
204 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

The Fully Informed Particle Swarm:
Simpler, Maybe Better

Rui Mendes, Member, IEEE, James Kennedy, and José Neves

Abstract—The canonical particle swarm algorithm is a new ap-
proach to optimization, drawing inspiration from group behavior
and the establishment of social norms. It is gaining popularity, es-
pecially because of the speed of convergence and the fact that it
is easy to use. However, we feel that each individual is not simply
influenced by the best performer among his neighbors. We, thus,
decided to make the individuals “fully informed.” The results are
very promising, as informed individuals seem to find better solu-
tions in all the benchmark functions.

Index Terms—Optimization, particle swarm optimization, social
networks.

I. INTRODUCTION

THE CANONICAL particle swarm algorithm works by
searching iteratively in a region that is defined by each

particle’s best previous success, the best previous success of
any of its neighbors, the particle’s current position, and its
previous velocity. The current paper proposes an alternative
that is conceptually more concise and promises to perform
more effectively than the traditional particle swarm algorithm.
In this new version, the particle uses information from all its
neighbors, rather than just the best one.

The standard algorithm is given in some form resembling the
following:

(1)

(2)

where denotes point-wise vector multiplication,
is a function that returns a vector whose positions are randomly
generated following the uniform distribution between and

, is called the inertia weight and is less than 1, and
represent the speed and position of the particle at time ,

refers to the best position found by the particle, and refers
to the position found by the member of its neighborhood that
has had the best performance so far. The Type 1 constriction
coefficient is often used [1]

(3)

(4)

Manuscript received July 10, 2002; revised August 29, 2003. The work
of R. Mendes was supported in part by PRAXIS XXI, ref. BD/3107/9 and
POSI/ROBO/43904/2002.

R. Mendes and J. Neves are with the Departmento de Informática, Univer-
sidade do Minho, Braga 4710-057, Portugal (e-mail: azuki@di.uminho.pt;
jneves@di.uminho.pt).

J. Kennedy is with the Bureau of Labor Statistics, Washington, DC 20212
USA (e-mail: Kennedy.Jim@bls.gov).

Digital Object Identifier 10.1109/TEVC.2004.826074

The two versions are equivalent, but are simply implemented
differently. The second form is used in the present investiga-
tions. Other versions exist, but all are fairly close to the models
given above.

A particle searches through its neighbors in order to identify
the one with the best result so far, and uses information from that
one source to bias its search in a promising direction. There is
no assumption, however, that the best neighbor at time actually
found a better region than the second or third best neighbors.
Important information about the search space may be neglected
through overemphasis on the single best neighbor.

When constriction is implemented as in the second version
above, lightening the right-hand side of the velocity formula,
the constriction coefficient is calculated from the values of
the acceleration coefficient limits and , importantly, it is
the sum of these two coefficients that determines what to use.
This fact implies that the particle’s velocity can be adjusted by
any number of terms, as long as the acceleration coefficients
sum to an appropriate value. For instance, the algorithm given
above is often used with and .
The coefficients must sum, for that value of to 4.1. Clerc’s
analysis was worked out using a condensed form of the formula

(5)

(6)

which was then expanded to partition the acceleration
weight between the particle’s own previous success and
the neighborhood’s, such that . Note
that in this deterministic model is calculated as

.

II. VARIATION AND PARTITIONING OF

The search of particle converges on a point in the search
space. Variation is introduced in several ways.

• First, obviously, the term is weighted by a random number.
This in itself, however, would not prevent the velocity
from approaching a zero limit. For instance, if the
difference equals zero, the velocity will still converge to
zero.

• Thus, another important source of variation is the dif-
ference between and . As long as the position of
the particle differs from the previous best position, then
there will be movement. In a constricted algorithm, how-
ever, this difference tends toward zero over time as is
updated.

