
4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

Differential Evolution: A Survey of the
State-of-the-Art

Swagatam Das, Member, IEEE, and Ponnuthurai Nagaratnam Suganthan, Senior Member, IEEE

Abstract—Differential evolution (DE) is arguably one of the
most powerful stochastic real-parameter optimization algorithms
in current use. DE operates through similar computational steps
as employed by a standard evolutionary algorithm (EA). How-
ever, unlike traditional EAs, the DE-variants perturb the current-
generation population members with the scaled differences of
randomly selected and distinct population members. Therefore,
no separate probability distribution has to be used for generating
the offspring. Since its inception in 1995, DE has drawn the at-
tention of many researchers all over the world resulting in a lot of
variants of the basic algorithm with improved performance. This
paper presents a detailed review of the basic concepts of DE and
a survey of its major variants, its application to multiobjective,
constrained, large scale, and uncertain optimization problems,
and the theoretical studies conducted on DE so far. Also, it
provides an overview of the significant engineering applications
that have benefited from the powerful nature of DE.

Index Terms—Derivative-free optimization, differential evolu-
tion (DE), direct search, evolutionary algorithms (EAs), genetic
algorithms (GAs), metaheuristics, particle swarm optimization
(PSO).

I. Introduction

TO TACKLE complex computational problems, re-
searchers have been looking into nature for years—both

as model and as metaphor—for inspiration. Optimization is at
the heart of many natural processes like Darwinian evolution
itself. Through millions of years, every species had to adapt
their physical structures to fit to the environments they were
in. A keen observation of the underlying relation between
optimization and biological evolution led to the development
of an important paradigm of computational intelligence—the
evolutionary computing techniques [S1]–[S4] for performing
very complex search and optimization.

Evolutionary computation uses iterative progress, such as
growth or development in a population. This population is then
selected in a guided random search using parallel processing
to achieve the desired end. The paradigm of evolutionary
computing techniques dates back to early 1950s, when the idea

Manuscript received September 17, 2009; revised March 9, 2010 and June
10, 2010; accepted June 12, 2010. Date of publication October 14, 2010;
date of current version February 25, 2011. This work was supported by the
Agency for Science, Technology, and Research, Singapore (A∗Star), under
Grant #052 101 0020.

S. Das is with the Department of Electronics and Telecommunication
Engineering, Jadavpur University, Kolkata 700 032, India (e-mail: swagatam-
das19@yahoo.co.in).

P. N. Suganthan is with the School of Electrical and Electronic En-
gineering, Nanyang Technological University, 639798, Singapore (e-mail:
epnsugan@ntu.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2010.2059031

to use Darwinian principles for automated problem solving
originated. It was not until the sixties that three distinct
interpretations of this idea started to be developed in three
different places. Evolutionary programming (EP) was intro-
duced by Lawrence J. Fogel in the USA [S5],1 while almost
simultaneously. I. Rechenberg and H.-P. Schwefel introduced
evolution strategies (ESs) [S6], [S7] in Germany. Almost a
decade later, John Henry Holland from University of Michigan
at Ann Arbor, devised an independent method of simulating
the Darwinian evolution to solve practical optimization prob-
lems and called it the genetic algorithm (GA) [S8]. These areas
developed separately for about 15 years. From the early 1990s
on they are unified as different representatives (“dialects”) of
one technology, called evolutionary computing. Also since the
early nineties, a fourth stream following the same general ideas
started to emerge—genetic programming (GP) [S9].

Nowadays, the field of nature-inspired metaheuristics is
mostly constituted by the evolutionary algorithms [compris-
ing of GAs, EP, ESs, GP, differential evolution (DE), and
so on] as well as the swarm intelligence algorithms [e.g.,
ant colony optimization (ACO), particle swarm optimization
(PSO), Bees algorithm, bacterial foraging optimization (BFO),
and so on [S10]–[S12]]. Also the field extends in a broader
sense to include self-organizing systems [S13], artificial life
(digital organism) [S14], memetic and cultural algorithms
[S15], harmony search [S16], artificial immune systems [S17],
and learnable evolution model [S18].

The DE [72], [73], [88]–[90] algorithm emerged as a very
competitive form of evolutionary computing more than a
decade ago. The first written article on DE appeared as a
technical report by R. Storn and K. V. Price in 1995 [88].
One year later, the success of DE was demonstrated at the
First International Contest on Evolutionary Optimization in
May 1996, which was held in conjunction with the 1996 IEEE
International Conference on Evolutionary Computation (CEC)
[89]. DE finished third at the First International Contest on
Evolutionary Optimization (1st ICEO), which was held in
Nagoya, Japan. DE turned out to be the best evolutionary
algorithm for solving the real-valued test function suite of the
1st ICEO (the first two places were given to non-evolutionary
algorithms, which are not universally applicable but solved
the test-problems faster than DE). Price presented DE at the
Second International Contest on Evolutionary Optimization in

1Due to space limitation the supplementary reference list cited as [Sxxx]
will not be published in print, but as an on-line document only.

1089-778X/$26.00 c© 2010 IEEE

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 5

1997 [72] and it turned out as one of the best among the
competing algorithms. Two journal articles [73], [92] describ-
ing the algorithm in sufficient details followed immediately in
quick succession. In 2005 CEC competition on real parameter
optimization, on 10-D problems classical DE secured 2nd
rank and a self-adaptive DE variant called SaDE [S201]
secured third rank although they performed poorly over 30-D
problems. Although a powerful variant of ES, known as restart
covariance matrix adaptation ES (CMA-ES) [S232, S233],
yielded better results than classical and self-adaptive DE, later
on many improved DE variants [like improved SaDE [76],
jDE [10], opposition-based DE (ODE) [82], DE with global
and local neighborhoods (DEGL) [21], JADE [118], and so on
that will be discussed in subsequent sections] were proposed in
the period 2006–2009. Hence, another rigorous comparison is
needed to determine how well these variants might compete
against the restart CMA-ES and many other real parameter
optimizers over the standard numerical benchmarks. It is also
interesting to note that the variants of DE continued to secure
front ranks in the subsequent CEC competitions [S202] like
CEC 2006 competition on constrained real parameter opti-
mization (first rank), CEC 2007 competition on multiobjective
optimization (second rank), CEC 2008 competition on large
scale global optimization (third rank), CEC 2009 competition
on multiobjective optimization (first rank was taken by a
DE-based algorithm MOEA/D for unconstrained problems),
and CEC 2009 competition on evolutionary computation in
dynamic and uncertain environments (first rank). We can also
observe that no other single search paradigm such as PSO was
able to secure competitive rankings in all CEC competitions.
A detailed discussion on these DE-variants for optimization in
complex environments will be provided in Section V.

In DE community, the individual trial solutions (which con-
stitute a population) are called parameter vectors or genomes.
DE operates through the same computational steps as em-
ployed by a standard EA. However, unlike traditional EAs,
DE employs difference of the parameter vectors to explore the
objective function landscape. In this respect, it owes a lot to its
two ancestors namely—the Nelder-Mead algorithm [S19], and
the controlled random search (CRS) algorithm [S20], which
also relied heavily on the difference vectors to perturb the
current trial solutions. Since late 1990s, DE started to find
several significant applications to the optimization problems
arising from diverse domains of science and engineering.
Below, we point out some of the reasons why the researchers
have been looking at DE as an attractive optimization tool
and as we shall proceed through this survey, these reasons
will become more obvious.

1) Compared to most other EAs, DE is much more sim-
ple and straightforward to implement. Main body of
the algorithm takes four to five lines to code in any
programming language. Simplicity to code is important
for practitioners from other fields, since they may not be
experts in programming and are looking for an algorithm
that can be simply implemented and tuned to solve their
domain-specific problems. Note that although PSO is
also very easy to code, the performance of DE and its

variants is largely better than the PSO variants over
a wide variety of problems as has been indicated by
studies like [21], [82], [104] and the CEC competition
series [S202].

2) As indicated by the recent studies on DE [21], [82],
[118] despite its simplicity, DE exhibits much better
performance in comparison with several others like G3
with PCX, MA-S2, ALEP, CPSO-H, and so on of current
interest on a wide variety of problems including uni-
modal, multimodal, separable, non-separable and so on.
Although some very strong EAs like the restart CMA-
ES was able to beat DE at CEC 2005 competition, on
non-separable objective functions, the gross performance
of DE in terms of accuracy, convergence speed, and
robustness still makes it attractive for applications to
various real-world optimization problems, where find-
ing an approximate solution in reasonable amount of
computational time is much weighted.

3) The number of control parameters in DE is very few
(Cr, F, and NP in classical DE). The effects of these
parameters on the performance of the algorithm are well-
studied. As will be discussed in the next section, simple
adaptation rules for F and Cr have been devised to
improve the performance of the algorithm to a large ex-
tent without imposing any serious computational burden
[10], [76], [118].

4) The space complexity of DE is low as compared to
some of the most competitive real parameter optimizers
like CMA-ES [S232]. This feature helps in extending
DE for handling large scale and expensive optimization
problems. Although CMA-ES remains very competitive
over problems up to 100 variables, it is difficult to extend
it to higher dimensional problems due to its storage,
update, and inversion operations over square matrices
with size the same as the number of variables.

Perhaps these issues triggered the popularity of DE
among researchers all around the globe within a short span
of time as is evident from the bibliography of DE [37]
from 1997 to 2002. Consequently, over the past decade
research on and with DE has become huge and multifaceted.
Although there exists a few significant survey papers on
EAs and swarm intelligence algorithms (e.g., [S21]–[S25]),
to the best of our knowledge no extensive review article
capturing the entire horizon of the current DE-research
has so far been published. In a recently published article
[60], Neri and Tirronen reviewed a number of DE-variants
for single-objective optimization problems and also made
an experimental comparison of these variants on a set of
numerical benchmarks. However, the article did not address
issues like adapting DE to complex optimization environments
involving multiple and constrained objective functions, noise
and uncertainty in the fitness landscape, very large number of
search variables, and so on. Also it did not focus on the most
recent engineering applications of DE and the developments
in the theoretical analysis of DE. This paper attempts to
provide a comprehensive survey of the DE algorithm—
its basic concepts, different structures, and variants for

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

Fig. 1. Main stages of the DE algorithm.

solving constrained, multiobjective, dynamic, and large-scale
optimization problems as well as applications of DE variants
to practical optimization problems. The rest of this paper is
arranged as follows. In Section II, the basic concepts related to
classical DE are explained along with the original formulation
of the algorithm in the real number space. Section III discusses
the parameter adaptation and control schemes for DE. Section
IV provides an overview of several prominent variants of the
DE algorithm. Section V provides an extensive survey on the
applications of DE to the discrete, constrained, multiobjective,
and dynamic optimization problems. The theoretical analysis
of DE has been reviewed in Section VI. Section VII provides
an overview of the most significant engineering applications
of DE. The drawbacks of DE are pointed out in Section VIII.
Section IX highlights a number of future research issues
related to DE. Finally, the paper is concluded in Section X.

II. Differential Evolutions: Basic Concepts and

Formulation in Continuous Real Space

Scientists and engineers from all disciplines often have to
deal with the classical problem of search and optimization.
Optimization means the action of finding the best-suited
solution of a problem within the given constraints and flex-
ibilities. While optimizing performance of a system, we aim
at finding out such a set of values of the system parameters
for which the overall performance of the system will be the
best under some given conditions. Usually, the parameters
governing the system performance are represented in a vector
like �X = [x1, x2, x3, ..., xD]T . For real parameter optimization,
as the name implies, each parameter xi is a real number. To
measure how far the “best” performance we have achieved,
an objective function (or fitness function) is designed for the
system. The task of optimization is basically a search for such
the parameter vector �X∗, which minimizes such an objective
function f (�X)(f : � ⊆ �D → �), i.e., f (�X∗) < f (�X) for
all �X ∈ �, where � is a non-empty large finite set serving
as the domain of the search. For unconstrained optimization
problems � = �D. Since max

{
f (�X)

}
= − min

{−f (�X)
}

,
the restriction to minimization is without loss of generality.
In general, the optimization task is complicated by the ex-
istence of non-linear objective functions with multiple local
minima. A local minimum f� = f (�X�) may be defined as
∃ε > 0 ∀ �X ∈ � :

∥
∥ �X − �X�

∥
∥ < ε ⇒ f� ≤ f (�X), where ‖.‖

indicates any p-norm distance measure.
DE is a simple real parameter optimization algorithm. It

works through a simple cycle of stages, presented in Fig. 1.
We explain each stage separately in Sections II-A–II-D.

A. Initialization of the Parameter Vectors

DE searches for a global optimum point in a D-dimensional
real parameter space �D. It begins with a randomly initiated

population of NP D dimensional real-valued parameter vec-
tors. Each vector, also known as genome/chromosome, forms
a candidate solution to the multidimensional optimization
problem. We shall denote subsequent generations in DE by
G = 0, 1..., Gmax. Since the parameter vectors are likely
to be changed over different generations, we may adopt
the following notation for representing the ith vector of the
population at the current generation:

�Xi,G = [x1,i,G, x2,i,G, x3,i,G,, xD,i,G]. (1)

For each parameter of the problem, there may be a certain
range within which the value of the parameter should be
restricted, often because parameters are related to physical
components or measures that have natural bounds (for example
if one parameter is a length or mass, it cannot be negative).
The initial population (at G = 0) should cover this range as
much as possible by uniformly randomizing individuals within
the search space constrained by the prescribed minimum
and maximum bounds: �Xmin = {x1,min, x2,min, ..., xD,min} and
�Xmax = {x1,max, x2,max, ..., xD,max}. Hence we may initialize the
jth component of the ith vector as

xj,i,0 = xj,min + randi,j[0, 1] · (xj,max − xj,min) (2)

where randi,j[0, 1] is a uniformly distributed random number
lying between 0 and 1 (actually 0 ≤ randi,j[0, 1] ≤ 1) and
is instantiated independently for each component of the i-th
vector.

B. Mutation with Difference Vectors

Biologically, “mutation” means a sudden change in the
gene characteristics of a chromosome. In the context of the
evolutionary computing paradigm, however, mutation is also
seen as a change or perturbation with a random element. In
DE-literature, a parent vector from the current generation is
called target vector, a mutant vector obtained through the
differential mutation operation is known as donor vector and
finally an offspring formed by recombining the donor with
the target vector is called trial vector. In one of the simplest
forms of DE-mutation, to create the donor vector for each ith
target vector from the current population, three other distinct
parameter vectors, say �Xri

1
, �Xri

2
, and �Xri

3
are sampled randomly

from the current population. The indices ri
1, ri

2, and ri
3 are

mutually exclusive integers randomly chosen from the range
[1, NP], which are also different from the base vector index
i. These indices are randomly generated once for each mutant
vector. Now the difference of any two of these three vectors is
scaled by a scalar number F (that typically lies in the interval
[0.4, 1]) and the scaled difference is added to the third one
whence we obtain the donor vector �Vi,G. We can express the
process as

�Vi,G = �Xri
1,G

+ F · (�Xri
2,G

− �Xri
3,G

). (3)

The process is illustrated on a 2-D parameter space (show-
ing constant cost contours of an arbitrary objective function)
in Fig. 2.

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 7

Fig. 2. Illustrating a simple DE mutation scheme in 2-D parametric space.

C. Crossover

To enhance the potential diversity of the population, a
crossover operation comes into play after generating the donor
vector through mutation. The donor vector exchanges its
components with the target vector �Xi,G under this operation
to form the trial vector �Ui,G = [u1,i,G, u2,i,G, u3,i,G, ..., uD,i,G].
The DE family of algorithms can use two kinds of crossover
methods—exponential (or two-point modulo) and binomial (or
uniform) [74]. In exponential crossover, we first choose an
integer n randomly among the numbers [1, D]. This integer
acts as a starting point in the target vector, from where the
crossover or exchange of components with the donor vector
starts. We also choose another integer L from the interval
[1, D]. L denotes the number of components the donor vector
actually contributes to the target vector. After choosing n and
L the trial vector is obtained as

uj,i,G = vj,i,G for j = 〈n〉D 〈n + 1〉D , ..., 〈n + L − 1〉D
xj,i,G for all other j ∈ [1, D] (4)

where the angular brackets 〈〉D denote a modulo function with
modulus D. The integer L is drawn from [1, D] according to
the following pseudo-code:
L = 0; DO
{
L = L + 1;
} WHILE ((rand(0, 1) ≤ Cr) AND (L ≤ D)).
“Cr” is called the crossover rate and appears as a control

parameter of DE just like F. Hence in effect, probability (L =
υ) = (Cr)υ − 1 for any positive integer v lying in the interval
[1, D]. For each donor vector, a new set of n and L must be
chosen randomly as shown above.

On the other hand, binomial crossover is performed on each
of the D variables whenever a randomly generated number
between 0 and 1 is less than or equal to the Cr value. In this
case, the number of parameters inherited from the donor has
a (nearly) binomial distribution. The scheme may be outlined
as

uj,i,G =

{
vj,i,G if (randi,j[0, 1] ≤ Cr or j = jrand)
xj,i,G otherwise

(5)

Fig. 3. Different possible trial vectors formed due to uniform/binomial
crossover between the target and the mutant vectors in 2-D search space.

where, as before, randi,j[0, 1] is a uniformly distributed ran-
dom number, which is called anew for each jth component of
the ith parameter vector. jrand ∈ [1, 2,, D] is a randomly
chosen index, which ensures that �Ui,G gets at least one
component from �Vi,G. It is instantiated once for each vector
per generation. We note that for this additional demand, Cr
is only approximating the true probability pCr of the event
that a component of the trial vector will be inherited from
the donor. Also, one may observe that in a 2-D search space,
three possible trial vectors may result from uniformly crossing
a mutant/donor vector �Vi,G with the target vector �Xi,G. These
trial vectors are as follows.

1) �Ui,G = �Vi,G such that both the components of �Ui,G are
inherited from �Vi,G.

2) �U/
i,G, in which the first component (j = 1) comes from

�Vi,G and the second one (j = 2) from �Xi,G.
3) �U//

i,G, in which the first component (j = 1) comes from
�Xi,G and the second one (j = 2) from �Vi,G.

The possible trial vectors due to uniform crossover are
illustrated in Fig. 3.

