CONTENTS

5.1.5 Graphical output ... 38
5.2 Preprocessing .. 39
 5.2.1 Loading Data ... 39
 5.2.2 The Current Relation 39
 5.2.3 Working With Attributes 40
 5.2.4 Working With Filters 41
5.3 Classification .. 43
 5.3.1 Selecting a Classifier 43
 5.3.2 Test Options .. 43
 5.3.3 The Class Attribute 44
 5.3.4 Training a Classifier 45
 5.3.5 The Classifier Output Text 45
 5.3.6 The Result List .. 45
5.4 Clustering ... 47
 5.4.1 Selecting a Clusterer 47
 5.4.2 Cluster Modes .. 47
 5.4.3 Ignoring Attributes 47
 5.4.4 Working with Filters 48
 5.4.5 Learning Clusters 48
5.5 Associating .. 49
 5.5.1 Setting Up ... 49
 5.5.2 Learning Associations 49
5.6 Selecting Attributes .. 50
 5.6.1 Searching and Evaluating 50
 5.6.2 Options .. 50
 5.6.3 Performing Selection 50
5.7 Visualizing .. 52
 5.7.1 The scatter plot matrix 52
 5.7.2 Selecting an individual 2D scatter plot 52
 5.7.3 Selecting Instances 53
6 Experimenter ... 55
 6.1 Introduction ... 55
 6.2 Standard Experiments 56
 6.2.1 Simple ... 56
 6.2.1.1 New experiment 56
 6.2.1.2 Results destination 56
 6.2.1.3 Experiment type 58
 6.2.1.4 Datasets ... 60
 6.2.1.5 Iteration control 61
 6.2.1.6 Algorithms 61
 6.2.1.7 Saving the setup 63
 6.2.1.8 Running an Experiment 64
 6.2.2 Advanced ... 65
 6.2.2.1 Defining an Experiment 65
 6.2.2.2 Running an Experiment 68
 6.2.2.3 Changing the Experiment Parameters 70
 6.2.2.4 Other Result Producers 77
 6.3 Cluster Experiments ... 83
 6.4 Remote Experiments .. 86
CONTENTS

6.4.1 Preparation .. 86
6.4.2 Database Server Setup 86
6.4.3 Remote Engine Setup 87
6.4.4 Configuring the Experimenter 88
6.4.5 Multi-core support 89
6.4.6 Troubleshooting 89

6.5 Analysing Results 91
6.5.1 Setup ... 91
6.5.2 Saving the Results 94
6.5.3 Changing the Baseline Scheme 94
6.5.4 Statistical Significance 95
6.5.5 Summary Test 95
6.5.6 Ranking Test .. 96

7 KnowledgeFlow .. 97
7.1 Introduction .. 97
7.2 Features .. 99
7.3 Flow Steps .. 100
 7.3.1 DataSources 100
 7.3.2 DataSinks ... 100
 7.3.3 DataGenerators 100
 7.3.4 Filters .. 100
 7.3.5 Classifiers .. 100
 7.3.6 Clusterers ... 100
 7.3.7 Attribute selection 100
 7.3.8 Evaluation .. 100
 7.3.9 Visualization 101
 7.3.10 Flow ... 102
 7.3.11 Tools ... 102
7.4 Examples ... 104
 7.4.1 Cross-validated J48 104
 7.4.2 Plotting multiple ROC curves 106
 7.4.3 Processing data incrementally 109
7.5 Plugins .. 111
 7.5.1 Flow components 111
 7.5.2 Perspectives 111

8 Workbench ... 113
8.1 Introduction .. 113

9 ArffViewer ... 115
9.1 Menus .. 116
9.2 Editing .. 118

10 Bayesian Network Classifiers 121
10.1 Introduction .. 121
10.2 Local score based structure learning 125
 10.2.1 Local score metrics 125
 10.2.2 Search algorithms 126
10.3 Conditional independence test based structure learning 129
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4 Global score metric based structure learning</td>
<td>131</td>
</tr>
<tr>
<td>10.5 Fixed structure learning</td>
<td>132</td>
</tr>
<tr>
<td>10.6 Distribution learning</td>
<td>132</td>
</tr>
<tr>
<td>10.7 Running from the command line</td>
<td>134</td>
</tr>
<tr>
<td>10.8 Inspecting Bayesian networks</td>
<td>144</td>
</tr>
<tr>
<td>10.9 Bayes Network GUI</td>
<td>147</td>
</tr>
<tr>
<td>10.10 Bayesian nets in the experimenter</td>
<td>159</td>
</tr>
<tr>
<td>10.11 Adding your own Bayesian network learners</td>
<td>159</td>
</tr>
<tr>
<td>10.12 FAQ</td>
<td>161</td>
</tr>
<tr>
<td>10.13 Future development</td>
<td>162</td>
</tr>
</tbody>
</table>

III Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 ARFF</td>
<td>167</td>
</tr>
<tr>
<td>11.1 Overview</td>
<td>167</td>
</tr>
<tr>
<td>11.2 Examples</td>
<td>168</td>
</tr>
<tr>
<td>11.2.1 The ARFF Header Section</td>
<td>168</td>
</tr>
<tr>
<td>11.2.2 The ARFF Data Section</td>
<td>170</td>
</tr>
<tr>
<td>11.3 Sparse ARFF files</td>
<td>171</td>
</tr>
<tr>
<td>11.4 Instance weights in ARFF files</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 XRFF</td>
<td>173</td>
</tr>
<tr>
<td>12.1 File extensions</td>
<td>173</td>
</tr>
<tr>
<td>12.2 Comparison</td>
<td>173</td>
</tr>
<tr>
<td>12.2.1 ARFF</td>
<td>173</td>
</tr>
<tr>
<td>12.2.2 XRFF</td>
<td>174</td>
</tr>
<tr>
<td>12.3 Sparse format</td>
<td>175</td>
</tr>
<tr>
<td>12.4 Compressor</td>
<td>176</td>
</tr>
<tr>
<td>12.5 Useful features</td>
<td>176</td>
</tr>
<tr>
<td>12.5.1 Class attribute specification</td>
<td>176</td>
</tr>
<tr>
<td>12.5.2 Attribute weights</td>
<td>176</td>
</tr>
<tr>
<td>12.5.3 Instance weights</td>
<td>177</td>
</tr>
</tbody>
</table>

13 Converters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>179</td>
</tr>
<tr>
<td>13.2 Usage</td>
<td>180</td>
</tr>
<tr>
<td>13.2.1 File converters</td>
<td>180</td>
</tr>
<tr>
<td>13.2.2 Database converters</td>
<td>180</td>
</tr>
</tbody>
</table>

14 Stemmers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>183</td>
</tr>
<tr>
<td>14.2 Snowball stemmers</td>
<td>183</td>
</tr>
<tr>
<td>14.3 Using stemmers</td>
<td>184</td>
</tr>
<tr>
<td>14.3.1 Commandline</td>
<td>184</td>
</tr>
<tr>
<td>14.3.2 StringToWordVector</td>
<td>184</td>
</tr>
<tr>
<td>14.4 Adding new stemmers</td>
<td>184</td>
</tr>
</tbody>
</table>
19 Extending WEKA

19.1 Writing a new Classifier
 19.1.1 Choosing the base class ... 240
 19.1.2 Additional interfaces ... 241
 19.1.3 Packages ... 241
 19.1.4 Implementation .. 242
 19.1.4.1 Methods ... 242
 19.1.4.2 Guidelines ... 246

19.2 Writing a new Filter
 19.2.1 Default approach .. 252
 19.2.1.1 Implementation .. 252
 19.2.1.2 Examples .. 255
 19.2.2 Simple approach ... 259
 19.2.2.1 SimpleBatchFilter .. 259
 19.2.2.2 SimpleStreamFilter ... 261
 19.2.2.3 Internals .. 263
 19.2.3 Capabilities ... 263
 19.2.4 Packages ... 263
 19.2.5 Revisions ... 263
 19.2.6 Testing ... 264
 19.2.6.1 Option handling .. 264
 19.2.6.2 GenericObjectEditor .. 264
 19.2.6.3 Source code ... 264
 19.2.6.4 Unit tests ... 264

19.3 Writing other algorithms ... 265
 19.3.1 Clusterers ... 265
 19.3.2 Attribute selection .. 267
 19.3.3 Associators ... 269

19.4 Extending the Explorer ... 271
 19.4.1 Adding tabs ... 271
 19.4.1.1 Requirements .. 271
 19.4.1.2 Examples .. 271
 19.4.2 Adding visualization plugins 279
 19.4.2.1 Introduction ... 279
 19.4.2.2 Predictions .. 279
 19.4.2.3 Errors .. 282
 19.4.2.4 Graphs ... 284
 19.4.2.5 Trees .. 285

19.5 Extending the Knowledge Flow .. 287
 19.5.1 Creating a simple batch processing Step 287
 19.5.2 Creating a simple streaming Step 293
 19.5.3 Features of StepManager .. 296
 19.5.4 PairedDataHelper ... 296
20 Weka Packages

20.1 Where does Weka store packages and other configuration stuff? . 299
20.2 Anatomy of a package . 300
 20.2.1 The description file . 300
 20.2.2 Additional configuration files 304
20.3 Contributing a package . 305
20.4 Creating a mirror of the package meta data repository305

21 Technical documentation

21.1 ANT . 309
 21.1.1 Basics . 309
 21.1.2 Weka and ANT . 309
21.2 CLASSPATH . 310
 21.2.1 Setting the CLASSPATH 310
 21.2.2 RunWeka.bat . 311
 21.2.3 java -jar . 312
21.3 Subversion . 312
 21.3.1 General . 312
 21.3.2 Source code . 312
 21.3.3 JUnit . 313
 21.3.4 Specific version . 313
 21.3.5 Clients . 313
21.4 GenericObjectEditor . 314
 21.4.1 Introduction . 314
 21.4.2 File Structure . 315
 21.4.3 Exclusion . 316
 21.4.4 Class Discovery . 316
 21.4.5 Multiple Class Hierarchies 317
 21.4.6 Capabilities . 318
21.5 Properties . 319
 21.5.1 Precedence . 319
 21.5.2 Examples . 319
21.6 XML . 320
 21.6.1 Command Line . 320
 21.6.2 Serialization of Experiments 323
 21.6.3 Serialization of Classifiers 324
 21.6.4 Bayesian Networks . 325
 21.6.5 XRFF files . 325

22 Other resources

22.1 Mailing list . 327
22.2 Troubleshooting . 327
 22.2.1 Weka download problems 327
 22.2.2 OutOfMemoryException 327
 22.2.2.1 Windows . 328
 22.2.3 Mac OSX . 328
 22.2.4 StackOverflowError . 328
 22.2.5 just-in-time (JIT) compiler 329
 22.2.6 CSV file conversion . 329
 22.2.7 ARFF file doesn’t load . 329
CONTENTS

22.2.8 Spaces in labels of ARFF files 329
22.2.9 CLASSPATH problems . 329
22.2.10 Instance ID . 330
 22.2.10.1 Adding the ID . 330
 22.2.10.2 Removing the ID 330
22.2.11 Visualization . 331
22.2.12 Memory consumption and Garbage collector 331
22.2.13 GUIChooser starts but not Experimenter or Explorer . . 331
22.2.14 KnowledgeFlow toolbars are empty 332
22.2.15 Links . 332

Bibliography 334
Part I

The Command-line
Chapter 1

A command-line primer

1.1 Introduction

While for initial experiments the included graphical user interface is quite sufficient, for in-depth usage the command line interface is recommended, because it offers some functionality which is not available via the GUI - and uses far less memory. Should you get Out of Memory errors, increase the maximum heap size for your java engine, usually via \(-Xmx1024M\) or \(-Xmx1024m\) for 1GB - the default setting of 16 to 64MB is usually too small. If you get errors that classes are not found, check your CLASSPATH: does it include weka.jar? You can explicitly set CLASSPATH via the \(-cp\) command line option as well.

We will begin by describing basic concepts and ideas. Then, we will describe the weka.filters package, which is used to transform input data, e.g. for preprocessing, transformation, feature generation and so on.

Then we will focus on the machine learning algorithms themselves. These are called Classifiers in WEKA. We will restrict ourselves to common settings for all classifiers and shortly note representatives for all main approaches in machine learning.

Afterwards, practical examples are given.

Finally, in the doc directory of WEKA you find a documentation of all java classes within WEKA. Prepare to use it since this overview is not intended to be complete. If you want to know exactly what is going on, take a look at the mostly well-documented source code, which can be found in weka-src.jar and can be extracted via the jar utility from the Java Development Kit (or any archive program that can handle ZIP files).
1.2 Basic concepts

1.2.1 Dataset

A set of data items, the dataset, is a very basic concept of machine learning. A dataset is roughly equivalent to a two-dimensional spreadsheet or database table. In WEKA, it is implemented by the `weka.core.Instances` class. A dataset is a collection of examples, each one of class `weka.core.Instance`. Each Instance consists of a number of attributes, any of which can be nominal (= one of a predefined list of values), numeric (= a real or integer number) or a string (= an arbitrary long list of characters, enclosed in "double quotes"). Additional types are date and relational, which are not covered here but in the ARFF chapter. The external representation of an Instances class is an ARFF file, which consists of a header describing the attribute types and the data as comma-separated list. Here is a short, commented example. A complete description of the ARFF file format can be found here.

```arff
% This is a toy example, the UCI weather dataset.
% Any relation to real weather is purely coincidental.
@relation golfWeatherMichigan_1988/02/10_14days

@attribute outlook {sunny, overcast, rainy}
@attribute windy {TRUE, FALSE}
@attribute temperature real
@attribute humidity real
@attribute play {yes, no}
```

Comment lines at the beginning of the dataset should give an indication of its source, context and meaning.

Here we state the internal name of the dataset. Try to be as comprehensive as possible.

Here we define two nominal attributes, `outlook` and `windy`. The former has three values: `sunny`, `overcast` and `rainy`; the latter two: `TRUE` and `FALSE`. Nominal values with special characters, commas or spaces are enclosed in 'single quotes'.

These lines define two numeric attributes. Instead of real, integer or numeric can also be used. While double floating point values are stored internally, only seven decimal digits are usually processed.

The last attribute is the default target or class variable used for prediction. In our case it is a nominal attribute with two values, making this a binary classification problem.
The rest of the dataset consists of the token @data, followed by comma-separated values for the attributes – one line per example. In our case there are five examples.

In our example, we have not mentioned the attribute type string, which defines "double quoted" string attributes for text mining. In recent WEKA versions, date/time attribute types are also supported.

By default, the last attribute is considered the class/target variable, i.e. the attribute which should be predicted as a function of all other attributes. If this is not the case, specify the target variable via -c. The attribute numbers are one-based indices, i.e. -c 1 specifies the first attribute.

Some basic statistics and validation of given ARFF files can be obtained via the main() routine of weka.core.Instances:

```
java weka.core.Instances data/soybean.arff
```

weka.core offers some other useful routines, e.g. converters.C45Loader and converters.CSVLoader, which can be used to import C45 datasets and comma/tab-separated datasets respectively, e.g.:

```
java weka.core.converters.CSVLoader data.csv > data.arff
java weka.core.converters.C45Loader c45_filestem > data.arff
```
1.2.2 Classifier

Any learning algorithm in WEKA is derived from the abstract `weka.classifiers.AbstractClassifier` class. This, in turn, implements `weka.classifiers.Classifier`. Surprisingly little is needed for a basic classifier: a routine which generates a classifier model from a training dataset (= `buildClassifier`) and another routine which evaluates the generated model on an unseen test dataset (= `classifyInstance`), or generates a probability distribution for all classes (= `distributionForInstance`).

A classifier model is an arbitrary complex mapping from all-but-one dataset attributes to the class attribute. The specific form and creation of this mapping, or model, differs from classifier to classifier. For example, ZeroR’s (= `weka.classifiers.rules.ZeroR`) model just consists of a single value: the most common class, or the median of all numeric values in case of predicting a numeric value (= regression learning). ZeroR is a trivial classifier, but it gives a lower bound on the performance of a given dataset which should be significantly improved by more complex classifiers. As such it is a reasonable test on how well the class can be predicted without considering the other attributes.

Later, we will explain how to interpret the output from classifiers in detail – for now just focus on the Correctly Classified Instances in the section Stratified cross-validation and notice how it improves from ZeroR to J48:

```
java weka.classifiers.rules.ZeroR -t weather.arff
java weka.classifiers.trees.J48 -t weather.arff
```

There are various approaches to determine the performance of classifiers. The performance can most simply be measured by counting the proportion of correctly predicted examples in an unseen test dataset. This value is the accuracy, which is also $1 - \text{ErrorRate}$. Both terms are used in literature.