• Of course, it is hoped in practice that does not re-
main fixed, and a key source of variation is the updating of

1089-778X/04$20.00 © 2004 IEEE

MENDES et al.: FULLY INFORMED PARTICLE SWARM: SIMPLER, MAYBE BETTER 205

over time as new points are found in the search space
which are better than those previous ones. It is not neces-
sary for to be ’s own previous best point, in order for
’s trajectory to converge to it. For convergence, it is only

necessary for to remain fixed.
• In the traditional particle swarm, the very most important

source of variation is the difference between ’s own pre-
vious best and the neighborhood’s previous best, that is,
between and . Random weighting of the two terms
keeps the particle searching between and beyond a re-
gion defined by the two points. While some investigators
have looked at schemes for differentially weighting the
two terms (e.g., [2]), the limits for the two uniform dis-
tributions are usually the same. That is, the total weight of

is partitioned into two equal components.
Clerc’s method, however, does not require that the velocity

adjustments be shared between two terms. It is only necessary
that the parts sum to a value that is appropriate for the constric-
tion weight . The algorithm will behave properly, at least as
far as its convergence and explosion characteristics, whether all
of is allocated to one term, or it is divided into thirds, fourths,
etc.

We propose an alternate form of calculating

(7)

(8)

where is the set of neighbors of the particle and is the best
position found by individual .

The function may describe any aspect of the particle that is
hypothesized to be relevant; in the experiments reported below,
we use the fitness of the best position found by the particle,
and the distance from that particle to the current individual, or
have return a constant value. Because all the neighbors con-
tribute to the velocity adjustment, we say that the particle is fully
informed.

III. SOCIOMETRY IN THE FULLY INFORMED PARTICLE SWARM

In the traditional particle swarm, a particle with neighbors
selects one to be a source of influence and ignores the others. In
that situation, neighborhood size means how many other parti-
cles you can choose among, and the more there are, the better
the one you pick is likely to be. In the fully informed neighbor-
hood, however, all neighbors are a source of influence. Thus,
neighborhood size determines how diverse your influences will
be and in an optimization algorithm diverse influences might
mean that search is diluted rather than enhanced.

The rest of the paper will describe experiments with var-
ious neighborhoods, where all the neighbors’ previous best
values are used to modify the velocity of the particle. These
arrangements of the neighborhoods can be thought of as social
networks.

It should be appreciated that the topological structure of the
population controls its exploration versus exploitation tenden-
cies [3], [4].

Fig. 1. Topologies used in the paper are presented in the following order:
All, where all vertexes are connected to every other; Ring, where every vertex
is connected to two others; Four clusters, with four cliques connected among
themselves by gateways; Pyramid, a triangular wire-frame pyramid, and Square,
which is a mesh where every vertex has four neighbors that wraps around on the
edges as a torus.

The behavior of each particle is affected by its local neigh-
borhood, which can be seen as a single region in the population
topology. Thus, the topology affects search at a low level by
defining neighborhoods. Particles that are acquainted to one an-
other tend to explore the same region of the search space. It also
affects search at a higher level, by defining the relationships be-
tween the local neighborhoods.

The current study tested five different social networks that
had given good results in a previous study [3]. The networks are
encoded in binary matrices for input into the program, and are
depicted graphically in Fig. 1.

A social network can be characterized by a series of statistics
that convey some information about its structure and the speed
of communication flow. The most descriptive statistics are the
graph’s average distance, its diameter and the distribution se-
quence. The average distance measures the average number of
edges between any two nodes. The diameter is the largest dis-
tance between two nodes in the graph. The distribution sequence
is a descriptive statistic, of the form where
is the average number of nodes reachable from a vertex of the
graph by traversing exactly arcs, without cycles. Note that the
first value of the distribution sequence, , is the average degree
of the graph.

Whenever a particle discovers a good region of the search
space, it only directly influences its neighbors. Its second
degree neighbors will only be influenced after those directly
connected to it become highly successful themselves. Thus,
there is a delay in the information spread through the graph.
This delay can be characterized by the distribution sequence
statistic. The average distance and the diameter of the graph
are two simple statistics that represent the average and the
maximum, respectively, number of cycles of influence needed
to broadcast information throughout the graph.