D. Selection

To keep the population size constant over subsequent gen-
erations, the next step of the algorithm calls for selection to
determine whether the target or the trial vector survives to the
next generation, i.e., at G = G + 1. The selection operation is
described as

�Xi,G+1 = �Ui,G iff (�Ui,G) ≤ f (�Xi,G)

= �Xi,G iff (�Ui,G) > f (�Xi,G) (6)

where f (�X) is the objective function to be minimized. There-
fore, if the new trial vector yields an equal or lower value
of the objective function, it replaces the corresponding target
vector in the next generation; otherwise the target is retained
in the population. Hence, the population either gets better
(with respect to the minimization of the objective function)
or remains the same in fitness status, but never deteriorates.
Note that in (6) the target vector is replaced by the trial
vector even if both yields the same value of the objective
function—a feature that enables DE-vectors to move over

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

Algorithm 1 Pseudo-code for the DE Algorithm with Binomial
Crossover

Step 1: Read values of the control parameters of DE: scale
factor F, crossover rate Cr, and the population size NP from
user.
Step 2: Set the generation number G = 0
and randomly initialize a population of NP

individuals PG = { �X1,G,, �XNP,G} with
�Xi,G = [x1,i,G, x2,i,G, x3,i,G,, xD,i,G] and each
individual uniformly distributed in the range
[�Xmin, �Xmax], where �Xmin = {x1,min, x2,min, ..., xD,min} and
�Xmax = {x1,max, x2,max, ..., xD,max} with i = [1, 2,, NP].
Step 3. WHILE the stopping criterion is not satisfied

DO
FOR i = 1 to NP //do for each individual sequen-

tially
Step 2.1 Mutation Step

Generate a donor vector �Vi,G = {v1,i,G,, }
{vD,i,G} corresponding to the ith target vector
�Xi,G via the differential mutation scheme of DE
as:

�Vi,G = �Xri
1,G

+ F · (�Xri
2,G

− �Xri
3,G

).

Step 2.2 Crossover Step
Generate a trial vector �Ui,G = {u1,i,G,, uD,i,G}
for the ith target vector �Xi,G through
binomial crossover in the following way:

uj,i,G = vj,i,G, if (randi,j[0, 1] ≤ Cr or j = jrand)
xj,i,G, otherwise,

Step 2.3 Selection Step
Evaluate the trial vector �Ui,G

IF f (�Ui,G) ≤ f (�Xi,G), THEN �Xi,G+1 = �Ui,G

ELSE �Xi,G+1 = �Xi,G.
END IF
END FOR
Step 2.4 Increase the Generation Count
G = G + 1

END WHILE

flat fitness landscapes with generations. Note that throughout
this paper, we shall use the terms objective function value
and fitness interchangeably. But, always for minimization
problems, a lower objective function value will correspond
to higher fitness.

E. Summary of DE Iteration

An iteration of the classical DE algorithm consists of
the four basic steps—initialization of a population of search
variable vectors, mutation, crossover or recombination, and
finally selection. After having illustrated these stages, we now
formally present the whole of the algorithm in a pseudo-code
below.

The terminating condition can be defined in a few ways
like: 1) by a fixed number of iterations Gmax, with a suitably
large value of Gmax depending upon the complexity of the
objective function; 2) when best fitness of the population

does not change appreciably over successive iterations; and
alternatively 3) attaining a pre-specified objective function
value.

F. DE Family of Storn and Price

Actually it is the process of mutation that demarcates one
DE scheme from another. In the previous section, we have
illustrated the basic steps of a simple DE. The mutation
scheme in (3) uses a randomly selected vector �Xr1 and only
one weighted difference vector F · (�Xr2 − �Xr3) to perturb it.
Hence, in literature, the particular mutation scheme given by
(3) is referred to as DE/rand/1. When used in conjunction with
binomial crossover, the procedure is called DE/rand/1/bin. We
can now have an idea of how the different DE schemes are
named. The general convention used above is DE/x/y/z, where
DE stands for “differential evolution,” x represents a string
denoting the base vector to be perturbed, y is the number
of difference vectors considered for perturbation of x, and z
stands for the type of crossover being used (exp: exponential;
bin: binomial). The other four different mutation schemes,
suggested by Storn and Price [74], [75] are summarized as

“DE/best/1 :′′ �Vi,G = �Xbest,G + F · (�Xri
1,G

− �Xri
2,G

) (7)

“DE/target − to − best/1 :′′ �Vi,G = �Xi,G

+F · (�Xbest,G − �Xi,G) + F · (�Xri
1,G

− �Xri
2,G

)

(8)

“DE/best/2 :′′ �Vi,G = �Xbest,G + F · (�Xri
1,G

− �Xri
2,G

)

+F · (�Xri
3,G

− �Xri
4,G

) (9)

“DE/rand/2 :′′ �Vi,G = �Xri
1,G

+ F · (�Xri
2,G

− �Xri
3,G

)

+F · (�Xri
4,G

− �Xri
5,G

). (10)

The indices ri
1, ri

2, ri
3, ri

4, and ri
5 are mutually exclusive

integers randomly chosen from the range [1, NP], and all are
different from the base index i. These indices are randomly
generated once for each donor vector. The scaling factor F is
a positive control parameter for scaling the difference vectors.
�Xbest,G is the best individual vector with the best fitness (i.e.,
lowest objective function value for a minimization problem) in
the population at generation G. Note that some of the strategies
for creating the donor vector may be mutated recombinants,
for example, (8) listed above basically mutates a two-vector
recombinant �Xi,G + F · (�Xbest,G − �Xi,G).

Storn and Price [74], [92] suggested a total of ten different
working strategies for DE and some guidelines in applying
these strategies to any given problem. These strategies were
derived from the five different DE mutation schemes outlined
above. Each mutation strategy was combined with either the
“exponential” type crossover or the “binomial” type crossover.
This yielded a total of 5 × 2 = 10 DE strategies. In fact many
other linear vector combinations can be used for mutation. In
general, no single mutation method [among those described
in (3), (7)–(10)] has turned out to be best for all problems.

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 9

Nevertheless the various mutation schemes need further inves-
tigation to determine under which circumstances they perform
well and on what kind of problems they yield poor results.
Some initial work in this direction was undertaken by Mezura-
Montes et al., who empirically compared eight different DE-
schemes over a test-suite of 13 benchmark problems in [56].
The authors took into account an interesting mutation scheme
known as DE/rand/2/dir [26] that incorporates the objective
function information to guide the direction of the donor vectors
in the following way:

�Vi,G = �Xr1,G +
F

2
· (�Xr1,G − �Xr2,G − �Xr3,G) (11)

where �Xr1,G, �Xr2,G, and �Xr3,G are distinct population mem-
bers such that f (�Xr1,G) ≤ {

f (�Xr2,G), f (�Xr3,G)
}

. The ex-
periments performed by Mezura-Montes et al. indicate that
DE/best/1/bin (using always the best solution to find search
directions and also binomial crossover) remained the most
competitive scheme, regardless the characteristics of the prob-
lem to be solved, based on final accuracy and robustness
of results. The authors in [56] also mention that over uni-
modal and separable functions, DE/rand/2/dir achieved con-
siderably good results. For unimodal and non-separable func-
tions, DE/best/1/bin consistently yielded best performance.
This variant was also successful in optimizing the multimodal
and separable benchmarks. DE/rand/1/bin and DE/rand/2/dir
provided performances of similar quality on this class of func-
tions. However, on multimodal and non-separable functions
DE/rand/2/dir remained most competitive and slightly faster
to converge to the global optimum.

G. DE and the Contemporary EAs: Conceptual Similarities
and Differences

In this section, we briefly discuss how DE relates to
and differs from the contemporary EAs for real parameter
optimization. Following the convention of ES, we shall use
µ to indicate the number of parent vectors and λ (≥ µ) to
denote the size of the child population.

1) Mutation: In the context of GAs and EAs, mutation is
treated as a random change of some parameter. Real valued
EAs typically simulate the effects of mutation with additive
increments that are randomly generated by a predefined and
fixed probability density function (PDF). DE differs markedly
from algorithms like ES and EP in consideration of the fact
that it mutates the base vectors (secondary parents) with scaled
population-derived difference vectors. As generations pass,
these differences tend to adapt to the natural scaling of the
problem. For example, if the population becomes compact
in one variable but remains widely dispersed in another, the
difference vectors sampled from it will be small in the former
variable, yet large in the latter. This automatic adaptation
significantly improves the convergence of the algorithm. In
other words, ES and EP require the specification or adaptation
of absolute step size for each variable over generations while
DE requires only the specification of a single relative scale
factor F for all variables.

Although the difference vector based mutation is believed to
be one of the main strength of DE [73], [92], the idea of using

difference of population members in recombination of EAs
is not completely new. Eshelman and Schaffer [S187] came
up with an idea of a difference-based recombination operator
[called blend crossover operator (BLX)] for real coded GAs,
long back in 1992. Voigt et al. [S188] used a selection
differential defined as the difference between the mean fitness
of the selected parents and the mean fitness of the population
to derive a design criteria for recombination operators and
used it with the fuzzy recombination (FR). In 1995, Deb and
Agrawal [S189] proposed a simulated binary crossover (SBX)
that works with two parent solutions and creates two offspring
solutions to simulate the working principle of the single-point
crossover operator on binary strings. In SBX, the probability
distribution used to create offspring depends on a spread factor
that is defined as ratio of the absolute difference in children
values to that of the parent values. Both BLX and SBX were
analyzed in detail by Deb and Beyer in [8] and [24]. In Kita
et al.’s uniform normal distribution crossover (UNDX) [S190]
and simplex crossover (SPX) [S191], operators generate µ−1
direction vectors for µ − 1 randomly chosen parents by
taking the difference of each parent vector from their mean
vector. Using the direction vectors, in UNDX the probability
of creating the offspring away from the mean vector is
reduced and a maximum probability is assigned at the mean
vector. SPX assigns a uniform probability for creating any
offspring within a restricted region (called the simplex). In Deb
et al.’s parent centric crossover (PCX) operator [S192] for
each offspring one parent is chosen randomly and a difference
vector is calculated between the parent and the mean of the
chosen µ parents. However, the use of scaled difference of
any two distinct population members to perturb a third one,
as done in DE, finds closest resemblance with the reflection
operation of Nelder-Mead polyhedron search [S19] and Price’s
CRS algorithm [S20]. Although due to space limitations, it
is not possible to discuss these two algorithms in sufficient
details, for interested readers we would like to point out that
unlike DE, the Nelder-Mead algorithm restricts the number
of sample vectors (from which the difference vector is to be
generated) to D + 1 (D corresponding to the dimensionality
of the search space). This limitation becomes a drawback for
complicated objective functions that require many more points
to form a clear model of the surface topography. Also both
Nelder-Mead’s and CRS’s reflection operations with difference
vectors are a form of arithmetic recombination, while DE’s
difference vector based perturbation schemes more closely
resemble a mutation operation [74, p. 29]. One of the most
fundamental aspects of DE-type mutation is the fact that vector
perturbations are generated from the NP · (NP − 1) nonzero
difference vectors of the population rather than employing a
predetermined PDF. This leads to one of the main assets of
DE: contour matching, a term coined and explained by Price
et al. in [74]. Contour matching refers to the phenomena
of adaptation of the vector population such that promising
regions of the fitness landscape are investigated automatically
once they are detected. One of the biggest advantages that the
difference vectors afford is that both a mutation step’s size
and its orientation are automatically adapted to the objective
function landscape. Price et al. claim that contour matching

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

Fig. 4. Empirical distributions of candidate trial vectors for three different Cr values. (a) Cr = 0. (b) Cr = 0.5. (c) Cr = 1.0.

also induces an important ingredient besides selection is the
promotion of basin-to-basin transfer, where search points may
move from one basin of attraction, i.e., a local minimum, to
another one.

In PSO also the stochastic attraction toward the personal
best and neighborhood best positions are modeled by scaled
difference vectors. The velocity update formula of PSO has
similarities with the DE/target-to-best/1 scheme [see (8)] that
generates a mutated recombinant.

2) Crossover: Both DE and ES employ crossover to create
a single trial vector, while most GAs recombine two vectors to
produce two trial vectors often by one-point crossover. Note
that EP depends only on mutation to generate offspring and
does not have any crossover operator associated with. One
of the popular crossover techniques for real coded GAs is
the n-point crossover where the offspring vector is randomly
partitioned into (n + 1) blocks such that parameters in ad-
jacent partitions are inherited from different parent vectors.
Studies of n-point crossover [S193] indicate that an even
number of crossover points reduces the representational bias
(dependence of ordering of parameters within a vector) at
the cost of increasing the disruption of parameters that are
closely grouped. As analyzed by Price et al. [92, p. 93]
DE’s exponential crossover employs both one and two point
crossover with an objective of reducing their individual biases.
The representational bias inherent in n-point crossover can be
eliminated if donors are determined by D independent random
trials. This procedure is known as uniform crossover in EA
literature [S3] and this is exactly what DE employs as discrete
recombination or binomial crossover [see (5)] most often.

3) Selection: Selection can be applied to an evolutionary
process in primarily two different stages—first stage being
parent selection to decide which vectors from the current
population will undergo recombination while the second is
survivor selection to choose which vectors from the parent
and offspring populations will survive to the next generation.
Unlike GAs that select parents based on their fitness, both
ES and DE gives all the individuals equal chance for being
selected as parents. In ES, each individual has the same
chance to be selected for mutation (and recombination). In
DE also the base vectors are randomly picked up without
any regard for their fitness values. When only the offspring
vectors are allowed to advance (as done in some simple GAs

[S3]) there is no guarantee that the best-so-far solution will
not be lost. Retaining the best-so-far solution is called elitism
and it plays an important role in bringing the convergence
of the algorithm to the global optimum [S193] in long time
limits. For this reason and because of the speed improvement
it offers, most EAs including DE, EP, and some versions of
ES take into account the current population while determining
the membership of the next generation.

The (µ, λ) ES selects best µ children to become parents
in next generation. Alternatively, the (µ + λ) ES populates the
next generation with best µ vectors from the combined parent
and child populations. The survivor selection scheme of DE
is closer in spirit to the elitist (µ + λ) ES, however, instead of
ranking the combined population, the former employs a one-
to-one competition where each parent vector competes once
only against its own offspring. Evidently, unlike the tourna-
ment selection in EP, DE’s one-to-one selection holds only
NP knock-out competitions between a parent and its offspring
generated through mutation and recombination. Comparing
each trial vector (offspring) to the best performing vectors
at the same index ensures that DE retains the very best-
so-far solution at each index. Parent-offspring competition
has a superior ability to maintain population diversity when
compared with ranking or tournament selection where elites
and their offspring may dominate the population rapidly.

III. Control Parameters of the Differential

Evolution

There are three main control parameters of the DE algo-
rithm: the mutation scale factor F, the crossover constant Cr,
and the population size NP. In this section, we focus on
the effect of each of these parameters on the performance
of DE as well as the state-of-the-art methods for tuning
these parameters. A good volume of research work has been
undertaken so far to improve the ultimate performance of DE
by tuning its control parameters. Storn and Price in [88] have
indicated that a reasonable value for NP could be chosen
between 5-D and 10-D (D being the dimensionality of the
problem), and a good initial choice of F was 0.5. The effective
range of F is usually between 0.4 and 1.

The parameter Cr controls how many parameters in expec-
tation are changed in a population member. For low value

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 11

of Cr, a small number of parameters are changed in each
generation and the stepwise movement tends to be orthogonal
to the current coordinate axes. On the other hand, high values
of Cr (near 1) cause most of the directions of the mutant vector
to be inherited prohibiting the generation of axis orthogonal
steps. This effect has been illustrated in Fig. 4 by showing for
three values of Cr, an empirical distribution of candidate trial
vectors obtained by running DE on a single starting population
of ten vectors for 200 generations with selection disabled.

It is interesting to note at this point that for algorithms
like classic DE (DE/rand/1/bin) performance is rotationally
invariant only when Cr = 1. At that setting, crossover is a
vector-level operation that makes the trial vector a pure mutant,
i.e., �Ui,G = �Xri

1,G
+F ·(�Xri

2,G
− �Xri

3,G
). The location (with respect

to the function’s topography) of mutant trial vectors will not
change under coordinate rotation as long as Cr = 1 and F is a
constant, or sampled from a distribution no more than once per
trial vector. A low Cr value (e.g., 0 or 0.1) results in a search
that changes each direction (or a small subset of directions)
separately. This is an effective strategy for functions that are
separable or decomposable [i.e., f (�X) =

∑D
i=1 fi(xi)]

Gamperle et al. [S26] evaluated different parameter set-
tings for DE on the Sphere, Rosenbrock’s, and Rastrigin’s
functions. Their experimental results revealed that the global
optimum searching capability and the convergence speed are
very sensitive to the choice of control parameters NP, F, and
Cr. Furthermore, a plausible choice of the population size NP
is between 3-D and 8-D, the scaling factor F = 0.6, and the
crossover rate Cr is between [0.3, 0.9]. Recently, the authors
in [85] state that typically 0.4 < F < 0.95 with F = 0.9 can
serve as a good first choice. They also opine that Cr should
lie in (0, 0.2) when the function is separable, while in (0.9, 1)
when the function’s parameters are dependent.

As can be perceived from the literature, several claims
and counter-claims were reported concerning the rules for
choosing the control parameters and these can potentially
confuse engineers, who may try to solve practical problems
with DE. Further, most of these claims lack sufficient ex-
perimental justifications. Some objective functions are very
sensitive to the proper choice of the parameter settings in
DE [S27]. Therefore, researchers naturally started to consider
some techniques such as self-adaptation to automatically find
an optimal set of control parameters for DE [S28], [3],
[10], [48], [76], [84]. Usually self-adaptation is applied to
tune the control parameters F and Cr. Liu and Lampinen
[48] introduced a Fuzzy adaptive differential evolution using
fuzzy logic controllers whose inputs incorporate the relative
function values and individuals of successive generations to
adapt the parameters for the mutation and crossover op-
eration. In this context, Qin et al. [76] came up with a
SaDE algorithm, in which both the trial vector generation
strategies and their associated control parameters F and Cr
are gradually self-adapted by learning from their previous
experiences of generating promising solutions. The parameter
F, in SaDE, is approximated by a normal distribution with
mean value 0.5 and standard deviation 0.3, denoted by N
(0.5, 0.3). A set of F values are randomly sampled from such
normal distribution and applied to each target vector in the

current population. This way, SaDE attempts to maintain both
exploitation (with small F values) and exploration (with large
F values) power throughout the entire evolution process. SaDE
gradually adjusts the range of Cr values for a given problem
according to previous Cr values that have generated trial
vectors successfully entering the next generation. Specifically,
it is assumed that Cr obeys a normal distribution with mean
value Crm and standard deviation Std = 0.1, denoted by
N(Crm, Std), where Crm is initialized as 0.5. The Std should
be set as a small value to guarantee that most Cr values
generated by N(Crm, Std) are between [0, 1], even when Crm

is near 0 or 1. Hence, the value of Std is set as 0.1. Note
that the self-adaptive schemes like SaDE often themselves
have parameters to be adjusted like the standard deviation
in normal distribution. However, self-adaptive DE performs
better than the standard DE because sensitive parameters in
DE are replaced by less sensitive parameters in self-adaptive
DE.

