
the paper finally recommends a real-parameter optimi-
zation algorithm which outperforms a number of exist-
ing classical and evolutionary algorithms. To extend this
study, the proposed algorithm-generator can be utilized
to develop new and more efficient population-based
optimization algorithms. The treatment of population-
based classical and evolutionary optimization algo-
rithms identically through the proposed algorithm-gen-
erator is the main hall-mark of this paper and should
enable researchers from both classical and evolutionary
fields to understand each other’s methods better and
interact in a more coherent manner.

Keywords Real-parameter optimization - Evolutionary
optimization - Multi-point search - Algorithm-generator

1 Introduction

Over the years, many real-parameter optimization
algorithms have been developed by using point-by-point
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(Rao 1984; Reklaitis et al. 1983) as well as multi-point
approaches (Goldberg 1989; Holland 1975; Fogel 1995;
Schwefel 1995). While a point-by-point approach begins
with one guess solution and updates the solution itera-
tively in the hope of reaching near the optimum solution,
a multi-point approach deals with a number of solutions
in each iteration. Starting with a number of guess solu-
tions, the multi-point algorithm updates one or more
solutions in a synergistic manner in the hope of steering
the population towards the optimum. In this paper, we
focus our attention to the multi-point optimization
algorithms, which we shall refer here as the population-
based optimization algorithms. Although there exists a
few classical population-based optimization algorithms,
almost all evolutionary optimization algorithms are
population-based algorithms.

In the remainder of this paper, we suggest a generic
population-based algorithm-generator for real-parame-
ter optimization. The main advantage of the proposed
four-step algorithm-generator is the functional decom-
position of four important tasks needed in real-parame-
ter optimization. The tasks (we refer them as plans) are
independent to each other, thereby enabling an user to
study the effect of each plan on the complete algorithm
and should make it easier to develop efficient popula-
tion-based optimization algorithms. We then demon-
strate how the proposed algorithm-generator can be
used to represent a number of classical and evolutionary
algorithms in a functionally decomposed manner.

One of the important tasks in an optimization algo-
rithm is the generation of new solutions from existing
solutions. In this paper, we review a number of com-
monly-used evolutionary generational plans and suggest
an efficient operator for this purpose. With a recently
suggested efficient optimization algorithm (the general-
ized generation gap (G3) model (Deb et al. 2002)) and an
efficient parent-centric recombination operator used as a
generational plan, we then perform a detail study to
identify optimal parameter values for the G3 model.
Finally, we compare the performance of the resulting well-
parameterized optimization algorithm (G3 model) with a
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number of existing classical and evolutionary algorithms.
In almost all cases, the G3 model with a couple of versions
of the parent-centric recombination operator evolved
as the winner. Besides the suggestion of a successful
algorithm here, the other main contribution of this paper
is the proposed algorithm-generator, which is generic and
can be used to systematically develop other more efficient
population-based optimization algorithms. The pro-
ceedings of this paper also demonstrates a case study of
parameterizing and evaluating such an algorithm.

2 Population-based optimization algorithms

Optimization algorithms can be classified into two main
categories: (i) gradient-based methods, in which first-
order (and sometimes second-order) derivative vectors
are used to drive the search process and (ii) direct search
methods, in which only objective function values are
used to drive the search. Although gradients can be
computed numerically or automatically, each has their
own merits and demerits (Rao 1984; Reklaitis et al.
1983). Since a numerical gradient computation involves
more than one function evaluations in the vicinity of a
solution, most gradient-based techniques use a point-by-
point approach, in which one solution (or point) is up-
dated to a new and hopefully better solution. Without
the use of any gradient information, most direct search
methods explicitly employ more than one solutions in
each iteration. The presence of multiple solutions is then
exploited to find better search regions. It is these multi-
point approaches, which are of interest to this paper. We
call these algorithms population-based approaches, as
they require a population of solutions in one iteration,
instead of just one solution. Some of the population-
based classical optimization algorithms are Hooke-Jee-
ves pattern search method (Reklaitis et al. 1983), Nelder
and Meade’s simple search method (Nelder and Mead
1965), Box’s complex search method (Box 1965) and a
plethora of adaptive random search methods discussed
in texts (Deb 1995; Reklaitis et al. 1983; Rao 1984).
Among the non-traditional optimization methods, evo-
lutionary search algorithms (involving genetic algo-
rithms (GAs), evolution strategies (ESs), evolutionary
programming (EP), differential evolution (DE)) are
direct population-based approaches (Holland 1975;
Goldberg 1989; Rechenberg 1965; Storn and Price 1997;
Fogel et al. 1995).

In the following, we outline some of the advantages
of using a population-based optimization algorithm:

1. In principle, gradient-like information can be implic-
itly obtained by explicitly processing multiple solu-
tions. This would be beneficial in problems in which
gradient computations may be difficult or erroneous
with a numerical scheme.

2. A population of solution provides the information of
a good search region, instead of only a good point, in
the search space.

3. In addition to representing a potentially good search
region, the variance in the population members
provide a good information about the extent of the
potential search region. If new solutions are created
in proportion to the variance of existing population
of points, a self-adaptive search procedure can be
developed. In the start of such an algorithm with a
randomly-picked initial population of solutions, the
variance in the population members is expected to
be large, thereby ensuring a thorough search of the
entire space. On the other hand, during later itera-
tions when the population of points have converged
near the optimum, the variance in population
members is expected to be small, thereby ensuring a
focused search near the optimum. Without an
external guidance, such a population-based algo-
rithm can widen or narrow down its search power
adaptively.

4. Each iteration of such a population-based algorithm
can use a different form of the underlying objective
function. Since a comparison scheme would usually
be followed to establish a hierarchy of population
members, a rough estimate of the quality of the
solutions is enough to drive the search. For highly
computationally intensive objective function evalua-
tion procedures and for problems where a clear
mathematical or procedural objective function eval-
uation is not possible (such as the aesthetics of a
design being an objective to be maximized), such a
comparative evaluation procedure is certainly bene-
ficial. It is not clear how a similar task can be
achieved with a point-by-point optimization
approach, in which there exist only one solution in
each iteration.

5. There always lies safety in numbers. The presence of
multiple solutions in a search process allows diversity
to be maintained. Although this can cause a com-
putational overhead in simpler problem-solving
tasks, they can become useful in avoiding sudden
local convergence behavior, common to many point-
by-point optimization algorithms. Even in harder
problems, the processing of multiple solutions in one
iteration may constitute a parallel search, by sharing
the discovered good sub-solutions among different
population members.

6. The presence of multiple solutions can be beneficial
in handling constraint-optimization problems.
Although some point-by-point approaches can only
be started with a feasible solution, most population-
based approaches can work with some feasible and
some infeasible solutions and some approaches can
work with infeasible solutions alone. A careful hier-
archy of infeasible and feasible solutions can be
maintained in a population to steer the search
towards potential feasible regions. One such popula-
tion-based constraint-handling approach is developed
elsewhere (Deb 2001), which does not require any
penalty parameter while establishing the hierarchy
among feasible and infeasible solutions.



7. Finally, there exist a number of other optimization
tasks, such as multi-modal and multi-objective
optimizations, in which the task is to find multiple
optimal solutions. For handling these problems, a
point-by-point approach has no other option but to
apply the algorithm again and again to find multiple
different solutions. On the other hand, a population-
based approach can be adapted to find and capture
multiple optimal solutions simultaneously in a single
simulation run (Deb 2001; Goldberg and Richardson
1987). It is intuitive to realize that the simultaneous
discovery of multiple optimal solutions is possible to
achieve by an implicit parallel approach within a
population-based algorithm, whereas in multiple
applications of one algorithm, any property common
to the multiple optimal solutions must have to be
rediscovered in every application independently, a
matter which is well addressed in a recent study (Deb
2003).