By studying Table I, we can extract a number of conclusions
about the topologies used. The all topology was the one used
when the algorithm was developed and is still widely used by
researchers. It represents a fully connected graph, and, based
on all three statistics, we conjecture that information spreads

206 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

TABLE I
TOPOLOGIES USED IN THE STUDY AND THE

ASSOCIATED GRAPH STATISTICS

quickly. Sociologically, it could represent a small and closed
community where decisions are taken in consensus.

The ring topology, the usual alternative to all, represents a
regular graph with a minimum number of edges between its
nodes. The graph statistics show that information travels slowly
along the graph. This allows for different regions of the search
space to be explored at the same time, as information of suc-
cessful regions takes a long time to travel to the other side of the
graph.

The four clusters topology represents four cliques connected
among themselves by several gateways. Sociologically, it re-
sembles four mostly isolated communities, where a few indi-
viduals have an acquaintance outside their group. This graph
is characterized by the large number of individuals three hops
away, despite the fact that its diameter is only 3.

The pyramid represents a three-dimensional wire-frame
pyramid. It has the lowest average distance of all the graphs and
the highest first and second degree neighbors. The square is a
graph representing a rectangular lattice that folds like a torus.
This structure, albeit artificial, is commonly used to represent
neighborhoods in the Evolutionary Computation and Cellular
Automata communities, and is referred to as the von Neumann
neighborhood.

IV. DEPENDENT VARIABLES AND FREE LUNCH

The present experiments extracted three kinds of measures
of performance on a standard suite of test functions. The func-
tions were the sphere or parabolic function in 30 dimensions,
Rastrigin’s function in 30 dimensions, Griewank’s function in
10 and 30 dimensions (the importance of the local minima is
much higher in 10 dimensions, due to the product of co-sinuses,
making it much harder to find the global minimum), Rosen-
brock’s function in 30 dimensions, and Schaffer’s f6, which is
in 2 dimensions. Formulas can be found in the literature, e.g., in
[5].

It does not seem interesting to us to demonstrate that an al-
gorithm is good on some functions and not on others. What we
hope for is a problem-solver that can work well with a wide
range of problems. This line of reasoning drives us head-on into
the no free lunch (NFL) theorem [6], [7].

A. Free Lunch

NFL asserts that no algorithm can be better than any other,
over all possible functions. This seems to be true because of
two classes of functions: deceptive ones, and random ones. De-
ceptive functions lead a hill-climber away from the optimum,
for instance there may be gradients that lead away from a dis-

continuous point that is the global optimum. Over all possible
functions, it must be true that gradients lead away from the
optimum at least as often as they lead the searcher toward it.
The second class, random functions, contains very many more
members than the first [8]. In fact, when all possible functions
are considered, it seems certain—indeed it can be proven—that
most of them are nonsense. Where gradients exist, they are un-
related to real solutions. On these very numerous function land-
scapes, a hill-climber will do no better than a hill-descender, no
matter whether you are trying to maximize or minimize. It is
like finding a needle in a haystack; no method of search can be
any better than dumb luck. These two classes of functions ex-
plain why there is NFL.

But there is a third class of functions. These are functions
where regularities on the fitness landscape do provide clues as
to the location of a problem solution. Speaking of dumb luck, it
is lucky for us that this third class contains most of the kinds of
functions that we call problems. Problems are a special subclass
of functions; they are special because somebody thinks there
may be a solution to them, and wants to find it.

It is interesting to consider whether this third class of func-
tions is actually more common in the world, perhaps because
of correlations forced by physical laws, or whether they are
merely more salient because of some idiosyncrasy of human at-
tention. As we cannot count up instances of real function land-
scapes—like the set of “all possible functions” it is innumerable
and meaningless—we will never be able to satisfy our curiosity
regarding this question.

How do we know if a function has a solution or not? Of
course, we have known since Turing that we cannot tell with
certainty whether an algorithm will ever reach finality [9], that
is in this case, whether a problem can be solved. But even though
there is no certainty, there are clues. For instance, if it is believed
that a cause and effect relationship exists among variables in the
function, then we may expect to find some exploitable regular-
ities in the fitness landscape. Even if the causal relationship is
noisy, or if the relationship involves variables not mentioned in
the function (e.g., the “third variable problem” in correlational
research [10]), it is often possible to find useful features on the
function landscape.