In [3], a fitness-based adaptation has been proposed for F. A
system with two evolving populations has been implemented.
The crossover rate Cr has been fixed to 0.5 after an empirical
study. Unlike Cr, the value of F is adaptively updated at each
generation by means of the following scheme:

F =

⎧
⎨

⎩

max
{

lmin, 1 −
∣
∣
∣ fmax

fmin

∣
∣
∣
}

if
∣
∣
∣ fmax

fmin

∣
∣
∣ < 1

max
{

lmin, 1 −
∣
∣
∣ fmin

fmax

∣
∣
∣
}

otherwise
(12)

where lmin = 0.4 is the lower bound of f, fmin and fmax are
the minimum and maximum objective function values over the
individuals of the populations, obtained in a generation.

Recently, Brest et al. [10] proposed a self-adaptation scheme
for the DE control parameters. They encoded control param-
eters F and Cr into the individual and adjusted them by
introducing two new parameters τ1 and τ2. In their algorithm
(called “jDE”), a set of F and Cr values was assigned to
each individual in the population, augmenting the dimensions
of each vector. The better values of these encoded control
parameters lead to better individuals that in turn, are more
likely to survive and produce offspring and, thus, propagate
these better parameter values. The new control parameters for
the next generation are computed as follows:

Fi,G+1 =
Fl + rand1 ∗ Fu with probabilityτ1

= Fi,G else

}
(13a)

and Cri,G+1 = rand3 with probabilityτ2

= Cri,G else

}
(13b)

where Fl and Fu are the lower and upper limits of F and both
lie in [0, 1]. In [10] and [S231], Brest et al. used τ1 = τ2 = 0.1.
As Fl = 0.1 and Fu = 0.9, the new F takes a value from [0.1,
0.9] while the new Cr takes a value from [0, 1]. As Fi,G+1 and
CRi,G+1 values are obtained before the mutation is performed,
they influence the mutation, crossover, and selection operations
for the new vector �Xi,G+1.

Zaharie [S29] proposed a parameter adaptation strategy for
DE (ADE) based on the idea of controlling the population
diversity, and implemented a multipopulation approach. Fol-
lowing the same line of thinking, Zaharie and Petcu [S30]

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

designed an adaptive Pareto DE algorithm for multiobjective
optimization and also analyzed its parallel implementation.
Abbass [1] self-adapted the crossover rate Cr for multiob-
jective optimization problems, by encoding the value of Cr
into each individual, simultaneously evolved with other search
variables. The scaling factor F was generated for each variable
from a Gaussian distribution N(0, 1). The upper limit of the
scale factor F is empirically taken as 1. Although it does
not necessarily mean that a solution is not possible with F
> 1, however, until date, no benchmark function that was
successfully optimized with DE required F > 1. Zaharie [112]
derived a lower limit of F and the study [112] revealed that
if F is sufficiently small, the population can converge even
in the absence of selection pressure. With a few simplifying
assumptions, Zaharie proved the following relation between
the variance of the original population Px,t at time step G and
the variance of the trial population Pu,t

E(Var(Pu,t)) =

(
2 · F 2 · pCr − 2 · pCr

NP
+

p2
Cr

NP
+ 1

)
· Var(Px,t)

(14)
where pCr is the probability of crossover [Zaharie neglected
the jrand part in (5) and then Cr became the absolute probabil-
ity that a component of the target vector is exchanged with that
of the donor vector; Zaharie used the notation pCr to denote
this probability instead of Cr]. Consequently, the DE control
parameter combinations that satisfy the equation

2.F 2 − 2

NP
+

pCr

NP
= 0 (15)

may be considered as critical since they result in a population
whose variance remains constant except for random fluctu-
ations. Thus, when the selection step is absent, according
to (13), F will display a critical value Fcrit such that the
population variance decreases when F < Fcrit and increases if
F > Fcrit . Solving (13), we have

Fcrit =

√(
1 − pCr

/
2
)

NP
. (16)

Zaharie experimentally confirmed that Fcrit establishes a
lower limit on the value of F in the sense that smaller
values will induce convergence even on a flat objective
function landscape (when all trial vectors are accepted, i.e.,
selection pressure is absent). Omran et al. [65] introduced a
self-adaptive scaling factor parameter F. They generated the
value of Cr for each individual from a normal distribution
N(0.5, 0.15). This approach (called “SDE”) was tested on
four benchmark functions and performed better than other
versions of DE. Besides adapting the control parameters F
or Cr, some researcher also adapted the population size. Teo
[102] proposed DE with self-adaptive population size NP
(abbreviated as DESAP), based on self-adaptive Pareto DE
proposed by Abbas [1].

Mallipeddi and Suganthan [50] empirically investigated the
effect of population size on the quality of solutions and the
computational effort required by DE with a set of five prob-
lems chosen from the test-suite of CEC 2005 Special Session
on Real-Parameter Optimization [95]. In [11], the authors

presented a method for gradually reducing population size of
DE. The method improves the efficiency and robustness of the
algorithm and can be applied to any variant of a DE algorithm.
In [51], Mallipeddi and Suganthan proposed a DE algorithm
with an ensemble of parallel populations, where the number
of function evaluations (FEs) allocated to each population is
self-adapted by learning from their previous experiences in
generating superior solutions. Consequently, a more suitable
population size along with its parameter settings can be deter-
mined adaptively to match different search/evolution phases.

Apart from self-adaptation, frequently F has been made
to vary randomly for improving the performances of DE.
Price et al. [74] defined two new terms: jitter and dither in
context to the randomization of F. The practice of generating
a new value of F for every parameter is called jitter and
it is signified by subscripting F with the parameter index, j.
Alternatively, choosing F anew for each vector, or dithering,
is indicated by subscripting F with the population’s running
index, i. Dithering scales the length of vector differentials
because the same factor, Fi, is applied to all components of a
difference vector. Das et al. used dither in [17] where F was
made to vary randomly between 0.5 and 1 for each vector. In
the same paper, they also suggested decreasing F linearly from
1.0 to 0.5 in their second scheme (called DETVSF: DE with
time varying scale factor). This encourages the individuals to
sample diverse zones of the search space during the early
stages of the search (promoting exploration). During the later
stages a decaying scale factor helps to adjust the movements
of trial solutions finely so that they can explore the interior
of a relatively small space in which the suspected global
optimum lies (thus promoting exploitation). Recently in works
like [S31] and [S32], chaotic sequences are combined with DE
in order to enhance its population diversity and thus to avoid
the state of stagnation, when a standard DE may occasionally
stop proceeding toward the global optimum virtually without
any obvious reasons [41]. That means although the population
has not converged to a local optimum or any other point, the
population is still remaining diverse, and occasionally, even
new individuals may enter the population, but the algorithm
does not progress by finding any better solutions. Chaos theory
[S33] deals with the qualitative study of unstable aperiodic
behavior in deterministic nonlinear dynamical systems. In
chaotic DE the scale factor F is varied over generations by
using the logistic map iterator, which is one of the simplest
dynamic systems evidencing chaotic behavior, in the following
way:

FG = µ · FG−1 · [1 − FG−1]. (17)

IV. Important Variants of DE for Continuous

Single-Objective Optimization

Since its advent in 1995, DE has been attracting the attention
of the researchers from diverse domains of knowledge, all
over the world. This has resulted in a wealth of variants of
the basic DE algorithm. Some of these variants are devised to
tackle specific applications while others are generalized for
numerical optimization. In this section, we shall undertake

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 13

an in-depth discussion of the most prominent DE-variants
that were developed over the past decade and appeared to
be competitive against the existing best-known real parameter
optimizers.

A. Differential Evolution Using Trigonometric Mutation

Fan and Lampinen [25] proposed a trigonometric mutation
operator for DE to speed up its performance. To implement
the scheme, for each target vector, three distinct vectors are
randomly selected from the DE population. Suppose for the
ith target vector �Xi,G, the selected population members are
�Xr1,G, �Xr2,G, and �Xr3,G. The indices r1, r2, and r3 are mutually
exclusive integers randomly chosen from the range [1, NP],
which are also different from the index i. Now three weighting
coefficients are formed according to the following equations:

p/ =
∣
∣f (�Xr1)

∣
∣ +

∣
∣f (�Xr2)

∣
∣ +

∣
∣f (�Xr3)

∣
∣ (18a)

p1 =
∣
∣f (�Xr1)

∣
∣/p/ (18b)

p2 =
∣
∣f (�Xr2)

∣
∣/p/ (18c)

p3 =
∣
∣f (�Xr3)

∣
∣/p/ (18d)

where f () is the function to be minimized. Let � be the
trigonometric mutation rate in the interval (0, 1). Then the
trigonometric mutation scheme may now be expressed as

�Vi,G+1 = (�Xr1 + �Xr2 + �Xr3)
/

3 + (p2 − p1).(�Xr1 − �Xr2)+
(p3 − p2) · (�Xr2 − �Xr3) + (p1 − p3) · (�Xr3 − �Xr1)if rand[0, 1]
≤ �

�Vi,G+1 = �Xr1 + F · (�Xr2 − �Xr3) else.
(19)

Thus, the scheme proposed by Fan et al. used trigonometric
mutation with a probability of � and the mutation scheme of
DE/rand/1 with a probability of (1 − �).

B. Differential Evolution Using Arithmetic Recombination

The binomial crossover scheme, usually employed in most
of the DE variants, creates new combinations of parameters; it
leaves the parameter values themselves unchanged. Binomial
crossover is in spirit same as the discrete recombination used
in conjunction with many EAs. However, in continuous or
arithmetic recombination, the individual components of the
trial vector are expressed as a linear combination of the
components from mutant/donor vector and the target vector.
The common form of the arithmetic recombination between
two vectors �Xr1,G and �Xr2,G adopted by most of the EAs [S3]
may be put as

�Wi,G =
⇀

Xr1,G +ki · (�Xr1,G − �Xr2,G). (20)

The coefficient of combination ki can either be a constant
or a random variable. Generally speaking, if this coefficient
is sampled anew for each vector then the resulting process
is known as line recombination. However, if the combination
coefficient is elected randomly anew for each component
of the vectors to be crossed, then the process is known as

Fig. 5. Domains of the different recombinant vectors generated using dis-
crete, line and random intermediate recombination.

intermediate recombination and may be formalized for the jth
component of the recombinants as

wi,j,G = xr1,j,G + kj · (xr1,j,G − xr2,j,G). (21)

Fig. 5 schematically shows the regions searched by discrete,
line and arithmetic recombination between donor vector �Vi,G

and the target vector �Xi,G when the coefficient of combination
is a uniformly distributed random number between 0 and 1.
The two recombinant vectors occupy the opposite corners of a
hypercube whose remaining corners are the trial vectors �U/

i,G

and �U//
i,G created by discrete recombination. Line recombina-

tion, as its name suggests, searches along the axis connecting
the recombinant vectors, while the intermediate recombination
explores the entire D-dimensional volume contained within the
hypercube. As can be perceived from Fig. 5, both the discrete
as well as the intermediate recombination are not rotationally
invariant processes. If the coordinate system rotates through an
angle, the corners of the hypercube are relocated, which in turn
redefines the area searched by the intermediate recombination.
On the other hand, the line recombination is rotationally
invariant.

To make the recombination process of DE rotationally
invariant, Price proposed a new trial vector generation strat-
egy “DE/current-to-rand/1” [75], which replaces the binomial
crossover operator with the rotationally invariant arithmetic
line recombination operator to generate the trial vector �Ui,G

by linearly combining the target vector �Xi,G and the corre-
sponding donor vector �Vi,G as follows:

�Ui,G = �Xi,G + ki · (�Vi,G − �Xi,G). (22)

Now incorporating (3) in (22) we have

�Ui,G = �Xi,G + ki · (�Xr1,G + F · (�Xr2,G − �Xr3,G) − �Xi,G) (23)

which further simplifies to

�Ui,G = �Xi,G + ki · (�Xr1,G − �Xi,G) + F ′ · (�Xr2,G − �Xr3,G) (24)

where ki is the combination coefficient, which has been
experimentally shown [74], [75] to be effective when it is
chosen with a uniform random distribution from [0, 1] and
F ′ = ki · F is a new constant parameter.

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

Fig. 6. Change of the trial vectors generated through the discrete and random
intermediate recombination due to rotation of the coordinate system. �UR/

i,G
and

�UR//

i,G
indicate the new trial vectors due to discrete recombination in rotated

coordinate system.

C. DE/rand/1/Either-Or Algorithm

Price et al. [74, p. 118] proposed the state-of-the-art
DE/rand/1/either-or algorithm, where the trial vectors that are
pure mutants occur with a probability pF and those that are
pure recombinants occur with a probability 1 − pF . This
variant is shown to yield competitive results against classical
DE-variants rand/1/bin and target-to-best/1/bin in a recent
comparative study [21]. The scheme for trial vector generation
may be outlined as

�Ui,G =
�Xr1,G + F.(�Xr2,G − �Xr3,G) if randi(0, 1) < pF

= �Xr0,G + k.(�Xr1 + �Xr2 − 2. �Xr0) otherwise

}

.

(25)
Price et al. recommended k = 0.5 · (F + 1) as a good choice
for the parameter k for a given F. The DE/rand/1/either-
or algorithm provides a simple way to implement the dual
axis search in the k-F plane (k indicating the combination
coefficient of the arithmetic crossover and F being the scale
factor). The scheme provides efficient solutions for functions
that are best minimized by either mutation-only (pF = 1) or
recombination only (pF = 0), as well as generic functions
that can be solved by randomly interleaving both operations
(0 < pF < 1). Note that pF is a parameter of the algorithm
and it determines the relative importance of the mutation and
arithmetic recombination schemes. Price et al. recommend a
value 0.4 for it. It is interesting to investigate whether it is
possible to self-adapt pF so that the algorithm may be able
to decide the optimal value of this parameter capturing some
special properties of the objective function under test.

D. Opposition-Based Differential Evolution

The concept of opposition-based learning was introduced
by Tizhoosh [S34] and its applications were introduced in
[S34]–[S36]. Rahnamayan et al. [82] have recently proposed
an ODE for faster global search and optimization. The al-
gorithm also finds important applications to the noisy opti-
mization problems [S37]. The conventional DE was enhanced
by utilizing opposition number based optimization concept

in three levels, namely, population initialization, generation
jumping, and local improvement of the population’s best
member. In the absence of a priori information about the
actual optima, an EA usually starts with random guesses.
We can improve our chance of starting with a better solution
by simultaneously checking fitness of the opposite solution.
By doing this, the fitter one (guess or opposite guess) can
be chosen as an initial solution. As explained in [S34],
according to probability theory, 50% of the time a guess may
have lower fitness value than its opposite guess. Therefore,
starting with the fitter of the two guesses has the potential to
accelerate convergence. The same approach can be applied
not only to initial solutions but also continuously to each
solution in the current population. Also, when the population
begins to converge into a smaller neighborhood surrounding
an optimum, taking opposition moves can increase diversity of
the population. In addition, when the population converges, the
magnitude of difference vectors will become smaller. However,
difference vectors generated by using parents that just under-
went an opposite move will be large thereby resulting in larger
perturbation in the mutant vector. Therefore, ODE possesses
superior capability to jump out of local optima basins.

Before discussing the steps of ODE, below we define
opposite numbers.

Definition 1: Let x be a real number defined in the closed

interval [a, b], i.e., x ∈ [a, b]. Then the opposite number

⋃

x of
x may be defined as

⋃

x = a + b − x. (26)

The ODE changes the classical DE using the concept of
opposite numbers at the following three different stages.

1) Opposition based population initialization: first a uni-
formly distributed random population P(NP) is gen-
erated and then the opposite population OP(NP) is
calculated. The kth opposite individual corresponding to
the kth parameter vector of P(NP) is [following (26)],
OPk,j = ak,j + bk,j − Pk,j , where k = 1, 2,, NP

and j = 1, 2,, D, ak,j and bk,j denote the interval
boundaries of j-th parameter of the kth vector, i.e.,
xk,j ∈ [ak,j, bk,j]. Finally, NP fittest individuals are
selected from the set {P(NP), OP(NP)} as the initial
population.

2) Opposition based generation jumping: in this stage, after
each iteration, instead of generating new population by
evolutionary process, the opposite population is calcu-
lated with a predetermined probability Jr(∈ (0, 0.04))
and the NP fittest individuals may be selected from
the current population and the corresponding opposite
population.

3) Opposition based best individual jumping: in this phase,
at first a difference-offspring of the best individual in the
current population is created as

�Xnew best,G = �Xbest,G + F ′ · (�Xr1,G − �Xr2,G)

where r1 and r2 are mutually different random in-
teger indices selected from {1, 2, ..., NP} and F ′

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 15

is a real constant. Next the opposite of offspring is
generated as �Xopp newbest,G. Finally, the current best
member is replaced by the fittest member of the set
{ �Xbest,G, �Xnew best,G, �Xopp newbest,G.

E. DE with Neighborhood-Based Mutation

The efficiency of most EAs depends on their extent of
explorative and exploitative tendencies during the course of
search. Exploitation means the ability of a search algorithm
to use the information already collected and thus to orient
the search more toward the goal while exploration is the
process that allows introduction of new information into the
population. Exploration helps the algorithm to quickly search
the new regions of a large search-volume. Das et al. [21]
proposed two kinds of topological neighborhood models for
DE in order to achieve better balance between its explo-
rative and exploitative tendencies. The resulting algorithm,
called DEGL, was put forward as an improvement over the
DE/target-to-best/1 scheme, which shows a poor performance
on multimodal fitness landscapes, as noted in the studies of
Mezura-Montes et al. [56] and Price et al.. [74, p. 156].