In the next section, we suggest a population-based
algorithm-generator for real-parameter optimization.

3 A population-based algorithm-generator
for optimization

As the name suggests, a population-based optimization
algorithm begins its search with a population of guess
solutions. Thereafter, in each iteration the population is
updated by using a population-update algorithm. We
assume that the algorithm at iteration ¢ has a set of
points BY) (with N = |[B()|). At the end of each iteration,
this set is updated to a new set B“*1) by using four user-
defined plans. For brevity, here we drop the superscript
denoting the iteration counter from the sets.

Fig. 1 A sketch of one iteration of the proposed population-based
optimization procedure. For some realizations, the SP and GP steps
can be applied multiple times before proceeding to the RP and UP
plans

Population-update-algorithm(SP, GP, RP, UP)

Step 1 Choose p solutions (the set P) from B using a
selection plan (SP).

Step 2 Create 4 solutions (the set C) from P using a
generation plan (GP).

Step 3 Choose r solutions (the set R) from B for
replacement using a replacement plan (RP).

Step 4 Update these » members by » solutions chosen
from a comparison set of R, P, and C using a
update plan (UP).

Since by choosing a plan for each step one develops a
new optimization algorithm, we call the above proce-
dure an algorithm-generator. Figure 1 shows a sketch of
the proposed generic procedure. The first step chooses u
solutions from the solution bank B (all solutions in the
top-left plot) for their use in creating new solutions in
the second step. Thus, the selection plan (SP) for
choosing these u solutions must emphasize the better
solutions of B. The chosen solutions (¢ = 3 in the fig-
ure) are shown as dark-outlined points on the top-left
plot and are also joined by lines. Clearly, there are two
ways to choose a good SP. A set of u solutions can be
chosen either by directly emphasizing the better solu-
tions in B or by de-emphasizing the worse solutions of B.
The algorithm can be made somewhat ‘greedy’ by
always including a copy of the ‘best’ solution of B in P.

In the second step, 4 new solutions are created from
the chosen set P by using a generation plan GP. One
convenient procedure would be to choose a probability
distribution function (PDF) using the set P and create A
solutions. Figure 1 shows a typical probability distri-
bution in which solutions around the members of P are
emphasized. Members of the set C (A =4 in the figure)
are shown in solid circles in the figure. This is the most
crucial step of the proposed algorithm-generator. We
review some existing generational plans and suggest a
new one in Sect.5. Although for generating each new
solution a different PDF can be used thereby requiring
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the need to use SP-GP steps many times before pro-
ceedings further, for simplicity one PDF can be chosen
to create all 4 new solutions.

In the third step, r solutions are chosen from the
solution bank B for a replacement using the newly cre-
ated solutions. Here, different replacement plans are
possible. The RP can simply choose r solutions at ran-
dom or include some or all members of P to ensure
diversity preservation. The RP can also pick a set of bad
solutions from B to constitute a faster search. In the
figure, » (=2 in the figure) worst solutions from B are
chosen as members of R.

In the fourth step, the » chosen members are updated
by » members chosen from R, P, and C by using an
update plan (UP). It is intuitive that the UP must
emphasize the better solutions of R U P U C in this step.
However, the r slots can also be updated directly from
members of C alone or from a combined population
RUC or PUC. In the former case, the population
update algorithm does not have the elite-preserving
property. To really ensure elite-preservation, the RP
should choose the best solutions of B and a combined
P and C set needs to be considered in Step 4. In the
figure, the best r solutions (joined by a line) from
the RUPUC are chosen and the originally chosen r
solutions in Step 3 are replaced by these r solutions.

Although the above decomposition principle is not
the only possible way to describe an optimization algo-
rithm-generator, it certainly makes a functional decom-
position of the salient tasks needed in a good search and
optimization algorithm. The selection plan emphasizes
better solutions from a population, the generational plan
uses these solutions to explore the search region around
them and create new solutions, the replacement plan
picks potentially bad solutions from the original popu-
lation to be replaced, and finally the update plan com-
pletes the replacement task with the newly created
solutions. Each plan controls a crucial property of the
resulting algorithm. By properly choosing a strategy for
each plan, the resulting optimization algorithm can be
made greedy to mainly solve unimodal problems, can
have a global perspective for targeting to find the global
optimum, or can be made to be a monotonically non-
deteriorating algorithm to have sustained improvement
in the solution quality.

The procedure of using the above algorithm-genera-
tor for developing a new optimization algorithm is as
follows:

1. Choose a suitable plan for each step (SP, GP, RP, and
UP).

2. Perform a parametric study to discover optimal
algorithm parameters, such as NV, u, A and r.

Of course, in order to develop an efficient optimization
algorithm, the first task above must have to be opti-
mized somewhat. A few potential candidate plans for
each of the four steps can be first chosen and then
compared by applying each of the resulting algorithms
to a set of carefully chosen test problems. Each such

algorithm must have to be studied with its optimal
parameter setting. We shall demonstrate the proceedings
of one such study later in this paper. But, first we review
a number of population-based classical algorithms and
discuss how the above algorithm-generator can be used
to describe each of them in a unified manner. Thereafter,
we shall discuss the same for a number of real-parameter
evolutionary algorithms.

4 Classical methods

Although most classical optimization methods use a
point-by-point approach, in which only one solution is
used and updated in each iteration, there exist a number
of population-based techniques. Without loss of gener-
ality, we discuss here a few algorithms used for mini-
mizing objective functions.

4.1 Evolutionary optimization

Box’s (1957) evolutionary optimization technique (not
to be confused with the evolutionary algorithms de-
scribed in the next section) used a structured set of
solutions in each iteration. For n decision variables, the
set B contains N = 2" 4+ 1 solutions, one having at each
corner of an orthogonal hyper-box formed using the
coordinate directions. Figure 2 shows a set of (2> + 1) or
5 points for a n = 2-variable optimization problem.
Based on the objective function values at all these corner
points, a new hyper-box (hence a new set of solutions) is
formed around the best solution (having the smallest
objective function value). In the context of the proposed
algorithm-generator, this method uses a selection plan
(SP) in which only the best solution is chosen from B,
thereby making u = |P| = 1. The generational plan (GP)
then creates 4 = 2" more solutions (the set C) system-
atically around this best solution. Figure 2 illustrates this
procedure. In the third step, all members of B are chosen
as R and in the fourth step they are replaced by PUC.
Here are the four plans which constitute Box’s evolu-
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Fig. 2 Box’s evolutionary optimization procedure. Solutions 1 to 5
are five members of the initial population



tionary optimization algorithm in terms of our proposed
algorithm-generator:

SP: Choose the best of N = 2" 4 1 solutions and call it
as P. Thus, u = |P| = 1.

GP: Create 4 = 2" solutions (the set C) systematically
around the sole member of P (Box 1957; Deb 1995).
Thus, |C| = 2.

RP: Set R = B.

UP: Set B := PUC, ensuring |B| = N.

4.2 Simplex search method

Nelder and Meade’s simplex search method (Nelder and
Mead 1965) uses N = n + 1 solutions in the population
B. Figure 3 shows a set of three points in the population
(simplex) on a n = 2-variable problem. The worst sim-
plex member is reflected around the centroid of the rest of
the n solutions. Thereafter, depending on the function
value comparison of this reflected solution with the the
best, next-best, and the worst solution in the population,
a new solution is created. The new solution then replaces
the worst solution. A few iterations of this simplex search
method are illustrated in Fig. 3. The shaded region rep-
resent the first simplex. In terms of our algorithm-gen-
erator, the four plans for this algorithm are as follows:
SP: Set P = B (that is, all N = n + 1 population mem-
bers of B are chosen as members of P).