Another clue that a function might be solvable is when it is
compressible. The easiest-to-spot form of this clue exists when
the problem is given as a mathematical formula, rather than
a lookup table. If the formula is shorter than the table of all
possible input–output matches, then we have been given a hint
that it might be useful to watch for regularities. The evidence
of this is seen in the difficulty of the search for functions that
produce random outputs [11]; it is not easy to produce an un-
predictable series out of a mathematical formula, e.g., a good
random number generator, even though random functions are
known to comprise the larger share of the universe of all pos-
sible functions.

In some hard cases, we may have only hypotheses and intu-
itions to provide ideas for how to search for patterns that will
reveal the problem solution. Sometimes we are wrong, and a
problem is reassigned to one of the first two classes of functions.

We reiterate the important point that a function is only a
problem if someone thinks it is a problem. That means that

MENDES et al.: FULLY INFORMED PARTICLE SWARM: SIMPLER, MAYBE BETTER 207

a function, let us say Schaffer’s f6, may exist as a curiosity
without anyone ever trying to find its minimum. All of science
can be viewed as a progression of things that have always existed
suddenly becoming problems to be solved and explained. The
argument presented here is the pragmatist’s response to NFL. If
somebody is trying to solve it, it is a problem; even if it does
turn out to be deceptive or random, and they give up on it, and it
stops being a problem, it is a problem during the time they are
trying to solve it. It may remain a problem if something about it
gives the researcher hope of solving it.

This is all a way of saying that the NFL theorem, eyeball-
popping as it is, is not especially relevant to the task of problem-
solving. NFL does not say that the search for a general problem-
solver is futile; it does say that the search for a general function
optimizer is futile. As researchers, it is our aim to minimize the
amount of time we devote to searching for optima on deceptive
and random function spaces.

Thus, in the current exercises we combined results from all
the test functions, all of which are commonly used in experi-
mentation with optimization algorithms, with the goal in mind
of finding versions of the particle swarm algorithm that perform
well on all of them. If we are successful in this, then we will nat-
urally extend the range of problems until we have widened the
applicability of the particle swarm to its broadest extent.

B. Performance

The first dependent variable is simply the best function result
after some arbitrary number of iterations, here, we use 1,000.
Basically, this is a measure of sloppy speed. It does not neces-
sarily indicate whether the algorithm is close to the global op-
timum; a relatively high score can be obtained on some of these
multimodal functions simply by finding the best part of a locally
optimal region.

It is not possible to combine raw results from different func-
tions, as they are all scaled differently. For instance, almost any
decent algorithm will find a function result less than 0.01 on the
sphere function, but a result of 40.0 on Rosenbrock is considered
good. In order to combine the function outputs, we standardized
the results of each function to a mean of 0.0 and standard de-
viation of 1.0. All results of all trials for a single function are
standardized to the same scale; as all of these problems involve
minimization, a lower result is better, and after standardization
that means that a negative result is better than average. After
standardizing each function separately, we can combine them
and find the average for a single condition.

One comment about combining data from different functions:
when a very good performance is combined with a very bad
one, the result is a moderate average. On the other hand, a very
good average can only be attained through combining very good
scores. In this paper, we are interested in discovering very good
performers and will neglect the confusion found in the middle.

C. Iterations to Criteria

The second dependent variable is the number of iterations re-
quired to reach a criterion. Function criteria are given in Table II.
This is also a measure of speed, but in this case the criteria are
intended to indicate that the searcher has arrived in the region
of the global optimum.

TABLE II
PARAMETERS AND CRITERIA FOR THE TEST FUNCTIONS

There is, however, a problem with this measure, too. That
is, some trials might never reach the criteria. Many hours have
been lost waiting, trying to give each version a fair chance to
find the global optimum, often in vain. Trials where the criteria
are not met after a reasonable time—here, we use 10 000 iter-
ations—must be coded as infinite, which means among other
things that the mean is meaningless.