The simplest case is using a training set and a test set which are mutually independent. This is referred to as hold-out estimate. To estimate variance in these performance estimates, hold-out estimates may be computed by repeatedly resampling the same dataset – i.e. randomly reordering it and then splitting it into training and test sets with a specific proportion of the examples, collecting all estimates on test data and computing average and standard deviation of accuracy.

A more elaborate method is cross-validation. Here, a number of folds n is specified. The dataset is randomly reordered and then split into n folds of equal size. In each iteration, one fold is used for testing and the other $n-1$ folds are used for training the classifier. The test results are collected and averaged over all folds. This gives the cross-validation estimate of the accuracy. The folds can be purely random or slightly modified to create the same class distributions in each fold as in the complete dataset. In the latter case the cross-validation is called stratified. Leave-one-out (= loo) cross-validation signifies that n is equal to the number of examples. Out of necessity, loo cv has to be non-stratified, i.e. the class distributions in the test set are not related to those in the training data. Therefore loo cv tends to give less reliable results. However it is still quite useful in dealing with small datasets since it utilizes the greatest amount of training data from the dataset.
1.2.3 weka.filters

The `weka.filters` package is concerned with classes that transform datasets – by removing or adding attributes, resampling the dataset, removing examples and so on. This package offers useful support for data preprocessing, which is an important step in machine learning.

All filters offer the options `-i` for specifying the input dataset, and `-o` for specifying the output dataset. If any of these parameters is not given, standard input and/or standard output will be read from/written to. Other parameters are specific to each filter and can be found out via `-h`, as with any other class. The `weka.filters` package is organized into supervised and unsupervised filtering, both of which are again subdivided into instance and attribute filtering. We will discuss each of the four subsections separately.

weka.filters.supervised

Classes below `weka.filters.supervised` in the class hierarchy are for supervised filtering, i.e., taking advantage of the class information. A class must be assigned via `-c`, for WEKA default behaviour use `-c last`.

weka.filters.supervised.attribute

`Discretize` is used to discretize numeric attributes into nominal ones, based on the class information, via Fayyad & Irani’s MDL method, or optionally with Kononeko’s MDL method. At least some learning schemes or classifiers can only process nominal data, e.g. `weka.classifiers.rules.Prism`; in some cases discretization may also reduce learning time.

```
java weka.filters.supervised.attribute.Discretize -i data/iris.arff
-o iris-nom.arff -c last
```

```
java weka.filters.supervised.attribute.Discretize -i data/cpu.arff
-o cpu-classvendor-nom.arff -c first
```

`NominalToBinary` encodes all nominal attributes into binary (two-valued) attributes, which can be used to transform the dataset into a purely numeric representation, e.g. for visualization via multi-dimensional scaling.

```
java weka.filters.supervised.attribute.NominalToBinary \
-i data/contact-lenses.arff -o contact-lenses-bin.arff -c last
```

Keep in mind that most classifiers in WEKA utilize transformation filters internally, e.g. Logistic and SMO, so you will usually not have to use these filters explicitly. However, if you plan to run a lot of experiments, pre-applying the filters yourself may improve runtime performance.

weka.filters.supervised.instance

`Resample` creates a stratified subsample of the given dataset. This means that overall class distributions are approximately retained within the sample. A bias towards uniform class distribution can be specified via `-B`.

```
java weka.filters.supervised.instance.Resample -i data/soybean.arff
-o soybean-5%.arff -c last -Z 5
```

```
java weka.filters.supervised.instance.Resample -i data/soybean.arff
-o soybean-uniform-5%.arff -c last -Z 5 -B 1
```
StratifiedRemoveFolds creates stratified cross-validation folds of the given dataset. This means that by default the class distributions are approximately retained within each fold. The following example splits soybean.arff into stratified training and test datasets, the latter consisting of 25% (=1/4) of the data.

```java
java weka.filters.supervised.instance.StratifiedRemoveFolds \
-i data/soybean.arff -o soybean-train.arff \n-c last -N 4 -F 1 -V
java weka.filters.supervised.instance.StratifiedRemoveFolds \n-i data/soybean.arff -o soybean-test.arff \n-c last -N 4 -F 1
```

weka.filters.unsupervised

Classes below weka.filters.unsupervised in the class hierarchy are for unsupervised filtering, e.g. the non-stratified version of Resample. A class attribute should not be assigned here.

weka.filters.unsupervised.attribute

StringToWordVector transforms string attributes into word vectors, i.e. creating one attribute for each word which either encodes presence or word count (= -C) within the string. -W can be used to set an approximate limit on the number of words. When a class is assigned, the limit applies to each class separately. This filter is useful for text mining.

Obfuscate renames the dataset name, all attribute names and nominal attribute values. This is intended for exchanging sensitive datasets without giving away restricted information.

Remove is intended for explicit deletion of attributes from a dataset, e.g. for removing attributes of the iris dataset:

```java
java weka.filters.unsupervised.attribute.Remove -R 1-2 \n-i data/iris.arff -o iris-simplified.arff
java weka.filters.unsupervised.attribute.Remove -V -R 3-last \n-i data/iris.arff -o iris-simplified.arff
```

weka.filters.unsupervised.instance

Resample creates a non-stratified subsample of the given dataset, i.e. random sampling without regard to the class information. Otherwise it is equivalent to its supervised variant.

```java
java weka.filters.unsupervised.instance.Resample -i data/soybean.arff \n-o soybean-5%.arff -Z 5
```

RemoveFolds creates cross-validation folds of the given dataset. The class distributions are not retained. The following example splits soybean.arff into training and test datasets, the latter consisting of 25% (=1/4) of the data.

```java
java weka.filters.unsupervised.instance.RemoveFolds -i data/soybean.arff \n-o soybean-train.arff -c last -N 4 -F 1 -V
java weka.filters.unsupervised.instance.RemoveFolds -i data/soybean.arff \n-o soybean-test.arff -c last -N 4 -F 1
```

RemoveWithValues filters instances according to the value of an attribute.

```java
java weka.filters.unsupervised.instance.RemoveWithValues -i data/soybean.arff \n-o soybean-without_herbicide_injury.arff -V -C last -L 19
```
1.2.4 **weka.classifiers**

Classifiers are at the core of WEKA. There are a lot of common options for classifiers, most of which are related to evaluation purposes. We will focus on the most important ones. All others including classifier-specific parameters can be found via `-h`, as usual.

- `-t` specifies the training file (ARFF format)
- `-T` specifies the test file in (ARFF format). If this parameter is missing, a crossvalidation will be performed (default: ten-fold cv)
- `-x` This parameter determines the number of folds for the cross-validation. A cv will only be performed if `-T` is missing.
- `-c` As we already know from the weka.filters section, this parameter sets the class variable with a one-based index.
 The model after training can be saved via this parameter. Each classifier has a different binary format for the model, so it can only be read back by the exact same classifier on a compatible dataset. Only the model on the training set is saved, not the multiple models generated via cross-validation.
- `-d` Loads a previously saved model, usually for testing on new, previously unseen data. In that case, a compatible test file should be specified, i.e. the same attributes in the same order.
- `-p` If a test file is specified, this parameter shows you the predictions and one attribute (0 for none) for all test instances.
 A more detailed performance description via precision, recall, true- and false positive rate is additionally output with this parameter. All these values can also be computed from the confusion matrix.
- `-o` This parameter switches the human-readable output of the model description off. In case of support vector machines or NaiveBayes, this makes some sense unless you want to parse and visualize a lot of information.

We now give a short list of selected classifiers in WEKA. Other classifiers below `weka.classifiers` may also be used. This is more easy to see in the Explorer GUI.

- **trees.J48** A clone of the C4.5 decision tree learner
- **bayes.NaiveBayes** A Naive Bayesian learner. `-K` switches on kernel density estimation for numerical attributes which often improves performance.
- **meta.ClassificationViaRegression** `functions.LinearRegression` Multi-response linear regression.
- **functions.Logistic** Logistic Regression.
CHAPTER 1. A COMMAND-LINE PRIMER

- **functions.SMO** Support Vector Machine (linear, polynomial and RBF kernel) with Sequential Minimal Optimization Algorithm due to [4]. Defaults to SVM with linear kernel, `-E 5 -C 10` gives an SVM with polynomial kernel of degree 5 and lambda of 10.

- **lazy.KStar** Instance-Based learner. `-E` sets the blend entropy automatically, which is usually preferable.

- **lazy.IBk** Instance-Based learner with fixed neighborhood. `-K` sets the number of neighbors to use. `IB1` is equivalent to `IBk -K 1`

- **rules.JRip** A clone of the RIPPER rule learner.

Based on a simple example, we will now explain the output of a typical classifier, **weka.classifiers.trees.J48**. Consider the following call from the command line, or start the WEKA explorer and train J48 on `weather.arff`:

```java
java weka.classifiers.trees.J48 -t data/weather.arff -i
```

```
J48 pruned tree
------------------
outlook = sunny
|   humidity <= 75: yes (2.0)
|   humidity > 75: no (3.0)
outlook = overcast: yes (4.0)
outlook = rainy
|   windy = TRUE: no (2.0)
|   windy = FALSE: yes (3.0)
Number of Leaves :  5
Size of the tree :  8
```

Time taken to build model: 0.05 seconds
Time taken to test model on training data: 0 seconds

The first part, unless you specify `-o`, is a human-readable form of the training set model. In this case, it is a decision tree. **outlook** is at the root of the tree and determines the first decision. In case it is overcast, we’ll always play golf. The numbers in (parentheses) at the end of each leaf tell us the number of examples in this leaf. If one or more leaves were not pure (= all of the same class), the number of misclassified examples would also be given, after a /slash/

As you can see, a decision tree learns quite fast and is evaluated even faster. E.g. for a lazy learner, testing would take far longer than training.
1.2. BASIC CONCEPTS

--- Error on training data ---

Correctly Classified Instances 14 100 %
Incorrectly Classified Instances 0 0 %
Kappa statistic 1
Mean absolute error 0
Root mean squared error 0
Relative absolute error 0 %
Root relative squared error 0 %
Total Number of Instances 14

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>no</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ---

a b <- classified as
9 0 | a = yes
0 5 | b = no

--- Stratified cross-validation ---

Correctly Classified Instances 9 64.2857 %
Incorrectly Classified Instances 5 35.7143 %
Kappa statistic 0.186
Mean absolute error 0.2857
Root mean squared error 0.4818
Relative absolute error 60 %
Root relative squared error 97.6586 %
Total Number of Instances 14

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.778</td>
<td>0.6</td>
<td>0.7</td>
<td>0.778</td>
<td>0.737</td>
<td>yes</td>
</tr>
<tr>
<td>0.4</td>
<td>0.222</td>
<td>0.5</td>
<td>0.4</td>
<td>0.444</td>
<td>no</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ---

a b <- classified as
7 2 | a = yes
3 2 | b = no

This is quite boring: our classifier is perfect, at least on the training data – all instances were classified correctly and all errors are zero. As is usually the case, the training set accuracy is too optimistic. The detailed accuracy by class, which is output via -i, and the confusion matrix is similarly trivial.

The stratified cv paints a more realistic picture. The accuracy is around 64%. The kappa statistic measures the agreement of prediction with the true class – 1.0 signifies complete agreement. The following error values are not very meaningful for classification tasks, however for regression tasks e.g. the root of the mean squared error per example would be a reasonable criterion. We will discuss the relation between confusion matrix and other measures in the text.

The confusion matrix is more commonly named contingency table. In our case we have two classes, and therefore a 2x2 confusion matrix, the matrix could be arbitrarily large. The number of correctly classified instances is the sum of diagonals in the matrix; all others are incorrectly classified (class "a" gets misclassified as "b" exactly twice, and class "b" gets misclassified as "a" three times).

The True Positive (TP) rate is the proportion of examples which were classified as class x, among all examples which truly have class x, i.e. how much part of the class was captured. It is equivalent to Recall. In the confusion matrix, this is the diagonal element divided by the sum over the relevant row, i.e. 7/(7+2)=0.778 for class yes and 2/(3+2)=0.4 for class no in our example.

The False Positive (FP) rate is the proportion of examples which were classified as class x, but belong to a different class, among all examples which are not of class x. In the matrix, this is the column sum of class x minus the diagonal element, divided by the rows sums of all other classes; i.e. 3/5=0.6 for class yes and 2/9=0.222 for class no.

The Precision is the proportion of the examples which truly have class x
among all those which were classified as class x. In the matrix, this is the diagonal element divided by the sum over the relevant column, i.e. $7/(7+3)=0.7$ for class yes and $2/(2+2)=0.5$ for class no.

The F-Measure is simply $2\times \text{Precision}\times \text{Recall}/(\text{Precision}+\text{Recall})$, a combined measure for precision and recall.

These measures are useful for comparing classifiers. However, if more detailed information about the classifier’s predictions are necessary, `-p #` outputs just the predictions for each test instance, along with a range of one-based attribute ids (0 for none). Let’s look at the following example. We shall assume soybean-train.arff and soybean-test.arff have been constructed via weka.filters.supervised.instance.StratifiedRemoveFolds as in a previous example.

```
java weka.classifiers.bayes.NaiveBayes -K -t soybean-train.arff -T soybean-test.arff -p 0
```

The values in each line are separated by a single space. The fields are the zero-based test instance id, followed by the predicted class value, the confidence for the prediction (estimated probability of predicted class), and the true class. All these are correctly classified, so let’s look at a few erroneous ones.

In each of these cases, a misclassification occurred, mostly between classes `alternarialeaf-spot` and `brown-spot`. The confidences seem to be lower than for correct classification, so for a real-life application it may make sense to output `don’t know` below a certain threshold. WEKA also outputs a trailing newline.

If we had chosen a range of attributes via `-p`, e.g. `-p first-last`, the mentioned attributes would have been output afterwards as comma-separated values, in (parentheses). However, the zero-based instance id in the first column offers a safer way to determine the test instances.

If we had saved the output of `-p` in `soybean-test.preds`, the following call would compute the number of correctly classified instances:

```
cat soybean-test.preds | awk ‘$2=="&$0"’ | wc -l
```

Dividing by the number of instances in the test set, i.e. `wc -l < soybean-test.preds` minus one (= trailing newline), we get the training set accuracy.
1.3 Examples

Usually, if you evaluate a classifier for a longer experiment, you will do something like this (for csh):

```bash
java -Xmx1024m weka.classifiers.trees.J48 -t data.arff -i -k \
-d J48-data.model >&! J48-data.out &
```

The `-Xmx1024m` parameter for maximum heap size ensures your task will get enough memory. There is no overhead involved, it just leaves more room for the heap to grow. `-i` and `-k` gives you some additional information, which may be useful, e.g. precision and recall for all classes. In case your model performs well, it makes sense to save it via `-d` - you can always delete it later! The implicit cross-validation gives a more reasonable estimate of the expected accuracy on unseen data than the training set accuracy. The output both of standard error and output should be redirected, so you get both errors and the normal output of your classifier. The last `&` starts the task in the background. Keep an eye on your task via `top` and if you notice the hard disk works hard all the time (for linux), this probably means your task needs too much memory and will not finish in time for the exam. In that case, switch to a faster classifier or use filters, e.g. for `Resample` to reduce the size of your dataset or `StratifiedRemoveFolds` to create training and test sets - for most classifiers, training takes more time than testing.

So, now you have run a lot of experiments – which classifier is best? Try

```bash
cat *.out | grep -A 3 "Stratified" | grep "^Correctly"
```

...this should give you all cross-validated accuracies. If the cross-validated accuracy is roughly the same as the training set accuracy, this indicates that your classifiers is presumably not overfitting the training set.

Now you have found the best classifier. To apply it on a new dataset, use e.g.

```bash
java weka.classifiers.trees.J48 -l J48-data.model -T new-data.arff
```

You will have to use the same classifier to load the model, but you need not set any options. Just add the new test file via `-T`. If you want, `-p first-last` will output all test instances with classifications and confidence, followed by all attribute values, so you can look at each error separately.