GP: Create a reflected solution using members of P.
Based on objective function value comparisons of
members of P, a new solution C is created by
reflection, expansion or contraction, as the case may
be (see (Deb 1995; Nelder and Mead 1965) for
details). Thus, |C| = 1.

Pick the worst solution of B and include it in R.
Thus, |R| = 1.

UP: Set B := (BUC)\R.

RP:

The complex search method (Box 1965 ;Deb 1995)
has a similar search principle to the above and can also
be written systematically as above.
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Fig. 3 Nelder and Meade’s simplex search method is illustrated.
Solutions 1 to 3 are three members of the initial population

4.3 Adaptive random search methods

A number of early studies (Brooks 1958; Luus and Jaak-
ola 1973; Price 1983), introduced and encouraged the
use of random search methods in practice, particularly to
give a search algorithm its global perspective. In a par-
ticular adaptive search method (Luus and Jaakola 1973),
a set of N randomly chosen solutions is initialized and the
best solution is chosen. Thereafter, a set of N new solu-
tions are created in a hyper-box which is smaller in size
compared to the previous hyper-box. Figure 4 shows
N = 6 solutions in two consecutive iterations. The solu-
tions marked in circles are created at random on the
shaded region in the first iteration. The best solution in
each iteration is marked with a solid symbol. The figure
shows how the next-iteration hyper-box gets reduced in
size and placed centered around the best solution. In terms
of our algorithm-generator, the four plans are as follows:

SP: Set P with the best solution of B. Thus, u = |P| = 1.

GP: Create A =N new random solutions C from a
hyper-box centered around the sole member of P
(see Deb 1995; Luus and Jaakola 1973) for details).

RP: Set R = B.

UP: Set B =C.

In the last step, all members of B are replaced with
the newly created solutions (C).

There exists other complicated adaptive random
search methods which use more sophisticated update
rules. In a recent approach (the so-called shuffled com-
plex evolution (SCE)) (Duan et al. 1993), a population-
based combined simplex and random search method is
suggested. The study reported mixed results on a num-
ber of test problems. By carefully understanding the
tasks needed in each step of the proposed algorithm-
generator and by using the salient properties of classical
and non-classical optimization methods each step can be
designed better. Such an endeavor should allow devel-
opment of more interesting and efficient optimization
algorithms systematically.
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Fig. 4 Adaptive random search method is illustrated. Circles repre-
sent B and squares represent B(!)



5 Evolutionary methods

Evolutionary algorithms (EAs) are stochastic search
algorithms which use randomized search operators
(Goldberg 1989; Holland 1975). For real-parameter
optimization, different types of evolutionary algorithms
are suggested. Of them, the real-parameter genetic
algorithms, evolution strategies, differential evolution
and evolutionary programming are most popularly used.
Before we discuss how some of these algorithms can be
represented by the proposed algorithm-generator, we
discuss an important matter related to EAs and the
algorithm-generator.

To those familiar with EAs, the four steps of the
proposed algorithm-generator may seem to be quite
motivated from the working principles of an evolution-
ary algorithm. This is somewhat true since the majority
of population-based optimization algorithms in use to-
day follow evolutionary principles. However, the explicit
use of the last two steps (RP and UP) are purposeful. To
an evolutionary algorithm and to any population-based
optimization algorithm, there lies an important issue —
the balance between the exploitation and exploration
(Goldberg 1989). The first term is related to the extent of
importance given to already discovered solutions in the
subsequent iterations and the second term is related to
the extent of generalization used to create a new solution
from the already available solutions. Studies in the past
(Goldberg et al. 1993; Thierens and Goldberg 1993)
have shown a way to quantify these two terms in the
context of a GA and have clearly shown the need to
make a balance between them. We emphasize here that
the exploitation aspect of an EA not only depends on the
selection plan, but also on the other two plans (RP and
UP), a matter which is often ignored in the EA studies.
The emphasis of the current-best solutions in a finite-
sized population not only depends on which solutions
and how often they are selected in the selection plan for
creating the mating pool, but also indirectly depends on
(1) how many and which solutions are chosen to be de-
leted from the population and (ii) whether or not the
existing population members are compared with the
newly created solutions for their further inclusion in the
population (this is often used to introduce elite-preser-
vation). The above two tasks are explicitly included in
the algorithm-generator as the replacement plan (RP)
and the update plan (UP), respectively, to make the
algorithm development task flexible. However, the
exploration issue can be solely derived from the opera-
tions of the GP.

We are now ready to present a number of EAs in the
light of our proposed algorithm-generator.

5.1 Real-parameter genetic algorithms

In a real-parameter genetic algorithm (rGA), a solution
is directly represented as a vector of real-parameter

decision variables. Starting with a population of such
solutions (usually randomly created), a set of genetic
operations (such as selection, recombination, mutation,
and elite-preservation) are performed to create a new
population in an iterative manner. Clearly, the selection
plan (SP) must implement the selection operator of
rGAs, the generational plan (GP) must implement all
variation operators (such as recombination and muta-
tion operators), and the update plan (UP) must imple-
ment any elite-preservation operator. Although most
rGAs differ from each other mainly in terms of their
recombination and mutation operators (some com-
monly-used recombination operators are discussed in
the Appendix and are also can be found in the litera-
ture), they mostly follow one of a few algorithmic
models. We shall discuss some of these models a little
later, but before that we shall discuss some commonly-
used EA operators which can be explained easily with
the help of plans outlined in the proposed algorithm-
generator.

5.1.1 Elite preservation operator

The elite preservation in an EA is an important task
(Rudolph 1994). This is enforced by allowing best of
parent and offspring populations to be propagated in
two consecutive iterations. The update plan of the pro-
posed algorithm-generator achieves elite preservation in
a simple way. As long as the previous population B or
the chosen parent population P is included in the update
plan for choosing better solutions, elite preservation is
guaranteed. Some EAs achieve this by choosing the best
u solutions from a combined population of P and C.

5.1.2 Commonly-used EA selection operators

Among the EA selection operators, the proportionate,
ranking, and tournament selection operators are often
used. With the proposed algorithm-generator, all these
operators must have to be represented in the selection
plan. For example, the proportionate selection operator
can be implemented by choosing the i-th solution for its
inclusion to P with a probability f;/ >, fi. This proba-
bility distribution around B is used to choose choose u
members of P. The ranking selection operator can be
implemented with the sorted ranks rnk; and using a
probability rnk;/ ) ;rnk;. The tournament selection
operator with a size s can be implemented by using a SP
in which s solutions are chosen and the best is placed in
P. The above procedure needs to be repeated u times to
create the parent population P.

5.1.3 Niche-preservation and mating restriction operators

A niche-preservation operator is often used to main-
tain a diverse set of solutions in the population.



Among all the four steps of the proposed algorithm-
generator, only the selection plan gets affected to
implement a niche-preservation operator. While
choosing the parent population P, care should be gi-
ven to lower the selection probability to population-
best solutions of P. Solutions with a wider diversity in
their decision variables must be given priorities. The
standard sharing function approach (Goldberg and
Richardson 1987), clearing approaches (Petrowski
1996), and others can be designed using an appropri-
ate selection plan.

A mating restriction operator, on the other hand, is
used to reduce the chance of creating lethal solutions
arising from mating of two dissimilar yet good solutions.
This requires a selection plan SP in which the procedures
of choosing of each of the u parents become dependent
to each other. Once the first parent is chosen, the
procedure of choosing other parents must consider a
similarity measure with respect to the first parent.

