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Abstract—We describe an efficient technique for adapting con-
trol parameter settings associated with differential evolution (DE).
The DE algorithm has been used in many practical cases and has
demonstrated good convergence properties. It has only a few con-
trol parameters, which are kept fixed throughout the entire evolu-
tionary process. However, it is not an easy task to properly set con-
trol parameters in DE. We present an algorithm—a new version
of the DE algorithm—for obtaining self-adaptive control param-
eter settings that show good performance on numerical benchmark
problems. The results show that our algorithm with self-adaptive
control parameter settings is better than, or at least comparable
to, the standard DE algorithm and evolutionary algorithms from
literature when considering the quality of the solutions obtained.

Index Terms—Adaptive parameter control, differential evolu-
tion (DE), evolutionary optimization.

I. INTRODUCTION

DIFFERENTIAL evolution (DE) is a simple yet powerful
evolutionary algorithm (EA) for global optimization intro-

duced by Price and Storn [1]. The DE algorithm has gradually
become more popular and has been used in many practical cases,
mainly because it has demonstrated good convergence proper-
ties and is principally easy to understand [2].

EAs [3] are a broad class of stochastic optimization algo-
rithms inspired by biology and, in particular, by those biological
processes that allow populations of organizms to adapt to their
surrounding environments: genetic inheritance and survival of
the fittest. EAs have a prominent advantage over other types of
numerical methods. They only require information about the ob-
jective function itself, which can be either explicit or implicit.
Other accessory properties such as differentiability or continuity
are not necessary. As such, they are more flexible in dealing with
a wide spectrum of problems.

When using an EA, it is also necessary to specify how can-
didate solutions will be changed to generate new solutions [4].
EA may have parameters, for instance, the probability of mu-
tation, the tournament size of selection, or the population size.
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The values of these parameters greatly determine the quality of
the solution obtained and the efficiency of the search [5]–[7].
Starting with a number of guessed solutions, the multipoint al-
gorithm updates one or more solutions in a synergistic manner in
the hope of steering the population toward the optimum [8], [9].

Choosing suitable parameter values is, frequently, a problem-
dependent task and requires previous experience of the user. De-
spite its crucial importance, there is no consistent methodology
for determining the control parameters of an EA, which are, most
of the time, arbitrarily set within some predefined ranges [4].

In their early stage, EAs did not usually include control pa-
rameters as a part of the evolving object but considered them
as external fixed parameters. Later, it was realized that in order
to achieve optimal convergence, these parameters should be al-
tered in the evolution process itself [5], [7].

The control parameters were adjusted over time by using
heuristic rules, which take into account information about the
progress achieved. However, heuristic rules, which might be
optimal for one optimization problem, might be inefficient
or even fail to guarantee convergence for another problem. A
logical step in the development of EAs was to include control
parameters into the evolving objects and allow them to evolve
along with the main parameters [3], [10], [11].

Globally, we distinguish two major forms of setting param-
eter values: parameter tuning and parameter control. The former
means the commonly practiced approach that tries to find good
values for the parameters before running the algorithm, then
tuning the algorithm using these values, which remain fixed
during the run. The latter means that values for the parameters
are changed during the run. According to Eiben et al. [5], [7],
the change can be categorized into three classes.

1) Deterministic parameter control takes place when the
value of a parameter is altered by some deterministic rule.

2) Adaptive parameter control is used to place when there
is some form of feedback from the search that is used to
determine the direction and/or the magnitude of the change
to the parameter.

3) Self-adaptive parameter control is the idea that “evolution
of the evolution” can be used to implement the self-adap-
tation of parameters. Here, the parameters to be adapted
are encoded into the chromosome (individuals) and un-
dergo the actions of genetic operators. The better values of
these encoded parameters lead to better individuals which,
in turn, are more likely to survive and produce offspring
and, hence, propagate these better parameter values.
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Hence, it is seemingly natural to use an EA, not only for
finding solutions to a problem but also for tuning the (same)
algorithm to the particular problem. Technically speaking, we
are trying to modify the values of parameters during the run of
the algorithm by taking the actual search progress into account.
As discussed in [5] and [7], there are two ways to do this. The
first way is to use some heuristic rule which takes feedback from
the current state of the search and modifies the parameter values
accordingly (adaptive parameter control), such as the credit as-
signment process presented by [12]. A second way is to incor-
porate parameters into the chromosomes, thereby making them
subject to evolution (self-adaptive parameter control) [13].