The proper measure of central tendency for such a data set is
the median. If the majority of trials are coded as infinite, then
the median is represented as infinity, shown in the results tables
with the lemniscus. In order to combine iteration data, we used
the mean of the medians, with the caveat that if any median were
infinite, the mean would be infinite, too.

Note that the first measure, performance, considers data after
a short run of 1000 iterations, and is a speed measure. The trials
were run for as many as 10 000 iterations, however, to determine
whether the criterion would be met at all. Thus, one measure
was taken at 1000 iterations, and then if the criterion had not
been met, the trial ran for as many iterations as were necessary.
If the criterion was not met by 10 000 iterations, the trial was
treated as if the criterion would never be met. In most cases
this is true, as failure after 10 000 iterations suggests that the
population has converged in an area of the search space that
is not globally optimal. The first measure determines whether
the algorithm can get a good solution fast, e.g., after only 1000
iterations, while the second and third measures determine how
long it takes to find the global optimum if left to run, or whether
it can find it at all.

D. Proportion Reaching Criteria

The third dependent measure is perhaps the most important
one. This is a simple binary code indicating whether the cri-
teria were met within 10 000 iterations or not. Averaged over all
function trials, this gives the proportion of trials that success-
fully found the global optimum. There is no trick to this one;
the mean of the ones and zeroes, where one indicates success
and zero failure, gives the proportion of successes.

V. METHOD

The experiment manipulated neighborhood topologies,
initialization strategies, and algorithm details. The types of
topologies have been described and are shown in Fig. 1. Two
kinds of initialization strategies were used, which we called,
after Shi and Eberhart [12] “symmetrical” and “asymmet-
rical.” Symmetrical initialization is performed over the entire
spectrum of valid solutions, while asymmetrical initialization

208 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

TABLE III
STANDARDIZED PERFORMANCE OF THE TOPOLOGIES AND ALGORITHMS. NEGATIVE VALUES ARE BELOW THE MEAN

WHILE POSITIVE VALUES ARE ABOVE. AS THE TASKS INVOLVE MINIMIZATION, THE BEST PERFORMANCES

ARE THE MOST NEGATIVE. IN BOLD ARE THE BEST RESULTS FOR EACH ALGORITHM/INITIALIZATION PAIR

started particles with an offset, so they were off-center. This
eliminated any advantage that might be gained when function
optima were located near the center of the parameter space.

There were five kinds of algorithm types:
Canonical: the traditional particle swarm, with Type 1

constriction;
FIPS: the fully informed particle swarm with re-

turning a constant, i.e., where all contributions
have the same value;

wFIPS: a fully informed swarm, where the contribution
of each neighbor was weighted by the goodness
of its previous best;

wdFIPS: also fully informed, with the contribution of
each neighbor weighted by its distance in the
search space from the target particle;

Self: a fully informed model, where the particle’s
own previous best received half the weight;

wSelf: a fully informed model, where the particle’s
own previous best received half the weight and
the contribution of each neighbor was weighted
by the goodness of its previous best.

Canonical, FIPS, and wFIPS were tested with both symmet-
rical and asymmetrical initializing.

The five types of topologies shown in Fig. 1 were tested.
As some were tested with and without including the target par-
ticle in the neighborhood, there were nine topology conditions:
Square, Ring, Pyramid, and All were tested both ways, and
FourClusters was only tested with the self excluded. Conditions
without the self are written with a “U” prefix, e.g., USquare is
the Square topology, with the reference to the particle’s own
index removed from the neighborhood.

VI. RESULTS

We present the results on the three dependent measures sep-
arately. Following that we look at patterns across the measures,
and finally we discuss the implications of the results.

A. Performance

Table III shows the pattern of standardized averages across
the topologies and algorithms. Recalling that positive values in-
dicate bad performance and negative ones good for the mini-
mization problem, we notice some patterns immediately. For in-
stance, four of the nine wdFIPS algorithm conditions are quite
bad (more than three standard deviations worse than the mean);

one cell of the All topology was more than 3 s.d., and two cells
more than one s.d. worse than the mean; and two of the UAll
topology conditions were farther than one s.d. worse than the
mean. Two other cells in the Square, and two in the Pyramid
topology, were less than one s.d. worse than the mean. These
account for all of the worse-than-average cells in the design.