The following more complex csh script creates datasets for learning curves, i.e. creating a 75% training set and 25% test set from a given dataset, then successively reducing the test set by factor 1.2 (83%), until it is also 25% in size. All this is repeated thirty times, with different random reorderings (-S) and the results are written to different directories. The Experimenter GUI in WEKA can be used to design and run similar experiments.

```bash
#!/bin/csh
foreach f (*.*)
    set run=1
    while ( $run < 30 )
        mkdir $run >&! /dev/null
        java weka.filters.supervised.instance.StratifiedRemoveFolds -N 4 -F 1 -S $run -c last -i ../$f -o $run/t_$f
        java weka.filters.supervised.instance.StratifiedRemoveFolds -N 4 -F 1 -S $run -V -c last -i ../$f -o $run/t0$f
        foreach nr (@ 1 2 3 4 5)
            set nrp1=$nr
            @ nrp1++
        endforeach
        set run=
    endwhile

set nrp1=$nr
@ nrp1++
```
If meta classifiers are used, i.e. classifiers whose options include classifier specifications - for example, *Stacking* or *ClassificationViaRegression*, care must be taken not to mix the parameters. E.g.:

```
java weka.classifiers.meta.ClassificationViaRegression \
-W weka.classifiers.functions.LinearRegression -S 1 \
-t data/iris.arff -x 2
```

gives us an illegal options exception for `-S 1`. This parameter is meant for *LinearRegression*, not for *ClassificationViaRegression*, but WEKA does not know this by itself. One way to clarify this situation is to enclose the classifier specification, including all parameters, in "double" quotes, like this:

```
java weka.classifiers.meta.ClassificationViaRegression \
-W "weka.classifiers.functions.LinearRegression -S 1" \
-t data/iris.arff -x 2
```

However this does not always work, depending on how the option handling was implemented in the top-level classifier. While for *Stacking* this approach would work quite well, for *ClassificationViaRegression* it does not. We get the dubious error message that the class *weka.classifiers.functions.LinearRegression*-S 1 cannot be found. Fortunately, there is another approach: All parameters given after `--` are processed by the first sub-classifier; another `--` lets us specify parameters for the second sub-classifier and so on.

```
java weka.classifiers.meta.ClassificationViaRegression \
-W "weka.classifiers.functions.LinearRegression -S 1" \
-t data/iris.arff -x 2 -- -S 1
```

In some cases, both approaches have to be mixed, for example:

```
java weka.classifiers.meta.Stacking -B "weka.classifiers.lazy.IBk -K 10" \
-M "weka.classifiers.meta.ClassificationViaRegression -W weka.classifiers.functions.LinearRegression -- -S 1" \
-t data/iris.arff -x 2
```

Notice that while *ClassificationViaRegression* honors the `--` parameter, *Stacking* itself does not. Sadly the option handling for sub-classifier specifications is not yet completely unified within WEKA, but hopefully one or the other approach mentioned here will work.

1.4 Additional packages and the package manager

Up until now we’ve used the term *package* to refer to a Java’s concept of organizing classes. In addition, Weka has the concept of a package as a bundle of additional functionality, separate from that supplied in the main weka.jar file. A package consists of various jar files, documentation, meta data, and possibly source code (see “Weka Packages” in the Appendix for more information on the structure of packages for Weka). There are a number of packages available for
Weka that add learning schemes or extend the functionality of the core system in some fashion. Many are provided by the Weka team and others are from third parties.

Weka includes a facility for the management of packages and a mechanism to load them dynamically at runtime. There is both a command-line and GUI package manager; we describe the command-line version here and the GUI version in the next Chapter.

1.4.1 Package management

Assuming that the `weka.jar` file is in the classpath, the package manager can be accessed by typing:

```java
java weka.core.WekaPackageManager
```

Supplying no options will print the usage information:

```
Usage: weka.core.PackageManager [option]
Options:
  -list-packages <all | installed | available>
  -package-info <repository | installed | archive> packageName
  -install-package <packageName | packageZip | URL> [version]
  -uninstall-package <packageName>
  -refresh-cache
```

Information (meta data) about packages is stored on a web server hosted on Sourceforge. The first time the package manager is run, for a new installation of Weka, there will be a short delay while the system downloads and stores a cache of the meta data from the server. Maintaining a cache speeds up the process of browsing the package information. From time to time you should update the local cache of package meta data in order to get the latest information on packages from the server. This can be achieved by supplying the `-refresh-cache` option.

The `-list-packages` option will, as the name suggests, print information (version numbers and short descriptions) about various packages. The option must be followed by one of three keywords:

- **all** will print information on all packages that the system knows about
- **installed** will print information on all packages that are installed locally
- **available** will print information on all packages that are not installed

The following shows an example of listing all packages installed locally:

```java
java weka.core.PackageManager -list-packages installed
```

<table>
<thead>
<tr>
<th>Installed</th>
<th>Repository</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>1.0.0</td>
<td>DTNB: Class for building and using a decision table/naive bayes hybrid classifier.</td>
</tr>
<tr>
<td>1.0.0</td>
<td>1.0.0</td>
<td>massiveOnlineAnalysis: MDA (Massive On-line Analysis).</td>
</tr>
<tr>
<td>1.0.0</td>
<td>1.0.0</td>
<td>multiInstanceFilters: A collection of filters for manipulating multi-instance data.</td>
</tr>
<tr>
<td>1.0.0</td>
<td>1.0.0</td>
<td>naiveBayesTree: Class for generating a decision tree with naive Bayes classifiers at the leaves.</td>
</tr>
<tr>
<td>1.0.0</td>
<td>1.0.0</td>
<td>scatterPlot3D: A visualization component for displaying a 3D scatter plot of the data using Java 3D.</td>
</tr>
</tbody>
</table>

The `-package-info` command lists information about a package given its name. The command is followed by one of three keywords and then the name of a package:
26

CHAPTER 1. A COMMAND-LINE PRIMER

• repository will print info from the repository for the named package
• installed will print info on the installed version of the named package
• archive will print info for a package stored in a zip archive. In this case, the “archive” keyword must be followed by the path to an package zip archive file rather than just the name of a package

The following shows an example of listing information for the “isotonicRegression” package from the server:

```
java weka.core.WekaPackageManager -package-info repository isotonicRegression

Description:Learns an isotonic regression model. Picks the attribute that results in the lowest squared error. Missing values are not allowed. Can only deal with numeric attributes. Considers the monotonically increasing case as well as the monotonically decreasing case.
Version:1.0.0
PackageURL:http://60.234.159.233/~mhall/wekaLite/isotonicRegression/isotonicRegression1.0.0.zip
Author:Eibe Frank
PackageName:isotonicRegression
Title:Learns an isotonic regression model.
Date:2009-09-10
URL:http://weka.sourceforge.net/doc.dev/weka/classifiers/IsotonicRegression.html
Category:Regression
Depends:weka (>=3.7.1)
License:GPL 2.0
Maintainer:Weka team <wekalist@list.scms.waikato.ac.nz>
```

The -install-package command allows a package to be installed from one of three locations:

• specifying a name of a package will install the package using the information in the package description metadata stored on the server. If no version number is given, then the latest available version of the package is installed.
• providing a path to a zip file will attempt to unpack and install the archive as a Weka package
• providing a URL (beginning with http://) to a package zip file on the web will download and attempt to install the zip file as a Weka package

The uninstall-package command will uninstall the named package. Of course, the named package has to be installed for this command to have any effect!

1.4.2 Running installed learning algorithms

Running learning algorithms that come with the main weka distribution (i.e. are contained in the weka.jar file) was covered earlier in this chapter. But what about algorithms from packages that you’ve installed using the package manager? We don’t want to have to add a ton of jar files to our classpath every time we want to run a particular algorithm. Fortunately, we don’t have to. Weka has a mechanism to load installed packages dynamically at run time. We can run a named algorithm by using the Run command:

```
java weka.Run
```

If no arguments are supplied, then Run outputs the following usage information:
1.4. ADDITIONAL PACKAGES AND THE PACKAGE MANAGER

Usage:
weka.Run [-no-scan] [-no-load] <scheme name [scheme options]>

The Run command supports sub-string matching, so you can run a classifier (such as J48) like so:

java weka.Run J48

When there are multiple matches on a supplied scheme name you will be presented with a list. For example:

```
java weka.Run NaiveBayes
Select a scheme to run, or <return> to exit:
  1) weka.classifiers.bayes.ComplementNaiveBayes
  2) weka.classifiers.bayes.NaiveBayes
  3) weka.classifiers.bayes.NaiveBayesMultinomial
  4) weka.classifiers.bayes.NaiveBayesMultinomialUpdateable
  5) weka.classifiers.bayes.NaiveBayesSimple
  6) weka.classifiers.bayes.NaiveBayesUpdateable

Enter a number >
```

You can turn off the scanning of packages and sub-string matching by providing the -no-scan option. This is useful when using the Run command in a script. In this case, you need to specify the fully qualified name of the algorithm to use. E.g.

```
java weka.Run -no-scan weka.classifiers.bayes.NaiveBayes
```

To reduce startup time you can also turn off the dynamic loading of installed packages by specifying the -no-load option. In this case, you will need to explicitly include any packaged algorithms in your classpath if you plan to use them. E.g.

```
java -classpath ./weka.jar:$HOME/wekafiles/packages/DTNB/DTNB.jar rweka.Run -no-load -no-scan weka.classifiers.rules.DTNB
```
Part II

The Graphical User Interface
Chapter 2

Launching WEKA

The Weka GUI Chooser (class weka.gui.GUIChooser) provides a starting point for launching Weka’s main GUI applications and supporting tools. If one prefers a MDI (“multiple document interface”) appearance, then this is provided by an alternative launcher called “Main” (class weka.gui.Main).

The GUI Chooser consists of four buttons—one for each of the four major Weka applications—and four menus.

The buttons can be used to start the following applications:

- **Explorer** An environment for exploring data with WEKA (the rest of this documentation deals with this application in more detail).

- **Experimenter** An environment for performing experiments and conducting statistical tests between learning schemes.

- **KnowledgeFlow** This environment supports essentially the same functions as the Explorer but with a drag-and-drop interface. One advantage is that it supports incremental learning.

- **Workbench** An all-in-one application that combines all the others within user-selectable “perspectives”.

- **SimpleCLI** Provides a simple command-line interface that allows direct execution of WEKA commands for operating systems that do not provide their own command line interface.

The menu consists of four sections:
1. Program

- **LogWindow** Opens a log window that captures all that is printed to stdin or stderr. Useful for environments like MS Windows, where WEKA is normally not started from a terminal.
- **Exit** Closes WEKA.

2. Tools Other useful applications.

- **Package manager** A graphical interface to Weka’s package management system.
- **ArffViewer** An MDI application for viewing ARFF files in spreadsheet format.
- **SqlViewer** Represents an SQL worksheet, for querying databases via JDBC.
- **Bayes net editor** An application for editing, visualizing and learning Bayes nets.

3. Visualization Ways of visualizing data with WEKA.

- **Plot** For plotting a 2D plot of a dataset.
- **ROC** Displays a previously saved ROC curve.
- **TreeVisualizer** For displaying directed graphs, e.g., a decision tree.
- **GraphVisualizer** Visualizes XML BIF or DOT format graphs, e.g., for Bayesian networks.
- **BoundaryVisualizer** Allows the visualization of classifier decision boundaries in two dimensions.

4. Help Online resources for WEKA can be found here.

- **Weka homepage** Opens a browser window with WEKA’s homepage.
- **HOWTOs, code snippets, etc.** The general WekaWiki [2], containing lots of examples and HOWTOs around the development and use of WEKA.
- **Weka on Sourceforge** WEKA’s project homepage on Sourceforge.net.
- **SystemInfo** Lists some internals about the Java/WEKA environment, e.g., the `CLASSPATH`.

To make it easy for the user to add new functionality to the menu without having to modify the code of WEKA itself, the GUI now offers a plug-in mechanism for such add-ons. Due to the inherent dynamic class discovery, plugins only need to implement the `weka.gui.MainMenuExtension` interface and WEKA notified of the package they reside in to be displayed in the menu under “Extensions” (this extra menu appears automatically as soon as extensions are discovered). More details can be found in the Wiki article “Extensions for Weka’s main GUI” [6].

If you launch WEKA from a terminal window, some text begins scrolling in the terminal. Ignore this text unless something goes wrong, in which case it can help in tracking down the cause (the `LogWindow` from the `Program` menu displays that information as well).

This User Manual focuses on using the Explorer but does not explain the individual data preprocessing tools and learning algorithms in WEKA. For more information on the various filters and learning methods in WEKA, see the book *Data Mining* [1].
Chapter 3

Package Manager

The Package Manager provides a graphical interface to Weka’s package management system. All the functionality available in the command line client to the package management system covered in the previous Chapter is available in the GUI version, along with the ability to install and uninstall multiple packages in one hit.

3.1 Main window

The package manager’s window is split horizontally into two parts: at the top is a list of packages and at the bottom is a mini browser that can be used to display information on the currently selected package.

The package list shows the name of a package, its category, the currently installed version (if installed), the latest version available via the repository and whether the package has been loaded or not. This list may be sorted by either package name or category by clicking on the appropriate column header. A second click on the same header reverses the sort order. Three radio buttons in the upper left of the window can be used to filter what is displayed in the
list. All packages (default), all available packages (i.e. those not yet installed) or only installed packages can be displayed.

If multiple versions of a package are available, they can be accessed by clicking on an entry in the “Repository version” column:

3.2 Installing and removing packages

At the very top of the window are three buttons. On the left-hand side is a button that can be used to refresh the cached copy of the package repository metadata. The first time that the package manager (GUI or command line) is used there will be a short delay as the initial cache is established. Each time the package manager is used it will check with the central repository to see if new packages or updates to existing packages are available. If there are updates available, the user will see a yellow triangular warning icon appear beside the “home” icon under the list of packages. Mousing over this icon will popup a tooltip showing what updates are available. In order to access those updates the user must manually refresh the repository cache by pressing the “Refresh repository cache” button. Following this, the new/updated packages can be installed as normal.

The two buttons at the top right are used to install and remove packages respectively. Multiple packages may be installed/removed by using a shift-left-click combination to select a range and/or by using a command-left-click combination to add to the selection. Underneath the install and uninstall buttons is a checkbox that can be enabled to ignore any dependencies required by selected packages and any conflicts that may occur. Installing packages while this checkbox is selected will not install required dependencies.

Some packages may have additional information on how to complete the installation or special instructions that gets displayed when the package is installed:
3.3. USING A HTTP PROXY

Usually it is not necessary to restart Weka after packages have been installed—the changes should be available immediately. An exception is when upgrading a package that is already installed. If in doubt, restart Weka.

3.2.1 Unofficial packages

The package list shows those packages that have their meta data stored in Weka’s central meta data repository. These packages are “official” Weka packages and the Weka team as verified that they appear to provide what is advertised (and do not contain malicious code or malware).

It is also possible to install an “unofficial” package that has not gone through the process of become official. Unofficial packages might be provided, for example, by researchers who want to make experimental algorithms quickly available to the community for feedback. Unofficial packages can be installed by clicking the “File/url” button on the top-right of the package manager window. This will bring up an “Unofficial package install” dialog where the user can browse their file system for a package zip file or directly enter an URL to the package zip file. Note that no dependency checking is done for unofficial packages.

3.3 Using a http proxy

Both the GUI and command line package managers can operate via a http proxy. To do so, start Weka from the command line and supply property values for the proxy host and port:

```
java -Dhttp.proxyHost=some.proxy.somewhere.net -Dhttp.proxyPort=port weka.gui.GUIChooser
```

If your proxy requires authentication, then two more (non-standard) properties can be supplied:

```
-Dhttp.proxyUser=some_user_name -Dhttp.proxyPassword=some_password
```

3.4 Using an alternative central package meta data repository

By default, both the command-line and GUI package managers use the central package meta data repository hosted on Sourceforge. In the unlikely event that this site is unavailable for one reason or another, it is possible to point the package management system at an alternative repository. This mechanism allows a temporary backup of the official repository to be accessed, local mirrors to be established and alternative repositories to be set up for use etc.

An alternative repository can be specified by setting a Java property:

```
weka.core.wekaPackageRepositoryURL=http://some.mirror.somewhere
```

This can either be set when starting Weka from the command line with the -D flag, or it can be placed into a file called “PackageRepository.props” in $WEKA_HOME/props. The default value of WEKA_HOME is user.home/wekafiles, where user.home is the user’s home directory. More information on how and where Weka stores configuration information is given in the Appendix (Chapter 19).
3.5 Package manager property file

As mentioned in the previous section, an alternative package meta data repository can be specified by placing an entry in the PackageRepository.props file in $WEKA_HOME/props. From Weka 3.7.8 (and snapshot builds after 24 September 2012), the package manager also looks for properties placed in $WEKA_HOME/props/PackageManager.props.