The proof of convergence of EAs with self-adaptation is dif-
ficult because control parameters are changed randomly and the
selection does not affect their evolution directly [14], [15].

Since DE is a particular instance of EA, it is interesting to
investigate how self-adaptivity can be applied to it. Until now,
no research work on self-adaptivity in DE has been reported.
First, we define a type of optimization problem.

In this paper, we will only concern ourselves with those opti-
mization methods that use an objective function. In most cases,
the objective function defines the optimization problem as a
minimization task. To this end, the following investigation is
further restricted to the minimization of problems. When the ob-
jective function is nonlinear and nondifferentiable, direct search
approaches are the methods of choice [1]. In optimizing a func-
tion, an optimization algorithm aims to find such that ,

, where does not need to be continuous but
must be bounded. This paper only considers unconstrained func-
tion optimization.

DE is a floating point encoding an EA for global optimiza-
tion over continuous spaces [2], [16], [17]. DE creates new can-
didate solutions by combining the parent individual and several
other individuals of the same population. A candidate replaces
the parent only if it has better fitness. DE has three parameters:
amplification factor of the difference vector , crossover con-
trol parameter , and population size . DE is also partic-
ularly easy to work with, having only a few control parameters,
which are kept fixed throughout the entire optimization process
[2], [16], [18]. Since the interaction of control parameters with
the DE’s performance is complex in practice, a DE user should
select the initial parameter settings for the problem at hand from
previous experiences or from literature. Then, the trial-and-error
method has to be used for fine tuning the control parameters fur-
ther. In practice, the optimization run has to be performed mul-
tiple times with different settings. In some cases, the time for
finding these parameters is unacceptably long.

In our paper, the parameter control technique is based on the
self-adaptation of two parameters ( and ), associated with
the evolutionary process. The main goal here is to produce a
flexible DE, in terms of control parameters and .

This paper introduces a novel approach to the self-adapting
control parameter of DE. It gives some comparisons against sev-
eral adaptive and nonadaptive methods for a set of test functions.
The paper is organized as follows. Related work is described
in Section II. The DE is briefly presented in Section III. Some
suggested choices for the fixed settings of the control param-
eters from literature are collected in Section IV. In Section V,

the proposed new version of the DE algorithm with self-adapted
control parameters is described in detail. Benchmark functions
are presented in Section VI. Experiments are then presented in
Section VII. A comparison of the self-adaptive DE and DE al-
gorithms with other EP algorithms is made, followed by an ex-
periment on the parameter settings for the DE algorithm. Then
experiments with and values by the adaptive DE are pre-
sented, and finally a comparison of self-adaptive DE algorithm
with fuzzy adaptive differential evolution algorithm is shown.
In conclusion, some remarks are given in Section VIII.

II. RELATED WORK

This section reviews papers that already compare DE with
other instances of EAs, such as particle swarm optimization and
genetic algorithms, as well as papers that compare a different
extension of DE with the original DE. After that, we concentrate
on papers that deal with parameter control in DE. In the end, we
mention papers on EA that use similar benchmark functions as
presented in this paper.

DE was proposed by Price and Storn [1], [18]. It is a very
simple and straightforward strategy.

Vesterstroem et al. [19] compared the DE algorithm with par-
ticle swarm optimization (PSO) and EAs on numerical bench-
mark problems. DE outperformed PSO and EAs in terms of
the solution’s quality on most benchmark problems. The bench-
mark functions in [19] are similar to benchmark functions used
in our paper.

Ali and Törn in [9] proposed new versions of the DE algo-
rithm and also suggested some modifications to classical DE to
improve its efficiency and robustness. They introduced an aux-
iliary population of individuals alongside the original pop-
ulation (noted in [9], a notation using sets is used—population
set-based methods). Next, they proposed a rule for calculating
the control parameter automatically (see Section IV).

Sun et al. [20] proposed a combination of DE algorithms and
the estimation of distribution algorithm (EDA), which tries to
guide its search toward a promising area by sampling new solu-
tions from a probability model. Based on experimental results, it
has been demonstrated that the DE/EDA algorithm outperforms
the DE algorithm and the EDA.