We are now ready to discuss the commonly-used
models for real-parameter evolutionary optimization.

5.1.4 Generational versus steady-state EAs

Evolutionary algorithms, particularly genetic algo-
rithms, are often used with a generational or with a
steady-state concept. In the case of former, a complete
population of A solutions are first created before making
any further decision. The proposed algorithm-generator
can be used to develop a generational EA by repeatedly
using the SP-GP plans to create 2 new offspring solu-
tions. Thereafter, the replacement plan simply chooses
the whole parent population to be replaced, or R = B
(and » = ). With an elite-preservation operator, the
update plan chooses the best p solutions from the
combined population BUC. In an EA without elitism,
the update plan only chooses the complete offspring
population C. We describe a generic real-parameter
generational GA in detail later.

On the other extreme, a steady-state EA can be
designed by using a complete SP-GP-RP-UP cycle for
creating and replacing only one solution (A =r=1) in
each iteration. It is interesting to note that the SP can
use a multi-parent (1 > 1) population, but the GP cre-
ates only one offspring solution from it. We shall return
to two specific steady-state evolutionary algorithms
later. The generational gap EAs can be designed with a
non-singleton C and R (or having 2 > 1 and r > 1).

The generational model is a direct extension of the
canonical binary GAs to real-parameter optimization.
In each iteration of this model, a complete set of N
new offspring solutions are created. For preserving
elite solutions, both the parent and offspring popula-
tions are compared and the best N solutions are re-
tained. In most such generational models, the
tournament selection (SP) is used to choose two parent
solutions and a recombination and a mutation opera-
tor are applied to the parent solutions to create two

offspring solutions. In terms of our algorithm-genera-
tor, the four plans are described below. However, the
first two steps are performed iteratively till N offspring
solutions are formed.

SP: This is usually a tournament selection, in which two
random solutions from B are compared and the
better one is selected. By two consecutive tourna-
ment selection operations, two parent solutions (P)
are chosen.

A real-parameter recombination operator and a
real-parameter mutation operator are used to create
two offspring solutions (4 = 2) from P. Continue
the above two steps till N offspring solutions (the set
C) is formed.

RP: Set R = B.

UP: Set B with the best N solutions of BUC.

The BLX, SBX, and the fuzzy recombination are
often used with this generational model. The random
mutation operator (Michalewicz 1992), uniform muta-
tion operator (Schwefel 1987), and polynomial mutation
operator (Deb and Goyal 1996) are used along with a
recombination operator.

Another commonly-used real-parameter genetic
algorithm is called the CHC (Eshelman 1991) in which
both parent and offspring population (of the same size
N) are combined and the best N members are chosen.
Such an algorithm can be realized by using a update
plan which chooses the best N members from a com-
bined B U C population. The CHC algorithm also uses a
mating restriction scheme, a matter which can also be
implemented using the proposed algorithm-generator as
described in Sect.5.1.3

Besides the classical and evolutionary algorithms,
there exist a number of hybrid search and optimization
methods in which each population member of a GA is
undergone with a local search operation (mostly using
one of the classical principles). In the so-called
Lamarckian approach, the resulting solution vector
replaces the starting GA population member, whereas
in the Baldwin approach the solution is unchanged but
simply the modified objective function value is used
in the subsequent search operations. Recent studies
(Joines and Houck 1994; Whitley et al. 1994) showed
that instead of using a complete Baldwin or a com-
plete Lamarckian approach to all population members,
the use of Lamarckian approach to about 20-40% of
the population members and the use of Baldwin
approach to the remaining solutions is a better strat-
egy. In any case, the use a local search strategy to
update a solution can be considered as a special-pur-
pose mutation operator associated with the genera-
tional plan of the proposed algorithm-generator.
Whether the mutated solution is accepted in the pop-
ulation (the Lamarckian approach) or simply the
objective function value of the mutated solution is
used (the Baldwin approach) or they are used partially
(the partial Lamarckian approach) is an implementa-
tional matter.

GP:



5.1.5 Minimal generation gap (MGG ) model

This model is completely different from the generational
model. It is a steady-state GA, in which in every itera-
tion only two new solutions are updated in the GA
population (Higuchi et al. 2000):

1. From the solution bank B, select u parents randomly.

2. Generate 1 offspring from p parents using a recom-
bination scheme.

3. Choose two parents at random from the population B.

4. Of these two parents, one is replaced with the best of 1
offspring and the other is replaced with a solution
chosen by a roulette-wheel selection procedure from a
combined population of 1 offspring and two chosen
parents.

This GA was originally proposed by Satoh, Yamamura
and Kobayashi (1996) and later used in a number of
studies (Higuchi et al. 2000; Kita et al. 1999; Tsutsui
et al. 1999). In the context of our algorithm-generator,
the above model can be described as follows:

SP: This uses a uniform probability for choosing any
solution from B. In total, u solutions are picked.
A real-parameter recombination operator (such as
SPX or UNDX described in the Appendix) is ap-
plied to the set P as many as A times to create the
offspring set C.

R is set by choosing two solutions from B at ran-
dom. Thus, r = |R| = 2.

Here, one solution in R is replaced by the best of C
and other by using a roulette-wheel selection on the
set CUR.

GP:

RP:

UP:

The original study considered two different recom-
bination plans (SPX and UNDX). Typical parameter
settings used with this algorithm were as follows:
w=n+1 and A=200 with the SPX recombination
operator (Higuchi et al. 2000) and ¢ = 3 and 4 = 200
with the UNDX recombination operator (kita 1998).
Although the developers of this model did not perform a
detailed parametric study, we perform a parametric
study by varying the offspring size 4 on the MGG model
with UNDX and SPX operators. The following three
commonly-used test problems are used:

Fgp =Y _ix; (Ellipsoidal function), (1)
=1
n i 2
Fyen = Z (Z xj> (Schwefel’s function), (2)
=1 \j=1
n—1
Fros = Z(lOO(x,? —xi) (- 1)2)
=1
(Generalized Rosenbrock’s function). (3)

First, we fix population size N = 300 and vary 4 from 2
to 300. All other parameters are kept as they were used
in the original MGG study (Higuchi et al. 2000), except

that in UNDX u = 6 is used here, as this value is found
to produce better results. In all experiments, we have run
the MGG model till a pre-defined number of function
evaluations F7 have elapsed. We have used the following
values of F” for different functions: FJ = 0.5(10°),
FI =1(10%) and FL =1(10°). In all experiments, 50
runs with different initial populations are taken and the
smallest, median, and highest best function values are
recorded. Figure 5 shows the best function values
obtained by the SPX and the UNDX operators on Fgp,
with different values of A. The figure shows that 2 = 50
produced the best reliable performance for the SPX
operator. Importantly, the MGG model with 4 = 200
(which was suggested and used in the original MGG
study) did not perform as well. Similarly, for the UNDX
operator, the best performance is observed at 1 = 4,
which is much smaller than the suggested value of 200.
The optimality in best function value with respect to 4 is
clearly evident from the figure. Figure 6 shows that in
Fyh, best performances are observed with identical values
for / with SPX and UNDX. Figure 7 shows the popu-
lation best objective function value for the MGG model
with SPX and UNDX operators applied to the Fs
function. Here, the best performance is observed at
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A = 100 to 300 for the SPX operator and 4 = 6 for the
UNDX operator.

Thus, it is clear from the above experiments that the
suggested value of 2 = 200 (which was recommended
and used in earlier studies (kita et al. 1999; Satoh et al.
1996) is not optimal for either recombination operator
(UNDX or SPX). Instead, a smaller value of 1 has
exhibited better performance. It is also clear from the
figures that the SPX operator works better with a large
offspring pool size, whereas the UNDX works well
with a small offspring pool size. Since a uniform
probability distribution on a large simplex is used in
the SPX operator, a large pool size requirement is
intuitive for a proper sampling of the region covered by
the simplex. On the other hand, with a biased proba-
bility distribution towards the centroid of the parent
solutions, a few samples are enough with the UNDX
operator.