The current set of properties that can be set are:

- `weka.core.wekaPackageRepositoryURL=http://some.mirror.somewhere`
- `weka.packageManager.offline=[true | false]`
- `weka.packageManager.loadPackages=[true | false]`
- `weka.pluginManager.disable=com.funky.FunkyExplorerPluginTab`

The default for offline mode (if unspecified) is “false” and for loadPackages is “true”. The `weka.pluginManager.disable` property can be used to specify a comma-separated list of fully qualified class names to “disable” in the GUI. This can be used to make problematic components unavailable in the GUI without having to prevent the entire package that contains them from being loaded. E.g. “funkyPackage” might provide several classifiers and a special Explorer plugin tab for visualization. Suppose, for example, that the plugin Explorer tab has issues with certain data sets and causes annoying exceptions to be generated (or perhaps in the worst cases crashes the Explorer!). In this case we might want to use the classifiers provided by the package and just disable the Explorer plugin. Listing the fully qualified name of the Explorer plugin as a member of the comma-separated list associated with the `weka.pluginManager.disable` property will achieve this.
Chapter 4

Simple CLI

The Simple CLI provides full access to all Weka classes, i.e., classifiers, filters, clusterers, etc., but without the hassle of the CLASSPATH (it facilitates the one, with which Weka was started).

It offers a simple Weka shell with separated commandline and output.

4.1 Commands

The following commands are available in the Simple CLI:

- **java <classname> [<args>]**
 invokes a java class with the given arguments (if any)

- **break**
 stops the current thread, e.g., a running classifier, in a friendly manner
• **kill**
 stops the current thread in an unfriendly fashion

• **cls**
 clears the output area

• **capabilities <classname> [<args>]**
 lists the capabilities of the specified class, e.g., for a classifier with its options:

  ```
  capabilities weka.classifiers.meta.Bagging -W weka.classifiers.trees.Id3
  ```

• **exit**
 exits the Simple CLI

• **help [<command>]**
 provides an overview of the available commands if without a command name as argument, otherwise more help on the specified command

4.2 Invocation

In order to invoke a Weka class, one has only to prefix the class with "java". This command tells the Simple CLI to load a class and execute it with any given parameters. E.g., the J48 classifier can be invoked on the iris dataset with the following command:

```java
classifiers.trees.J48 -t c:/temp/iris.arff
```

This results in the following output:

![Output of Java command]

4.3 Command redirection

Starting with this version of Weka one can perform a basic redirection:

```java
classifiers.trees.J48 -t test.arff > j48.txt
```

Note: the > must be preceded and followed by a space, otherwise it is not recognized as redirection, but part of another parameter.
4.4 Command completion

Commands starting with `java` support completion for classnames and filenames via Tab (`Alt+BackSpace` deletes parts of the command again). In case that there are several matches, Weka lists all possible matches.

- **package name completion**

 `java weka.cl<Tab>`

 results in the following output of possible matches of package names:

 Possible matches:
 - `weka.classifiers`
 - `weka.clusterers`

- **classname completion**

 `java weka.classifiers.meta.A<Tab>`

 lists the following classes

 Possible matches:
 - `weka.classifiers.meta.AdaBoostM1`
 - `weka.classifiers.meta.AdditiveRegression`
 - `weka.classifiers.meta.AttributeSelectedClassifier`

- **filename completion**

 In order for Weka to determine whether a the string under the cursor is a classname or a filename, filenames need to be absolute (Unix/Linux: `/some/path/file`; Windows: `C:\Some\Path\file`) or relative and starting with a dot (Unix/Linux: `./some/other/path/file`; Windows: `./Some\Other\Path\file`).
Chapter 5

Explorer

5.1 The user interface

5.1.1 Section Tabs

At the very top of the window, just below the title bar, is a row of tabs. When the Explorer is first started only the first tab is active; the others are greyed out. This is because it is necessary to open (and potentially pre-process) a data set before starting to explore the data.

The tabs are as follows:

1. **Preprocess.** Choose and modify the data being acted on.
2. **Classify.** Train and test learning schemes that classify or perform regression.
3. **Cluster.** Learn clusters for the data.
4. **Associate.** Learn association rules for the data.
5. **Select attributes.** Select the most relevant attributes in the data.
6. **Visualize.** View an interactive 2D plot of the data.

Once the tabs are active, clicking on them flicks between different screens, on which the respective actions can be performed. The bottom area of the window (including the status box, the log button, and the Weka bird) stays visible regardless of which section you are in.

The Explorer can be easily extended with custom tabs. The Wiki article “Adding tabs in the Explorer” explains this in detail.

5.1.2 Status Box

The status box appears at the very bottom of the window. It displays messages that keep you informed about what’s going on. For example, if the Explorer is busy loading a file, the status box will say that.

TIP—right-clicking the mouse anywhere inside the status box brings up a little menu. The menu gives two options:
1. **Memory information.** Display in the log box the amount of memory available to WEKA.

2. **Run garbage collector.** Force the Java garbage collector to search for memory that is no longer needed and free it up, allowing more memory for new tasks. Note that the garbage collector is constantly running as a background task anyway.

5.1.3 Log Button
Clicking on this button brings up a separate window containing a scrollable text field. Each line of text is stamped with the time it was entered into the log. As you perform actions in WEKA, the log keeps a record of what has happened. For people using the command line or the SimpleCLI, the log now also contains the full setup strings for classification, clustering, attribute selection, etc., so that it is possible to copy/paste them elsewhere. Options for dataset(s) and, if applicable, the class attribute still have to be provided by the user (e.g., -t for classifiers or -i and -o for filters).

5.1.4 WEKA Status Icon
To the right of the status box is the WEKA status icon. When no processes are running, the bird sits down and takes a nap. The number beside the × symbol gives the number of concurrent processes running. When the system is idle it is zero, but it increases as the number of processes increases. When any process is started, the bird gets up and starts moving around. If it’s standing but stops moving for a long time, it’s sick: something has gone wrong! In that case you should restart the WEKA Explorer.

5.1.5 Graphical output
Most graphical displays in WEKA, e.g., the GraphVisualizer or the TreeVisualizer, support saving the output to a file. A dialog for saving the output can be brought up with Alt+Shift+left-click. Supported formats are currently Windows Bitmap, JPEG, PNG and EPS (encapsulated Postscript). The dialog also allows you to specify the dimensions of the generated image.
5.2 Preprocessing

5.2.1 Loading Data

The first four buttons at the top of the preprocess section enable you to load data into WEKA:

1. Open file... Brings up a dialog box allowing you to browse for the data file on the local file system.
2. Open URL... Asks for a Uniform Resource Locator address for where the data is stored.
3. Open DB... Reads data from a database. (Note that to make this work you might have to edit the file in weka/experiment/DatabaseUtils.props.)
4. Generate... Enables you to generate artificial data from a variety of DataGenerators.

Using the Open file... button you can read files in a variety of formats: WEKA’s ARFF format, CSV format, C4.5 format, or serialized Instances format. ARFF files typically have a .arff extension, CSV files a .csv extension, C4.5 files a .data and .names extension, and serialized Instances objects a .bsi extension.

NB: This list of formats can be extended by adding custom file converters to the weka.core.converters package.

5.2.2 The Current Relation

Once some data has been loaded, the Preprocess panel shows a variety of information. The Current relation box (the “current relation” is the currently loaded data, which can be interpreted as a single relational table in database terminology) has three entries:
1. **Relation.** The name of the relation, as given in the file it was loaded from. Filters (described below) modify the name of a relation.

2. **Instances.** The number of instances (data points/records) in the data.

3. **Attributes.** The number of attributes (features) in the data.

5.2.3 Working With Attributes

Below the Current relation box is a box titled Attributes. There are four buttons, and beneath them is a list of the attributes in the current relation. The list has three columns:

1. **No.** A number that identifies the attribute in the order they are specified in the data file.

2. **Selection tick boxes.** These allow you select which attributes are present in the relation.

3. **Name.** The name of the attribute, as it was declared in the data file.

When you click on different rows in the list of attributes, the fields change in the box to the right titled Selected attribute. This box displays the characteristics of the currently highlighted attribute in the list:

1. **Name.** The name of the attribute, the same as that given in the attribute list.

2. **Type.** The type of attribute, most commonly Nominal or Numeric.

3. **Missing.** The number (and percentage) of instances in the data for which this attribute is missing (unspecified).

4. **Distinct.** The number of different values that the data contains for this attribute.

5. **Unique.** The number (and percentage) of instances in the data having a value for this attribute that no other instances have.

Below these statistics is a list showing more information about the values stored in this attribute, which differ depending on its type. If the attribute is nominal, the list consists of each possible value for the attribute along with the number of instances that have that value. If the attribute is numeric, the list gives four statistics describing the distribution of values in the data—the minimum, maximum, mean and standard deviation. And below these statistics there is a coloured histogram, colour-coded according to the attribute chosen as the Class using the box above the histogram. (This box will bring up a drop-down list of available selections when clicked.) Note that only nominal Class attributes will result in a colour-coding. Finally, after pressing the Visualize All button, histograms for all the attributes in the data are shown in a separate window.

Returning to the attribute list, to begin with all the tick boxes are unticked. They can be toggled on/off by clicking on them individually. The four buttons above can also be used to change the selection:
5.2. PREPROCESSING

1. **All.** All boxes are ticked.

2. **None.** All boxes are cleared (unticked).

3. **Invert.** Boxes that are ticked become unticked and vice versa.

4. **Pattern.** Enables the user to select attributes based on a Perl 5 Regular Expression. E.g., .*_id selects all attributes which name ends with _id.

Once the desired attributes have been selected, they can be removed by clicking the **Remove** button below the list of attributes. Note that this can be undone by clicking the **Undo** button, which is located next to the **Edit** button in the top-right corner of the Preprocess panel.

5.2.4 Working With Filters

The preprocess section allows filters to be defined that transform the data in various ways. The **Filter** box is used to set up the filters that are required. At the left of the **Filter** box is a **Choose** button. By clicking this button it is possible to select one of the filters in WEKA. Once a filter has been selected, its name and options are shown in the field next to the **Choose** button. Clicking on this box with the left mouse button brings up a GenericObjectEditor dialog box. A click with the right mouse button (or Alt+Shift+left click) brings up a menu where you can choose, either to display the properties in a GenericObjectEditor dialog box, or to copy the current setup string to the clipboard.

The GenericObjectEditor Dialog Box

The GenericObjectEditor dialog box lets you configure a filter. The same kind of dialog box is used to configure other objects, such as classifiers and clusterers (see below). The fields in the window reflect the available options.

Right-clicking (or Alt+Shift+Left-Click) on such a field will bring up a popup menu, listing the following options:
1. **Show properties...** has the same effect as left-clicking on the field, i.e., a dialog appears allowing you to alter the settings.

2. **Copy configuration to clipboard** copies the currently displayed configuration string to the system’s clipboard and therefore can be used anywhere else in WEKA or in the console. This is rather handy if you have to setup complicated, nested schemes.

3. **Enter configuration...** is the “receiving” end for configurations that got copied to the clipboard earlier on. In this dialog you can enter a classname followed by options (if the class supports these). This also allows you to transfer a filter setting from the Preprocess panel to a FilteredClassifier used in the Classify panel.

Left-Clicking on any of these gives an opportunity to alter the filters settings. For example, the setting may take a text string, in which case you type the string into the text field provided. Or it may give a drop-down box listing several states to choose from. Or it may do something else, depending on the information required. Information on the options is provided in a tool tip if you let the mouse pointer hover of the corresponding field. More information on the filter and its options can be obtained by clicking on the **More** button in the **About** panel at the top of the GenericObjectEditor window.

Some objects display a brief description of what they do in an **About** box, along with a **More** button. Clicking on the **More** button brings up a window describing what the different options do. Others have an additional button, **Capabilities**, which lists the types of attributes and classes the object can handle.

At the bottom of the GenericObjectEditor dialog are four buttons. The first two, **Open...** and **Save...** allow object configurations to be stored for future use. The **Cancel** button backs out without remembering any changes that have been made. Once you are happy with the object and settings you have chosen, click **OK** to return to the main Explorer window.

Applying Filters

Once you have selected and configured a filter, you can apply it to the data by pressing the **Apply** button at the right end of the **Filter** panel in the Preprocess panel. The Preprocess panel will then show the transformed data. The change can be undone by pressing the **Undo** button. You can also use the **Edit...** button to modify your data manually in a dataset editor. Finally, the **Save...** button at the top right of the Preprocess panel saves the current version of the relation in file formats that can represent the relation, allowing it to be kept for future use.

Note: Some of the filters behave differently depending on whether a class attribute has been set or not (using the box above the histogram, which will bring up a drop-down list of possible selections when clicked). In particular, the “supervised filters” require a class attribute to be set, and some of the “unsupervised attribute filters” will skip the class attribute if one is set. Note that it is also possible to set **Class** to **None**, in which case no class is set.
5.3 Classification

5.3.1 Selecting a Classifier

At the top of the classify section is the **Classifier** box. This box has a text field that gives the name of the currently selected classifier, and its options. Clicking on the text box with the left mouse button brings up a GenericObjectEditor dialog box, just the same as for filters, that you can use to configure the options of the current classifier. With a right click (or Alt+Shift+left click) you can once again copy the setup string to the clipboard or display the properties in a GenericObjectEditor dialog box. The **Choose** button allows you to choose one of the classifiers that are available in WEKA.

5.3.2 Test Options

The result of applying the chosen classifier will be tested according to the options that are set by clicking in the **Test options** box. There are four test modes:

1. **Use training set.** The classifier is evaluated on how well it predicts the class of the instances it was trained on.

2. **Supplied test set.** The classifier is evaluated on how well it predicts the class of a set of instances loaded from a file. Clicking the **Set...** button brings up a dialog allowing you to choose the file to test on.

3. **Cross-validation.** The classifier is evaluated by cross-validation, using the number of folds that are entered in the **Folds** text field.

4. **Percentage split.** The classifier is evaluated on how well it predicts a certain percentage of the data which is held out for testing. The amount of data held out depends on the value entered in the **%** field.

Note: No matter which evaluation method is used, the model that is output is always the one build from all the training data. Further testing options can be set by clicking on the **More options...** button.
1. **Output model.** The classification model on the full training set is output so that it can be viewed, visualized, etc. This option is selected by default.

2. **Output per-class stats.** The precision/recall and true/false statistics for each class are output. This option is also selected by default.

3. **Output entropy evaluation measures.** Entropy evaluation measures are included in the output. This option is not selected by default.

4. **Output confusion matrix.** The confusion matrix of the classifier’s predictions is included in the output. This option is selected by default.

5. **Store predictions for visualization.** The classifier’s predictions are remembered so that they can be visualized. This option is selected by default.

6. **Output predictions.** The predictions on the evaluation data are output. Note that in the case of a cross-validation the instance numbers do not correspond to the location in the data!

7. **Output additional attributes.** If additional attributes need to be output alongside the predictions, e.g., an ID attribute for tracking misclassifications, then the index of this attribute can be specified here. The usual Weka ranges are supported, “first” and “last” are therefore valid indices as well (example: “first-3,6,8,12-last”).

8. **Cost-sensitive evaluation.** The errors is evaluated with respect to a cost matrix. The Set... button allows you to specify the cost matrix used.

9. **Random seed for xval / % Split.** This specifies the random seed used when randomizing the data before it is divided up for evaluation purposes.

10. **Preserve order for % Split.** This suppresses the randomization of the data before splitting into train and test set.

11. **Output source code.** If the classifier can output the built model as Java source code, you can specify the class name here. The code will be printed in the “Classifier output” area.

5.3.3 The Class Attribute

The classifiers in WEKA are designed to be trained to predict a single ‘class’ attribute, which is the target for prediction. Some classifiers can only learn nominal classes; others can only learn numeric classes (regression problems); still others can learn both.

By default, the class is taken to be the last attribute in the data. If you want to train a classifier to predict a different attribute, click on the box below the **Test options** box to bring up a drop-down list of attributes to choose from.
5.3. Classification

5.3.4 Training a Classifier

Once the classifier, test options and class have all been set, the learning process is started by clicking on the **Start** button. While the classifier is busy being trained, the little bird moves around. You can stop the training process at any time by clicking on the **Stop** button.

When training is complete, several things happen. The **Classifier output** area to the right of the display is filled with text describing the results of training and testing. A new entry appears in the **Result list** box. We look at the result list below; but first we investigate the text that has been output.

5.3.5 The Classifier Output Text

The text in the **Classifier output** area has scroll bars allowing you to browse the results. Clicking with the left mouse button into the text area, while holding **Alt** and **Shift**, brings up a dialog that enables you to save the displayed output in a variety of formats (currently, BMP, EPS, JPEG and PNG). Of course, you can also resize the Explorer window to get a larger display area. The output is split into several sections:

1. **Run information**. A list of information giving the learning scheme options, relation name, instances, attributes and test mode that were involved in the process.

2. **Classifier model (full training set)**. A textual representation of the classification model that was produced on the full training data.

3. The results of the chosen test mode are broken down thus:

4. **Summary**. A list of statistics summarizing how accurately the classifier was able to predict the true class of the instances under the chosen test mode.