Suppose we have a DE population PG = [�X1,G, �X2,G,,
�XNP,G] at generation G. The vector indices are sorted only
randomly (as obtained during initialization) in order to pre-
serve the diversity of each neighborhood. Now for every vector
�Xi,G we define a neighborhood of radius k (where k is a non-
zero integer from 0 to (NP − 1)

/
2 as the neighborhood size

must be smaller than the population size, i.e., 2k + 1 ≤ NP),
consisting of vectors �Xi−k,G, ..., �Xi,G, ..., �Xi+k,G. We assume
the vectors to be organized on a ring topology with respect to
their indices, such that vectors �XNP,G and �X2,G are the two
immediate neighbors of vector �X1,G. For each member of the
population a local donor vector is created by employing the
best (fittest) vector in the neighborhood of that member and
any two other vectors chosen from the same neighborhood.
The model may be expressed as

�Li,G = �Xi,G + α · (�Xn besti,G − �Xi,G) + β · (�Xp,G − �Xq,G) (27)

where the subscript n besti indicates the best vector in the
neighborhood of �Xi,G and p, q ∈ [i − k, i + k] with p �= q �= i.
Similarly, the global donor vector is created as

�gi,G = �Xi,G + α · (�Xg best,G − �Xi,G) + β · (�Xr1,G − �Xr2,G) (28)

where the subscript g best indicates the best vector in the
entire population at iteration G and r1, r2 ∈ [1, NP] with r1 �=
r2 �= i. α and β are the scaling factors. Now we combine the
local and global donor vectors using a scalar weight w ∈ (0, 1)
to form the actual donor vector of the proposed algorithm

�Vi,G = w · �gi,G + (1 − w) · �Li,G. (29)

Clearly, if w = 1 and in addition α = β = F , the donor
vector generation scheme in (30) reduces to that of DE/target-
to-best/1. Hence, the latter may be considered as a special case
of this more general strategy involving both global and local
neighborhood of each vector synergistically.

Note that DE/target-to-best/1, in its present form, favors
exploitation only, since all the vectors are attracted toward
the same best position found so far by the entire population,
thereby converging faster toward the same point. In DEGL, a
vector’s neighborhood is the set of other parameter vectors that
it is connected to; it considers their experience when updating
its position. The graph of inter-connections is called the
neighborhood structure. Generally, neighborhood connections
are independent of the positions pointed to by the vectors.
In the local model, whenever a parameter vector points to a
good region of the search space, it only directly influences its
immediate neighbors. Its second degree neighbors will only
be influenced after those directly connected to them become
highly successful themselves. Thus, there is a delay in the
information spread through the population regarding the best
position of each neighborhood. Therefore, the attraction to
specific points is weaker, which reduces the chances of getting
trapped in local minima.

F. DE with Adaptive Selection of Mutation Strategies

DE can encompass a number of trial vector generation
strategies, each of which may be effective over certain prob-
lems but poorly perform over the others [26]. In [76], for the
first time Qin et al. proposed a self-adaptive variant of DE
(SaDE), where along with the control parameter values the
trial vector generation strategies are also gradually self-adapted
by learning from their previous experiences in generating
promising solutions. Consequently, it is possible to determine
a more suitable generation strategy along with its parameter
settings adaptively to match different phases of the search
process/evolution.

In SaDE, four effective trial vector generation strategies
namely the DE/rand/1/bin, DE/rand-to-best/2/bin, DE/rand/
2/bin and finally DE/current-to-rand/1 were chosen to con-
stitute a strategy candidate pool. The first three DE-variants
are equipped with binomial type crossover while the last one
uses arithmetic recombination (described in Section IV-B).
In the SaDE algorithm, for each target vector in the current
population, one trial vector generation strategy is selected
from the candidate pool according to the probability learned
from its success rate in generating improved solutions (that
can survive to the next generation) within a certain number
of previous generations, called the learning period (LP). The
selected strategy is subsequently applied to the corresponding
target vector to generate a trial vector. More specifically, at
each generation, the probabilities of choosing each strategy in
the candidate pool are summed to 1. These probabilities are
initially equal (1/K for K total number of strategies in the
pool) and are then gradually adapted during evolution, based
on the Success and Failure Rates [76] over the previous LP
generations. The adaptations of the probabilities take place in
such a fashion that, the larger the success rate for the kth
strategy in the pool within the previous LP generations, the
larger is the probability of applying it to generate trial vectors
at the current generation.

The performance of SaDE was compared with the conven-
tional DE and three adaptive DE-variants: ADE [S29], SDE
[65], and jDE [10] (already discussed in Section III) over a

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

suite of 26 bound constrained numerical optimization prob-
lems, and the authors reported that, SaDE was more effective
in obtaining better quality solutions, with the relatively smaller
standard deviations, and higher success rates.

G. Adaptive DE with DE/Current-to-pbest Mutation

In order to avoid the need for problem specific parameter
tuning and also to improve the convergence characteristics
of DE, an adaptive DE-variant, called JADE, was recently
proposed [118]. The algorithm implements a new mutation
strategy, referred by the authors as DE/current-to-pbest and
uses an optional external archive to track the previous history
of success and failure. It also updates the control parameters in
an adaptive manner with generations. The DE/current-to-pbest
strategy is a less greedy generalization of the DE/current-to-
best/ strategy. Instead of only adopting the best individual in
the DE/current-to-best/1 strategy, the current-to-pbest/1 strat-
egy utilizes the information of other good solutions. Moreover,
the recently explored inferior solutions are also incorporated
in this strategy. The DE/current-to-pbest/1 without external
archive generates the donor vector as

�Vi,G = �Xi,G + Fi · (�Xp

best,G − �Xi,G) + Fi · (�Xri
1,G

− �Xri
2,G

) (30)

where �Xp

best,G is randomly chosen as one of the top 100p%
individuals of the current population with p ∈ (0, 1]. Fi is the
scale factor associated with the ith individual and it is updated
dynamically in each generation. JADE can optionally make
use of an external archive, which stores the recently explored
inferior solutions. Let A denote the archive of inferior solutions
and P denote the current population. Then DE/current-to-
pbest/1 with external archive generates the donor vector as

�Vi,G = �Xi,G + Fi · (�Xp

best,G − �Xi,G) + Fi · (�Xri
1,G

− �X′
ri

2,G
) (31)

where �Xi,G, �Xp

best,G, and �Xri
1,G

are selected from P as before
in (30), but �X′

ri
2,G

is selected at random from the union P
⋃

A,
of the current population and archive. The archive operation is
made very simple to avoid significant computation overhead.
Initially the archive is empty. Then, after each generation, the
parent solutions that fail in the selection process are added
to the archive. If the archive size exceeds a certain threshold,
then some solutions are randomly eliminated from the archive
to keep the archive size fixed.

H. Hybrid DE Algorithms

Hybridisation, in context to metaheuristics, primarily refers
to the process of combining the best features of two or more
algorithms together, to form a new algorithm that is expected
to outperform its ancestors over application-specific or general
benchmark problems. Over the past few years, DE has been
successfully hybridized with several other global optimization
algorithms like PSO [S38], ant colony systems [S39], artificial
immune systems (AIS) [S40], bacterial foraging optimization
algorithm (BFOA) [S41], and simulated annealing (SA) [S42].
Also researchers attempted to embed different local search
techniques in basic DE, to improve its exploitation abilities.
In this section, we shall discuss the hybrid DE algorithms in

two parts: first one will present the synergy between DE and
other global search methods while the second one will review
the blending of DE with local search algorithms.

1) Synergy of DE with Other Global Optimization Algo-
rithms: The concept of particle swarms, although initially
introduced for simulating human social behaviors, has become
very popular these days as an efficient global search and
optimization technique. The first synergy between DE and
PSO was reported by Hendtlass, who proposed a combined
swarm differential evolution algorithm [S43] serving as a
hybrid optimizer based on PSO and DE. In this optimizer,
particle positions are updated only if their offspring have better
fitness. DE acts on the particles in the PSO swarm at specified
intervals. Zang and Xie [119] proposed another popular hybrid
algorithm called DEPSO, in which the original PSO algorithm
and the DE operator alternate at the odd iterations and at the
even iterations. DEPSO achieved better convergence results
than both the original algorithms over certain constrained
optimization problems. Das et al. [16] presented a tightly
coupled synergy of PSO and DE, called particle swarm
optimization with differentially perturbed velocity (PSO-DV).
PSO-DV introduces a differential operator (borrowed from
DE) in the velocity-update scheme of PSO. Further, unlike
conventional PSO, a particle is actually shifted to a new
location only if the new location yields a better fitness value,
i.e., a DE-type selection strategy has been incorporated into
the swarm dynamics.

In [58], Moore and Venayagamoorthy proposed a new
hybrid of DE and PSO, which is similar in spirit to the
algorithm proposed in [119], but the DE and PSO in it are
DE/rand/2/bin and a modified PSO with “Ring” topology
respectively. In [S44], Liu et al. proposed a similar DEPSO
and used it to train artificial neural networks. Like the work
reported in [119], the PSO in this hybrid optimizer is also
based on Gbest model; however, the DE in it is DE/target-
to-best/1/bin. In particular, this hybrid also adopts a chaotic
local search to improve its local exploitation ability. In 2004,
Kannan et al. [S45] proposed a distinctive DEPSO (named C-
PSO in [S45]). The DE algorithm in it is employed to select
three control parameters on-line for PSO. In other words, DE
serves as a meta-optimizer for the optimization of PSOs search
behavior. Recently Hao et al. [S46] constructed a new hybrid
optimizer, where DE and PSO are regarded as two operators
to generate candidate solutions, and they act on the level of
dimensional components of individuals.

In [66], Omran et al. presented two hybrids of DE and PSO.
The first DEPSO (named DEPSO-OES) is somewhat similar
to the hybrid described in [S46]. The DE (DE/rand/1/bin) and
PSO-cf (PSO with constriction factor) in it also alternate in
a stochastic way, but both DE and PSO act on the level of a
whole individual, that is to say, each individual at each genera-
tion has only one updating method (DE or PSO). Besides, the
probability for controlling the selection of updating method
and the scaling factor in DE are dynamic and adaptive. The
second hybrid method combined the bare bones PSO proposed
by Kennedy [S47] and DE in an embedding way. Xue et al.
described another scheme of mixing DE operators with PSO
in [S48].

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 17

Das et al. [19] modified the selection mechanism of the
classical DE family by using the concepts of SA such that
the probability of accepting the inferior solutions may be
dynamically altered with iterations. Biswas et al. [9] proposed
a synergistic coupling of DE and BFOA. Foraging can be
modeled as an optimization process where an animal seeks
to maximize energy per unit time spent for foraging. BFOA
emulates the foraging behavior of a group of Escherichia
coli bacteria living in our intestine. In [9], the computational
chemotaxis step of BFOA, which may also be viewed as a
stochastic gradient search, has been coupled with DE type
mutation and crossing over of the optimization agents leading
to the new hybrid algorithm called chemotactic differential
evolution (CDE). In [S49] and [S50], hybridizations of the
DE with an ant colony optimizer are proposed. In [S51],
He and Han propose a hybrid binary DE based on AIS for
tackling discrete optimization problems. Kaelo and Ali [33]
use the attraction-repulsion concept of electromagnetism-like
algorithm to boost the mutation operation of the original DE.

2) Synergy of DE with Local Search Methods: Local
search algorithms primarily explore a small neighborhood of
a candidate solution in the search space until a locally optimal
point is found or a time bound is elapsed. Noman and Iba [64]
proposed a crossover based adaptive local search (LS) opera-
tion to improve the performance of the classical DE. Typically
in LS, every candidate solution has more than one neighbour
solution; the choice of which one to move to is taken using
only information about the solutions in the neighbourhood of
the current one, hence the name local search. If the choice
of the neighbouring solution is done by taking the one locally
maximizing the criterion, the metaheuristic takes the name hill-
climbing. The authors in [64] proposed an LS, whose length
of the search can be adjusted adaptively using a hill-climbing
heuristic. The incorporation of a crossover-based local search
(XLS) with adaptive length (adaptive length XLS, shortened as
AHCXLS) in DE resulted into a DE-variant called by the au-
thors: DEahcSPX, where SPX is the simplex-based crossover
scheme proposed by Tsutsui et al. for real-coded GAs [S52].

The experimental results reported by Noman and Iba [64]
indicated that DEahcSPX could outperform the classical DE
(DE/rand/1/bin) in terms of convergence speed over a set
of carefully chosen numerical benchmarks [95]. The overall
performance of the adaptive LS scheme was reportedly better
than the other crossover-based LS strategies and the overall
performance of the newly proposed DE algorithm was shown
to be superior to or at least comparable with some other
memetic algorithms (MAs) [S53] selected from literature.

Yang et al. [108] proposed a hybridization of DE with the
neighborhood search, which appears as a main strategy under-
pinning EP [S54]. The resulting algorithm, known as NSDE,
performs mutation by adding a normally distributed random
value to each target-vector component in the following way:

�Vi,G = �Xri
1,G

+

{ �di,G · N(0.5, 0.5) if randi(0, 1) < 0.5
�di,G · δ otherwise

(32)
where �di,G = �Xri

2,G
− �Xri

3,G
is the usual difference vector and

δ denotes a Cauchy random variable with scale parameter

t = 1. Recently Yang et al. [110] used a Self-adaptive NSDE
in the cooperative coevolution framework that is capable of
optimizing large-scale non-separable problems (up to 1000
dimensions). They proposed a random grouping scheme and
adaptive weighting for problem decomposition and coevolu-
tion. Somewhat similar in spirit to this paper is the study
by Yang et al. [S55] on self-adaptive DE with neighbor-
hood search (SaNSDE). SaNSDE incorporates self-adaptation
ideas from the Qin et al’s SaDE [76] and proposes three
self-adaptive strategies: self-adaptive choice of the mutation
strategy between two alternatives, self-adaptation of the scale
factor F, and self-adaptation of the crossover rate Cr. In
contrast to Yang et al.’s works on NSDE and SaNSDE, in the
topological neighborhood-based mutation scheme proposed in
[21], the authors keep the scale factor non-random and use a
ring-shaped neighborhood topology (inspired by PSO [S56]),
defined on the index graph of the parameter vectors, to derive
a local neighborhood-based mutation model. Also instead of
F and Cr, the weight factor that unifies two kinds of mutation
models, have been made self-adaptive in one of the variants
of the algorithms described in [21].

MAs represent one of the recent growing areas of research
in evolutionary computation. The term MA is now widely
used to denote a synergy of evolutionary or any population-
based approach with separate individual learning or local
improvement procedures for problem search. Neri and Tirro-
nen [59] proposed a DE-based MA, which employs within
a self-adaptive scheme, two local search algorithms. The
algorithm was referred by authors as the scale factor local
search differential evolution. These local search algorithms
aim at detecting a value of the scale factor F corresponding
to an offspring with a higher fitness, while the generation
is executed. The local search algorithms thus assist in the
global search and generate offspring with a higher fitness,
which are subsequently supposed to promote the generation
of enhanced solutions within the evolutionary framework. In
[S57], Tirronen et al. proposed a DE-based MA employing
three local search algorithms coordinated by means of fitness
diversity adaptation and a probabilistic scheme for designing
digital filters, which aim at detecting defects of the paper
produced during an industrial process. In [14], Caponio et al.
incorporated PSO and two other LS algorithms (Nelder mead
algorithm and Rosenbrock algorithm) in the framework of DE.
The main idea is that initially PSO should quickly improve
a solution having poor fitness and include it in the DE
population. This solution (called by the authors as “super-fit
individual”) should therefore be the one leading the DE-search.
The two local searchers are invoked within the main DE-search
probabilistically. Although the paper reports improvement of
the gross performance of DE, role of the LS algorithms are
not much clear.

3) DE-Variants for Discrete and Binary Optimization:
Although DE was devised mainly for real parameter optimiza-
tion, over the years researchers have tried to modify it for
tackling binary and discrete optimization problems as well.
In the early days of DE research, Lampinen and Zelinka first
focused in this direction through their conference article in
MENDEL’99 [40]. For handling of integer variables, they

18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

recommended truncating the parameter values for objective
function evaluation such that the population of DE still works
with floating-point values. They pointed out that although such
truncation changes the effective objective function landscape
from DE’s point of view by introducing flat areas to the
fitness landscape, DE’s self-adaptive reproduction scheme is
well able to move across to those flat areas. In the same paper,
Lampinen and Zelinka also came up with a straightforward
approach for optimizing discrete parameters that are limited
to a set of standard values. For example, the thickness of
a steel plate, the diameter of a copper pipe, the size of a
screw, the size of a roller bearing, and so on, are often limited
to a set of commercially available standard sizes. A discrete
value is optimized indirectly so that DE actually works on an
integer value (index) that points to the actual discrete value.
First, the discrete set of available values is arranged to an
ascending sequence, and then an index is assigned to refer each
available value. DE works with these indices by optimizing the
index like any integer variable. However, for objective function
evaluation the actual discrete value pointed by the index is
used.

In [S212], Tasgetiren et al. presented a DE algorithm to
solve the permutation flowshop scheduling problem with the
makespan criterion. DE was a traditional continuous algorithm
and the smallest position value rule was presented to convert
the continuous vector to a discrete job permutation. In [S213],
Onwubolu and Davendra presented a DE variant for solving
scheduling problems. In [S58], Tasgetiren et al. proposed a
discrete differential evolution algorithm (DDE) for the no-wait
flowshop scheduling problem with total flow time criterion. In
the DDE they proposed, a discrete version of DE based on a
insert mutation and PTL crossover operator they offered are
employed. In order to further improve the solution quality,
a variable neighborhood descent local search is embedded
in the DDE algorithm. A DDE algorithm was presented by
Tasgetiren et al. [S214] for the total earliness and tardiness
penalties with a common due date on a single-machine. In
[S214], the same mutation and the PTL crossover operator
were used in the binary context as well as a Bswap local search
is employed to further improve the solution quality. A similar
approach but working on a continuous domain was presented
in Nearchou [S215] to solve the total earliness and tardiness
penalties with a common due date on a single-machine. In
[S215], the conversion of continuous vector was based on
the fact that a value less than or equal to 0.5 in the string
indicates that the corresponding job is early, otherwise the job
is late. In [S216], Al-Anzi and Allahverdi proposed a self-
adaptive differential evolution heuristic for two-stage assembly
scheduling problem to minimize maximum lateness with setup
times. Later, Pan et al. [217] presented a DDE based on the
one in [S58] to solve the permutation flowshop scheduling
problem. Furthermore, Qian et al. [S218] proposed another
DE-based approach to solve the no-wait flowshop scheduling
problem. Tasgetiren et al. [S59] developed a DDE for the
single machine total weighted tardiness problem with sequence
dependent setup times where novel speed-up methods were
presented. In [S219], Pan et al. developed a novel differ-
ential evolution algorithm for bi-criteria no-wait flow shop

scheduling problems. Wang et al. [220] proposed a hybrid
discrete differential evolution algorithm for blocking flow shop
scheduling problems. Another bi-criteria DE was presented by
Qian et al. in [S221] to solve the multiobjective flow shop
scheduling with limited buffers. In [S222], Tasgetiren et al.
proposed an ensemble of discrete differential evolution algo-
rithms for solving the generalized traveling salesman problem.
The novelty in [S222] stems from the fact that the ensemble
of destruction and construction procedures of iterated greedy
algorithm and crossover operators are achieved in parallel
populations. In addition, Damak et al. presented [S223] a
DE variant for solving multimode resource-constrained project
scheduling problems. In [S224] and [S225], DDE was applied
to solve the no-idle permutation flow shop scheduling prob-
lems. Additional discrete and combinatorial applications of DE
algorithms were presented in detail in [S226] and [S227].