Looking for excellence, we note that of the eight conditions
resulting in a performance 0.4 standard deviations or farther
below the mean, five of them occurred when the neighborhood
was the unselfed square. The other three appear in selfless
pyramid conditions. The best performance of all occurred in
the selfless-square FIPS configuration.

In light of the results presented below, it is noteworthy that
problem solving using the URing topology was rather slow, rel-
ative to the others, while the USquare was rather fast.

The performance measure tells us how well a problem-solver
is able to do within a limited amount of time. Many times in real-
world applications it is “good enough” to find a good point on
a local optimum; this first dependent variable tells us how high
an algorithm is able to get on a fitness peak, but says nothing
about whether it is the globally best peak.

B. Iterations to Criteria

How quickly does an algorithm reach a criterion that presum-
ably reflects the presence of a global optimum? In Table IV,
we see that some algorithm conditions cannot reach the crite-
rion, even after 10 000 iterations. In particular, the wdFIPS tends
not to reach it, especially with topologies that showed badly
on the performance measure, as well; the All and UAll mea-
sures also failed in all cases with the FIPS variations, though
they displayed about average success on the canonical algo-
rithms. A few other topologies had trouble with the asymmet-
rical initializations.

Again, the URing was relatively slow and the USquare rel-
atively faster than others. The canonical versions were moder-
ately slow. The configurations that converged the fastest were
the UPyramid on both FIPS and wFIPS, and the Four-Cluster
topology on wFIPS.

Medians are used in this measure to account for failures to
meet the criterion at all. A cell may have as many as half its trials
fail to meet the standard, but if the remaining trials went quickly,
the median iterations will suggest erroneously that something
good has happened. Fast convergence of a configuration to the
performance criterion on a large percentage of trials would sug-
gest good problem solving qualities; fast convergence on half

MENDES et al.: FULLY INFORMED PARTICLE SWARM: SIMPLER, MAYBE BETTER 209

TABLE IV
MEDIAN NUMBER OF ITERATIONS TO CRITERIA. THESE REPRESENT THE NUMBER OF ITERATIONS THE ALGORITHM TOOK TO

REACH THE CRITERIA. AN INFINITE VALUE MEANS THAT AT LEAST HALF THE EXPERIMENTS WERE UNSUCCESSFUL.
IN BOLD ARE THE QUICKEST RESULT FOR EVERY ALGORITHM/INITIALIZATION PAIR

TABLE V
PROPORTION OF EXPERIMENTS REACHING CRITERIA. THEY REPRESENT FOR EACH CONFIGURATION THE PROPORTION OF

RUNS THAT WERE ABLE TO REACH THE REGION SPECIFIED BY THE CRITERIA. IN BOLD ARE THE

BEST RESULTS FOR EACH ALGORITHM/INITIALIZATION PAIR

the trials would not. The next dependent variable tells us how
often the criteria were met.

C. Proportion of Trials Reaching Criteria

For us, the third dependent measure is the most important.
With today’s computer speeds, the difference of a few thou-
sand iterations may be a matter of seconds, and slight speed
advantages are not usually crucial. The proportion measure
tells, though, in black and white, whether the given algo-
rithm/topology configuration can solve the problems (Table V).

The first result that jumps out is that the URing topology with
the wFIPS algorithm found the global optimum (as measured
by meeting the criteria) on 100% of its trials, that is, 40 trials
each on 6 functions, amounting to 240 total trials. This is ob-
viously a remarkable performance. We note also that 24 algo-
rithm/topology combinations, out of 81, met the criterion 90%
of the time or more. The canonical algorithm harbored perfor-
mances greater than 0.90 on five of nine topologies, and the
wFIPS on five of nine. wFIPS beat the 90% mark in three of
the asymmetric initialization conditions, while the canonical al-
gorithm never did. Unweighted FIPS was above 0.90 four times
in the symmetric and three times in the asymmetric initializa-
tion conditions, and the weighted and unweighted Self algo-
rithm broke the 0.90 standard one time each.