5. **Detailed Accuracy By Class**. A more detailed per-class break down of the classifier’s prediction accuracy.

6. **Confusion Matrix**. Shows how many instances have been assigned to each class. Elements show the number of test examples whose actual class is the row and whose predicted class is the column.

7. **Source code** (optional). This section lists the Java source code if one chose “Output source code” in the “More options” dialog.

5.3.6 The Result List

After training several classifiers, the result list will contain several entries. Left-clicking the entries flicks back and forth between the various results that have been generated. Pressing **Delete** removes a selected entry from the results. Right-clicking an entry invokes a menu containing these items:

1. **View in main window**. Shows the output in the main window (just like left-clicking the entry).
2. **View in separate window.** Opens a new independent window for viewing the results.

3. **Save result buffer.** Brings up a dialog allowing you to save a text file containing the textual output.

4. **Load model.** Loads a pre-trained model object from a binary file.

5. **Save model.** Saves a model object to a binary file. Objects are saved in Java ‘serialized object’ form.

6. **Re-evaluate model on current test set.** Takes the model that has been built and tests its performance on the data set that has been specified with the Set.. button under the **Supplied test set** option.

7. **Visualize classifier errors.** Brings up a visualization window that plots the results of classification. Correctly classified instances are represented by crosses, whereas incorrectly classified ones show up as squares.

8. **Visualize tree** or **Visualize graph.** Brings up a graphical representation of the structure of the classifier model, if possible (i.e. for decision trees or Bayesian networks). The graph visualization option only appears if a Bayesian network classifier has been built. In the tree visualizer, you can bring up a menu by right-clicking a blank area, pan around by dragging the mouse, and see the training instances at each node by clicking on it. CTRL-clicking zooms the view out, while SHIFT-dragging a box zooms the view in. The graph visualizer should be self-explanatory.

9. **Visualize margin curve.** Generates a plot illustrating the prediction margin. The margin is defined as the difference between the probability predicted for the actual class and the highest probability predicted for the other classes. For example, boosting algorithms may achieve better performance on test data by increasing the margins on the training data.

10. **Visualize threshold curve.** Generates a plot illustrating the trade-offs in prediction that are obtained by varying the threshold value between classes. For example, with the default threshold value of 0.5, the predicted probability of ‘positive’ must be greater than 0.5 for the instance to be predicted as ‘positive’. The plot can be used to visualize the precision/recall trade-off, for ROC curve analysis (true positive rate vs false positive rate), and for other types of curves.

11. **Visualize cost curve.** Generates a plot that gives an explicit representation of the expected cost, as described by [5].

12. **Plugins.** This menu item only appears if there are visualization plugins available (by default: none). More about these plugins can be found in the WekaWiki article “Explorer visualization plugins” [8].

Options are greyed out if they do not apply to the specific set of results.
5.4 Clustering

5.4.1 Selecting a Clusterer

By now you will be familiar with the process of selecting and configuring objects. Clicking on the clustering scheme listed in the Clusterer box at the top of the window brings up a GenericObjectEditor dialog with which to choose a new clustering scheme.

5.4.2 Cluster Modes

The Cluster mode box is used to choose what to cluster and how to evaluate the results. The first three options are the same as for classification: Use training set, Supplied test set and Percentage split (Section 5.3.1)—except that now the data is assigned to clusters instead of trying to predict a specific class. The fourth mode, Classes to clusters evaluation, compares how well the chosen clusters match up with a pre-assigned class in the data. The drop-down box below this option selects the class, just as in the Classify panel.

An additional option in the Cluster mode box, the Store clusters for visualization tick box, determines whether or not it will be possible to visualize the clusters once training is complete. When dealing with datasets that are so large that memory becomes a problem it may be helpful to disable this option.

5.4.3 Ignoring Attributes

Often, some attributes in the data should be ignored when clustering. The Ignore attributes button brings up a small window that allows you to select which attributes are ignored. Clicking on an attribute in the window highlights it, holding down the SHIFT key selects a range of consecutive attributes, and holding down CTRL toggles individual attributes on and off. To cancel the selection, back out with the Cancel button. To activate it, click the Select button. The next time clustering is invoked, the selected attributes are ignored.
5.4.4 Working with Filters

The FilteredClusterer meta-clusterer offers the user the possibility to apply filters directly before the clusterer is learned. This approach eliminates the manual application of a filter in the Preprocess panel, since the data gets processed on the fly. Useful if one needs to try out different filter setups.

5.4.5 Learning Clusters

The Cluster section, like the Classify section, has Start/Stop buttons, a result text area and a result list. These all behave just like their classification counterparts. Right-clicking an entry in the result list brings up a similar menu, except that it shows only two visualization options: Visualize cluster assignments and Visualize tree. The latter is grayed out when it is not applicable.
5.5. ASSOCIATING

5.5 Associating

5.5.1 Setting Up

This panel contains schemes for learning association rules, and the learners are chosen and configured in the same way as the clusterers, filters, and classifiers in the other panels.

5.5.2 Learning Associations

Once appropriate parameters for the association rule learner have been set, click the **Start** button. When complete, right-clicking on an entry in the result list allows the results to be viewed or saved.
5.6 Selecting Attributes

5.6.1 Searching and Evaluating

Attribute selection involves searching through all possible combinations of attributes in the data to find which subset of attributes works best for prediction. To do this, two objects must be set up: an attribute evaluator and a search method. The evaluator determines what method is used to assign a worth to each subset of attributes. The search method determines what style of search is performed.

5.6.2 Options

The Attribute Selection Mode box has two options:

1. **Use full training set**. The worth of the attribute subset is determined using the full set of training data.

2. **Cross-validation**. The worth of the attribute subset is determined by a process of cross-validation. The **Fold** and **Seed** fields set the number of folds to use and the random seed used when shuffling the data.

As with **Classify** (Section 5.3.1), there is a drop-down box that can be used to specify which attribute to treat as the class.

5.6.3 Performing Selection

Clicking **Start** starts running the attribute selection process. When it is finished, the results are output into the result area, and an entry is added to the result list. Right-clicking on the result list gives several options. The first three, (**View in main window**, **View in separate window** and **Save result buffer**), are the same as for the classify panel. It is also possible to **Visualize**
5.6. SELECTING ATTRIBUTES

reduced data, or if you have used an attribute transformer such as Principal-Components, Visualize transformed data. The reduced/transformed data can be saved to a file with the Save reduced data... or Save transformed data... option.

In case one wants to reduce/transform a training and a test at the same time and not use the AttributeSelectedClassifier from the classifier panel, it is best to use the AttributeSelection filter (a supervised attribute filter) in batch mode (’-b’) from the command line or in the SimpleCLI. The batch mode allows one to specify an additional input and output file pair (options -r and -s), that is processed with the filter setup that was determined based on the training data (specified by options -i and -o).

Here is an example for a Unix/Linux bash:

```bash
```

Notes:

- The “backslashes” at the end of each line tell the bash that the command is not finished yet. Using the SimpleCLI one has to use this command in one line without the backslashes.
- It is assumed that WEKA is available in the CLASSPATH, otherwise one has to use the -classpath option.
- The full filter setup is output in the log, as well as the setup for running regular attribute selection.
5.7 Visualizing

WEKA’s visualization section allows you to visualize 2D plots of the current relation.

5.7.1 The scatter plot matrix

When you select the Visualize panel, it shows a scatter plot matrix for all the attributes, colour coded according to the currently selected class. It is possible to change the size of each individual 2D plot and the point size, and to randomly jitter the data (to uncover obscured points). It also possible to change the attribute used to colour the plots, to select only a subset of attributes for inclusion in the scatter plot matrix, and to sub sample the data. Note that changes will only come into effect once the Update button has been pressed.

5.7.2 Selecting an individual 2D scatter plot

When you click on a cell in the scatter plot matrix, this will bring up a separate window with a visualization of the scatter plot you selected. (We described above how to visualize particular results in a separate window—for example, classifier errors—the same visualization controls are used here.)

Data points are plotted in the main area of the window. At the top are two drop-down list buttons for selecting the axes to plot. The one on the left shows which attribute is used for the x-axis; the one on the right shows which is used for the y-axis.

Beneath the x-axis selector is a drop-down list for choosing the colour scheme. This allows you to colour the points based on the attribute selected. Below the plot area, a legend describes what values the colours correspond to. If the values are discrete, you can modify the colour used for each one by clicking on them and making an appropriate selection in the window that pops up.

To the right of the plot area is a series of horizontal strips. Each strip represents an attribute, and the dots within it show the distribution of values.
5.7. VISUALIZING

of the attribute. These values are randomly scattered vertically to help you see concentrations of points. You can choose what axes are used in the main graph by clicking on these strips. Left-clicking an attribute strip changes the x-axis to that attribute, whereas right-clicking changes the y-axis. The ‘X’ and ‘Y’ written beside the strips shows what the current axes are (‘B’ is used for ‘both X and Y’).

Above the attribute strips is a slider labelled Jitter, which is a random displacement given to all points in the plot. Dragging it to the right increases the amount of jitter, which is useful for spotting concentrations of points. Without jitter, a million instances at the same point would look no different to just a single lonely instance.

5.7.3 Selecting Instances

There may be situations where it is helpful to select a subset of the data using the visualization tool. (A special case of this is the UserClassifier in the Classify panel, which lets you build your own classifier by interactively selecting instances.)

Below the y-axis selector button is a drop-down list button for choosing a selection method. A group of data points can be selected in four ways:

1. Select Instance. Clicking on an individual data point brings up a window listing its attributes. If more than one point appears at the same location, more than one set of attributes is shown.

2. Rectangle. You can create a rectangle, by dragging, that selects the points inside it.

3. Polygon. You can build a free-form polygon that selects the points inside it. Left-click to add vertices to the polygon, right-click to complete it. The polygon will always be closed off by connecting the first point to the last.

4. Polyline. You can build a polyline that distinguishes the points on one side from those on the other. Left-click to add vertices to the polyline, right-click to finish. The resulting shape is open (as opposed to a polygon, which is always closed).

Once an area of the plot has been selected using Rectangle, Polygon or Polyline, it turns grey. At this point, clicking the Submit button removes all instances from the plot except those within the grey selection area. Clicking on the Clear button erases the selected area without affecting the graph.

Once any points have been removed from the graph, the Submit button changes to a Reset button. This button undoes all previous removals and returns you to the original graph with all points included. Finally, clicking the Save button allows you to save the currently visible instances to a new ARFF file.
Chapter 6

Experimenter

6.1 Introduction

The Weka Experiment Environment enables the user to create, run, modify, and analyse experiments in a more convenient manner than is possible when processing the schemes individually. For example, the user can create an experiment that runs several schemes against a series of datasets and then analyse the results to determine if one of the schemes is (statistically) better than the other schemes.

The Experiment Environment can be run from the command line using the Simple CLI. For example, the following commands could be typed into the CLI to run the OneR scheme on the Iris dataset using a basic train and test process. (Note that the commands would be typed on one line into the CLI.)

```
java weka.experiment.Experiment -r -T data/iris.arff
-D weka.experiment.InstancesResultListener
-P weka.experiment.RandomSplitResultProducer --
-W weka.experiment.ClassifierSplitEvaluator --
-W weka.classifiers.rules.OneR
```

While commands can be typed directly into the CLI, this technique is not particularly convenient and the experiments are not easy to modify.

The Experimenter comes in two flavours, either with a simple interface that provides most of the functionality one needs for experiments, or with an interface with full access to the Experimenter’s capabilities. You can choose between those two with the Experiment Configuration Mode radio buttons:

- Simple
- Advanced

Both setups allow you to setup standard experiments, that are run locally on a single machine, or remote experiments, which are distributed between several hosts. The distribution of experiments cuts down the time the experiments will take until completion, but on the other hand the setup takes more time.

The next section covers the standard experiments (both, simple and advanced), followed by the remote experiments and finally the analysing of the results.
6.2 Standard Experiments

6.2.1 Simple

6.2.1.1 New experiment

After clicking *New* default parameters for an Experiment are defined.

![Experiment Environment](image)

6.2.1.2 Results destination

By default, an ARFF file is the destination for the results output. But you can choose between

- ARFF file
- CSV file
- JDBC database

ARFF file and JDBC database are discussed in detail in the following sections. CSV is similar to ARFF, but it can be used to be loaded in an external spreadsheet application.

ARFF file

If the file name is left empty a temporary file will be created in the TEMP directory of the system. If one wants to specify an explicit results file, click on *Browse* and choose a filename, e.g., *Experiment1.arff*.
Click on **Save** and the name will appear in the edit field next to **ARFF file**.

The advantage of ARFF or CSV files is that they can be created without any additional classes besides the ones from Weka. The drawback is the lack of the ability to resume an experiment that was interrupted, e.g., due to an error or the addition of dataset or algorithms. Especially with time-consuming experiments, this behavior can be annoying.

JDBC database

With JDBC it is easy to store the results in a database. The necessary jar archives have to be in the CLASSPATH to make the JDBC functionality of a particular database available.

After changing **ARFF file** to **JDBC database** click on **User...** to specify JDBC URL and user credentials for accessing the database.
CHAPTER 6. EXPERIMENTER

After supplying the necessary data and clicking on OK, the URL in the main window will be updated.

Note: at this point, the database connection is not tested; this is done when the experiment is started.

The advantage of a JDBC database is the possibility to resume an interrupted or extended experiment. Instead of re-running all the other algorithm/dataset combinations again, only the missing ones are computed.

6.2.1.3 Experiment type

The user can choose between the following three different types

- **Cross-validation (default)**
 performs stratified cross-validation with the given number of folds

- **Train/Test Percentage Split (data randomized)**
 splits a dataset according to the given percentage into a train and a test file (one cannot specify explicit training and test files in the Experimenter), after the order of the data has been randomized and stratified
• **Train/Test Percentage Split (order preserved)**

because it is impossible to specify an explicit train/test files pair, one can abuse this type to un-merge previously merged train and test file into the two original files (one only needs to find out the correct percentage)

Additionally, one can choose between *Classification* and *Regression*, depending on the datasets and classifiers one uses. For decision trees like J48 (Weka's implementation of Quinlan's C4.5 [10]) and the iris dataset, *Classification* is necessary, for a numeric classifier like M5P, on the other hand, *Regression*. *Classification* is selected by default.

Note: if the percentage splits are used, one has to make sure that the corrected paired *T-Tester* still produces sensible results with the given ratio [9].
6.2.1.4 Datasets

One can add dataset files either with an absolute path or with a relative one. The latter makes it often easier to run experiments on different machines, hence one should check *Use relative paths*, before clicking on *Add new*....

In this example, open the *data* directory and choose the *iris.arff* dataset.

After clicking *Open* the file will be displayed in the datasets list. If one selects a directory and hits *Open*, then all ARFF files will be added recursively. Files can be deleted from the list by selecting them and then clicking on *Delete selected*.

ARFF files are not the only format one can load, but *all* files that can be converted with Weka’s “*core converters*”. The following formats are currently supported:

- ARFF (+ compressed)
- C4.5
- CSV
- libsvm
- binary serialized instances
- XRFF (+ compressed)
By default, the class attribute is assumed to be the last attribute. But if a data format contains information about the class attribute, like XRFF or C4.5, this attribute will be used instead.

6.2.1.5 Iteration control

- **Number of repetitions**

 In order to get statistically meaningful results, the default number of iterations is 10. In case of 10-fold cross-validation this means 100 calls of one classifier with training data and tested against test data.

- **Data sets first/Algorithms first**

 As soon as one has more than one dataset and algorithm, it can be useful to switch from datasets being iterated over first to algorithms. This is the case if one stores the results in a database and wants to complete the results for all the datasets for one algorithm as early as possible.

6.2.1.6 Algorithms

New algorithms can be added via the *Add new...* button. Opening this dialog for the first time, *ZeroR* is presented, otherwise the one that was selected last.

With the *Choose* button one can open the *GenericObjectEditor* and choose another classifier.
The Filter... button enables one to highlight classifiers that can handle certain attribute and class types. With the Remove filter button all the selected capabilities will get cleared and the highlighting removed again.

Additional algorithms can be added again with the Add new... button, e.g., the J48 decision tree.

After setting the classifier parameters, one clicks on OK to add it to the list of algorithms.
6.2. STANDARD EXPERIMENTS

With the Load options... and Save options... buttons one can load and save the setup of a selected classifier from and to XML. This is especially useful for highly configured classifiers (e.g., nested meta-classifiers), where the manual setup takes quite some time, and which are used often.