Recently, Pampara et al. [67] proposed a new DE variant
that can operate in binary problem spaces without deviating
from the basic search mechanism of the classical DE. The
algorithm was named by its authors as the angle modulated
DE as it employs a trigonometric function as a bit string
generator. The trigonometric generating function used in the
angle modulation function is a composite sinusoidal function,
which may be given as

g(x) = sin(2π(x − a) × b × cos A)) + d (33)

where A = 2π × c × (x − a) and x is a single element
from a set of evenly separated intervals determined by the
required number of bits that need to be generated. The DE is
used to evolve the coefficients to the trigonometric function (a,
b, c, d), thereby allowing a mapping from continuous-space
to binary-space. Instead of evolving the higher-dimensional
binary solution directly, angle modulation is used together
with DE to reduce the complexity of the problem into a
4-D continuous-valued problem. Yuan et al. [S60] used a
discrete binary differential evolution approach to solve the unit
commitment problem.

I. Parallel DE

Exploiting the huge development of computational re-
sources (both software and hardware), parallel computing has
emerged as a form of high-performance computation, where
many calculations are carried out simultaneously, based on the
principle that large problems can often be divided into smaller
ones, which are then solved concurrently (in parallel). Like
other EAs, DE can also be parallelized (mainly for improving
its speed and accuracy on expensive optimization problems)
owing to the fact that each member of the population is
evaluated independently. The only phase in the algorithm that
necessitates communication with other individuals is reproduc-
tion. This phase can also be made parallel for pair of vectors.

The first attempt to distribute DE across a cluster of com-
puters (connected through local area networks) was made by
Lampinen [38]. In his method, the whole population is kept
in a master processor that selects individuals for mating and
sends them to slave processors for performing other opera-
tions. Lampinen’s parallelization scheme could also overcome

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 19

the drawbacks due to the heterogeneous speed of the slave pro-
cessors. Tasoulis et al. [101] proposed a parallel DE scheme
that maps an entire subpopulation to a processor, allowing
different subpopulations to evolve independently toward a so-
lution. To promote information sharing, the best individual of
each subpopulation is allowed to move to other subpopulations
according to a predefined topology. This operation is known
as migration in parallel EA literature [S194] and island model
GAs.

During migration, instead of replacing a randomly chosen
individual from a subpopulation, Kozlov and Samsonov [S195]
suggested to replace the oldest member by the best member
of another subpopulation in the topological neighborhood
of the former subpopulation. Following the work of [101],
Weber et al. [S196] proposed a scale factor (F) inheritance
mechanism in conjunction with distributed DE with ring
topology based migration scheme. In this framework, each
sub-population is characterized by its own scale factor value.
With a probabilistic criterion, that individual displaying the
best performance is migrated to the neighbor population and
replaces a randomly selected individual of the target sub-
population. The target sub-population inherits not only this
individual but also the scale factor if it seems promising at
the current stage of evolution.

V. DE in Complex Environments

This section reviews the extensions of DE for handling mul-
tiobjective, constrained, and large scale optimization problems.
It also surveys the modifications of DE for optimization in
dynamic and uncertain environments.

A. DE for Multiobjective Optimization

Due to the multiple criteria nature of most real-world prob-
lems, multiobjective optimization (MO) problems are ubiqui-
tous, particularly throughout engineering applications. As the
name indicates, multiobjective optimization problems involve
multiple objectives, which should be optimized simultaneously
and that often are in conflict with each other. This results in
a group of alternative solutions, which must be considered
equivalent in the absence of information concerning the rele-
vance of the others. The concepts of dominance and Pareto-
optimality may be presented more formally in the following
way.

Definition 2: Consider without loss of generality the fol-
lowing multiobjective optimization problem with D decision
variables x (parameters) and n objectives y:

Minimize �Y = f (�X) = (f1(x1,, xD),, fn(x1,, xD))
(34)

where �X = [x1,, xD]T ∈ P and �Y = [y1,, yn]T ∈ O

and where �X is called decision (parameter) vector, P is the
parameter space, �Y is the objective vector, and O is the
objective space. A decision vector �A ∈ P is said to dominate
another decision vector �B ∈ P (also written as �A ≺ �B for
minimization) if and only if

∀i ∈ {1,, n} : fi(�A) ≤ fi(�B)
∧ ∃j ∈ {1,, n} : fj(�A) < fj(�B).

(35)

Based on this convention, we can define non-dominated,
Pareto-optimal solutions as follows.

Definition 3: Let �A ∈ P be an arbitrary decision vector.

1) The decision vector �A is said to be non-dominated
regarding the set P ′ ⊆ P if and only if there is no
vector in P ′ which can dominate �A.

2) The decision (parameter) vector �A is called Pareto-
optimal if and only if �A is non-dominated regarding
the whole parameter space P.

Many evolutionary algorithms were formulated by the re-
searchers to tackle multiobjective problems in recent past
[S61], [S62]. Apparently, the first paper that extends DE for
handling MO problems is by Chang et al. [S63] and it bases
itself on the idea of Pareto dominance. DE/rand/1/bin with an
external archive (called “Pareto optimal set” by the authors
and also known as the current non-dominated set) is used to
store the non-dominated solutions obtained during the search.
The approach also incorporates fitness sharing to maintain
diversity. Abbas and Sarkar presented the Pareto differential
evolution (PDE) algorithm [2] for MO problems with continu-
ous variables and achieved very competitive results compared
to other evolution algorithms in MO literature. However, there
is no obvious way to select best crossover and mutation
rates apart from running the algorithm with different rates.
It handles only one (main) population. Reproduction is under-
taken only among non-dominated solutions, and offspring are
placed into the population if they dominate the main parent.
A distance metric relationship is used to maintain diversity. In
[S64], Abbass presented an approach called Memetic Pareto
artificial neural networks. This approach consists of PDE
enhanced with the back-propagation local search algorithm,
in order to speed up convergence.

Kukkonen and Lampinen extended DE/rand/1/bin to solve
multiobjective optimization problems in their approach called
generalized differential evolution (GDE). In the first version
of their approach [S65], the authors modified the original
DE selection operation by introducing Pareto dominance as
a selection criterion while in a second version, called GDE2
[S66] a crowding distance measure was used to select the
best solution. To deal with the shortcomings of GDE2 re-
garding slow convergence, Kukkonen and Lampinen proposed
an improved version called GDE3 [35] (a combination of
the earlier GDE versions and the Pareto-based differential
evolution algorithm [S67]). This version added a growing
population size and nondominated sorting (as in the NSGA-
II [S68]) to improve the distribution of solutions in the final
Pareto front and to decrease the sensitivity of the approach
to its initial parameters. Santana-Quintero and Coello Coello
proposed the ∈-MyDE in [86]. This approach keeps two
populations: the main population (which is used to select the
parents) and a secondary (external) population, in which the
concept of ∈-dominance [S69] is adopted to retain the non-
dominated solutions found and to distribute them in a uniform
way.

In [105], Xue et al. came up with the multiobjective DE
(MODE) in which the best individual is adopted to create the
offspring. A Pareto-based approach is introduced to implement

20 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

the selection of the best individual. If a solution is dominated,
a set of non-dominated individuals can be identified and the
“best” turns out to be any individual (randomly picked) from
this set. Also, the authors adopt (µ+λ) selection, Pareto rank-
ing and crowding distance in order to produce and maintain
well-distributed solutions. Robic and Filipic presented a DE
for multiobjective optimization (called DEMO) in [83]. This
algorithm combines the advantages of DE with the mecha-
nisms of Pareto-based ranking and crowding distance sorting.
DEMO only maintains one population and it is extended when
newly created candidates take part immediately in the creation
of the subsequent candidates. This enables a fast convergence
toward the true Pareto front, while the use of non-dominated
sorting and crowding distance (derived from the NSGA-II
[S68]) of the extended population promotes the uniform spread
of solutions. Iorio and Li [32] proposed the non-dominated
sorting DE (NSDE), which is a simple modification of the
NSGA-II [S68]. The only difference between this approach
and the NSGA-II is in the method for generating new individ-
uals. The NSGA-II uses a real-coded crossover and mutation
operator, but in the NSDE, these operators were replaced with
the operators of differential evolution. NSDE was shown to
outperform NSGA-II on set of rotated MO problems with
strong interdependence of variables.

Some researchers have proposed approaches that use non-
Pareto based multiobjective concepts like combination of
functions, problem transformation, and so on. For example,
Babu and Jehan [6] proposed a DE algorithm for MO prob-
lems, which uses the DE/rand/1/bin variant with two different
mechanisms to solve bi-objective problems: first, incorporating
one objective function as a constraint, and secondly using an
aggregating function. Li and Zhang [S70], [46] proposed a
multiobjective differential evolution algorithm based on de-
composition (MOEA/D-DE) for continuous multiobjective op-
timization problems with variable linkages. The DE/rand/1/bin
scheme is used for generating new trial solutions, and a
neighborhood relationship among all the sub-problems gen-
erated is defined, such that they all have similar optimal
solutions. In [46], they introduce a general class of contin-
uous MO problems with complicated Pareto set (PS) shapes
and reported the superiority of MOEA/D-DE over NSGA-II
with DE type reproduction operators. Summation of normal-
ized objective values with diversified selection approach was
used in [79] without the need for performing non-dominated
sorting.

Some authors also consider approaches where a set of
schemes have been mixed in the DE-based multiobjective al-
gorithm. Examples of such combined techniques are the vector
evaluated DE [70] by Parsopoulos et al and the work of Landa-
Becerra and Coello Coello [42] where they hybridized the
ε-constraint technique [S71] with a single-objective evolution-
ary optimizer: the cultured DE [43]. Recently the concept of
self-adaptive DE has been extended to handle MO problems
in [29], [30], and [116].

B. DE for Constrained Optimization

Most of the real world optimization problems involve find-
ing a solution that not only is optimal, but also satisfies one

or more constraints. A general formulation for constrained
optimization may be given in the following way.

Definition 4: Find �X = [x1, x2, ..., xD]T �X ∈ �D

to minimize: f (�X) (36a)

subjected to

inequality constraints: gi(�X) ≤ 0 i = 1, 2, ..., K (36b)

equality constraints: hj(�X) = 0 j = 1, 2, ..., N (36c)

and boundary constraints: xj,min ≤ xj ≤ xj,max. (36d)

Boundary constraints are very common in real-world ap-
plications, often because parameters are related to physical
components or measures that have natural bounds, e.g., the
resistance of a wire or the mass of an object can never
be negative. In order to tackle boundary constraints, penalty
methods drive solutions from restricted areas through the
action of an objective function-based criterion. DE uses the
following four kinds of penalty method to handle boundary
constraint violation.

1) Brick wall penalty [74]: if any parameter of a vector falls
beyond the pre-defined lower or upper bounds, objective
function value of the vector is made high enough (by a
fixed big number) to guarantee that it never gets selected.

2) Adaptive penalty [90], [91]: similar to brick wall penalty,
but here the increase in the objective function value of
the offender vector may depend on the number of param-
eters violating bound constraints and their magnitudes of
violation.

3) Random reinitialization [40], [74]: replaces a parameter
that exceeds its bounds by a randomly chosen value from
within the allowed range following (1).

4) Bounce-back [74]: relocates the parameter in between
the bound it exceeded and the corresponding parameter
from the base vector.

The first known extension of DE toward the handling of
inequality constrained optimization problems (mainly design
centering) was by R. Storn [93]. He proposed a multimember
DE (called CADE: constraint adaptation with DE, in his paper)
that generates M (M > 1) children for each individual with
three randomly selected distinct individuals in the current
generation, and then only one of the M + 1 individuals
will survive in the next generation. Mezura-Montes et al.
[S72] used the concept also to solve constrained optimization
problems. Zhang et al. [117] mixed the dynamic stochastic
ranking with the multimember DE framework and obtained
promising performance on the 22 benchmarks taken from the
CEC 2006 competition on constrained optimization [47].

Lampinen applied DE to tackle constrained problems [39]
by using Pareto dominance in the constraints space. Mezura-
Montes et al. [S73] proposed to add Deb’s feasibility rules
[S74] into DE to deal with constraints. Kukkonen and
Lampinen [36] presented a generalised DE-based approach
to solve constrained multiobjective optimization problems.

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 21

Zielinsky and Laur [121] also used Deb’s rules [S74] with
DE to solve some constrained optimization problems. Some
researchers have also tried hybrid approaches such as the DE
with gradient-based mutation (where gradients were derived
from the constraint equations) by Takahama and Sakai [97]
and PSO-DE (PESO+) by Muñoz-Zavala et al. [S75]. The ε-
DE algorithm of Takahama and Sakai [97] uses a dynamic
control of the allowable constraint violation specified by
the ε-level and it achieved the first rank in the CEC 2006
competition on the constrained real-parameter optimization
[47]. Tasgetiren and Suganthan presented a multi-populated
DE algorithm [99] to solve real-parameter constrained op-
timization problems. They employed the notion of a near
feasibility threshold in the proposed algorithm to penalize
infeasible solutions. Mezura-Montes et al. [57] proposed a
DE approach that attempts to increase the probability of each
parent to generate a better offspring. This is done by allowing
each solution to generate more than one offspring but using
a different mutation operator, which combines information of
the best solution in the population and also information of the
current parent to find new search directions.

On the other hand, some studies have also been reported re-
garding parameter control in DE for constrained optimization.
Brest et al. [S76] have proposed an adaptive parameter control
for two DE parameters related to the crossover and mutation
operators. Huang et al. [28] used an adaptive mechanism to
select among a set of DE variants to be used for the generation
of new vectors based on a success measure. Moreover, they
also adapted some DE parameters to control the variation
operators. Very recently Mezura-Montes and Palomeque-Ortiz
[S77] presented the adaptive parameter control in the diversity
differential evolution (DDE) [S72] algorithm for constrained
optimization. Three parameters namely the scale factor F, the
crossover rate Cr, and the number of offspring generated by
each target vector NO, are self-adapted by encoding them
within each individual and a fourth parameter called selection
ratio Sr is controlled by a deterministic approach.

Huang et al. [31] presented a cooperative-coevolutionary
approach in conjunction with DE for constrained optimization
problems. In their algorithm first, a special penalty function
is designed to handle the constraints. Second, a co-evolution
model is presented and DE is employed to perform evolu-
tionary search in spaces of both solutions and penalty factors.
Thus, the solutions and penalty factors evolve interactively and
self-adaptively, and both the satisfactory solutions and suitable
penalty factors can be obtained simultaneously. Recently Ali
and Kajee-Bagdadi proposed a local exploration-based DE [4]
for constrained global optimization. They used a restricted
version of the pattern search (PS) method [S78] as their local
technique. Constraint handling methods such as the superiority
of feasible points and the parameter free penalty are also
employed. Recently Santana-Quintero et al. [87] extended the
PDE [1], [2] to handle constrained MO problems by using a
two-stage hybrid DE approach where in the first one, an MO
version of DE is used to generate an initial approximation
of the Pareto front. Then, in the second stage, rough set
theory is used to improve the spread and quality of this initial
approximation.

C. DE for Large-Scale Optimization

In the past two decades, several kinds of nature-inspired
optimization algorithms have been designed and applied to
solve optimization problems. Although these approaches have
shown excellent search abilities when applied to some 30–100
dimensional problems, usually their performance deteriorates
quickly as the dimensionality of search space increases beyond
500. The reasons appear to be two-fold. First, complexity of
the problem usually increases with the size of problem, and a
previously successful search strategy may no longer be capable
of finding the optimal solution. Second, the solution space of
the problem increases exponentially with the problem size,
and a more efficient search strategy is required to explore
all the promising regions in a given time budget. Since the
performance of basic DE schemes also degrade with massive
increase in problem dimensions, some important attempts have
been made by the researchers to make DE suitable for handling
such large-scale optimization problems.

In [62], Noman and Iba proposed fittest individual refine-
ment (FIR), a crossover based local search method for DE,
such that the FIR scheme accelerates DE by enhancing its
search capability through exploration of the neighborhood
of the best solution in successive generations. The proposed
memetic version of DE (augmented by FIR) was shown to
obtain an acceptable solution with a lower number of evalu-
ations particularly for higher dimensional functions. Another
memetic DE for high-dimensional optimization was presented
by Gao and Wang [27], where the stochastic properties of
chaotic system is used to spread the individuals in search
spaces as much as possible and the simplex search method
is employed to speed up the local exploiting and the DE
operators help the algorithm to jump to a better point.

In terms of optimizing high-dimensional problems, cooper-
ative co-evolution (first proposed by Potter and De Jong for
GAs [S79]) with the following divide-and-conquer strategy has
proven an effective choice.

1) Problem decomposition: splitting the object vectors into
some smaller subcomponents.

2) Optimize subcomponents: evolve each subcomponent
with a certain optimizer separately.

3) Cooperative combination: combine all subcomponents
to form the whole system.

In [109], the authors proposed two DE-variants (DECC-
I and DECC-II) that use self-adaptive NSDE (SaNSDE) (a
synergy of the works reported in [108] and [76]) in a co-
operative co-evolutionary framework with novel strategies for
problem decomposition and subcomponents’ cooperation. The
algorithms were tested on a set of widely used benchmarks
scaled up to 500 and 1000 dimensions. An important extension
of the same work for better performance on rotated and non-
separable high-dimensional functions has been reported in
[110] where the authors use random grouping scheme with
adaptive weighting for problem decomposition and coevo-
lution. Some theoretical analysis is also presented in this
paper to show why and how the new framework can be
effective for optimizing large non-separable problems. The
theoretical analysis illustrates how such strategies can help to

22 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

capture variable interdependencies in non-separable problems.
Recently, Parsopoulos [S80] devised a cooperative micro-
DE, which employs small cooperative subpopulations (with
only few individuals) to detect subcomponents of the original
problem’s solution concurrently. The subcomponents are com-
bined through cooperation of subpopulations to build complete
solutions of the problem. Zamuda et al. [S81] proposed a
DE-variant for large scale global optimization, where original
DE is extended by log-normal self-adaptation of its control
parameters and combined with cooperative co-evolution as a
dimension decomposition mechanism.

Among the other approaches, Su presented a surrogate-
assisted DE framework based on Gaussian process for solv-
ing large-scale computationally expensive problems in [S82].
Brest et al. [12] investigated a self-adaptive DE (abbrevi-
ated as jDEdynNP-F) where control parameters F and Cr
are self-adapted and a population-size reduction method is
used. The proposed jDEdynNP-F algorithm also employs a
mechanism for sign changing of F with some probability
based on the fitness values of randomly chosen vectors,
which are multiplied by F in the mutation step of DE. The
algorithm achieved third rank in CEC 2008 special session and
competition on high-dimensional real-parameter optimization
[98] that included non-separable functions like Schwefel’s
problem 2.21, Griewank’s function, and fastfractal “doubledip”
function.