There are quite different conclusions about the rules for
choosing the control parameters of DE. In [21], it is stated that
the control parameters of DE are not difficult to choose. On
the other hand, Gämperle et al. [22] reported that choosing
the proper control parameters for DE is more difficult than
expected.

Liu and Lampinen [2] reported that effectiveness, efficiency,
and robustness of the DE algorithm are sensitive to the settings
of the control parameters. The best settings for the control pa-
rameters can be different for different functions and the same
function with different requirements for consumption time and
accuracy.

However, there still exists a lack of knowledge on how to
find reasonably good values for the control parameters of DE
for a given function [16]. Liu and Lampinen [16] proposed a
new version of DE, where the mutation control parameter and
the crossover control parameter are adaptive. It is called the



648 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 6, DECEMBER 2006

fuzzy adaptive differential evolution (FADE) algorithm. It dy-
namically controls DE parameters and/or . The FADE al-
gorithm, especially when adapting and , converges much
faster than the traditional DE, particularly when the dimension-
ality of the problem is high or the problem concerned is com-
plicated [16].

In this paper, we compare our version of a self-adaptive DE
with the classical DE algorithm and with the FADE algorithm.
A performance comparison is also made with EP algorithms,
described in the following.

In [23], a “fast EP” (FEP) is proposed which uses a Cauchy,
instead of Gaussian, mutation as the primary search operator.
In [24], a further generalization of FEP is described by using
mutation based on the Lévy probability distribution. With Lévy
probability distribution, one can extend and generalize FEP be-
cause the Cauchy probability distribution is a special case of the
Lévy probability distribution. The large variation at a single mu-
tation enables Lévy mutation to discover a wider region of the
search space globally [24]. The Lévy-mutated variables cover a
wider range than those mutated by Gaussian distributions. Large
variations of the mutated offspring can help to escape from local
optima.

Finally, we give two more references which have dealt with
function optimizations evaluated on some similar benchmark
test functions. Tu et al. [25] suggest the use of the stochastic
genetic algorithm (StGA), where the stochastic coding strategy
is employed. The search space is explored region by region.
Regions are dynamically created using a stochastic method. In
each region, a number of children are produced through random
sampling, and the best child is chosen to represent the region.
The variance values are decreased if at least one of five gener-
ated children results in improved fitness; otherwise, the variance
values are increased. The StGA codes each chromosome as a
representative of a stochastic region described by a multivariate
Gaussian distribution rather than a single candidate solution, as
in the conventional GA. The paper [26] presents a technique for
adapting control parameter settings associated with genetic op-
erators using fuzzy logic controllers and coevolution.

III. DE ALGORITHM

There are several variants of DE [1], [18]. In this paper, we use
the DE scheme which can be classified using notation [1], [18]
as DE/rand/1/bin strategy. This strategy is the most often used
in practice [1], [2], [20], [22] and can be described as follows.

A set of optimization parameters is called an individual. It
is represented by a -dimensional parameter vector. A popula-
tion consists of parameter vectors , .

denotes one generation. We have one population for each
generation.

is the number of members in a population. It is not
changed during the minimization process. The initial popula-
tion is chosen randomly with uniform distribution.

According to Storn and Price [1], [18], we have three opera-
tions: mutation, crossover, and selection.

The crucial idea behind DE is a scheme for generating trial
parameter vectors. Mutation and crossover are used to generate
new vectors (trial vectors), and selection then determines which
of the vectors will survive into the next generation.

A. Mutation

For each target vector , a mutant vector is generated
according to

with randomly chosen indexes . Note that
indexes have to be different from each other and from the run-
ning index so that must be at least four. is a real number

that controls the amplification of the difference
vector .

If a component of a mutant vector goes off the box , then
this component is set to bound value. The same “solution” is
used by classic DE too.

B. Crossover

The target vector is mixed with the mutated vector, using the
following scheme, to yield the trial vector

where

if or
if and

for . is the th evaluation of a
uniform random generator number. is the crossover con-
stant , which has to be determined by the user.

is a randomly chosen index which ensures that
gets at least one element from . Otherwise, no

new parent vector would be produced and the population would
not alter.