One can also paste classifier settings here by right-clicking (or Alt-Shift-left-clicking) and selecting the appropriate menu point from the popup menu, to either add a new classifier or replace the selected one with a new setup. This is rather useful for transferring a classifier setup from the Weka Explorer over to the Experimenter without having to setup the classifier from scratch.

6.2.1.7 Saving the setup

For future re-use, one can save the current setup of the experiment to a file by clicking on Save... at the top of the window.

By default, the format of the experiment files is the binary format that Java serialization offers. The drawback of this format is the possible incompatibility between different versions of Weka. A more robust alternative to the binary format is the XML format. Previously saved experiments can be loaded again via the Open... button.
6.2.1.8 Running an Experiment

To run the current experiment, click the Run tab at the top of the Experiment Environment window. The current experiment performs 10 runs of 10-fold stratified cross-validation on the Iris dataset using the ZeroR and J48 scheme.

Click Start to run the experiment.

If the experiment was defined correctly, the 3 messages shown above will be displayed in the Log panel. The results of the experiment are saved to the dataset Experiment1.arff.
6.2. STANDARD EXPERIMENTS

6.2.2 Advanced

6.2.2.1 Defining an Experiment

When the Experimenter is started in Advanced mode, the Setup tab is displayed. Click New to initialize an experiment. This causes default parameters to be defined for the experiment.

To define the dataset to be processed by a scheme, first select Use relative paths in the Datasets panel of the Setup tab and then click on Add new... to open a dialog window.

Double click on the data folder to view the available datasets or navigate to an alternate location. Select iris.arff and click Open to select the Iris dataset.
The dataset name is now displayed in the *Datasets* panel of the *Setup* tab.

Saving the Results of the Experiment

To identify a dataset to which the results are to be sent, click on the *Instances-ResultListener* entry in the *Destination* panel. The output file parameter is near the bottom of the window, beside the text *outputFile*. Click on this parameter to display a file selection window.
6.2. STANDARD EXPERIMENTS

Type the name of the output file and click Select. The file name is displayed in the outputFilename panel. Click on OK to close the window.

The dataset name is displayed in the Destination panel of the Setup tab.

Saving the Experiment Definition

The experiment definition can be saved at any time. Select Save... at the top of the Setup tab. Type the dataset name with the extension exp (or select the dataset name if the experiment definition dataset already exists) for binary files or choose Experiment configuration files (*.xml) from the file types combobox (the XML files are robust with respect to version changes).
The experiment can be restored by selecting *Open* in the *Setup* tab and then selecting *Experiment1.exp* in the dialog window.

6.2.2.2 Running an Experiment

To run the current experiment, click the *Run* tab at the top of the Experiment Environment window. The current experiment performs 10 randomized train and test runs on the Iris dataset, using 66% of the patterns for training and 34% for testing, and using the *ZeroR* scheme.

Click *Start* to run the experiment.
If the experiment was defined correctly, the 3 messages shown above will be displayed in the Log panel. The results of the experiment are saved to the dataset Experiment1.arff. The first few lines in this dataset are shown below.

```
@relation InstanceResultListener

@attribute Key_Dataset {iris}
@attribute Key_Run {1,2,3,4,5,6,7,8,9,10}
@attribute Key_Scheme {weka.classifiers.rules.ZeroR,weka.classifiers.trees.J48}
@attribute Key_Scheme_options {,'-C 0.25 -M 2'}
@attribute Key_Scheme_version_ID {48055541465867954,-21773168393644444}
@attribute Date_time numeric
@attribute Number_of_training_instances numeric
@attribute Number_of_testing_instances numeric
@attribute Number_correct numeric
@attribute Number_incorrect numeric
@attribute Number_unclassified numeric
@attribute Percent_correct numeric
@attribute Percent_incorrect numeric
@attribute Percent_unclassified numeric
@attribute Kappa_statistic numeric
@attribute Mean_absolute_error numeric
@attribute Root_mean_squared_error numeric
@attribute Relative_absolute_error numeric
@attribute Root_relative_squared_error numeric
@attribute SF_prior_entropy numeric
@attribute SF_scheme_entropy numeric
@attribute SF_entropy_gain numeric
@attribute SF_mean_prior_entropy numeric
@attribute SF_mean_scheme_entropy numeric
@attribute SF_mean_entropy_gain numeric
@attribute SF_mean_information numeric
```
@attribute KB_mean_information numeric
@attribute KB_relative_information numeric
@attribute True_positive_rate numeric
@attribute Num_true_positives numeric
@attribute False_positive_rate numeric
@attribute Num_false_positives numeric
@attribute True_negative_rate numeric
@attribute Num_true_negatives numeric
@attribute False_negative_rate numeric
@attribute Num_false_negatives numeric
@attribute IR_precision numeric
@attribute IR_recall numeric
@attribute F_measure numeric
@attribute Area_under_ROC numeric
@attribute Time_training numeric
@attribute Time_testing numeric
@attribute Summary {'Number of leaves: 3
Size of the tree: 5\n',
 'Number of leaves: 5
Size of the tree: 9\n',
 'Number of leaves: 4
Size of the tree: 7\n'}
@attribute measureTreeSize numeric
@attribute measureNumLeaves numeric
@attribute measureNumRules numeric

@data

iris,1,weka.classifiers.rules.ZeroR,,48055541658675954,20051221.033,99,51,
17,34,0.33.333333,66.666667,0,0,0.444444,0.471405,100,100,80.83088,80.83088,
0,1.584963,1.584963,0,0,0,1,17,1,34,0,0,0,0,0.333333,1,0.5,0.5,0,0,?,?,?,?

6.2.2.3 Changing the Experiment Parameters

Changing the Classifier

The parameters of an experiment can be changed by clicking on the Result generator panel.

![RandomSplitResultProducer panel](image)

The RandomSplitResultProducer performs repeated train/test runs. The number of instances (expressed as a percentage) used for training is given in the
6.2. STANDARD EXPERIMENTS

trainPercent box. (The number of runs is specified in the Runs panel in the Setup tab.)
A small help file can be displayed by clicking More in the About panel.

Click on the splitEvaluator entry to display the SplitEvaluator properties.

Click on the classifier entry (ZeroR) to display the scheme properties.

This scheme has no modifiable properties (besides debug mode on/off) but most other schemes do have properties that can be modified by the user. The Capabilities button opens a small dialog listing all the attribute and class types this classifier can handle. Click on the Choose button to select a different scheme. The window below shows the parameters available for the J48 decision-tree scheme. If desired, modify the parameters and then click OK to close the window.
The name of the new scheme is displayed in the *Result generator* panel.

Adding Additional Schemes

Additional schemes can be added in the *Generator properties* panel. To begin, change the drop-down list entry from *Disabled* to *Enabled* in the *Generator properties* panel.
Click *Select property* and expand *splitEvaluator* so that the *classifier* entry is visible in the property list; click *Select*.

The scheme name is displayed in the *Generator properties* panel.
To add another scheme, click on the Choose button to display the Generic-ObjectEditor window.

The Filter... button enables one to highlight classifiers that can handle certain attribute and class types. With the Remove filter button all the selected capabilities will get cleared and the highlighting removed again.

To change to a decision-tree scheme, select J48 (in subgroup trees).
6.2. STANDARD EXPERIMENTS

The new scheme is added to the Generator properties panel. Click Add to add the new scheme.

Now when the experiment is run, results are generated for both schemes. To add additional schemes, repeat this process. To remove a scheme, select the scheme by clicking on it and then click Delete.

Adding Additional Datasets

The scheme(s) may be run on any number of datasets at a time. Additional datasets are added by clicking Add new... in the Datasets panel. Datasets are deleted from the experiment by selecting the dataset and then clicking Delete Selected.
CHAPTER 6. EXPERIMENTER

Raw Output

The raw output generated by a scheme during an experiment can be saved to a file and then examined at a later time. Open the ResultProducer window by clicking on the Result generator panel in the Setup tab.

Click on rawOutput and select the True entry from the drop-down list. By default, the output is sent to the zip file splitEvaluatorOut.zip. The output file can be changed by clicking on the outputFile panel in the window. Now when the experiment is run, the result of each processing run is archived, as shown below.

The contents of the first run are:

ClassifierSplitEvaluator: weka.classifiers.trees.J48 -C 0.25 -M 2(version -2177316839364444444)Classifier model:

J48 pruned tree

petalwidth <= 0.6: Iris-setosa (33.0)
petalwidth > 0.6
| petalwidth <= 1.5: Iris-versicolor (31.0/1.0)
| petalwidth > 1.5: Iris-virginica (35.0/3.0)

Number of Leaves : 3

Size of the tree : 5
6.2. STANDARD EXPERIMENTS

Correctly Classified Instances 47 92.1569 %
Incorrectly Classified Instances 4 7.8431 %
Kappa statistic 0.8824
Mean absolute error 0.0723
Root mean squared error 0.2191
Relative absolute error 16.2754 %
Root relative squared error 46.4676 %
Total Number of Instances 51

measureTreeSize : 5.0
measureNumLeaves : 3.0
measureNumRules : 3.0

6.2.2.4 Other Result Producers

Cross-Validation Result Producer

To change from random train and test experiments to cross-validation experiments, click on the Result generator entry. At the top of the window, click on the drop-down list and select CrossValidationResultProducer. The window now contains parameters specific to cross-validation such as the number of partitions/folds. The experiment performs 10-fold cross-validation instead of train and test in the given example.

The Result generator panel now indicates that cross-validation will be performed. Click on More to generate a brief description of the CrossValidationResultProducer.
As with the `RandomSplitResultProducer`, multiple schemes can be run during cross-validation by adding them to the `Generator properties` panel.

The number of runs is set to 1 in the `Setup` tab in this example, so that only one run of cross-validation for each scheme and dataset is executed.

When this experiment is analysed, the following results are generated. Note that there are 30 (1 run times 10 folds times 3 schemes) result lines processed.

Averaging Result Producer

An alternative to the `CrossValidationResultProducer` is the `AveragingResultProducer`. This result producer takes the average of a set of runs (which are typically cross-validation runs). This result producer is identified by clicking the `Result generator` panel and then choosing the `AveragingResultProducer` from the `GenericObjectEditor`.
6.2. STANDARD EXPERIMENTS

The associated help file is shown below.

Clicking the `resultProducer` panel brings up the following window.

As with the other ResultProducers, additional schemes can be defined. When the `AveragingResultProducer` is used, the classifier property is located deeper in the `Generator properties` hierarchy.
In this experiment, the ZeroR, OneR, and J48 schemes are run 10 times with 10-fold cross-validation. Each set of 10 cross-validation folds is then averaged, producing one result line for each run (instead of one result line for each fold as in the previous example using the CrossValidationResultProducer) for a total of 30 result lines. If the raw output is saved, all 300 results are sent to the archive.
Explicit Test-Set Result Producer

One of the Experimenter’s biggest drawbacks in the past was the inability to supply test sets. Even though repeated runs with explicit test sets don’t make that much sense (apart from randomizing the training data, to test the robustness of the classifier), it offers the possibility to compare different classifiers and classifier setups side-by-side; a feature that the Explorer lacks.

This result producer can be used by clicking the Result generator panel and then choosing the ExplicitTestSetResultProducer from the GenericObjectEditor.

The associated help file is shown below.
CHAPTER 6. EXPERIMENTER

The experiment setup using explicit test sets requires a bit more care than the others. The reason for this is, that the result producer has no information about the file the data originates from. In order to identify the correct test set, this result producer utilizes the relation name of the training file. Here is how the file name gets constructed under a Unix-based operating system (Linux, Mac OSX), based on the result producer’s setup and the current training set’s relation name:

```
testsetDir "/" testsetPrefix + relation-name + testsetSuffix
```

With the `testsetDir` property set to `/home/johndoe/datasets/test`, an empty `testsetPrefix` as `anneal` and the default `testsetSuffix`, i.e., `_test.arff`, the following file name for the test set gets created:

```
/home/johndoe/datasets/test/anneal_test.arff
```

NB: The result producer is platform-aware and uses backslashes instead of forward slashes on MS Windows-based operating systems.

Of course, the relation name might not always be as simple as in the above example. Especially not, when the dataset has been pre-processed with various filters before being used in the Experimenter. The `ExplicitTestSetResultProducer` allows one to remove unwanted strings from relation name using regular expressions. In case of removing the WEKA filter setups that got appended to the relation name during pre-processing, one can simply use `-weka.*` as the value for `relationFind` and leave `relationReplace` empty.

Using this setup, the following relation name:

```
anneal-weka.filters.unsupervised.instance.RemovePercentage-P66.0
```

will be turned into this:

```
anneal
```

As long as one takes care and uses sensible relation names, the `ExplicitTestSetResultProducer` can be used to compare different classifiers and setups on train/test set pairs, using the full functionality of the Experimenter.
6.3 Cluster Experiments

Using the advanced mode of the Experimenter you can now run experiments on clustering algorithms as well as classifiers (Note: this is a new feature available with Weka 3.5.8). The main evaluation metric for this type of experiment is the log likelihood of the clusters found by each clusterer. Here is an example of setting up a cross-validation experiment using clusterers.

Choose `CrossValidationResultProducer` from the Result generator panel.
Next, choose \textit{DensityBasedClustererSplitEvaluator} as the split evaluator to use. If you click on \textit{DensityBasedClustererSplitEvaluator} you will see its options.

\textbf{Note} that there is an option for removing the class column from the data. In the Experimenter, the class column is set to be the last column by default. Turn this off if you want to keep this column in the data.

Once \textit{DensityBasedClustererSplitEvaluator} has been selected, you will notice that the \textit{Generator properties} have become disabled. Enable them again and expand \textit{splitEvaluator}. Select the \textit{clusterer} node.

Now you will see that \textit{EM} becomes the default clusterer and gets added to the list of schemes. You can now add/delete other clusterers.

\textbf{IMPORTANT:} in order to any clusterer that does not produce density estimates (i.e. most other clusterers in Weka), they will have to wrapped in the \textit{MakeDensityBasedClusterer}.

Once an experiment has been run, you can analyze results in the Analyse panel. In the Comparison field you will need to scroll down and select "Log likelihood".
6.4 Remote Experiments

Remote experiments enable you to distribute the computing load across multiple computers. In the following we will discuss the setup and operation for HSQLDB and MySQL.

6.4.1 Preparation

To run a remote experiment you will need:

- A database server.
- A number of computers to run remote engines on.
- To edit the remote engine policy file included in the Weka distribution to allow Java class and dataset loading from your home directory.
- An invocation of the Experimenter on a machine somewhere (any will do).

For the following examples, we assume a user called johndoe with this setup:

- Access to a set of computers running a flavour of Unix (pathnames need to be changed for Windows).
- The home directory is located at /home/johndoe.
- Weka is found in /home/johndoe/weka.
- Additional jar archives, i.e., JDBC drivers, are stored in /home/johndoe/jars.
- The directory for the datasets is /home/johndoe/datasets.

Note: The example policy file remote.policy.example is using this setup (available in weka/experiment).

6.4.2 Database Server Setup

HSQLDB

- Download the JDBC driver for HSQLDB, extract the hsqldb.jar and place it in the directory /home/johndoe/jars.
- To set up the database server, choose or create a directory to run the database server from, and start the server with:

 java -classpath /home/johndoe/jars/hsqldb.jar \n org.hsqldb.Server \n -database.0 experiment -dbname.0 experiment

Note: This will start up a database with the alias “experiment” (-dbname.0 <alias>) and create a properties and a log file at the current location prefixed with “experiment” (-database.0 <file>).

[1] Weka’s source code can be found in the weka-src.jar archive or obtained from Subversion.
6.4. REMOTE EXPERIMENTS

• MySQL
 We won’t go into the details of setting up a MySQL server, but this is rather straightforward and includes the following steps:
 – Download a suitable version of MySQL for your server machine.
 – Install and start the MySQL server.
 – Create a database - for our example we will use experiment as database name.
 – Download the appropriate JDBC driver, extract the JDBC jar and place it as mysql.jar in /home/johndoe/jars.

6.4.3 Remote Engine Setup

• First, set up a directory for scripts and policy files:
 /home/johndoe/remote_engine

• Unzip the remoteExperimentServer.jar (from the Weka distribution; or build it from the sources with ant remotejar) into a temporary directory.

• Next, copy remoteEngine.jar and remote.policy.example to the /home/johndoe/remote_engine directory.