D. DE for Optimization in Dynamic and Uncertain Environ-
ments

In many real world applications, EAs often have to deal
with optimization problems in the presence of a wide range
of uncertainties. In general, there are four ways in which
uncertainty may creep into the computing environment [S22].
First, the fitness function may be noisy. Second, the design
variables and/or the environmental parameters may change
after optimization, and the quality of the obtained optimal
solution should be robust against environmental changes or
deviations from the optimal point. Third, the fitness function
may be approximated, which means that the fitness function
suffers from approximation errors. Finally, the optimum of
the problem to be solved changes its location over time and,
thus, the optimizer should be able to track the optimum
continuously. In all these cases, the EAs should be equipped
with additional measures so that they are still able to work
satisfactorily.

For a noisy problem, a deterministic choice of the scale
factor and the greedy selection methods can be inadequate
and a standard DE can easily fail at handling a noisy fitness
function, as experimentally shown in [34]. Looking at the
problem from a different perspective, the DE employs too
much deterministic search logic for a noisy environment and
therefore tends to stagnate. Das et al. [18] made an attempt to
improve the performance of DE on noisy functions by first
varying the scale factor randomly between 0.5 and 1 and
secondly by incorporating two not-so-greedy selection mech-
anisms (threshold based selection and stochastic selection)
in DE. Liu et al. [49] combined the advantages of the DE
algorithm, the optimal computing budget allocation technique

and simulated annealing (SA) algorithm to devise a robust
hybrid DE method abbreviated as DEOSA) that can work well
in noisy environments.

Mendes and Mohais presented DynDE [54]—a multi-
population DE algorithm, developed specifically to optimize
slowly time-varying objective functions. DynDE does not need
any parameter control strategy for the F or Cr. The main
components in DynDE are as follows.

1) Usage of several populations in parallel.
2) Usage of uniform dither for F? [0, 1] as well as Cr ∈

[0, 1].
3) To maintain diversity of the population based on two

approaches.
a) Reinitialization of a population if the best indi-

vidual of a population gets too close to the best
individual of another population. The population
with the absolute best individual is kept while the
other one is reinitialized. This way the various
populations are prevented from merging.

b) Randomization of one or more population vectors
by adding a random deviation to the components.

Experimentally, the authors show that this new algorithm
is capable of efficiently solving the moving peaks benchmark
described by Branke [S83]. Very recently Brest et al. [13]
investigated a self-adaptive DE algorithm (jDE) where F and
Cr control parameters are self-adapted and a multi-population
method with aging mechanism is used to handle dynamic
fitness landscapes. This algorithm achieved the first rank in
the Competition on “Evolutionary Computation in Dynamic
and Uncertain Environments” in CEC2009 [45]. Angira and
Santosh [5] presented a trigonometric differential evolution
algorithm based on Fan and Lampinen’s trigonometric muta-
tion scheme [25] for solving dynamic optimization problems
encountered in chemical engineering.

E. DE for Multimodal Optimization and Niching

Many practical objective functions are highly multimodal
and likely to have several high quality global and/or local
solutions. Often, it is desirable to identify as many of these
solutions as possible so that the most appropriate solution can
be chosen. In order to identify many solutions of a multimodal
optimization problem, several “niching” techniques have been
developed. A niching method empowers an EA to maintain
multiple groups within a single population in order to locate
different optima. The niching techniques include crowding
[103], fitness sharing [S203], [S209], clearing [S207], re-
stricted tournament selection [81], [S204], and speciation
[S205], [S208].

The crowding method [S206] allows competition for limited
resources among similar individuals, i.e., within each niche.
Generally, the similarity is measured using distance between
individuals. The method compares an offspring with some
randomly sampled individuals from the current population.
The most similar individual will be replaced if the offspring
is superior. Thomsen extended DE with a crowding scheme
named as crowding DE (CDE) [103] to solve multimodal
optimization problems. In CDE, when an offspring is gener-
ated, it will only compete with the most similar (measured by

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 23

Euclidean distance) individual in the population. The offspring
will replace this individual if it has a better fitness value.

The fitness sharing method [S203], [S209] divides the
population into different subgroups according to parameter
space similarity of the individuals. An individual must share
its information with other individuals within the same niche.
The shared fitness for ith individual can be represented by
using the following equation:

fshared(i) =
foriginal(i)
N∑

j=1
sh(dij)

(37)

where the sharing function is calculated as

sh(dij) =

⎧
⎨

⎩
1 −

(
dij

σshare

)α

if dij < σshare

0 otherwise

and dij is the distance between individuals i and j, σshare is the
sharing radius, N is the population size and α is a constant
called sharing level. Thomsen integrated the fitness sharing
concept with DE to form the sharing DE [103].

The restricted tournament selection (RTS) method uses
tournament selection for multimodal optimization [S204].
The algorithm chooses a random sample of w (window
size) individuals from the population and determines the
nearest one to the offspring, by using either Euclidean (for
real variables) or Hamming (for binary variables) distance
measure. The nearest member within the w individuals will
compete with the offspring and the one with higher fitness
will survive in the next generation. The RTS was implemented
with an ensemble of two different window sizes in [81] using
the DE as the search method.

VI. Analytical Studies on DE

Theoretical and empirical analyses of the properties of
evolutionary algorithms are very important to understand their
search behaviors and to develop more efficient algorithms
[S84]. Compared to the plethora of works concerning the
empirical study of parameter selection and tuning process in
DE, not much research has so far been devoted to theoretically
analyze the search mechanism and convergence properties of
DE and this area remains largely open to prospective future
research. Below, we discuss some of the analytical results so
far obtained on DE.

A. Population Variance and Explorative Power of DE

Some significant theoretical results on DE were first re-
ported in [111] and then extended in [112] and [113] by
Zaharie, where she theoretically analyzed the influence of the
variation operators (mutation and recombination) and their
parameters on the expected population variance. In [111],
Zaharie showed that the expected population variance (after
applying mutation and recombination, but without selection)
of DE is greater than that of the ES algorithm analyzed in
[S85]. This finding could explain to some extent the excellent
performance of DE on certain test functions. In [114], Zaharie
analyzed the impact on the expected population mean and vari-
ance of several variants of mutation and crossover operators

used in DE algorithms. As a consequence of this analysis, she
proposed a simple variance-based mutation operator without
using differences but has the same impact on the population
variance as classical DE operators proposed. She also pre-
sented a preliminary analysis of the distribution probability
of the population in the case of a DE algorithm with binary
encoding.

B. Role of Crossover in DE

Very recently in [115], the influence of the crossover rate
on the distribution of the number of mutated components
and on the probability for a component to be taken from the
mutant vector (mutation probability) is theoretically analyzed
for several variants of crossover, including classical binomial
and exponential strategies in DE. For each crossover variant
the relationship between the crossover rate and the mutation
probability is identified and its impact on the choice and adap-
tation of control parameters is analyzed both theoretically and
numerically. With numerical experiments, the author illustrates
the fact that the difference between binomial and exponential
crossover variants is mainly due to different distributions of
the number of mutated components. On the other hand, the
behavior of exponential crossover variants was found to be
more sensitive to the problem size than the behavior of variants
based on binomial crossover.

C. Evolutionary Search-Dynamics in DE

The first theoretical studies on the evolutionary search-
dynamics of DE were carried out by Dasgupta et al. in
[22] and [23]. The authors proposed a simple mathematical
model of the underlying evolutionary dynamics of a 1-D
DE-population (evolving with the DE/rand/1/bin algorithm)
[22]. The model was based on the fact that DE perturbs
each dimension separately and if a D-dimensional objective
function is separable, this function can be optimized in a
sequence of D 1-D optimization processes. The model reveals
that the fundamental dynamics of each search-agent (1-D
parameter vector) in DE employs the gradient-descent type
search strategy (although it uses no analytical expression for
the gradient itself), with a learning rate parameter that depends
on control parameters like scale factor F and crossover rate
Cr of DE. It is due to the gradient descent type search
strategy, that DE converges much faster than some variants
of GA or PSO over uni-modal benchmarks [104]. The sta-
bility and convergence-behavior of the proposed dynamics
was analyzed in the light of Lyapunov’s stability theorems
very near to the isolated equilibrium points during the final
stages of the search in [23] and the rate of convergence on
smooth uni-modal functions were found to largely depend
on Cr. However, the analysis undertaken in [22] and [23]
appeared to be of very limited scope from a practical point
of view, as the authors considered a 1-D fitness landscape.
Generalizing it for multi-dimensional search space can be
a challenging future research work. Also proving the prob-
abilistic convergence of DE on even very simple objective
functions is still an open problem for the theorists working
with EAs.

24 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

D. Timing Complexity of DE

Runtime-complexity analysis of the population-based
stochastic search techniques like DE is a critical issue by
its own right. In [120], Zielinski et al. first investigated the
runtime complexity of DE for various stopping criteria, both
theoretically and empirically. The authors [120] pointed out
that in each generation of DE a loop over NP is conducted,
containing a loop over D. Since the mutation and crossover
operations are performed at the component level for each DE
vector, the number of fundamental operations in DE/rand/1/bin
is proportional to the total number of loops conducted until
the termination of the algorithm. Thus, if the algorithm is
stopped after a fixed number of generations Gmax, then the
runtime complexity is O(NP ·D ·Gmax). Moreover the authors
also inferred that maximum distance criterion MaxDist yields
best overall performance for the DE algorithm. Note that this
criteria stops the execution of the algorithms if the maximum
distance from every vector to the best population member is
below a given threshold m (say).

E. Convergence of Multiobjective DE

Recently, Xue et al. [106] performed the mathematical
modeling and convergence analysis of continuous multiob-
jective differential evolution under certain simplifying as-
sumptions. The authors investigated the population evolution
of the MODE with only reproduction operators, i.e., the
differential mutation and crossover and assuming that that
the DE-population is initialized by sampling from a Gaussian
distribution with given mean and standard deviation. Using
simple mathematics, they prove that the initial population P0

is Gaussian distributed and contains the Pareto optimal set �∗,
the subsequent populations generated by the MODE without
selection are also Gaussian distributed and the population
mean converges to the center of the Pareto optimal set �∗,
i.e., if �XG be a solution vector belonging to the population
PG at generation G, then

lim
G→∞

E(�XG) = �X∗ (38)

where �X∗ is a random solution uniformly distributed on the
probability support defined by �∗. The works were extended
in [107] by modeling a discrete version of MODE, D-MODE,
in the framework of Markov processes and the corresponding
convergence properties were developed. However, in most
practical situations with finite population size, the optimal
solutions will not be present in the initial population. The
exploration of MODE would identify the global optimal solu-
tion during the evolutionary process and the selection operator
would keep those optimal solutions found in the evolution.
Mathematical analysis of convergence under such situations is
yet to be developed.

VII. Engineering Applications of DE

Due to the rapidly growing popularity of DE as a simple
and robust optimizer, researchers from several domains of
science and engineering have been applying DE to solve op-
timization problems arising in their own fields. The literature

on engineering applications of DE is huge and multifaceted.
An internet search reveals that the number of DE research
articles indexed in SCI database over the span of 2007–
July 2009 is 3964 and out of these, there are more than
thousands of application papers in diverse areas. For the sake
of space economy, in Tables I and II we summarize only the
major applications, where DE has been employed to solve the
optimization problem, along with the type of the DE used, and
the major publications associated with the application.

A keen observation of Tables I and II reveals that prac-
titioners mostly prefer to use the classical DE schemes like
DE/rand/1/bin, DE/target-to-best/1/bin, and so on for solving
domain-specific problems. More research is necessary in order
to investigate the applicability of the most state-of-the-art
DE-variants (like SaDE [76], DEGL [21], and ODE [82])
outlined in Section IV for obtaining improved performances
on practical problems. Specific applications may bear some
properties that make it worthwhile revisiting or extending DE
so that the optimization matches the problem in the best
possible way. Generally any knowledge about the problem
should be incorporated into the optimization method and/or
the objective function in order to make it more efficient. The
interested readers are redirected to appropriate references for
details of the applications wherever necessary. Elaborations on
some of the applications cited above are available in [71] and
[78].

VIII. Drawbacks of DE

Like all other metaheuristics, DE also has some drawbacks
which we must take a look at before proceeding to the
discussion on future research directions with DE.

Some of the recent publications [85], [S179] indicate that
DE faces significant difficulty on functions that are not linearly
separable and can be outperformed by CMA-ES. As pointed
out by Sutton et al. [96], on such functions, DE must rely pri-
marily on its differential mutation procedure, which, unlike its
recombination strategy (with Cr < 1), is rotationally invariant.
In [96], the authors also conjecture that this mutation strategy
lacks sufficient selection pressure when appointing target and
donor vectors to have satisfactory exploitative power on non-
separable functions. The authors also propose a rank-based
parent selection scheme to impose bias on the selection step,
so that DE may also learn distribution information from elite
individuals in the population and can thus sample the local
topology of the fitness landscape better. However, they ended
up with the opinion that much more research is necessary in
this area to make DE sufficiently robust against the strong
interdependency of the search variables. Experimenting with
different selection procedures that may increase the genera-
tional selective pressure between parents and offspring may
also serve as another avenue of future work.

In [44], Langdon and Poli made an attempt to evolve certain
fitness landscapes with GP in order to demonstrate the benefits
and weaknesses of a few population-based metaheuristics like
PSO, DE, and CMA-ES. They pointed out that some problem
landscapes may deceive DE such that it will get stuck in local
optima most of the time; however, over similar landscapes

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 25

PSO will always find the global optima correctly within a
maximum time-bound. The authors also indicated that DE
sometimes has a limited ability to move its population large
distances across the search space if the population is clustered
in a limited portion of it. Indeed, in [S180, p. 20], the authors
noted that the performance of DE deteriorates on the spiral
“long path problem.” The work in [44] also identified some
landscape in which DE is outperformed by CMA-ES and
a non-random gradient search based on Newton-Raphson’s
method (abbreviated as N-R in [S180]). A good amount of
future research is needed to remove these drawbacks of DE.
Also the most effective DE-variants developed so far should
be investigated with the problem evolution methodology of
Langdon and Poli, to identify their specific weak points over
different function surfaces.

IX. Potential Future Research Directions with

DE

Although during the last ten years, research on and with
DE has reached an impressive state, there are still many open
problems and new application areas are continually emerging
for the algorithm. Below, we unfold some important future
directions of research in the area of DE.

1) Like many other EAs, the mutation schemes employed
by DE are also additive and the donor (mutant), the
scaled difference, and the target vectors lie in the same
hyper-plane (see Fig. 2). Is it possible to think of a new
rotation-based mutation operation where the base vector
is first rotated in D-dimensional hyperspace and then
perturbed with the scaled difference vector? In this case
the rotation will be accomplished by pre-multiplying the
base vector with a D× D linear transformation matrix
Q and the donor vector will be formed as

�Vi,G = Q. �Xri
1,G

+ F · (�Xri
2,G

− �Xri
3,G

).

Consider a parameter vector �Xi,G with each xj,i,G ∈
[−a, a] (say) for j = 1, 2. . . D. Then as per Section
IV-D, each component of the opposite vector �XO

i,G is
formed as xO

j,i,G = (−a + a) − xj,i,G = −xj,i,G and thus
�XO

i,G = −�Xi,G. Evidently, for symmetric search intervals,
generation of an opposite vector amounts to rotating the
actual vector by 180°. This technique has been used
in ODE to improve the performance of DE. Hence,
we propose to generalize this concept, i.e., rotating the
mutant vectors at different angles, along with suitable
self-adaptation schemes for the rotation matrix Q to
improve the explorative power and thus efficiency of
DE to a large extent.

2) The effectiveness of conventional DE in solving a nu-
merical optimization problem depends on the selected
mutation strategy and its associated parameter values.
However, different optimization problems require differ-
ent mutation strategies with different parameter values
depending on the nature of problem (unimodal and
multimodal) and available computation resources. In
addition, to solve a specific problem, different mutation

strategies with different parameter settings may be better
during different stages of the evolution than a single
mutation strategy with unique parameter settings as in
the conventional DE.
In the area of machine learning the concept of combining
classifiers in an ensemble [S197] is employed to improve
the overall classification performance. These classifiers
could be based on a variety of classification methodolo-
gies. Similar concept was used [53] in conjunction with
DE by forming an ensemble of mutation strategies and
parameter values where a pool of mutation strategies,
along with a pool of values corresponding to each
associated parameter competes to produce successful
offspring population. The candidate pool of mutation
strategies and parameters should be restrictive to avoid
the unfavorable influences of less effective mutation
strategies and parameters. The mutation strategies or the
parameters present in a pool should have diverse char-
acteristics, so that they can exhibit distinct performance
characteristics during different stages of the evolution,
when dealing with a particular problem. This approach
differs from SaDE as the latter adapts the parameter
values slowly while the ensemble approach allows the
parameters to jump to any appropriate value. This en-
semble approach can be investigated further with en-
hanced mutation strategies and with different crossover
approaches to solve different problem scenarios.

3) Future research may focus on integrating the opposition-
number based initialization and generation jumping with
self-adaptive DE variants like SaDE for improving the
performance of the later. DEGL [21] puts forward the
concept of topological neighborhood (ring shaped) of
the population members for devising a local mutation
scheme. The effect of various neighborhood topologies
(star-shaped, wheel-shaped, fully connected, and so on)
on the performance of DEGL should be investigated in
future. Integrating DEGL in ensemble of DE schemes
[S210], [52], [80], [100] should also be studied in the
future.

4) Unlike the significant advancement made in the theo-
retical understanding of GAs, ES, and EP (see [S84],
[S174]–[S176]) analysis of DE family of algorithms has
still not made a considerable progress. Especially an
investigation of the probabilistic convergence properties
of DE even on some very simple objective functions
remains largely an open problem so far. Concepts like
drift analysis, martingale theory [S177] and stochastic
Lyapunov energy functions [S178] that have already
been applied to the convergence analysis of other real
coded EAs may also be investigated in context to DE.