C. Selection

A greedy selection scheme is used

if for
minimization problems

otherwise

for . If, and only if, the trial vector
yields a better cost function value than , then is set
to ; otherwise, the old value is retained.

IV. CONTROL PARAMETER SETTINGS FOR DE ALGORITHM

According to Storn et al. [1], [18], DE is much more sensitive
to the choice of than it is to the choice of .

The suggested choices by Storn in [1] and [16] are:
1) ;
2) ;
3) .

Recall that is the dimensionality of the problem.
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Fig. 1. Self-adapting: encoding aspect.

Liu and Lampinen in [16] used control parameters set to
, . The values were chosen based on discussions

in [21].
Ali and Törn in [9] empirically obtained an optimal value for

. They used . was calculated according to the
following scheme:

if

otherwise

ensuring that . and are the maximum
and minimum values of vectors , respectively. is the
lower bound for . In [9], is used.

In our paper, we use a self-adaptive control mechanism to
change the control parameters and during the run. The
third control parameter is not changed during the run.

V. SELF-ADAPTING PARAMETERS—NEW VERSION

OF DE ALGORITHM

Choosing suitable control parameter values is, frequently, a
problem-dependent task. The trial-and-error method used for
tuning the control parameters requires multiple optimization
runs. In this section, we propose a self-adaptive approach for
control parameters. Each individual in the population is ex-
tended with parameter values. In Fig. 1, the control parameters
that will be adjusted by means of evolution are and . Both
of them are applied at the individual level. The better values of
these (encoded) control parameters lead to better individuals
which, in turn, are more likely to survive and produce offspring
and, hence, propagate these better parameter values.

The solution (Fig. 1) is represented by a -dimensional
vector , . New control parameters or
factors and are calculated as

if
otherwise

if
otherwise

and they produce factors and in a new parent vector.
, are uniform random values .

and represent probabilities to adjust factors and ,
respectively. In our experiments, we set . Be-
cause and , the new takes a value form
[0.1,1.0] in a random manner. The new takes a value from
[0,1]. and are obtained before the mutation is
performed. So, they influence the mutation, crossover, and se-
lection operations of the new vector .

We have made a decision about the range for , which is de-
termined by values and , based on the suggested values by
other authors and based on the experimental results. In the liter-
ature, is rarely greater than one. If control parameter ,
the new trial vector is generated using crossover but no muta-
tion; therefore, we propose .

The classic DE has three control parameters that need to be
adjusted by the user. It seems that our self-adaptive DE has even
more parameters, but please note that we have used fixed values
for , , , and for all benchmark functions in our self-
adaptive DE algorithm. The user does not need to adjust those
(additional) parameters.

Suitable control parameters are different for different func-
tion problems. Which are the best values of control parameters
and how could we get them? Are there any universal directions
on how to get good initial values for control parameters? In our
method, the algorithm can change control parameters with some
probabilities ( and ) and after that, better control parameters
are used in the next generations.

We have made additional experiments with some combina-
tions with and using values: 0.05, 0.1, 0.2, and 0.3, and we
did not notice any significant difference in results. Therefore,
we peaked at , and those values were used in this
paper.

The main contribution of our approach is that user does not
need to guess the good values for and , which are problem
dependent. The rules for self-adapting control parameters and

are quite simple; therefore, the new version of the DE algo-
rithm does not increase the time complexity, in comparison to
the original DE algorithm.

VI. BENCHMARK FUNCTIONS

Twenty-one benchmark functions from [23] were used to test
the performance of our DE algorithm to assure a fair comparison.
If the number of test problems were smaller, it would be very dif-
ficult to make a general conclusion. Using a test set which is too
small also has the potential risk that the algorithm is biased (opti-
mized) toward the chosen set of problems. Such bias might not
be useful for other problems of interest. The benchmark func-
tions are given in Table I. denotes the dimensionality of the test
problem, denotes the ranges of the variables, and is a func-
tion value of the global optimum. A more detailed description of
each function is given in [23] and [24], where the functions were
divided into three classes: functions with no local minima, many
local minima, and a few local minima.