• Create a script, called /home/johndoe/remote_engine/startRemoteEngine, with the following content (don’t forget to make it executable with chmod a+x startRemoteEngine when you are on Linux/Unix):
 – HSQLDB
 java -Xmx256m \
 -classpath /home/johndoe/jars/hsqldb.jar:remoteEngine.jar:/home/johndoe/weka/weka.jar \
 -Djava.security.policy=remote.policy \n weka.experiment.RemoteEngine &
 – MySQL
 java -Xmx256m \
 -classpath /home/johndoe/jars/mysql.jar:remoteEngine.jar:/home/johndoe/weka/weka.jar \
 -Djava.security.policy=remote.policy \n weka.experiment.RemoteEngine &

• Now we will start the remote engines that run the experiments on the remote computers (note that the same version of Java must be used for the Experimenter and remote engines):
 – Rename the remote.policy.example file to remote.policy.
 – For each machine you want to run a remote engine on:
 * ssh to the machine.

2Weka’s source code can be found in the weka-src.jar archive or obtained from Subversion [11].
6.4.4 Configuring the Experimenter

Now we will run the Experimenter:

- **HSQLDB**
 - Copy the `DatabaseUtils.props.hsql` file from `weka/experiment` in the `weka.jar` archive to the `/home/johndoe/remote_engine` directory and rename it to `DatabaseUtils.props`.
 - Edit this file and change the "jdbcURL=jdbc:hsqldb:hsql://servername/database_name" entry to include the name of the machine that is running your database server (e.g., `jdbcURL=jdbc:hsqldb:hsql://dodo.company.com/experiment`).
 - Now start the Experimenter (inside this directory):
    ```
    java \\
    -cp /home/johndoe/jars/hsqldb.jar:remoteEngine.jar:/home/johndoe/weka/weka.jar \\
    -Djava.rmi.server.codebase=file:/home/johndoe/weka/weka.jar \\
    weka.gui.experiment.Experimenter
    ```

- **MySQL**
 - Copy the `DatabaseUtils.props.mysql` file from `weka/experiment` in the `weka.jar` archive to the `/home/johndoe/remote_engine` directory and rename it to `DatabaseUtils.props`.
 - Edit this file and change the "jdbcURL=jdbc:mysql://servername:3306/database_name" entry to include the name of the machine that is running your database server and the name of the database the result will be stored in (e.g., `jdbcURL=jdbc:mysql://dodo.company.com:3306/experiment`).
 - Now start the Experimenter (inside this directory):
    ```
    java \\
    -cp /home/johndoe/jars/mysql.jar:remoteEngine.jar:/home/johndoe/weka/weka.jar \\
    -Djava.rmi.server.codebase=file:/home/johndoe/weka/weka.jar \\
    weka.gui.experiment.Experimenter
    ```

Note: the database name experiment can still be modified in the Experimenter, this is just the default setup.

Now we will configure the experiment:

- First of all select the **Advanced** mode in the **Setup** tab
- Now choose the **DatabaseResultListener** in the **Destination** panel. Configure this result producer:
 - **HSQLDB**
 Supply the value **sa** for the username and leave the password empty.
6.4. REMOTE EXPERIMENTS

- MySQL
 Provide the username and password that you need for connecting to the database.

- From the Result generator panel choose either the CrossValidationResultProducer or the RandomSplitResultProducer (these are the most commonly used ones) and then configure the remaining experiment details (e.g., datasets and classifiers).

- Now enable the Distribute Experiment panel by checking the tick box.

- Click on the Hosts button and enter the names of the machines that you started remote engines on (<Enter> adds the host to the list).

- You can choose to distribute by run or dataset.

- Save your experiment configuration.

- Now start your experiment as you would do normally.

- Check your results in the Analyse tab by clicking either the Database or Experiment buttons.

6.4.5 Multi-core support

If you want to utilize all the cores on a multi-core machine, then you can do so with Weka version later than 3.5.7. All you have to do, is define the port alongside the hostname in the Experimenter (format: hostname:port) and then start the RemoteEngine with the -p option, specifying the port to listen on.

6.4.6 Troubleshooting

- If you get an error at the start of an experiment that looks a bit like this:
  ```
  01:13:19: RemoteExperiment (//blabla.company.com/RemoteEngine) (sub)experiment (dataset vineyard.arff) failed : java.sql.SQLException: Table already exists: EXPERIMENT_INDEX in statement [CREATE TABLE Experiment_index ( Experiment_type LONGVARCHAR, Experiment_setup LONGVARCHAR, Result_table INT )]
  ```
 then do not panic - this happens because multiple remote machines are trying to create the same table and are temporarily locked out - this will resolve itself so just leave your experiment running - in fact, it is a sign that the experiment is working!
• If you serialized an experiment and then modify your \textit{DatabaseUtils.props} file due to an error (e.g., a missing type-mapping), the Experimenter will use the \textit{DatabaseUtils.props} you had \textit{at the time you serialized the experiment}. Keep in mind that the serialization process also serializes the \textit{DatabaseUtils} class and therefore stored your props-file! This is another reason for storing your experiments as XML and not in the proprietary binary format the Java serialization produces.

• Using a corrupt or incomplete \textit{DatabaseUtils.props} file can cause peculiar interface errors, for example disabling the use of the "User" button alongside the database URL. If in doubt copy a clean \textit{DatabaseUtils.props} from Subversion [11].

• If you get \texttt{NullPointerException} at \texttt{java.util.Hashtable.get()} in the Remote Engine do not be alarmed. This will have no effect on the results of your experiment.
6.5 Analyzing Results

6.5.1 Setup

Weka includes an experiment analyser that can be used to analyse the results of experiments (in this example, the results were sent to an `InstancesResultListener`). The experiment shown below uses 3 schemes, ZeroR, OneR, and J48, to classify the Iris data in an experiment using 10 train and test runs, with 66% of the data used for training and 34% used for testing.

![Experiment Setup and Analysis](image)

After the experiment setup is complete, run the experiment. Then, to analyse the results, select the **Analyse** tab at the top of the Experiment Environment window.

Click on **Experiment** to analyse the results of the current experiment.
CHAPTER 6. EXPERIMENTER

The number of result lines available (Got 30 results) is shown in the Source panel. This experiment consisted of 10 runs, for 3 schemes, for 1 dataset, for a total of 30 result lines. Results can also be loaded from an earlier experiment file by clicking File and loading the appropriate .arff results file. Similarly, results sent to a database (using the DatabaseResultListener) can be loaded from the database.

Select the Percent_correct attribute from the Comparison field and click Perform test to generate a comparison of the 3 schemes.

The schemes used in the experiment are shown in the columns and the datasets used are shown in the rows.

The percentage correct for each of the 3 schemes is shown in each dataset row: 33.33% for ZeroR, 94.31% for OneR, and 94.90% for J48. The annotation v or * indicates that a specific result is statistically better (v) or worse (*) than the baseline scheme (in this case, ZeroR) at the significance level specified (currently 0.05). The results of both OneR and J48 are statistically better than the baseline established by ZeroR. At the bottom of each column after the first column is a count (xx/ yy/ zz) of the number of times that the scheme was better than (xx), the same as (yy), or worse than (zz), the baseline scheme on the datasets used in the experiment. In this example, there was only one dataset and OneR was better than ZeroR once and never equivalent to or worse than ZeroR (1/0/0); J48 was also better than ZeroR on the dataset.

The standard deviation of the attribute being evaluated can be generated by selecting the Show std. deviations check box and hitting Perform test again. The value (10) at the beginning of the iris row represents the number of estimates that are used to calculate the standard deviation (the number of runs in this case).
6.5. ANALYSING RESULTS

Selecting \textit{Number correct} as the comparison field and clicking \textit{Perform test} generates the average number correct (out of 50 test patterns - 33\% of 150 patterns in the Iris dataset).

Clicking on the button for the \textit{Output format} leads to a dialog that lets you choose the precision for the \textit{mean} and the \textit{std. deviations}, as well as the format of the output. Checking the \textit{Show Average} checkbox adds an additional line to the output listing the average of each column. With the \textit{Remove filter classnames} checkbox one can remove the filter name and options from processed datasets (filter names in Weka can be quite lengthy).

The following formats are supported:

- CSV
- GNUPlot
- HTML
To give one more control, the “Advanced setup” allows one to bring up all
the options that a result matrix offers. This includes the options described
above, plus options like the width of the row names, or whether to enumerate
the columns and rows.

6.5.2 Saving the Results

The information displayed in the Test output panel is controlled by the currently-
selected entry in the Result list panel. Clicking on an entry causes the results
corresponding to that entry to be displayed.

The results shown in the Test output panel can be saved to a file by clicking
Save output. Only one set of results can be saved at a time but Weka permits
the user to save all results to the same file by saving them one at a time and
using the Append option instead of the Overwrite option for the second and
subsequent saves.

6.5.3 Changing the Baseline Scheme

The baseline scheme can be changed by clicking Select base... and then selecting
the desired scheme. Selecting the OneR scheme causes the other schemes to be
compared individually with the OneR scheme.
6.5. ANALYSING RESULTS

If the test is performed on the Percent_correct field with OneR as the base scheme, the system indicates that there is no statistical difference between the results for OneR and J48. There is however a statistically significant difference between OneR and ZeroR.

6.5.4 Statistical Significance

The term statistical significance used in the previous section refers to the result of a pair-wise comparison of schemes using either a standard T-Test or the corrected resampled T-Test [9]. The latter test is the default, because the standard T-Test can generate too many significant differences due to dependencies in the estimates (in particular when anything other than one run of an x-fold cross-validation is used). For more information on the T-Test, consult the Weka book [1] or an introductory statistics text. As the significance level is decreased, the confidence in the conclusion increases.

In the current experiment, there is not a statistically significant difference between the OneR and J48 schemes.

6.5.5 Summary Test

Selecting Summary from Test base and performing a test causes the following information to be generated.
In this experiment, the first row (-1 1) indicates that column b (OneR) is better than row a (ZeroR) and that column c (J48) is also better than row a. The number in brackets represents the number of significant wins for the column with regard to the row. A 0 means that the scheme in the corresponding column did not score a single (significant) win with regard to the scheme in the row.

6.5.6 Ranking Test

Selecting Ranking from Test base causes the following information to be generated.

The ranking test ranks the schemes according to the total number of significant wins ($>$) and losses ($<$) against the other schemes. The first column ($> - <$) is the difference between the number of wins and the number of losses. This difference is used to generate the ranking.
Chapter 7

KnowledgeFlow

7.1 Introduction

The KnowledgeFlow provides an alternative to the Explorer as a graphical front end to WEKA’s core algorithms. Weka 3.8.0 and 3.9.0 contain a new implementation of the KnowledgeFlow - this new implementation is more efficient, has a simpler API than the old version, and now lives in the `weka.knowledgeflow` and `weka.gui.knowledgeflow` packages. The old Knowledge Flow implementation is still available in the `weka.gui.beans` package.

The KnowledgeFlow presents a data-flow inspired interface to WEKA. The user can select WEKA steps from a palette, place them on a layout canvas and connect them together in order to form a knowledge flow for processing and analyzing data. At present, all of WEKA’s classifiers, filters, clusterers, associators, loaders and savers are available in the KnowledgeFlow along with some extra tools.
The KnowledgeFlow can handle data either incrementally or in batches (the Explorer handles batch data only). Of course learning from data incrementally requires a classifier that can be updated on an instance by instance basis. Currently in WEKA there are ten classifiers that can handle data incrementally:

- AODE
- IB1
- IBk
- KStar
- NaiveBayesMultinomialUpdateable
- NaiveBayesUpdateable
- NNge
- Winnow
- SGD
- SPegasos

A further two classifiers are meta classifiers:

- RacedIncrementalLogitBoost - that can use of any regression base learner to learn from discrete class data incrementally.
- LWL - locally weighted learning.

Furthermore, other incremental streaming classifiers from the MOA project are accessible through the “massiveOnlineAnalysis” package (available for installation via the package manager).
7.2 Features

The KnowledgeFlow offers the following features:

- intuitive data flow style layout
- process data in batches or incrementally
- launch multiple start points in parallel
- launch multiple start points sequentially in a user-defined order
- fully multi-threaded - each step in a flow executes in its own thread (except for those processing streaming data)
- single threaded execution for streaming flows
- chain filters together
- view models produced by classifiers for each fold in a cross validation
- visualize performance of incremental classifiers during processing (scrolling plots of classification accuracy, RMS error, predictions etc.)
- plugin “perspectives” that add major new functionality (e.g. 3D data visualization, time series forecasting environment etc.)
7.3 Flow Steps

Steps available in the KnowledgeFlow:

7.3.1 DataSources
All of WEKA’s loaders are available.

7.3.2 DataSinks
All of WEKA’s savers are available. Along with the following KnowledgeFlow-specific ones:
- *TextSaver* - save text carried by a text connection out to a file.
- *ImageSaver* - save the image data carried by an image connection out to a file in either PNG or GIF format.
- *SerializedModelSaver* - save the classifier or clusterer encapsulated in a batchClassifier, incrementalClassifier or batchClusterer connection out to a file.

7.3.3 DataGenerators
All of WEKA’s data generators are available.

7.3.4 Filters
All of WEKA’s filters are available.

7.3.5 Classifiers
All of WEKA’s classifiers are available.

7.3.6 Clusterers
All of WEKA’s clusterers are available.

7.3.7 Attribute selection
All of WEKA’s attribute and subset evaluators are available, along with all of the search methods.

7.3.8 Evaluation
- *TrainingSetMaker* - make a data set into a training set.
- *TestSetMaker* - make a data set into a test set.
- *CrossValidationFoldMaker* - split any data set, training set or test set into folds.
7.3. FLOW STEPS

- **TrainTestSplitMaker** - split any data set, training set or test set into a training set and a test set.

- **InstanceStreamToBatchMaker** - collects the instances in an incoming instance stream and outputs them as a batch set of Instances.

- **ClassAssigner** - assign a column to be the class for any data set, training set or test set.

- **ClassValuePicker** - choose a class value to be considered as the “positive” class. This is useful when generating data for ROC style curves (see ModelPerformanceChart below and example 7.4.2).

- **ClassifierPerformanceEvaluator** - evaluate the performance of batch trained/tested classifiers.

- **IncrementalClassifierEvaluator** - evaluate the performance of incrementally trained classifiers.

- **ClustererPerformanceEvaluator** - evaluate the performance of batch trained/tested clusterers.

- **PredictionAppender** - append classifier predictions to a test set. For discrete class problems, can either append predicted class labels or probability distributions.

7.3.9 Visualization

- **DataVisualizer** - a step that can pop up a panel for visualizing data in a single large 2D scatter plot.

- **ScatterPlotMatrix** - a step that can pop up a panel containing a matrix of small scatter plots (clicking on a small plot pops up a large scatter plot).

- **AttributeSummarizer** - a step that can pop up a panel containing a matrix of histogram plots - one for each of the attributes in the input data.

- **ModelPerformanceChart** - a step that can pop up a panel for visualizing threshold (i.e., ROC style) curves.

- **CostBenefitAnalysis** - a step that can popup a graphical tool for exploring cost/benefit tradeoffs by interactively selecting different population sizes from a ranked list of prospects or by varying the threshold on the predicted probability of the positive class. It displays both a cumulative gains chart and a cost/benefit plot.

- **TextViewer** - a step for showing textual data. Can show data sets, classification performance statistics etc.

- **GraphViewer** - a step that can pop up a panel for visualizing tree based models.

- **StripChart** - a step that can pop up a panel that displays a scrolling plot of data (used for viewing the online performance of incremental classifiers).
CHAPTER 7. KNOWLEDGEFLOW

- **ImageViewer** - a step that can popup a visualization for static image data.

- **BoundaryPlotter** - a step that accepts a dataSet, along with one or more info connections from classifiers or clusterers to execute, and generates prediction boundary plots. The resulting plots can be viewed in a popup visualization.

7.3.10 Flow

- **SetVariables** - set the values of variables used in the flow. This is useful for testing flows that use variables before they are executed in an environment where the variables will have meaningful values. This step does not need to be connected to any others - just place one on the layout.

- **MakeResourceIntensive** - a step that alters which executor service is used to execute the step immediately downstream. By default, most steps execute in the main executor service. However, there is a secondary executor service, using a limited number of threads, available for executing high resource (cpu/memory) tasks and steps. The Classifier step executes in the high resource executor by default because it could potentially process many cross-validation folds - this way it won’t starve other steps of CPU or memory resources. The MakeResourceIntensive can be used to force a step to use a particular executor service.

- **Block** - a step that blocks incoming connections until a specified step in the flow has finished executing.

- **Appender** - appends incoming batches or streams of data into one batch/stream. All inputs must be of the same type (i.e. all batch or all stream). An amalgamated output is created that is a combination of all the incoming attributes.

- **FlowByExpression** - a step that splits incoming instances (or instance streams) according to the evaluation of a logical expression. The expression can test the values of one or more incoming attributes. The test can involve constants or comparing the value of one attribute’s values to another.

- **InstanceStreamToBatchMaker** - converts an incoming instance stream to a batch (i.e. accepts an instance connection and outputs a dataSet connection).