5) Sutton et al. conjectured in [96] that over DE’s weak
selective pressure (due to unbiased selection of parents
or target vectors) may result in inefficient exploitation
when relying on differential mutation, especially on the
rotated optimization problems. The authors proposed a
rank-based parent selection scheme. It is obtained by
sorting the population by fitness and then drawing the
indices for base vector and other vectors that constitute

26 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

TABLE I

Summary of Applications of DE to Engineering Optimization Problems

Sub Areas and Details Types of DE Applied and References
Electrical Power Systems
Economic dispatch

Optimal power flow

Power system planning,
generation expansion
planning

Capacitor placement

Distribution systems’
network reconfiguration

Power filter, power system
stabilizer

Chaotic DE [S31], hybrid DE with acceleration and migration [S87],
DE/rand/1/bin [S88], hybrid DE with improved constraint handling [S89],
variable scaling hybrid DE [S90]

DE/target-to-best/1/bin [S91], cooperative co-evolutionary DE [S92],
DE/rand/1/bin with non-dominated sorting [S93], conventional DE/rand/1/bin
[S94], [S96], DE with random localization [S95].

Modified DE with fitness sharing [S97], conventional DE/rand/1/bin [S98],
comparison of 10 DE strategies of Storn and Price [S99], robust searching hybird
DE [S100]

Hybrid of ant system and DE [S49]

Hybrid DE with variable scale factor [S101], mixed integer hybrid DE
[S185].

Hybrid DE with acceleration and migration operators [S102], DE/target-
to-best/1/bin [S103], hybrid of DE with ant systems [S104]

Electromagnetism, Propagation, and Microwave Engineering
Capacitive voltage divider

Electromagnetic inverse
scattering

Design of circular waveguide
mode converters

Parameter estimation
and property analysis
for electromagnetic devices,
materials, and machines

Electromagnetic imaging

Antenna array design

MODE and NSDE [S105]

DE/rand/1/bin [S106], conventional DE with individuals in groups [S107],
dynamic DE [77]

DE/rand/1/bin [S108]

DE/rand/1/bin [S109]–[S111], [S113], DE/target-to-best/1/bin [S112]

Conventional DE/rand/1/bin [S114], [S115], DE/best/1/bin [S116]

Multimember DE (see [93] for details) [S117], hybrid real/integer-coded DE
[S118], DE/rand/1/bin [S119], [S120], modified DE with refreshing distribution
operator and fittest individual refinement operator [S121], DE/best/1/bin [S122],
MOEA/D-DE [68], [69]

Control Systems and Robotics
System identification

Optimal control problems

Controller design and
tuning

Aircraft control

Nonlinear system control

Simultaneous localization
and modeling problem

Robot motion planning
and navigation

Cartesian robot control

Multi-sensor data fusion

Conventional DE/rand/1/bin [S123]–[S126]

DE/rand/1/bin and DE/best/2/bin [S127], modified DE with adjustable control
weight gradient methods [S128].

Self adaptive DE [S129], DE/rand/1 with arithmetic crossover [S130],
DE/rand/1/bin with random scale factor and time-varying Cr [S131].

Hybrid DE with downhill simplex local optimization [55].

Hybrid DE with convex mutation [15].

DE/rand/1/bin [S132], [S133]

DE/rand/1/bin [S134], [S135]

Memetic compact DE [61]

DE/best/2/bin [S136]

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 27

TABLE II

Summary of Applications of DE to Engineering Optimization Problems (Continued from Table I)

Sub Areas and Details Types of DE Applied and References
Bioinformatics
Gene regulatory networks

Micro-array data analysis

Protein folding

Bioprocess optimization

DE with adaptive local search (see [22] for details) [63], hybrid of DE
and PSO [S137]

Multiobjective DE-variants (MODE, DEMO) [S138]

DE/rand/1/bin [S139]

DE/rand/1/bin [S140]
Chemical Engineering
Chemical process synthesis
and design

Phase equilibrium and
phase study

Parameter estimation of
chemical process

Modified DE with single array updating [S141], [7], 10 DE-variants
of Storn and Price (see [74], [75]) compared in [S142], [S144],
multiobjective DE [S143], hybrid DE with migration and acceleration
operators [S145].

DE/rand/1/bin [S146].

Hybrid DE with geometric mean mutation [S147], DE/target-to-
best/1/exp [S148].

Pattern Recognition and Image Processing
Data clustering

Pixel clustering and region-
based image segmentation

Feature extraction

Image registration and
enhancement

Image Watermarking

DE/rand/1/bin [S149], DE with random scale factor and time-varying
crossover rate [20], DE with neighborhood-based mutation [S150]

Modified DE with local and global best mutation [S151], DE with
random scale factor and time-varying crossover rate [S152].

DE/rand/1/bin [S153]

DE/rand/1/bin [S154], DE with chaotic local search [S155]

DE/rand/1/bin and DE/target-to-best/1/bin [S156]
Artificial Neural Networks
Training of feed-forward
ANNs

Training of wavelet neural
networks

Training of B-Spline neural
networks

DE/rand/1/bin [S157], [S160], generalization-based DE (GDE) [S158],
DE/target-to-best/1/bin [S159]

DE/rand/1/bin [S161]

DE with chaotic sequence-based adjustment of scale factor F [S162]

Signal Processing
Non-linear τ estimation

Digital filter design

Fractional order signal
processing

Dynamic DE [S163]

DE/rand/1/bin [S164], [S165], DE with random scale factor [S166]

DE/rand/1/bin [S167]

Others
Layout synthesis for MEMS

Engineering design

Manufacturing optimization

Molecular configuration

Urban energy management

Optoelectronics

Chess evaluation function
tuning

Improved DE with stochastic ranking (SR) [S168]

DE/rand/1/bin [S169], multimember constraint adaptive DE [93]

DE/rand/1/bin [S170], hybrid DE with forward/backward transformation
[S171]

Local search-based DE [S172]

Hybrid of DE and CMA-ES [S173]

DE/target-to-best/1/bin [S186]

DE/rand/1/bin [S228]

28 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

the difference vectors from a linear distribution function
[S198], such that the top ranked individual is more likely
to be selected than the one with poorer rank. Since high
selective pressure can often cause rapid loss of diversity
of the population, in order to obtain a better balance
between exploration and exploitation (even when the
parent selection is biased), a time-varying selection
pressure is necessary. One interesting way to achieve
this is to introduce an annealing schedule to the bias
controlling term of the linear distribution function, such
that at the beginning stage of the search the probability
of selecting a top ranked individual is small (thus
favoring exploration) and it gradually grows with the
intensification of the search so that good exploitation can
be achieved during the later stages. Also it is worthy to
investigate the effect of tournament selection instead of
rank-based selection that necessitates the sorting of the
population at each generation.

6) In an EA, exploration is directly connected with en-
abling the algorithm to advance from one optimum to
another. In the EA-literature, a less common exploration
mechanism is saddle crossing [S199], which consists in
gradual change of the position of the whole population
along the saddle that connects two adjacent attraction
basins of local maxima. Saddle crossing usually takes
a few generations and is accompanied with a tempo-
rary decrease of the mean population fitness. Fitness
proportionate selection without elitism is reported to be
the most appropriate to promote saddle crossing, since
is implies relatively soft selection [S199]. DE usually
employs a very hard selection criterion with one-to-one
competition between a parent and its offspring. For this
reason, DE is very sensitive to the choice of the initial
population and may suffer from the premature conver-
gence [94]. A very interesting future research topic may
be to integrate the mutation operator taken from DE with
the non-elitist, fitness proportionate selection, without
crossover that can result in good saddle crossing abilities
of an EA [S200]. This can significantly reduce the risk of
premature convergence, even in the case of unfortunate
population initialization nearby a local optimum with a
large attraction basin.

7) Combinatorial optimization problems deal with discrete
parameters and can be found profusely in diverse do-
mains of engineering. As pointed out in Section IV-H,
DE already achieved some reputation of solving discrete,
binary and mixed-integer problems. However, there is no
good evidence so far that DE is applicable to strict-sense
combinatorial problems, especially when they are heav-
ily constrained. In [74], the authors discussed the topic
of combinatorial problems and they attributed the suc-
cess of DE-based solutions to combinatorial problems to
well-chosen repair mechanisms in the algorithm rather
than DE-mutation. Therefore, proving the applicability
of DE to strict-sense combinatorial problems remains
an open problem so far. Finding a discrete operator that
corresponds to the difference vector in the continuous
domain is also a challenging issue for future research.

Moreover, in discrete DE-variants, it is required that the
combination of a base vector and a difference vector
(or recombination vector) yields a new valid vector. The
validity of the newly generated vector is a big problem
for most of the classical combinatorial problems like the
traveling salesperson problem.

8) Many objective optimization problems [S181], [S182]
typically deal with more than three objective functions.
Many conventional MOEAs applying Pareto optimality
as a ranking metric may perform poorly over a large
number of objective functions. Extending the multiob-
jective variants of DE to solve many-objective problems
remains open as a challenging field of future research
so far.

X. Conclusion

With the increasing complexity of real world optimization
problems, demand for robust, fast, and accurate optimizers is
on the rise among researchers from various fields. DE emerged
as a simple and efficient scheme for global optimization over
continuous spaces more than a decade ago. Over the past few
years, many researchers have contributed to make it a general
and fast optimization method for any kind of objective function
by twisting and tuning the various constituents of DE, i.e.,
initialization, mutation, diversity enhancement, and selection
of DE as well as by the choice of the control variables, even
though the NFL [S25] suggested already that such a cure-all-
optimization algorithm could not exist. Nonetheless the exist-
ing literature clearly indicates that DE exhibits remarkable per-
formance in optimizing a wide variety of multi-dimensional,
multiobjective and multimodal optimization problems.

This paper attempted to provide an overall picture of the
state-of-the-art research on and with DE. Starting with a
comprehensive introduction to the basic steps of the DE
algorithm, it discussed the different schemes of parameter
control and adaptation for DE and then overviewed several
promising variants of the conventional DE. Next it provided
an extensive review of the modifications of DE for tackling
constrained, multiobjective, uncertain, and large-scale opti-
mization problems. It gave a brief overview of various most
significant engineering applications of DE and unfolded a
number of future research directions as well. The content of
the paper indicates the fact that DE will continue to remain
a vibrant and active field of multi-disciplinary research in the
years to come.

References

[1] H. Abbass, “The self-adaptive Pareto differential evolution algorithm,”
in Proc. Congr. Evol. Comput., vol. 1. May 2002, pp. 831–836.

[2] H. A. Abbass and R. Sarker, “The Pareto differential evolution algo-
rithm,” Int. J. Artif. Intell. Tools, vol. 11, no. 4, pp. 531–552, 2002.

[3] M. M. Ali and A. Törn, “Population set based global optimization
algorithms: Some modifications and numerical studies,” Comput. Oper.
Res., vol. 31, no. 10, pp. 1703–1725, 2004.

[4] M. M. Ali and Z. Kajee-Bagdadi, “A local exploration-based differ-
ential evolution algorithm for constrained global optimization,” Appl.
Math. Comput., vol. 208, no. 1, pp. 31–48, Feb. 2009.

[5] R. Angira and A. Santosh, “Optimization of dynamic systems: A
trigonometric differential evolution approach,” Comput. Chem. Eng.,
vol. 31, no. 9, pp. 1055–1063, Sep. 2007.

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 29

[6] B. V. Babu and M. M. L. Jehan, “Differential evolution for multiobjec-
tive optimization,” in Proc. Congr. Evol. Comput., vol. 4. Dec. 2003,
pp. 2696–2703.

[7] B. V. Babu and R. Angira, “Modified differential evolution (MDE) for
optimization of non-linear chemical processes,” Comput. Chem. Eng.,
vol. 30, nos. 6–7, pp. 989–1002, 2006.

[8] H.-G. Beyer and K. Deb, “On self-adapting features in real-parameter
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 5, no. 3, pp.
250–270, Jun. 2001.

[9] A. Biswas, S. Dasgupta, S. Das, and A. Abraham, “A synergy of
differential evolution and bacterial foraging algorithm for global opti-
mization,” Neural Netw. World, vol. 17, no. 6, pp. 607–626, 2007.

[10] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.

[11] J. Brest and M. S. Mauèec, “Population size reduction for the differ-
ential evolution algorithm,” Appl. Intell., vol. 29, no. 3, pp. 228–247,
Dec. 2008.

[12] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer, “High-
dimensional real-parameter optimization using self-adaptive differential
evolution algorithm with population size reduction,” in Proc. IEEE
Congr. Evol. Comput., Jun. 2008, pp. 2032–2039.

[13] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer,
“Dynamic optimization using self-adaptive differential evolution,” in
Proc. IEEE Congr. Evol. Comput., May 2009, pp. 415–422.

[14] A. Caponio, F. Neri, and V. Tirronen, “Super-fit control adaptation in
memetic differential evolution frameworks,” Soft Comput. A Fusion
Found. Methodol. Applicat., vol. 13, no. 8, pp. 811–831, 2009.

[15] C.-H. Chen, C.-J. Lin, and C.-T. Lin, “Nonlinear system control
using adaptive neural fuzzy networks based on a modified differential
evolution,” IEEE Trans. Syst. Man Cybern. Part C, vol. 39, no. 4, pp.
459–473, Jul. 2009.

[16] S. Das, A. Konar, and U. K. Chakraborty, “Improving particle swarm
optimization with differentially perturbed velocity,” in Proc. Genet.
Evol. Comput. Conf., Jun. 2005, pp. 177–184.

[17] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” in Proc. ACM-SIGEVO
GECCO, Jun. 2005, pp. 991–998.

[18] S. Das, A. Konar, and U. Chakraborty, “Improved differential evolution
algorithms for handling noisy optimization problems,” in Proc. IEEE
Congr. Evol. Comput., vol. 2. 2005, pp. 1691–1698.

[19] S. Das, A. Konar, and U. K. Chakraborty, “Annealed differential
evolution,” in Proc. IEEE Congr. Evol. Comput., 2007, pp. 1926–1933.

[20] S. Das, A. Abraham, and A. Konar, “Automatic clustering using an
improved differential evolution algorithm,” IEEE Trans. Syst. Man
Cybern. Part A, vol. 38, no. 1, pp. 218–236, Jan. 2008.

[21] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential
evolution using a neighborhood based mutation operator,” IEEE Trans.
Evol. Comput., vol. 13, no. 3, pp. 526–553, Jun. 2009.

[22] S. Dasgupta, S. Das, A. Biswas, and A. Abraham, “The population
dynamics of differential evolution: A mathematical model,” in Proc.
IEEE Congr. Evol. Comput., Jun. 2008, pp. 1439–1446.

[23] S. Dasgupta, S. Das, A. Biswas, and A. Abraham, “On stability and
convergence of the population-dynamics in differential evolution,” AI
Commun., vol. 22, no. 1, pp. 1–20, 2009.

[24] K. Deb and H.-G. Beyer, “Self-adaptive genetic algorithms with
simulated binary crossover,” Evol. Comput., vol. 9, no. 2, pp. 197–
221, Jun. 2001.

[25] H.-Y. Fan and J. Lampinen, “A trigonometric mutation operation to
differential evolution,” J. Global Optimization, vol. 27, no. 1, pp. 105–
129, 2003.

[26] V. Feoktistov and S. Janaqi, “Generalization of the strategies in
differential evolution,” in Proc. 18th IPDPS, Apr. 2004, p. 165a.

[27] Y. Gao and Y. Wang, “A memetic differential evolutionary algorithm
for high dimensional function spaces optimization,” in Proc. 3rd ICNC
20, vol. 4. Aug. 2007, pp. 188–192.

[28] V. L. Huang, A. K. Qin, and P. N. Suganthan, “Self-adaptive differential
evolution algorithm for constrained real-parameter optimization,” in
Proc. IEEE Congr. Evol. Comput., Jul. 2006, pp. 324–331.

[29] V. L. Huang, A. K. Qin, P. N. Suganthan, and M. F. Tasge-
tiren, “Multiobjective optimization based on self-adaptive differential
evolution algorithm,” in Proc. Congr. Evol. Comput., Sep. 2007,
pp. 3601–3608.

[30] V. L. Huang, S. Z. Zhao, R. Mallipeddi, and P. N. Suganthan, “Multiob-
jective optimization using self-adaptive differential evolution algorithm
(special session and competition on ‘performance assessment of con-

strained/bound constrained multiobjective optimization algorithms’),”
in Proc. Conf. Congr. Evol. Comput., May 2009, pp. 190–194.

[31] F. Huang, L. Wang, and Q. He, “An effective co-evolutionary differen-
tial evolution for constrained optimization,” Appl. Math. Comput., vol.
186, no. 1, pp. 340–356, Mar. 2007.

[32] A. W. Iorio and X. Li, “Solving rotated multiobjective optimization
problems using differential evolution,” in Proc. AI: Adv. Artif. Intell.,
LNCS 3339. 2004, pp. 861–872.

[33] P. Kaelo and M. M. Ali, “Differential evolution algorithms using hybrid
mutation,” Comput. Optimization Applicat., vol. 37, pp. 231–246, Jun.
2007.

[34] T. Krink, B. Filipǐc, and G. B. Fogel, “Noisy optimization problems:
A particular challenge for differential evolution,” in Proc. IEEE Congr.
Evol. Comput., 2004, pp. 332–339.

[35] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step
of generalized differential evolution,” in Proc. IEEE Congr. Evol.
Comput., vol. 1. Sep. 2005, pp. 443–450.

[36] S. Kukkonen and J. Lampinen, “Constrained real-parameter optimiza-
tion with generalized differential evolution,” in Proc. IEEE Congr. Evol.
Comput., Jul. 2006, pp. 911–918.

[37] J. Lampinen, “A bibliography of differential evolution algorithm,”
Lab. Inform. Process., Dept. Inform. Technol., Lappeenranta Univ.
Technol., Lappeenranta, Finland, Tech. Rep., 1999 [Online]. Available:
http://www.lut.fi/∼jlampine/debiblio.htm

[38] J. Lampinen, “Differential evolution: New naturally parallel approach
for engineering design optimization,” in Developments in Computa-
tional Mechanics with High Performance Computing, B. H. V. Topping,
Ed. Edinburgh, U.K.: Civil-Comp Press, 1999, pp. 217–228.

[39] J. Lampinen, “A constraint handling approach for the differential
evolution algorithm,” in Proc. Congr. Evol. Comput., vol. 2. May 2002,
pp. 1468–1473.

[40] J. Lampinen and I. Zelinka, “Mixed integer-discrete-continuous opti-
mization with differential evolution,” in Proc. 5th Int. Mendel Conf.
Soft Comput., Jun. 1999, pp. 71–76.

[41] J. Lampinen and I. Zelinka, “On stagnation of the differential evolution
algorithm,” in Proc. 6th Int. Mendel Conf. Soft Comput., Jun. 2000, pp.
76–83.

[42] R. Landa Becerra and C. A. Coello Coello, “Solving hard multiobjec-
tive optimization problems using ε-constraint with cultured differential
evolution,” in Proc. 9th Int. Conf. Parallel Problem Solving Nature,
LNCS 4193. Sep. 2006, pp. 543–552.