Functions are high-dimensional problems. Functions
are unimodal. Function is the step function which

has one minimum and is discontinuous. Function is a noisy
quadratic function. Functions are multimodal func-
tions where the number of local minima increases exponentially
with the problem dimension [23], [27]. Functions are
low-dimensional functions which have only a few local minima
[23], [27].

Yao et al. [23] described the benchmark functions and conver-
gence rates of algorithms, as follows. For unimodal functions,
the convergence rates of FEP and classical EP (CEP) algorithms
are more interesting than the final results of optimization, as
there are other methods which are specifically designed to op-
timize unimodal functions. For multimodal functions, the final
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TABLE I
BENCHMARK FUNCTIONS

results are much more important since they reflect the algo-
rithm’s ability to escape from poor local optima and locate a
good near-global optimum.

VII. EXPERIMENTAL RESULTS

We applied self-adaptive DE and (original) DE to a set of
benchmark optimization problems.

The initial population was generated uniformly at random in
the range, as specified in Table I.

Throughout this paper, we have used and
for the (original) DE algorithm. Our decision for using those
values is based on proposed values from literature [1], [9],
[16], [19].

A. Comparison of Self-Adaptive DE and DE Algorithms With
FEP and CEP Algorithms

In the experiment, we set the parameters as in [23] for fair
performance comparison. The following parameters were used
in our experiment:

1) population size 100;
2) maximum number of generations: 1500 for , , , ,

and , 2000 for and , 3000 for , 4000 for ,
5000 for , , and , 9000 for , 20 000 for , and
100 for .

Therefore, in our experiment, self-adaptive DE and DE used
the same population size as in [23] and the same stopping cri-
teria (i.e., equal number of function evaluations).

The average results of 50 independent runs are summarized
in Table II. Results for the FEP and CEP algorithms are taken
from [23, Tables II–IV].

The comparison shows that self-adaptive DE gives better re-
sults on benchmark functions than FEP and CEP. Self-adaptive
DE algorithm performs better than DE, while DE does not al-
ways perform better than FEP and CEP.

When Compared With IFEP: Yao et al. in [23] proposed an
improved FEP (IFEP) based on mixing (rather than switching)
different mutation operators. IFEP generates two candidate off-
spring from each parent, one by Cauchy mutation and one by
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TABLE II
EXPERIMENTAL RESULTS, AVERAGED OVER 50 INDEPENDENT RUNS, OF SELF-ADAPTIVE DE, DE, FEP, AND CEP ALGORITHMS.

“MEAN BEST” INDICATES AVERAGE OF MINIMUM VALUES OBTAINED AND “STD DEV” STANDS FOR STANDARD DEVIATION.
t-TEST TESTS SELF-ADAPTIVE DE AGAINST OTHER ALGORITHMS, RESPECTIVELY

Gaussian mutation. The better one is then chosen as the off-
spring. IFEP has improved FEP’s performance significantly.

If we compared self-adaptive DE with IFEP taken from [23,
Table X], it is clear that self-adaptive DE is certainly better than
IFEP, too.

Many test functions take their minimum in the middlepoint
of . Three additional experiments for high-dimensional prob-
lems were performed to make sure that our algorithm
performs well, too, if was not symmetrical about the point
where the objective function takes its minimum: 1) middle point
is shifted; 2) lower bound was set to zero; and 3) upper bound
was set to zero. Albeit no systematical experiments have been
carried out, it can be observed, according to preliminary results,
that our approach is not significantly influenced when function
does not take its minimum in the middlepoint of .

B. Comparison of Self-Adaptive DE and DE Algorithms With
Adaptive LEP and Best Lévy Algorithms

In the experiment, we used the same function set and the pa-
rameters as in [24]. The following parameters were used in our
experiments:

1) population size 100;
2) maximum number of generations: 1500 for

, 30 for and , and
100 for , , and .

Table III summarizes the average results of 50 independent runs.
A comparison with results from [24] is made. It is clear that no

algorithm performs superiorly better than others, but on average
self-adaptive DE performs better than the other algorithms.

For the unimodal functions and , both self-adaptive DE
and DE are better than adaptive LEP and Best Lévy. For function

, adaptive LEP performs better than self-adaptive DE. The
-test shows a statistically significant difference (please note, in

Table II, self-adaptive DE gives good results when number of
generations is 5000). Adaptive LEP and self-adaptive DE out-
perform DE and Best Lévy.