However, in order to properly evaluate the MGG
model, more such parametric studies must be per-
formed. In this direction, the effect of replacement set
size () and the parent set size (1) on the performance
of MGG must also be carefully studied. In addition,
the MGG model can also be modified with other
strategies (such as with a different selection plan (SP)
or a different replacement plan (RP) or a different
update plan (UP) or other combinations) may also be
tried. The representation of the MGG model in the
above-mentioned structured manner allows an user to
study individual plans separately and understand their
interactions.

5.1.6 Generalized generation gap (G3) model

In another study (Deb et al. 2002), the MGG model is
modified to make it computationally faster by replacing
the roulette-wheel selection with a block selection of the
best two solutions. This model also preserves elite
solutions from the previous iteration:

1. From the population B of size N, select the best parent
and u — | other parents randomly.

2. Generate A offspring from the chosen u parents using
a recombination scheme.

3. Choose r parents at random from the population B.

4. From a combined subpopulation of » chosen parents
and A created offspring solutions, choose the best r
solutions and replace the chosen r solutions (in
Step 3) with these solutions.

Although it is clear, for the sake of completeness we
rewrite the above model in terms of our algorithm-
generator:

SP: The best parent and the (u— 1) other random
solutions are picked from B.

GP: Create 4 offspring solutions from P using any
recombination scheme (PCX, UNDX, SPX, or any
other recombination operator described in the
Appendix).

RP: Set R with » random solutions from B.

UP: From the combined set C UR, choose r best solu-
tions and put them in R’. Update B as B:=
(B\R)UR'.

To compare the performance of the MGG and the
G3 model, we consider the UNDX recombination
operator as the GP and apply both MGG and G3
methods to three test problems described earlier. In all
cases, we use n = 20 variables and continue till a func-
tion value of 10~% is achieved. Recall that in all three
objective functions the minimum function value is zero.
But before we describe the simulation results, let us
discuss an important matter which we would like to
highlight for the future studies on population-based
optimization algorithms. All population-based algo-
rithms require the user to supply an initial guess popu-
lation. In most past studies, this population was
initialized symmetrically around the known optimum of
the chosen test problem. Along with such an initial
population, if a recombination operator which biases
solutions in the center of the population is employed, it
is not surprising that such an algorithm will work very
well. To obtain a real evaluation of an algorithm on a
test problem, one way to remedy this difficulty is to use
an initial population far away from the known optimum
solution. Here, for each test problem, the population
B is initialized randomly in x; € [—10,—5], which is
away from the global optimum solution (x; = 0 for Fp
and Fy, and x; = 1 for F).

Table 1 shows the minimum number of evaluations
needed in 50 different replications of each GA. In each
case, results are obtained with their best parameter

Table 1 Comparison of MGG and G3 optimization models with
the UNDX recombination operator

Function MGG G3

Fp 2,97,546 17,826
Fien 5,03,838 30,568
Fos 9,38,544 71,756




settings. In all cases, a population size N ~ 100, u = 3,
and 4 in the range 2 to 6 produced the best performance.
These results indicate that the G3 model is an order of
magnitude faster than the MGG model. By keeping the
best population member in P and by using a more direct
update strategy (instead of using a roulette-wheel selec-
tion plan used in MGGQG), the G3 model makes the search
much faster than the MGG model.

5.2 Self-adaptive evolution strategies

Besides the real-parameter genetic algorithms, self-
adaptive evolution strategies (ESs) are often used for
solving real-parameter optimization problems. In their
standard models, a (u/p + 1) or (u/p,A) self-adaptive
ES starts with u randomly chosen solutions B. There-
after, by using a recombination scheme (intermediate or
discrete) on p of the u parents and a self-adaptive
mutation scheme (Beyer 2001), 4 (usually greater than p)
offspring solutions (the set C) are created. In the plus
strategy, both parent and offspring populations are
combined together and the best u solutions are retained.
In the comma strategy, the best u of 4 offspring solutions
are retained. In terms of the proposed algorithm-gen-
erator, we express these two self-adaptive ESs as follows:

SP: Set P = B.

GP: Here, an ES recombination and mutation plan are
chosen (see (Bick 1996; Beyer 2001; Schwefel 1981)
for standard operators).

RP: Set R = B.

UP: For the plus ES, B is set with the best 4 solutions of
R U C and for the comma ES, it is set with the best 4
solutions of C alone.

Elsewhere (Fogel et al. 1995), the evolutionary pro-
gramming (EP) technique is used in a similar fashion for
real-parameter optimization. Those EP techniques can
also be represented by our algorithm-generator model in
a very similar manner as described above.

5.3 Differential evolution

Differential evolution (DE) (Storn and Price 1997) is a
steady-state EA in which for every offspring a set of
three parent solutions and an index parent are chosen.
Thereafter, a new solution is created either by a variable-
wise linear combination of three parent solutions or by
simply choosing the variable from the index parent with
a probability. The resulting new solution is compared
with the index parent and the better of them is declared
as the offspring. In the context of our algorithm-gener-
ator, the DE can be written as follows:

SP: Here, three solutions and an index solution are
chosen at random from a solution bank B. Thus,
p=I|P[ =4

GP: Create an offspring solution (the singleton C) from
P with a specified recombination plan (see (Storn
and Price 1997) for details and different variations).

RP: Set R with the index parent chosen in SP. Thus,
r=1.
UP: Update B by replacing R with the better of R and C.

6 Suggested properties of a generational
(recombination) plan

Although the performance of an optimization algorithm
depends on the interaction of all four plans outlined in
the algorithm-generator, the generational plan of creat-
ing new solutions from a set of old solutions is probably
the most crucial one to design. In Sect. A, we reviewed a
number of generational plans commonly used in the
literature. Here, we discuss some salient properties
which may be kept in mind while designing a new gen-
erational plan (GP).

The task of a GP is to use the members of the set P
and create a new pool of solutions (the set C) by
exploiting location and spread of solutions in P. To
make the plans independent from each other, it is
advisable not to use any objective function information
explicitly in GP. This is because the emphasis of good
solutions based on objective function information was
already the task of the selection plan (SP). An objective
function based emphasis in both SP and GP may make
the resulting algorithm overly greedy, causing a pre-
mature convergence in certain problems. Based on this
understanding, Beyer and Deb (2001) argued that a
recombination operator must have the following two
properties:

1. Population mean decision variable vector should
remain the same before and after the generational
plan is applied.

2. The spread in members of C must be more than that
in P.

Since the generational plan does not usually use any
objective function information explicitly, the first argu-
ment makes sense for global optimization. However, we
emphasize the fact that this may not be a strict
requirement, particularly in designing an algorithm to
find a local optimal solution or to solve a unimodal
optimization problem.

The second argument comes from the realization that
the selection plan (SP) has a general tendency to reduce
the population variance by preferring a few solutions
from the solution bank. Thus, the population variance
must be increased by the generational plan (GP) to
preserve adequate diversity in the offspring population.
Figure 8 illustrates this matter. If the GP causes a
reduction in the variance, then both SP and GP have
continual tendencies of reducing the variance of the
population, a matter which will lead the search process
towards a premature convergence.