Looking at topologies, we see that none of the Square,
Pyramid, All, or UAll conditions met the criterion 90% of
the time. The Ring did it five times; the Four-Clusters thrice;
USquare six times; URing eight times; and UPyramid twice. It
appears that the USquare and URing topologies were the most
successful vehicles for the communication among particles, at
least across the algorithms tested here.

D. Combining the Measures

Our prejudice is that the most weight should be given to the
last measure, the proportion of successes, though the other mea-
sures should be taken into account. By this rule of thumb, we
could recommend always using the URing, which never failed
when implemented with the wFIPS algorithm. We remember,
however, that it was relatively slow by both the first two mea-
sures—plus, weighting the FIPS adds some computational cost.

If speed is a requirement, and the URing’s relative slowness
may create problems, then we would suggest the USquare with
the unweighted FIPS algorithm. This combination succeeded
approximately 98.9% of the time, meaning that it failed three
times out of 240. The USquare/FIPS also had the best score at
1000 iterations and was the ninth fastest to reach the criteria.

VII. CONCLUSION

The canonical particle swarm algorithm showed itself to be
a journeyman problem solver, finding the global optimum a re-
spectable proportion of the time, depending on topology, and
getting there in a respectably fast time. It was outperformed,
though, by the FIPS versions, on every dependent measure.

It should be mentioned that the FIPS versions were the only
ones able to consistently find the minimum to the Griewank
function in ten dimensions. The best result obtained by a canon-
ical configuration was the USquare with a proportion of 72.5%
followed by much lower proportions using the other topolo-
gies (lower than 60%). Both FIPS algorithms with all the social
topologies except the All versions were able to find the min-
imum 100% of the time.

210 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

The effect of weighting neighbors’ contributions by their fit-
ness is not clearly settled. We have to note that the one condition
that met the criteria 100% of the time was a weighted condi-
tion. It could be argued that the extra computational expense of
weighting is not justified; the unweighted versions performed
quite well, maybe well enough.

A word needs to be said about the particle’s contribution to
its own trajectory. The U-versions, for instance USquare, per-
formed better in many cases than versions where the self was
included in the neighborhood. This goes contrary to particle
swarm lore, which describes the algorithm in terms of the com-
bination of “cognitive” and “social” experience. FIPS versions
where half the weight was given to the self did not perform out-
standingly, and it does not appear that the individual’s own pre-
vious best needs to be part of the formula.

But it must be noted that the particle’s own experience does
contribute information to its trajectory, in the form that Miranda
and Fonseca [13] call its “habit.” For instance, the current ve-
locity is created out of the velocities of the previous time steps
as the particle maintains a cyclic trip through the search space.
The particle’s current position is featured in every comparison

term. Finally, the position in the next step is a function
of the position in the current one. Thus, the habit of the par-
ticle affects everything about its trajectory. It is just that, in the
FIPS versions without self, the explicit memory of the previous
best point it has sampled is not part of the particle’s immediate
decision.

As expected, increasing the size of the neighborhood seems
to deteriorate the performance of the swarm. The very worse
FIPS conditions in the study were the UAll and All topologies,
where the particle is truly fully informed, gathering information
from every single member of the population. The best were the
Ring and Square versions, where the particle has three and five
neighbors (counting itself), respectively, plus their U-versions,
which subtract one.

We note that, though asymmetric initialization radically hurt
performance in many conditions, it had nearly no effect on the
USquare and URing conditions in FIPS and wFIPS. The un-
weighted FIPS with URing actually found the global optimum
a greater proportion of the time with asymmetrical initializa-
tion, though we do not insist that this was a significant differ-
ence—but asymmetry clearly does not impair the algorithm.

The fully informed particle swarm is not a radical departure
from previous versions. The standard two-term PSO is simply
seen to be a special case of the FIPS, one that includes the selec-
tion of one particular neighbor to influence the target particle.
The FIPS representation of the particle swarm algorithm has the
potential for freeing investigators to look at other important fea-
tures of the algorithm.