For the multimodal functions with many local minima, i.e.,
, it is clear that the best results are obtained by self-

adaptive DE. Interestingly, DE is worse than adaptive LEP and
Best Lévy for functions and and better for functions

.
For the functions and with only a few local minima,

the dimension of the functions is also small. In this case, it is
hard to judge the performances of individual algorithms. All
algorithms were able to find optimal solutions for these two
functions.

For functions , there is no superior algorithm either.
For , self-adaptive DE and DE are better than adaptive LEP
and Best Lévy. There are similar algorithm performances for
functions and , except adaptive LEP, which performed
slightly worse for function .

Fig. 2 shows average best fitness curves for the self-adap-
tive DE algorithm with over 50 independent runs for selected
benchmark functions , , , .
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TABLE III
EXPERIMENTAL RESULTS, AVERAGED OVER 50 INDEPENDENT RUNS, OF SELF-ADAPTIVE DE, DE, ADAPTIVE LEP, AND BEST OF FOUR

NONADAPTIVE LEP ALGORITHMS (BEST LÉVY). “MEAN BEST” INDICATES AVERAGE OF MINIMUM VALUES OBTAINED AND

“STD DEV” STANDS FOR STANDARD DEVIATION. t-TEST TESTS SELF-ADAPTIVE DE AGAINST OTHER ALGORITHMS, RESPECTIVELY

Fig. 2. Average best fitness curves of self-adaptive DE algorithm for selected benchmark functions. All results are means of 50 runs. (a) Test function f . (b) Test
function f . (c) Test function f . (d) Test function f .

C. Discussion on Control Parameter Settings for DE Algorithm
In order to compare our self-adaptive version of DE algorithm

with the DE algorithm, the best control parameter settings for
DE may be needed. DE algorithm does not change control pa-
rameter values during optimization process.

For all benchmark function problems, the DE algorithm
was performed with and taken from [0.0, 0.95] by step
0.05. First, we set control parameters and
and kept them fixed during 30 independent runs. Then, we set

and for the next 30 runs, etc. The other
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Fig. 3. Evolutionary processes of DE for functions f and f . Results were averaged over 30 independent runs. (a) Test function f . (b) Test function f . (c) Test
function f . (d) Test function f .

Fig. 4. Evolutionary processes of DE for functions f and f . Results were averaged over 30 independent runs. (a) Test function f . (b) Test function f . (c) Test
function f . (d) Test function f .

(parameter) settings were the same as proposed in
Section VII-B. The results were averaged over 30 independent

runs. The selected function problems are depicted in Figs. 3
and 4.
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Fig. 5. CR and F values by self-adaptive DE for functions f , f , and f , respectively. Dot is plotted when best fitness value in generation is improved. (a) Test
function f . (b) Test function f . (c) Test function f . (d) Test function f . (e) Test function f . (f) Test function f .

For function , the good control values and are from
[0.15, 0.5] [Fig. 3(a)] and [0.4, 0.75] [Fig. 3(b)], respectively.
The best averaged fitness value for function was obtained by

and (number of generation was 1500, and
). The best averaged fitness value for function

was obtained by and (for high values
for give better results).

It is very interesting that apparently there are CR values that
make a sensitive parameter (where the mean best depends on
the value of ), and there are values that make a robust
parameter (where the mean best does not depend on the value
of ).

There are two disadvantages in DE. Parameter tuning requires
multiple runs and it is usually not a feasible solution for prob-
lems which are very time consuming. The best control param-
eter settings of DE are problem dependent. The proposed self-

adaptive DE overcomes those disadvantages, so there is no need
for multiple runs to adjust control parameters, and self-adaptive
DE is much more problem independent than DE.

D. and Values for Self-Adaptive DE

In self-adaptive DE, and values are being changed
during evolutionary process. If we want to look into an evo-
lutionary process, we should look at fitness curves. The most
important is the best fitness curve.

For the selected functions , , , , and , and
values are depicted in Figs. 5 and 6 only when the best fitness
value in generation is improved. For example, most of the
values for functions and are lower than 0.2, while for func-
tion they are greater than 0.8. If we know that is
good for function , we can use this “knowledge” in initializa-
tion by DE and also by our self-adaptive DE.
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Fig. 6. CR and F values by self-adaptive DE for functions f and f , respectively. Dot is plotted when best fitness value in generation is improved. (a) Test
function f . (b) Test function f . (c) Test function f . (d) Test function f .