Following the above argument for global optimiza-
tion, we realize that the population mean of P and C can
be preserved by several means. One method would be to
have individual recombination events preserving the
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mean between the participating parents and resulting
offspring. We call this approach as the mean-centric
recombination. The other approach would be to have an
individual recombination event biasing offspring to be
created near the parents, but assigning each parent an
equal probability of creating offspring in its neighbor-
hood. This will also ensure that the population mean of
the entire offspring population is identical to that of the
parent population. We call this latter approach the
parent-centric recombination. In the following subsec-
tion, we discuss the merits of each of these recombina-
tion operators.

6.1 Advantages of parent-centric operators

A couple of examples of the mean-centric recombina-
tions are UNDX and SPX operators, whereas some
examples of the parent-centric recombination operators
are the PCX, the fuzzy recombination, and the SBX
operator. It is argued here that parent-centric recombi-
nations are, in general, better than the mean-centric
ones. Since each parent is carefully picked by the selec-
tion plan (meaning that the parents are preferred solu-
tions from the solution bank B), for most real-parameter
optimization problems it can be assumed that solutions
close to these parents are also likely to be potential good
candidates. On the contrary, it may be quite demanding
to assume that the solutions close to the centroid of the
participating parents are also good, especially in cases
where parents are well sparsed in the search space. This
situation happens in the early iterations of an algorithm,
when most population members are randomly placed
over the entire search space. Although individual par-
ents may be good, but the resulting centroid of the

Fig. 9 The original and the
modified PCX operators are
illustrated in a and b, respectively

parents need not be good as well. Thus, emphasizing
solutions close to the centroid of the parents (as enforced
in UNDX directly and in SPX indirectly) may not be a
good idea. However, creating solutions close to parents
as emphasized by the PCX operator should make a more
steady and reliable search. An earlier study (Beyer and
Deb 2001) has demonstrated that a variable-wise parent-
centric recombination operator (SBX) produced a faster
convergence towards the true optimum on a number of
test problems compared to a uniformly emphasized
recombination operator (BLX).

7 A parametric study of the G3 model

In this section, we suggest a modified version of the PCX
operator originally suggested by the author and his
students (Deb et al. 2002) and then compare its perfor-
mance with respect to a representative mean-centric
recombination operator (UNDX) on the G3 model.
Finally, the performance of the G3 model with the
modified PCX and the original PCX operators is com-
pared with other population-based optimization algo-
rithms, such as a classical quasi-Newton method, three
self-adaptive ESs, and the differential evolution strategy.

7.1 A modified PCX operator

In the original PCX operator, there exists a finite
(albeit small) probability of creating an offspring
solution on the far side of the centroid. Figure 9(a)
shows a typical probability distribution of PCX on
solution 1 for creating offspring solutions. When all
parent solutions are to be used one after another with




the original PCX operator, this causes an artificial in-
crease in probability of creating solutions near the
centroid. In the modified PCX operator, we restrict the
offspring to be created strictly on the region in which
the parent lies. Figure 9(b) illustrates this modification
(mPCX). For this purpose, we simply suggest the use of
a log-normal probability distribution for the d?) com-
ponent, as given below:
n
F=3%,+ (exp(wy) — Nd” + > w,De?,
i=1, i#p

The parameter w; is a zero-mean normally distributed
variable with standard deviation y/2logo;. This modi-
fied PCX operator ensures a zero probability of creating
a solution on the other side of the centroid.

(4)

7.2 Comparison with the original PCX operator

Figure 10 shows the evaluations needed to achieve a
function value of 1072 using the G3 model with the
modified PCX, original PCX, and the UNDX recom-
bination operators. In all cases, a population size
N =100 and a parent size u =3 are used. For the
mPCX operator, we have used ¢, = 0.1 and oy = 1.01.
However, for the PCX operator, we use g, = g; = 0.1.
For the UNDX operator, we use the suggested values
(Kita and Yamamura 1999). The figure clearly shows
that the G3 model with the PCX operators performs
much better than that with the UNDX operator. For
most A values, the modified PCX operator produces
slightly better results than the original PCX operator.
The smallest number of evaluations needed by the
mPCX operator is 5,194 (with 4 = 2 and N = 100),
whereas the smallest number of evaluations needed by
the original PCX was 5,818 with identical A and N val-
ues. It is also interesting to note from this parametric
study that the performance of G3 gets better with
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Fig. 10 Function evaluations needed to find a solution with a
function value equal to 1072 on Fy, using the G3 model with mPCX,
PCX and UNDX. N = 100 is used

reducing /, irrespective of the recombination operator
used. Since a fixed number of evaluations is allowed in
each run, the G3 model works better with more itera-
tions and fewer new solutions created in each iteration.

In order to investigate the effect of population size N
on the performance of the three recombination opera-
tors, we fix the offspring set size to 4 = 2 and vary N.
Although a more detailed statistical test is necessary, a
visual comparison shown in Fig. 11 reveals that the
mPCX operator performs better than original PCX for
smaller N and the best performance occurs with a pop-
ulation size of 100. This study indicates the importance
of such a parametric study in developing an efficient
algorithm. The study reveals that there exists an optimal
range of population size for which the G3 model works
the best. For all three recombination operators, a pop-
ulation size around 100 performs well.

Figure 12 shows the performance comparison for
the 20-variable Schwefel’s function. It is also clear from
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Fig. 11 Function evaluations versus population sizes on Fy, using the
G3 model with mPCX, PCX and UNDX. 4 = 2 is used
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Fig. 12 Function evaluations needed to find a solution with a
function value equal to 1072 on F, using the G3 model with mPCX,
PCX and UNDX. N = 100 is used



le+06 T T T T ]
)
=]
(o]
-l
D
L]
3
s
> 100000 [ B
M L
o [
[e]
-
s
3}
=]
=]
=1
m
10000 1 1 I 1 1 L1 1 1 1
2 4 6 10 20 50 100 200300
A

Fig. 13 Function evaluations needed to find a solution with a
function value equal to 10720 on F,os using the G3 model with mPCX,
PCX and UNDX. N = 100 is used

the figure that the modified PCX operator performs
slightly better than the original PCX operator even in
this function. For a population size of N = 100, the
best performance for mPCX is recorded with 4 = 2
requiring 13,126 evaluations compared to 15,358
required with the original PCX. For this function also,
the performance of G3 model with any of the three
recombination operators is better with smaller offspring
size (4). We have also observed an optimal population
size (N) for this function. For brevity, we do not show
the plot here.

Figure 13 shows the performance comparison for the
20-variable Rosenbrock’s function. A slightly better
performance of the modified PCX operator is observed
again. In this function, the best performance (requiring
19,692 evaluations) with N = 100 is observed for
A = 6, compared to 20,640 evaluations needed with the
original PCX operator having 4 = 4. It is interesting to
note that for this function the G3 model with all three
recombination operators performs the best with A
around 4 to 6. For A smaller than these values, the
performance deteriorates. As the problem gets more
complicated, an adequate number of offspring samples
are needed to provide useful information about the
search space. Once again, the performance of the G3
model is found to be optimal for a specific range of N in
this function. We do not present the detail results here
for brevity.

7.3 Comparison with other evolutionary algorithms

Next, we compare the G3 model and both PCX opera-
tors with other evolutionary optimization methods.
Table 2 shows the total function evaluations needed by
various algorithms to find a solution with a function
value equal to or smaller than 1072 for all three test
problems. In all cases, 50 different runs are made and the
best, median and the worst total evaluations of the 50
runs are recorded. It is clear that for both elliptical and
Schwefel’s functions, the G3+mPCX works the best.
However, in all three test problems, G3 model with
either PCX operators performs much better than other
evolutionary methods. In all cases except the CMA-ES
(Hansen and Ostermeier 1996)— an evolution strategy
which works by deriving salient search directions from a
collection of previously-found good solutions, the per-
formance is at least an order of magnitude better.
Although the CMA-ES approach comes closer to the G3
and PCX operators, the latter approaches are better in
all three test problems.