REFERENCES

[1] M. Clerc and J. Kennedy, “The particle swarm: Explosion, stability, and
convergence in a multi-dimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, pp. 58–73, Feb. 2002.

[2] A. Carlisle and G. Dozier, “An off-the-shelf PSO,” in Proc. Workshop
on Particle Swarm Optimization. Indianapolis, IN: Purdue School of
Eng. Technol., IUPUI, Apr. 2001.

[3] J. Kennedy and R. Mendes, “Topological structure and particle swarm
performance,” in Proc. 4th Congr. Evolutionary Computation (CEC-
2002), D. B. Fogel, X. Yao, G. Greenwood, H. Iba, P. Marrow, and M.
Shackleton, Eds., Honolulu, HI, May 2002, pp. 1671–1676.

[4] J. Kennedy, “Small worlds and mega-minds: Effects of neighborhood
topology on particle swarm performance,” in Proc. 1999 Conf. Evolu-
tionary Computation Washington, DC, 1999, pp. 1931–1938.

[5] R. G. Reynolds and C. Chung, “Knowledge-based self-adaptation in
evolutionary programming using cultural algorithms,” in Proc. IEEE Int.
Conf. Evolutionary Computation (ICEC’97), 1997, pp. 71–76.

[6] D. H. Wolpert and W. G. Macready. (1995) No free lunch theorems for
search. Tech. Rep. SFI-TR-95-02-010, Santa Fe Inst., Sante Fe, New
Mexico. [Online]. Available: citeseer.nj.nec.com/wolpert95no.html

[7] , “No free lunch theorems for optimization,” IEEE Trans. Evol.
Comput., vol. 1, pp. 67–82, Apr. 1997.

[8] T. M. English, “Optimization is easy and learning is hard in the typical
function,” in Proc. Congr. Evolutionary Computation CEC00 La Jolla,
CA, 6–9, 2000, pp. 924–931.

[9] A. Turing, “On computable numbers with an application to the
Entscheidungsproblem,” in Proc. London Mathematical Society, 1936,
pp. 230–265.

[10] T. Cook and D. Campbell, Quasiexperimentation: Designs and Analysis
Issues for Field Settings. Skokie, IL: Rand McNally, 1979.

[11] W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-
ical Recipes in C, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press,
1992.

[12] Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimiza-
tion,” in Evolutionary Programming VII: Proc. EP98, Springer-Verlag,
pp. 591–600.

[13] V. Miranda and N. Fonseca, “EPSO—best-of-two-worlds meta-heuristic
applied to power system problems,” in Proc. 4th Congr. Evolutionary
Computation (CEC-2002), D. B. Fogel, X. Yao, G. Greenwood, H. Iba,
P. Marrow, and M. Shackleton, Eds. Honolulu, HI, May 2002, pp.
1080–1085.

Rui Mendes (M’03) received the B.S. degree in
mathematics and computer science and the Ph.D.
degree in computer engineering from the University
of Minho, Braga, Portugal, in 1994 and 2004,
respectively.

His thesis was called “Population Topologies and
Their Influence in Particle Swarm Performance.”
He is a Computer Scientist, who has been working
with the particle swarm algorithm since 2001.
His research interests are swarm intelligence and
evolutionary computation.

James Kennedy received the Ph.D. degree from the
University of North Carolina, Chapel Hill, in 1992.

He is with the U.S. Department of Labor, Wash-
ington, DC. He is a Social Psychologist who has
been working with the particle swarm algorithm
since 1994. He has published dozens of articles and
chapters on particle swarms and related topics, in
computer science and social science journals and
proceedings. He is a coauthor of Swarm Intelligence
(San Mateo, CA: Morgan Kaufmann, 2001), with R.
C. Eberhart and Y. Shi, now in its third printing.

José Neves is a Full Professor in the Informatics Department, University of
Minho, Braga, Portugal. He is the Head of the Artificial Intelligence Group and
coordinates several projects with applications in the areas of law and medicine.
His research interests are knowledge representation and computational logic.