TABLE IV
EXPERIMENTAL RESULTS, AVERAGED OVER 50 INDEPENDENT RUNS, OF SELF-ADAPTIVE DE WITH

DIFFERENT INITIAL F AND CR VALUES FOR SELECTED BENCHMARK FUNCTIONS

It is interesting to make a comparison of values for control pa-
rameters and of Figs. 3 and 4 with Figs. 5 and 6, for each
function, respectively. We can see that the values of control pa-
rameters obtained by self-adaptive DE algorithm are quite sim-
ilar to (good) and values obtained from the experiment in
Section VII-B. But this time, good and parameter values
are not obtained by tuning, hence saving many runs.

Based on the experiment in this section, the necessity of
changing control parameter during the optimization process is
confirmed once again.

Initialization: The initial vector population is chosen ran-
domly and there arises the question as to how to choose the ini-
tial and control parameters for self-adaptive DE, since
and are encoded in the individuals (Fig. 1).

We performed an additional experiment to determine the ini-
tial and values for our self-adaptive DE. Table IV shows
the results obtained in our additional experiment only for the
selected benchmark functions. The results do not differ ( -test

does not show any significant differences); therefore, our self-
adaptive DE is not sensitive to the initial and values. This
is an advantage of our algorithm.

E. Comparison of Self-Adaptive DE With Fuzzy Adaptive
Differential Evolution Algorithm

Liu and Lampinen [16] introduce a new version of the differ-
ential evolution algorithm with adaptive control parameters, the
fuzzy adaptive differential evolution (FADE) algorithm, which
uses fuzzy logic controllers to adapt the search parameters for
the mutation operation and crossover operation. The control in-
puts incorporate the relative objective function values and indi-
viduals of the successive generations.

The FADE algorithm was tested with a set of standard test
functions, where it outperforms the original DE when the di-
mensionality of the problem is high [16].

In [16], ten benchmark functions are used, and nine of them
are the same as the benchmark functions in [23] and in this
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TABLE V
EXPERIMENTAL RESULTS, AVERAGED OVER 100 INDEPENDENT RUNS, OF

SELF-ADAPTIVE DE AND FUZZY ADAPTIVE DE ALGORITHMS. “MEAN BEST”
INDICATES AVERAGE OF MINIMUM VALUES OBTAINED AND “STD DEV”
STANDS FOR STANDARD DEVIATION. t-TEST TESTS SELF-ADAPTIVE DE

AGAINST OTHER ALGORITHMS, RESPECTIVELY

paper. The following parameters were used in our experiment
(the same parameter settings are used in [16]):

1) dimensionality of the problem ;
2) population size ;
3) maximum number of generations: 5000 for , , , ,

and , 7000 for , 10 000 for , 100 for , and 50 for
.

Both algorithms use an approach to adapt mutation control
parameter and the crossover control parameter . The
average results of 100 independent runs are summarized in
Table V. The experimental results suggest that the proposed
algorithm certainly performs better than the FADE algorithm.
This is clearly reflected also by the -test.

Based on the obtained results in this section, we can conclude
that our self-adaptive method is very good in solving benchmark
functions (yielding excellent results) and for determination of
good values for control parameters of a DE.

VIII. CONCLUSION

Choosing the proper control parameters for DE is quite a diffi-
cult task because the best settings for the control parameters can
be different for different functions. In this paper, the proposed
self-adaptive method is an attempt to determine the values of
control parameters and .

Our self-adaptive DE algorithm has been implemented and
tested on benchmark optimization problems taken from liter-
ature. The results show that our algorithm, with self-adaptive
control parameter settings, is better or at least comparable to
the standard DE algorithm and evolutionary algorithms from
literature considering the quality of the solutions found. The
proposed algorithm gives better results in comparison with the
FADE algorithm.

Our self-adaptive method could be simply incorporated into
existing DE algorithms, which are used to solve problems from
different optimization areas.

We did not experiment with different population sizes, nor
did we make population size adaptive. This remains a challenge
for future work.
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