7.4 Comparison with a classical optimization method

Finally, we compare the G3+PCX operator with a
classical point-based optimization algorithm — the quasi-
Newton method. In Table 3, we present the best, med-
1an, and the worst function values obtained from a set of
10 independent runs started from random solutions in
x; € [-10,—5]. The maximum number of function eval-
uations allowed in each test problem is determined from
the best and worst function evaluations needed for the
G3 model with PCX operator to achieve an accuracy of
1072, These limits on function evaluations are also
tabulated. The tolerances in the variables and in the
function values are set to 1073°. The table shows that the
quasi-Newton method has outperformed the G3 model
with PCX for the ellipsoidal function by achieving a
better function value. Since the ellipsoidal function
has no linkage among variables, the performance of
the quasi-Newton search method (a point-by-point
approach) is difficult to match. However, it is clear from
the table that the quasi-Newton method is not able to
find the optimum with an accuracy of 102 (obtained by
G3+PCX) within the allowed number of function
evaluations in more epistatic problems (Schwefel’s and
Rosenbrock’s functions).

Table 2 Comparison of G3 model and the modified PCX with a number of other optimization algorithms on Fp, Ficn and Fios

EA Fclp Fyen Fros
Best Median Worst Best Median Worst Best Median Worst

G3+mPCX 5,194 6,576 7,240 13,126 14,820 16,708 19,776 23,296 25,852
G3+PCX 5,826 6,800 7,728 13,988 15,602 17,188 20,640 23,688 25,720
CMA-ES 8,064 8,472 8,868 15,096 15,672 16,464 29,208 33,048 41,076
(1,10)-ES 28,030 40,850 87,070 72,330 105,630 212,870 591,400 803,800 997,500
(15,100)-ES 83,200 108,400 135,900 173,100 217,200 269,500 663,760 837,840 936,930
DE 9,660 12,033 20,881 102,000 119,170 185,590 243,800 587,920 942,040




Table 3 Solution accuracy obtained using the quasi-Newton
method. FE denotes the maximum allowed function evaluations.

Func. FE Best Median Worst
Fup 6,000  8.819(1072%)  9.718(1072%)  2.226(10%)
Fyen 15000  4.118(107'2)  1.021(107'%)  7.422(107%)
Fros 15000  6.077(107'7) 4. 046(10 10y 3.987
Fap 8,000  5.994(1072%)  1.038(107%)  2.226(107%3)
Fien 18,000  4.118(107'2)  4.132(107"")  7.422(1077)
Fros 26,000  6.077(10°7) 4. 046(10 10) 3987

8 Conclusions

Real-parameter optimization using classical gradient or
direct search algorithms is not new. Although there exist
a plethora of point-based algorithms, requiring only
one solution in each iteration, there also exist a few
population-based algorithms. On the contrary, the real-
parameter optimization using population-based evolu-
tionary algorithms are comparatively new. In this paper,
we have suggested a population-based real-parameter
optimization algorithm-generator, which can represent
most classical and evolutionary algorithms. For a
number of such existing optimization algorithms, we
have demonstrated how the proposed algorithm-gener-
ator can be used to express them.

Besides being able to represent an existing algorithm,
the structure of the algorithm-generator also provides an
ideal platform to investigate different new plans. In such
an effort, we have also suggested an efficient algorithm
(we called generalized generation gap or G3) and per-
formed a detailed parametric study. To evaluate the
proposed G3 algorithm, we have compared its perfor-
mance with an efficient classical method and a number
of other evolutionary optimization algorithms.

The following conclusions can be derived out of this
study:

e For real-parameter optimization using a population-
based algorithm, an algorithm-generator is proposed.
Most population-based optimization algorithms
found in classical literature and in evolutionary
optimization literature can be easily described using
the proposed algorithm-generator.

e The algorithm-generator contains four functional
plans, each of which can be independently controlled
by the user. This functional decomposition of an
algorithm allows an user to investigate effect of each
functional plan on the algorithm’s performance and
should help an user to develop efficient optimization
algorithms.

e Based on extensive simulation results on three test
problems, it has been observed that the G3 model
with a parent-centric recombination operator is bet-
ter than all other population-based real-parameter
optimization algorithms considered in this study.

e A parametric study with the population size of B has
shown that in all problems the G3 model performs

£

the best only when an adequate population size is
considered. This amply emphasizes the need of using
population-based approaches (instead of a point-
based approach) in solving search and optimization
problems efficiently.

e Parent-centric recombination is found to be much

better than the mean-centric recombination operators
with the G3 model.
Contrary to many real-parameter optimization stud-
ies, it has been emphasized here and in other studies
of the author (Deb et al. 2002) that for a proper
evaluation of an algorithm the initial population
must not be created centered around the known
optimum of a test problem. This may introduce a
inherent bias for evolutionary algorithms with certain
generational plans and may not result in a fair com-
parison with classical and other evolutionary algo-
rithms.

e One other important aspect of this study is that both
classical and evolutionary algorithms are treated as
an outcome of an identical algorithm-generator.
Although evolutionary algorithmists tend to use
terminologies which are based on natural genetics
and natural evolution, in terms of the proposed
algorithm-generator they can be treated differently
and probably more meaningfully along the lines of
other optimization algorithms.

The algorithm-generator suggested here provides a
platform for developing new and hopefully better opti-
mization algorithms. After developing such algorithms,
they can be evaluated by performing a parametric study
similar to the one performed here with the G3 model.
Although this study has considered only three test
problems, more test problems and test problems with
further complexities must also be tried. Because of the
demonstrated common principles between classical and
evolutionary optimization algorithms through the pro-
posed algorithm-generator, this study should encourage
researchers from both fields to understand the merits
and demerits of their approaches and help develop more
efficient hybrid algorithms.

A real-parameter recombination operators

The early studies on real-parameter recombination
operators concentrated on developing variable-wise
operators, in which a recombination is performed on
each decision variable from two or more parent vectors
at a time with a probability.

One of the earliest implementations was reported by
Wright (1991), where a /linear crossover operator created
the three specific solutions from two parent solutions
and xl(z’t) at iteration #:

0.5 +x @), (1,561 —0.5x*), (—0.5x") +1.5x12).

Of these three solutions, the best two solutions were
chosen to replace the parents. It is clear that the creation



of only three pre-destined offspring from two parent
solutions does not quite make this recombination
operator efficient to be used.

Following an interval schema processing suggested by
Eshelman and Schaffer (1993) (which is incidentally sim-
ilar in concept to Goldberg’s (1991) virtual alphabets),
they suggested a blend crossover or BLX-o operator for
real -parameter GAs For two parent solutions x(l' and

(dssummg x( ) the BLX-o rdndomly picks a
solutron in the range [l — oc(xg2 A xl(1 t)),
X4 oc(xfz’t> ,(” )]. This crossover operator is illus-

trated in Fig.14. Thus, if u; is a random number between 0
and 1, the following is an offspring:

A = (a4 ®
where y; = (1 + 2a)u; — . However, it is important to
note that the factor y; is uniformly distributed for a fixed
value of «. The figure also depicts this fact. The range of
this probability distribution depends on the parameter o.
If o is chosen to be zero, this crossover creates a random
solution in the range (x( '>, ). In a number of test
problems, the investigators have reported that BLX-0.5
(with o = 0.5) performs better than BLX operators with
any other o value. It is important to note that there exists
a number of other crossover operators which work by
using the same principle. The arithmetic crossover
(Michalewicz and Janikow, 1991) uses Eq.(5) with a
fixed value of y for all decision variables. However, 7y is
chosen by carefully calculating its maximum allowed
value in all decision variables so that the resulting off-
spring does not exceed the lower or upper limits. The
extended crossover operator (Voigt et al. 1995) is also
similar to BLX-a.