[43] R. Landa Becerra and C. A. Coello Coello, “Cultured differential
evolution for constrained optimization,” Comput. Methods Appl. Mech.
Eng., vol. 195, nos. 33–36, pp. 4303–4322, Jul. 2006.

[44] W. B. Langdon and R. Poli, “Evolving problems to learn about particle
swarm optimizers and other search algorithms,” IEEE Trans. Evol.
Comput., vol. 11, no. 5, pp. 561–578, Oct. 2007.

[45] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G.
Beyer, and P. N. Suganthan, “Benchmark generator for CEC’2009
competition on dynamic optimization,” Univ. Leicester, Leicester, U.K.,
Univ. Birmingham, U.K., Nanyang Technological Univ., Singapore,
Tech. Rep., Sep. 2008.

[46] H. Li and Q. Zhang, “Multiobjective optimization problems with
complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol.
Comput., vol. 13, no. 2, pp. 284–302, Apr. 2009.

[47] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N.
Suganthan, C. A. Coello Coello, and K. Deb, “Problem definitions and
evaluation criteria for the CEC 2006 (special session on constrained
real-parameter optimization),” Nanyang Technol. Univ., Singapore,
Tech. Rep., 2006.

[48] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution
algorithm,” Soft Comput. A Fusion Founda. Methodol. Applicat., vol.
9, no. 6, pp. 448–462, 2005.

[49] B. Liu, X. Zhang, and H. Ma, “Hybrid differential evolution for noisy
optimization,” in Proc. IEEE Congr. Evol. Comput., Jun. 2008, pp.
587–592.

[50] R. Mallipeddi and P. N. Suganthan, “Empirical study on the effect
of population size on differential evolution algorithm,” in Proc. IEEE
Congr. Evol. Comput., Jun. 2008, pp. 3663–3670.

[51] R. Mallipeddi and P. N. Suganthan, “Differential evolution algorithm
with ensemble of populations for global numerical optimization,”
OPSEARCH, vol. 46, no. 2, pp. 184–213, Jun. 2009.

[52] R. Mallipeddi and P. N. Suganthan, “Ensemble of constraint handling
techniques,” IEEE Trans. Evol. Comput., vol. 14, no. 4, pp. 561–579,
Aug. 2010.

[53] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasge-
tiren, “Differential evolution algorithm with ensemble of param-

30 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

eters and mutation strategies,” Appl. Soft Comput., to be publi-
shed.

[54] R. Mendes and A. S. Mohais, “DynDE: A differential evolution for
dynamic optimization problems,” in Proc. IEEE Congr. Evol. Comput.,
vol. 2. 2005, pp. 2808–2815.

[55] P. P. Menon, J. Kim, D. G. Bates, and I. Postlethwaite, “Clearance
of nonlinear flight control laws using hybrid evolutionary optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 689–699, Dec.
2006.

[56] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello,
“A comparative study of differential evolution variants for global
optimization,” in Proc. Genet. Evol. Comput. Conf., 2006, pp. 485–
492.

[57] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello,
“Modified differential evolution for constrained optimization,” in Proc.
IEEE Congr. Evol. Comput., Jul. 2006, pp. 332–339.

[58] P. W. Moore and G. K. Venayagamoorthy, “Evolving digital circuit
using hybrid particle swarm optimization and differential evolution,”
Int. J. Neural Syst., vol. 16, no. 3, pp. 163–177, 2006.

[59] F. Neri and V. Tirronen, “Scale factor local search in differential
evolution,” Memetic Comput., vol. 1, no. 2, pp. 153–171, Jun. 2009.

[60] F. Neri and V. Tirronen, “Recent advances in differential evolution: A
review and experimental analysis,” Artif. Intell. Rev., vol. 33, no. 1, pp.
61–106, Feb. 2010.

[61] F. Neri and E. Mininno, “Memetic compact differential evolution for
Cartesian robot control,” IEEE Comput. Intell. Mag., vol. 5, no. 2, pp.
54–65, May 2010.

[62] N. Noman and H. Iba, “Enhancing differential evolution performance
with local search for high dimensional function optimization,” in Proc.
Conf. Genet. Evol. Comput., Jun. 2005, pp. 967–974.

[63] N. Noman and H. Iba, “Inferring gene regulatory networks using
differential evolution with local search heuristics,” IEEE/ACM Trans.
Comput. Biol. Bioinform., vol. 4, no. 4, pp. 634–647, Oct. 2007.

[64] N. Noman and H. Iba, “Accelerating differential evolution using an
adaptive local search,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp.
107–125, Feb. 2008.

[65] M. G. H. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive
differential evolution,” in Proc. Comput. Intell. Security, Lecture Notes
in Artificial Intelligence 3801. 2005, pp. 192–199.

[66] M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “Bare bones
differential evolution,” Eur. J. Oper. Res., vol. 196, no. 1, pp. 128–
139, Jul. 2009.

[67] G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary differential
evolution,” in Proc. IEEE Congr. Evol. Comput., Jul. 2006, pp. 1873–
1879.

[68] S. Pal, Q. Boyang, S. Das, and P. N. Suganthan, “Optimal synthesis of
linear antenna arrays with multiobjective differential evolution,” Prog.
Electromag. Res. PIERB, vol. 21, pp. 87–111, 2010.

[69] S. Pal, S. Das, A. Basak, and P. N. Suganthan, “Synthesis of difference
patterns for monopulse antennas with optimal combination of array-size
and number of subarrays: A multiobjective optimization approach,”
Prog. Electromag. Res. PIERB, vol. 21, pp. 257–280, 2010.

[70] K. E. Parsopoulos, D. K. Taoulis, N. G. Pavlidis, V. P. Plagianakos,
and M. N. Vrahatis, “Vector evaluated differential evolution for mul-
tiobjective optimization,” in Proc. Congr. Evol. Comput., vol. 1. Jun.
2004, pp. 204–211.

[71] V. P. Plagianakos, D. K. Tasoulis, and M. N. Vrahatis, “A review
of major application areas of differential evolution,” in Advances
in Differential Evolution, SCI 143, U. K. Chakraborty, Ed. Berlin,
Germany: Springer, 2008, pp. 197–238.

[72] K. V. Price, “Differential evolution vs. the functions of the 2nd ICEO,”
in Proc. IEEE Int. Conf. Evol. Comput., Apr. 1997, pp. 153–157.

[73] K. V. Price and R. Storn, “Differential evolution: A simple evolution
strategy for fast optimization,” Dr. Dobb’s J., vol. 22, no. 4, pp. 18–24,
1997.

[74] K. Price, R. Storn, and J. Lampinen, Differential Evolution—A Practi-
cal Approach to Global Optimization. Berlin, Germany: Springer, 2005.

[75] K. V. Price, “An introduction to differential evolution,” in New Ideas
in Optimization, D. Corne, M. Dorigo, and V. Glover, Eds. London,
U.K.: McGraw-Hill, 1999, pp. 79–108.

[76] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical opti-
mization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417,
Apr. 2009.

[77] A. Qing, “Dynamic differential evolution strategy and applications
in electromagnetic inverse scattering problems,” IEEE Trans. Geosci.
Remote Sensing, vol. 44, no. 1, pp. 116–125, Jan. 2006.

[78] A. Qing, Differential Evolution—Fundamentals and Applications in
Electrical Engineering. New York: Wiley, Sep. 2009.

[79] B. Y. Qu and P. N. Suganthan, “Multiobjective evolutionary algorithms
based on the summation of normalized objectives and diversified
selection,” Inform. Sci., vol. 180, no. 17, pp. 3170–3181, Sep. 2010.

[80] B. Y. Qu and P. N. Suganthan, “Constrained multiobjective optimiza-
tion algorithm with ensemble of constraint handling methods,” Eng.
Optimization, to be published.

[81] B. Y. Qu and P. N. Suganthan, “Novel multimodal problems and
differential evolution with ensemble of restricted tournament selection,”
in Proc. IEEE Congr. Evol. Comput., Jul. 2010, pp. 3480–3486.

[82] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-
based differential evolution,” IEEE Trans. Evol. Comput., vol. 12, no.
1, pp. 64–79, Feb. 2008.

[83] T. Robic and B. Filipic, “DEMO: Differential evolution for multi-
objective optimization,” in Proc. 3rd Int. Conf. Evol. Multi-Criterion
Optimization, LNCS 3410. 2005, pp. 520–533.

[84] J. Rönkkönen and J. Lampinen, “On using normally distributed muta-
tion step length for the differential evolution algorithm,” in Proc. 9th
Int. Conf. Soft Comput. MENDEL, 2003, pp. 11–18.

[85] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real parameter optimiza-
tion with differential evolution,” in Proc. IEEE CEC, vol. 1. 2005, pp.
506–513.

[86] L. V. Santana-Quintero and C. A. Coello Coello, “An algorithm based
on differential evolution for multiobjective problems,” Int. J. Comput.
Intell. Res., vol. 1, no. 2, pp. 151–169, 2005.

[87] L. V. Santana-Quintero, A. G. Hernández-Díaz, J. Molina, C. A.
Coello Coello, and R. Caballero, “DEMORS: A hybrid multiobjective
optimization algorithm using differential evolution and rough sets for
constrained problems,” Comput. Oper. Res., vol. 37, no. 3, pp. 470–480,
Mar. 2010.

[88] R. Storn and K. V. Price, “Differential evolution: A simple and
efficient adaptive scheme for global optimization over continuous
spaces,” ICSI, USA, Tech. Rep. TR-95-012, 1995 [Online]. Available:
http://icsi.berkeley.edu/∼storn/litera.html

[89] R. Storn and K. V. Price, “Minimizing the real functions of the ICEC
1996 contest by differential evolution,” in Proc. IEEE Int. Conf. Evol.
Comput., 1996, pp. 842–844.

[90] R. Storn, “On the usage of differential evolution for function opti-
mization,” in Proc. North Am. Fuzzy Inform. Process. Soc., 1996, pp.
519–523.

[91] R. Storn, “Differential evolution design of an IIR-filter with require-
ments for magnitude and group delay,” in Proc. IEEE Int. Conf. Evol.
Comput., 1996, pp. 268–273.

[92] R. Storn and K. Price, “Differential evolution: A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[93] R. Storn, “System design by constraint adaptation and differential
evolution,” IEEE Trans. Evol. Comput., vol. 3, no. 1, pp. 22–34, Apr.
1999.

[94] R. Storn, “Differential evolution research: Trends and open questions,”
in Advances in Differential Evolution, U. K. Chakraborty, Ed. Berlin,
Germany: Springer, 2008, pp. 1–32.

[95] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the
CEC 2005 special session on real-parameter optimization,” Nanyang
Technol. Univ., Singapore, Tech. Rep., IIT Kanpur, Kanpur, India,
KanGAL Rep. #2005005, May 2005.

[96] A. M. Sutton, M. Lunacek, and L. D. Whitley, “Differential evolution
and non-separability: Using selective pressure to focus search,” in Proc.
9th Annu. Conf. GECCO, Jul. 2007, pp. 1428–1435.

[97] T. Takahama and S. Sakai, “Constrained optimization by the ε

constrained differential evolution with gradient-based mutation and
feasible elites,” in Proc. IEEE Congr. Evol. Comput., Jul. 2006,
pp. 308–315.

[98] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M.
Chen, and Z. Yang, “Benchmark functions for the CEC’2008 special
session and competition on large scale global optimization,” Nature
Inspired Comput. Applicat. Lab., USTC, China, Nanyang Technol.
Univ., Singapore, Tech. Rep., 2007.

[99] M. F. Tasgetiren and P. N. Suganthan, “A multi-populated differential
evolution algorithm for solving constrained optimization problem,” in
Proc. IEEE Congr. Evol. Comput., Jul. 2006, pp. 340–354.

[100] M. F. Tasgetiren, P. N. Suganthan, and Q. K. Pan, “An ensemble of
discrete differential evolution algorithms for solving the generalized
traveling salesman problem,” Appl. Math. Comput., vol. 215, no. 9,
pp. 3356–3368, Jan. 2010.

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 31

[101] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis,
“Parallel differential evolution,” in Proc. Congr. Evol. Comput., 2004,
pp. 2023–2029.

[102] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Comput. A Fusion Found. Methodol. Applicat., vol.
10, no. 8, pp. 673–686, 2006.

[103] R. Thomsen, “Multimodal optimization using crowding-based differen-
tial evolution,” in Proc. IEEE Congr. Evol. Comput., 2004, pp. 1382–
1389.

[104] J. Vesterstrøm and R. A. Thomson, “Comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proc. IEEE Congr. Evol. Comput.,
2004, pp. 1980–1987.

[105] F. Xue, A. C. Sanderson, and R. J. Graves, “Pareto-based multiobjective
differential evolution,” in Proc. Congr. Evol. Comput., vol. 2. 2003, pp.
862–869.

[106] F. Xue, A. C. Sanderson, and R. J. Graves, “Modeling and conver-
gence analysis of a continuous multiobjective differential evolution
algorithm,” in Proc. IEEE Congr. Evol. Comput., vol. 1. Sep. 2005,
pp. 228–235.

[107] F. Xue, A. C. Sanderson, and R. J. Graves, “Multiobjective dif-
ferential evolution: Algorithm, convergence analysis, and applica-
tions,” in Proc. IEEE Congr. Evol. Comput., vol. 1. Sep. 2005,
pp. 743–750.

[108] Z. Yang, J. He, and X. Yao, “Making a difference to differential
evolution,” in Advances in Metaheuristics for Hard Optimization, Z.
Michalewicz and P. Siarry, Eds. Berlin, Germany: Springer, 2007, pp.
415–432.

[109] Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-
dimensional function optimization,” in Proc. IEEE Congr. Evol. Com-
put., Sep. 2007, pp. 3523–3530.

[110] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Inform. Sci., vol. 178, no. 15, pp. 2985–
2999, 2008.

[111] D. Zaharie, “On the explorative power of differential
evolution,” in Proc. 3rd Int. Workshop Symbolic Numerical
Algorithms Scientific Comput., Oct. 2001 [Online]. Available:
http://web.info.uvt.ro/∼dzaharie/online−papers.html

[112] D. Zaharie, “Critical values for the control parameters of differential
evolution algorithms,” in Proc. 8th Int. Mendel Conf. Soft Comput.,
2002, pp. 62–67.

[113] D. Zaharie, “Parameter adaptation in differential evolution by control-
ling the population diversity,” in Proc. 4th Int. Workshop Symbolic
Numeric Algorithms Sci. Comput., 2002, pp. 385–397.

[114] D. Zaharie, “Statistical properties of differential evolution and related
random search algorithms,” in Proc. Int. Conf. Comput. Statist., Aug.
2008, pp. 473–485.

[115] D. Zaharie, “Influence of crossover on the behavior of differential
evolution algorithms,” Appl. Soft Comput., vol. 9, no. 3, pp. 1126–
1138, Jun. 2009.

[116] A. Zamuda, J. Brest, B. Boskovic, and V. Zumer, “Differential
evolution for multiobjective optimization with self adaptation,” in Proc.
Congr. Evol. Comput., Sep. 2007, pp. 3617–3624.

[117] M. Zhang, W. Luo, and X. Wang, “Differential evolution with dynamic
stochastic selection for constrained optimization,” Inform. Sci., vol.
178, no. 15, pp. 3043–3074, Aug. 2008.

[118] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[119] W.-J. Zhang and X.-F. Xie, “DEPSO: Hybrid particle swarm with
differential evolution operator,” in Proc. IEEE Int. Conf. Syst. Man
Cybern., 2003, pp. 3816–3821.

[120] K. Zielinski, D. Peters, and R. Laur, “Run time analysis regarding
stopping criteria for differential evolution and particle swarm
optimization,” in Proc. 1st Int. Conf. Exp./Process/System Mod-
elling/Simulation/Optimization, 2005 [Online]. Available: http://www.
item.uni-bremen.de/research/papers/paper.pdf/Zielinski.Karin/zielinsk-
i05run.pdf

[121] K. Zielinski and R. Laur, “Constrained single-objective optimization
using differential evolution,” in Proc. IEEE Congr. Evol. Comput., Jul.
2006, pp. 927–934.

Swagatam Das (M’10) received the B.E. Tel. E.,
M.E. Tel. E. (control engineering specialization),
and Ph.D. degrees, all from Jadavpur University,
Kolkata, India, in 2003, 2005, and 2009, respec-
tively.

He is currently an Assistant Professor with the
Department of Electronics and Telecommunication
Engineering, Jadavpur University. He has published
more than 100 research articles in peer-reviewed
journals and international conferences. He has co-
authored a research monograph on metaheuristic

clustering techniques published by Springer, Berlin, Germany, in 2009. His
current research interests include evolutionary computing, swarm intelligence,
pattern recognition, bioinformatics, control systems engineering, and digital
signal processing.

Dr. Das serves as an Associate Editor for the Information Sciences Journal
(Elsevier), and as an Editorial Board Member of the International Journal of
Artificial Intelligence and Soft Computing and the International Journal of
Adaptive and Autonomous Communication Systems. He is a Founding Co-
Editor-in-Chief of Swarm and Evolutionary Computation, an international
journal from Elsevier. He has been acting as a Regular Reviewer for
journals like Pattern Recognition, IEEE Transactions on Evolutionary

Computation, IEEE/ACM Transactions on Computational Biology

and Bioinformatics, and IEEE Transactions on SMC Part A and Part B.

Ponnuthurai Nagaratnam Suganthan (M’91–
SM’01) received the B.A. degree, the Postgradu-
ate Certificate, and the M.A. degree in electrical
and information engineering from the University of
Cambridge, Cambridge, U.K., in 1990, 1992, and
1994, respectively, and the Ph.D. degree from the
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore.

He was a Pre-Doctoral Research Assistant with the
Department of Electrical Engineering, University of
Sydney, Sydney, Australia, from 1995 to 1996, and

was a Lecturer with the Department of Computer Science and Electrical
Engineering, University of Queensland, Brisbane, Australia, from 1996 to
1999. Since 1999, he has been with the School of Electrical and Electronic
Engineering, Nanyang Technological University, where he was previously an
Assistant Professor and is currently an Associate Professor. His current re-
search interests include evolutionary computation, pattern recognition, multi-
objective evolutionary algorithms, bioinformatics, applications of evolutionary
computation, and neural networks.

Dr. Suganthan is an Associate Editor of the journals IEEE Transactions

on Evolutionary Computation, Information Sciences, Pattern Recogni-
tion, and the International Journal of Swarm Intelligence Research. He is
a Founding Co-Editor-in-Chief of Swarm and Evolutionary Computation, an
international journal from Elsevier.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