The simulated binary recombination (SBX) operator
assigns more probability for an offspring to remain
closer to the parents than away from parents (Deb
and Agrawal 1995). The procedure of computing the
(L) and xEZ’HU from the parent solutions

offspring x;
xfl’t) and xfz"’> is described as follows. A spread factor f3;
is defined as the ratio of the absolute difference in off-

spring values to that of the parents:
xlgz.,m) l(
20 (l fn |
l

1

1t+1)

Bi= (6)

First, a random number u; between 0 and 1 is created for
the i-th variable. Thereafter, from a specified probability
distribution function, the ordinate f3,. is found so that
the area under the probablhty curve from 0 to f8,

equal to the chosen random number u;. The probablirty

distribution is chosen to have a search power similar to

i '
L : . |

(L) 17t '(Z,t) (U)
Xy x(i ) Xy xi

(2,t) ’
(=T X o))

Fig. 14 The BLX-o operator. Parents are marked by filled circles

UG [(1 + B,

xfz’tH) =0.5 [(1

that in a single-point crossover in binary-coded GAs and
is given as follows (Deb and Agrawal 1995):

0.5(n. + D)ple, if ;< 1;
2(b,) = {05(m+1)

otherwise.

Figure 15 shows this probability distribution with
n, = 2 and 5 for creatmg offspring from two parent
solutions (x( "= 2.0 and X; @20 — 5, 0) in the real space.
In the above expressions, the distribution index 1. is any
non-negative real number. A large value of #, gives a
higher probability for creating ‘near-parent’ solutions
and a small value of n, allows distant solutions to be
selected as offspring. Typically, 5, in the range of 2 to 5
is used in most single-objective optimization studies
(Deb and Goyal 1998). After obtaining f, from the
above probability distribution, two offspring solutions
are calculated as follows:

(7)

+ (1= B, 1] (8)
— By (14 By ). )

Note that two offspring are symmetrically placed around
the parent solutions. This is deliberately enforced to
avoid a bias towards any particular parent solution in a
single recombination operation. Another interesting
aspect of this recombination operator is that for a fixed
1. the offspring have a spread which is proportional to
that of the parent solutions. From Egs. 8 and 9, we have

(xlgz,m) _ x;r.m)) _ ‘BQi <x52.t) _ x;u))_ (10)

This has an important implication. If the difference in
decision variable values of parents (the term inside the
bracket in the right side term) is smaller (larger), the
offspring is also closer (more distant) to the parents.
Thus, during early iterations, parents being far away
from each other, offspring are also created on the entire
search space, thereby providing a good initial search of
the entire space. When solutions converge near a good
region, the parents are closer to each other and this

—

08 il .
07 F 1
b i f
A f
041 i\ 4
03 \ [ .

01 FEN 8
0 ---"\‘4 & p" & \\u..

-1 0 1 2 3 4 5 6 7 8
Offspring solution

Probability density per offspring

Fig. 15 The probability density function for creating offspring under
an SBX-#, operator. Parents are marked with an ’o’



operator helps provide a more focused search. This
property makes the resulting GA self-adaptive (Deb and
Beyer 2001).

Voigt et al. (1995) suggested a fuzzy recombination
(FR) operator, which is similar to the SBX operator. In
some sense, the FR operator can be thought of as a
special case of the SBX operator with 7, = 1.

The fuzzy connectives based recombination operator
(Herrara et al. 1997) is also applied variable by variable.
For each variable x;, three regions are marked: region I
(xl(L),xEl’t)), region 11 (xl(l’t),xl(z’t)) and region III
(x,(z”),xﬁl’)) (here, we assume that xf-l’t) < xl(z‘t)). The
fourth region is constructed as an overlapping region
(y-(l), y,-(z)) with all of the above three regions. Here,
yl-(1> < xl(l’t) and y,@ > xf-z’t). Once these regions are
identified, one solution is chosen from each of them by
using two user-defined fuzzy connective functions, which
are defined over the two normalized parents.

Besides, there exists a number of other recombination
operators such as the unfair average crossover (Nomura
and Miyoshi 1996) and extensions to the above opera-
tors. Although these operators are well-tested on dif-
ferent problems, because of their strict variable-wise
application they may not be adequate in handling
problems which requires linkage preservation among
variables (Harik and Goldberg 1996). To be able to
solve such problems, researchers have also suggested a
number of recombination operators which directly work
on the decision variable vectors. In the following para-
graphs, we describe a few such operators.

In the unimodal normally distributed recombination
(UNDX) operator (Ono and Kobayashi 1997), (u—1)
parents are randomly chosen and their mean g is com-
puted. From this mean, the (¢ — 1) direction vectors
d) =30 — G is formed. Let the direction cosines be
20 =d@ /|d"|. Thereafter, from another randomly
chosen parent ¥, the length D of the vector (x*) — )
orthogonal to all 29 is computed. Let &Y (for
j=u,...,n, where n is the size of the variable vector X)
be the orthonormal basis of the subspace orthogonal to
the subspace spanned by all &% for i=1,...,(u—1).
Then, the offspring is created as follows:

n—1 n

=g+ Zwl.|g(i)|g(i) + Z Ul.Dg(i)7
i=1 i=n

where w; and v; are zero-mean normally distributed
variables with variances ¢? and o2, respectively. Kita
and Yamamura (1999) suggested o; = 1/y/u—2 and
oy = 0.35/y/n — u—2, respectively and observed that
u = 3 to 7 performed well. It is interesting to note that
each offspring is created around the mean vector g. The
probability of creating an offspring away from the mean
vector reduces and the maximum probability is assigned
at the mean vector. Figure 16 shows three parents and a
few offspring created by the UNDX operator. The
complexity of the above procedure in creating one off-
spring is O(u?), governed by the Gram-Schmidt ort-
honormalization needed in the process.

(1)

The simplex recombination (SPX) operator (Tsutsui
et al. 1999) also creates offspring around the mean, but
restricts them within a predefined region (in a simplex
similar but y =+/u+ 1 times bigger than the parent
simplex). A distinguishing aspect of SPX from UNDX
operator is that the SPX assigns a uniform probability
distribution for creating any solution in a restricted
region. Figure 17 shows a number of offspring solutions
created using three parents. The computational
complexity for creating one offspring here is O(u).

The parent-centric recombination (PCX) operator
(Deb et al. 2002) is an extension of the SBX operator
(described earlier) for any number of parents. For pu
parents, first the mean vector g is computed. Thereafter,
for each offspring, one parent ¥) is chosen with equal
probability. The direction vector dr) =zp) — g is cal-
culated. Thereafter, from each of the other (u—1)
parents perpendicular distances D; to the line d”) are
computed and their average D is found. The offspring is
created as follows:

u

y= )‘C’p + WC‘?(F) + Z W,7D§(i>,
i=l, i#p

(12)

Fig.16 UNDX

Fig.17 SPX



Fig. 18 PCX

where &) are the (u— 1) orthonormal bases that span
the subspace perpendicular to d?). Thus, the complexity
of the PCX operator to create one offspring is O(u),
instead of O(y?) required for the UNDX operator. The
parameters w; and w, are zero-mean normally distrib-
uted variables with variance ¢7 and o7, respectively. The
important distinction from the UND'S( operator is that
offspring solutions are centered around each parent
under the PCX operator. The probability of creating an
offspring closer to the parent is more. Figure 18 shows a
distribution of offspring solutions with three parents.
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