- **Join** - a step that performs an inner join on two incoming dataSet or instance stream connections. **Important**: assumes that both inputs are sorted in ascending order of the key fields. A Sorter step can be used to sort data before it is input to Join.

7.3.11 Tools

- **Sorter** - a step that sorts incoming instances in ascending or descending order according to the values of user-specified attributes. Instances can be sorted according to multiple attributes (defined in order). Handles
7.3. **FLOW STEPS**

datasets larger than can be fit into main memory via instance connections and specifying the in-memory buffer size. Implements a merge sort by writing the sorted in-memory buffer to a file when full, and then interleaving instances from the disk-based file(s) when the incoming stream has finished.

- **SubstringReplacer** - replaces substrings in String attributes using either a literal match-and-replace, or regular expression matching.

- **SubstringLabeler** - a step that labels instances according to substring or regular expression matches in String attributes. The user can specify the attributes to match against and associated label to create by defining “match” rules. A new attribute is appended to the data to contain the label. Rules are applied in order when processing instances, and the label associated with the first matching rule is applied. Non-matching instances can either receive a missing value for the label attribute or be “consumed” (i.e. they are not output).
7.4 Examples

7.4.1 Cross-validated J48

Setting up a flow to load an ARFF file (batch mode) and perform a cross-validation using J48 (WEKA’s C4.5 implementation). This example can be accessed from the “Cross validation” entry of the popup menu that appears when the “templates” button in the toolbar is clicked.

- Expand the DataSources entry in the Design panel and choose ArffLoader (the mouse pointer will change to a cross hairs).
- Next place the ArffLoader step on the layout area by clicking somewhere on the layout (a copy of the ArffLoader icon will appear on the layout area).
- Next specify an ARFF file to load by first right clicking the mouse over the ArffLoader icon on the layout. A pop-up menu will appear. Select Configure under Edit in the list from this menu and browse to the location of your ARFF file.
- Next click expand the Evaluation entry in the Design panel and choose the ClassAssigner (allows you to choose which column to be the class) step from the toolbar. Place this on the layout.
- Now connect the ArffLoader to the ClassAssigner: first right click over the ArffLoader and select the dataSet under Connections in the menu. A rubber band line will appear. Move the mouse over the ClassAssigner step and left click - a red line labeled dataSet will connect the two steps.
- Next right click over the ClassAssigner and choose Configure from the menu. This will pop up a window from which you can specify which column is the class in your data (last is the default).
- Next grab a CrossValidationFoldMaker step from the Evaluation entry in the Design panel and place it on the layout. Connect the ClassAssigner to the CrossValidationFoldMaker by right clicking over ClassAssigner and selecting dataSet from under Connections in the menu.
• Next expand the Classifiers entry and then the trees sub-entry in the Design panel and choose the J48 step. Place a J48 step on the layout.

• Connect the CrossValidationFoldMaker to J48 TWICE by first choosing trainingSet and then testSet from the pop-up menu for the CrossValidationFoldMaker.

• Next go back to the Evaluation entry and place a ClassifierPerformanceEvaluator step on the layout. Connect J48 to this step by selecting the batchClassifier entry from the pop-up menu for J48.

• Next go to the Visualization entry and place a TextViewer step on the layout. Connect the ClassifierPerformanceEvaluator to the TextViewer by selecting the text entry from the pop-up menu for ClassifierPerformanceEvaluator.

• Now start the flow executing by pressing the play button on the toolbar at the top of the window. Progress information for each step in the flow will appear in the Status area and Log at the bottom of the window.

When finished you can view the results by choosing Show results from the pop-up menu for the TextViewer step.

Other cool things to add to this flow: connect a TextViewer and/or a GraphViewer to J48 in order to view the textual or graphical representations of the trees produced for each fold of the cross validation (this is something that is not possible in the Explorer).
7.4.2 Plotting multiple ROC curves

The KnowledgeFlow can draw multiple ROC curves in the same plot window, something that the Explorer cannot do. In this example we use J48 and RandomForest as classifiers. This example can be accessed from the “ROC curves for two classifiers” entry of the popup menu that appears when the “templates” button in the toolbar is clicked. It can also be found on the WekaWiki as well [14].

- Click on the DataSources entry in the Design panel and choose ArffLoader (the mouse pointer will change to a cross hairs).
- Next place the ArffLoader step on the layout area by clicking somewhere on the layout (a copy of the ArffLoader icon will appear on the layout area).
- Next specify an ARFF file to load by first right clicking the mouse over the ArffLoader icon on the layout. A pop-up menu will appear. Select Configure under Edit in the list from this menu and browse to the location of your ARFF file.
- Next click the Evaluation entry in the Design panel and choose the ClassAssigner (allows you to choose which column to be the class) step from the toolbar. Place this on the layout.
- Now connect the ArffLoader to the ClassAssigner: first right click over the ArffLoader and select the dataSet under Connections in the menu. A rubber band line will appear. Move the mouse over the ClassAssigner step and left click - a red line labeled dataSet will connect the two steps.
- Next right click over the ClassAssigner and choose Configure from the menu. This will pop up a window from which you can specify which column is the class in your data (last is the default).
- Next choose the ClassValuePicker (allows you to choose which class label to be evaluated in the ROC) step from Evaluation. Place this on the layout and right click over ClassAssigner and select dataSet from under Connections in the menu and connect it with the ClassValuePicker.
Next grab a `CrossValidationFoldMaker` step from `Evaluation` and place it on the layout. Connect the ClassAssigner to the CrossValidationFoldMaker by right clicking over `ClassAssigner` and selecting `dataSet` from under `Connections` in the menu.

Next click on the `Classifiers` entry in the `Design` panel and choose the `J48` step from the `trees` sub-entry. Place a J48 step on the layout.

Connect the CrossValidationFoldMaker to J48 TWICE by first choosing `trainingSet` and then `testSet` from the pop-up menu for the CrossValidationFoldMaker.

Repeat these two steps with the RandomForest classifier.

Next go back to `Evaluation` and place a `ClassifierPerformanceEvaluator` step on the layout. Connect J48 to this step by selecting the `batchClassifier` entry from the pop-up menu for J48. Add another `ClassifierPerformanceEvaluator` for RandomForest and connect them via `batchClassifier` as well.

Next go to the `Visualization` entry and place a `ModelPerformanceChart` step on the layout. Connect both ClassifierPerformanceEvaluators to the ModelPerformanceChart by selecting the `thresholdData` entry from the pop-up menu for ClassifierPerformanceEvaluator.

Now start the flow executing by pressing the `play` button on the toolbar at the top of the window. Progress information for each step in the flow will appear in the `Status` bar and `Log` at the bottom of the window.

Select `Show plot` from the popup-menu of the `ModelPerformanceChart` under the `Actions` section.

Here are the two ROC curves generated from the UCI dataset `credit-g`, evaluated on the class label `good`:
7.4.3 Processing data incrementally

Some classifiers, clusterers and filters in Weka can handle data incrementally in a streaming fashion. Here is an example of training and testing naive Bayes incrementally. The results are sent to a TextViewer and predictions are plotted by a StripChart step. This example can be accessed from the “Learn and evaluate naive Bayes incrementally” entry of the popup menu that appears when the “templates” button in the toolbar is clicked.

- Expand the DataSources entry in the Design panel and choose ArffLoader (the mouse pointer will change to a cross hairs).
- Next place the ArffLoader step on the layout area by clicking somewhere on the layout (a copy of the ArffLoader icon will appear on the layout area).
- Next specify an ARFF file to load by first right clicking the mouse over the ArffLoader icon on the layout. A pop-up menu will appear. Select Configure under Edit in the list from this menu and browse to the location of your ARFF file.
- Next expand the Evaluation entry in the Design panel and choose the ClassAssigner (allows you to choose which column to be the class). Place this on the layout.
- Now connect the ArffLoader to the ClassAssigner: first right click over the ArffLoader and select the dataSet under Connections in the menu. A rubber band line will appear. Move the mouse over the ClassAssigner step and left click - a red line labeled dataSet will connect the two steps.
- Next right click over the ClassAssigner and choose Configure from the menu. This will pop up a window from which you can specify which column is the class in your data (last is the default).
- Now grab a NaiveBayesUpdateable step from the bayes section of the Classifiers entry and place it on the layout.
- Next connect the ClassAssigner to NaiveBayesUpdateable using a instance connection.
- Next place an IncrementalClassifierEvaluator from the Evaluation entry onto the layout and connect NaiveBayesUpdateable to it using a incrementalClassifier connection.
• Next place a `TextViewer` step from the `Visualization` entry on the Layout. Connect the `IncrementalClassifierEvaluator` to it using a `text` connection.

• Next place a `StripChart` step from the `Visualization` entry on the layout and connect `IncrementalClassifierEvaluator` to it using a `chart` connection.

• Display the `StripChart`’s chart by right-clicking over it and choosing `Show chart` from the pop-up menu. Note: the `StripChart` can be configured with options that control how often data points and labels are displayed.

• Finally, start the flow by pressing the `play` button on the toolbar at the top of the window.

Note that, in this example, a prediction is obtained from naive Bayes for each incoming instance **before** the classifier is trained (updated) with the instance. If you have a pre-trained classifier, you can specify that the classifier **not** be updated on incoming instances by unselecting the check box in the configuration dialog for the classifier. If the pre-trained classifier is a **batch** classifier (i.e. it is not capable of incremental training) then you will only be able to test it in an incremental fashion.
7.5 Plugins

7.5.1 Flow components

The KnowledgeFlow offers the ability to easily add new components via a plugin mechanism. From Weka 3.7.2 this plugin mechanism has been subsumed by the package management system and KnowledgeFlow plugins are no longer installed in `.knowledgeFlow/plugins` in the user’s home directory. Jar files containing plugin components for the KnowledgeFlow need to be bundled into a package archive. Information on the structure of a Weka package is given in the Appendix (Chapter 19). In order to tell the KnowledgeFlow which classes in the jar file to instantiate as components, a second file called `PluginManager.props` needs to be included in the top-level directory of the package. This file contains key/value entries, where the key specifies an interface or base class, and the value is a comma-separated list of concrete implementations. For example, if we’d developed a new Knowledge Flow step called `FunkyStep`, then the `PluginManager.props` file would contain the following entry:

```
weka.knowledgeflow.steps.Step=weka.knowledgeflow.steps.FunkyStep
```

If we had developed a new perspective (see the next section) called `FunkyPerspective`, then an entry such as the following would make it appear in the Knowledge Flow (and Workbench).

```
weka.gui.Perspective=weka.gui.knowledgeflow.FunkyPerspective
```

7.5.2 Perspectives

From Weka 3.7.4, the KnowledgeFlow offers a new type of plugin, called a “perspective”, that can take over the main UI and add major new functionality. One example is the `timeSeriesForecasting` package. This package offers not only a plugin tab for the Explorer, but also a plugin perspective for the KnowledgeFlow as well. Another example is the `scatterPlot3D` package which adds a 3D visualization facility for datasets. Both these perspectives operate on a set of instances. Instances can be sent to a perspective by right-clicking over a configured `DataSource` component and choosing `Send to perspective` from the popup menu.
Several perspectives are built-in to Knowledge Flow and others, such as the time series environment, can be installed as packages. The built-in perspectives include: Attribute summary, SQL Viewer and Scatter plot matrix. Which perspectives appear in the toolbar can be configured by clicking the button shaped like a cog in the upper left-hand corner of the main Knowledge Flow window. If the Perspectives toolbar is not visible then it can be shown/hidden by clicking the “cog with arrow” button in the main toolbar at the top right-hand side of the main Knowledge Flow window.
Chapter 8

Workbench

8.1 Introduction

From Weka 3.8.0 a new user interface called the Workbench is available. The Workbench provides an all-in-one application that subsumes all the major WEKA GUIs described in earlier sections. The Workbench presents a set of “perspectives”, where a perspective might contain an entire application or individual panels/tabs from an application. For example, the Explorer’s main panels and plugin panels all appear as separate perspectives in the Workbench, so at first glance it appears very similar to the Explorer. However, other perspectives can contain entire applications — for example, the Knowledge Flow or Experiment.

Because the Workbench is made up of other applications, there is not much further to describe here with respect to its functionality. One exception is that the Workbench exposes a number of general and perspective-specific settings and preferences that the user can modify. Settings are accessible by either the
CHAPTER 8. WORKBENCH

From the settings the user can choose which perspectives should appear, and modify general settings, such as the look-and-feel to use. Some settings will come into effect immediately; while others, such as the look-and-feel, will require that WEKA is restarted after making the change.

Beyond the Perspectives and General tabs in the settings dialog each perspective will have its own tab for settings (as long as a given perspective has user-configurable settings).
Chapter 9

ArffViewer

The ArffViewer is a little tool for viewing ARFF files in a tabular format. The advantage of this kind of display over the file representation is, that attribute name, type and data are directly associated in columns and not separated in definition and data part. But the viewer is not only limited to viewing multiple files at once, but also provides simple editing functionality, like sorting and deleting.
9.1 Menus

The ArffViewer offers most of its functionality either through the main menu or via popups (table header and table cells).

Short description of the available menus:

- **File** contains options for opening and closing files, as well as viewing properties about the current file.

- **Edit** allows one to delete attributes/instances, rename attributes, choose a new class attribute, search for certain values in the data and of course undo the modifications.

- **View** brings either the chosen attribute into view or displays all the values of an attribute.

After opening a file, by default, the column widths are optimized based on the attribute name and not the content. This is to ensure that overlong cells do not force an enormously wide table, which the user has to reduce with quite some effort.
9.1. MENUS

In the following, screenshots of the table popups:
9.2 Editing

Besides the first column, which is the instance index, all cells in the table are editable. Nominal values can be easily modified via dropdown lists, numeric values are edited directly.

<table>
<thead>
<tr>
<th>No</th>
<th>age</th>
<th>sex</th>
<th>chest_pain</th>
<th>trestbps</th>
<th>cholesterol</th>
<th>Fasting_Blood_Sugar</th>
<th>resting_ECG</th>
<th>thalach</th>
<th>exang</th>
<th>oldpeak</th>
<th>slope</th>
<th>ca</th>
<th>thal</th>
<th>num</th>
<th>nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>male</td>
<td>N</td>
<td>130</td>
<td>126</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>male</td>
<td>N</td>
<td>120</td>
<td>230</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>male</td>
<td>N</td>
<td>140</td>
<td>170</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>female</td>
<td>N</td>
<td>170</td>
<td>237</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>female</td>
<td>N</td>
<td>180</td>
<td>210</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>male</td>
<td>N</td>
<td>180</td>
<td>180</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
<td>female</td>
<td>N</td>
<td>110</td>
<td>250</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>male</td>
<td>N</td>
<td>120</td>
<td>204</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>male</td>
<td>N</td>
<td>120</td>
<td>280</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>female</td>
<td>N</td>
<td>130</td>
<td>180</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>11</td>
<td>34</td>
<td>male</td>
<td>N</td>
<td>150</td>
<td>240</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>12</td>
<td>34</td>
<td>male</td>
<td>N</td>
<td>180</td>
<td>220</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>female</td>
<td>N</td>
<td>120</td>
<td>100</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>14</td>
<td>35</td>
<td>female</td>
<td>N</td>
<td>160</td>
<td>237</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>male</td>
<td>N</td>
<td>120</td>
<td>300</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>male</td>
<td>N</td>
<td>150</td>
<td>204</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>17</td>
<td>36</td>
<td>female</td>
<td>N</td>
<td>130</td>
<td>160</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>18</td>
<td>36</td>
<td>female</td>
<td>N</td>
<td>112</td>
<td>360</td>
<td>Normal</td>
<td>Other</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>19</td>
<td>36</td>
<td>male</td>
<td>N</td>
<td>130</td>
<td>209</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>male</td>
<td>N</td>
<td>150</td>
<td>150</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>21</td>
<td>37</td>
<td>female</td>
<td>N</td>
<td>120</td>
<td>260</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>22</td>
<td>37</td>
<td>female</td>
<td>N</td>
<td>130</td>
<td>210</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>23</td>
<td>35</td>
<td>female</td>
<td>N</td>
<td>130</td>
<td>173</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>24</td>
<td>37</td>
<td>male</td>
<td>N</td>
<td>130</td>
<td>293</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>25</td>
<td>37</td>
<td>male</td>
<td>N</td>
<td>120</td>
<td>194</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>26</td>
<td>37</td>
<td>male</td>
<td>N</td>
<td>120</td>
<td>233</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>27</td>
<td>37</td>
<td>female</td>
<td>N</td>
<td>130</td>
<td>315</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>female</td>
<td>N</td>
<td>120</td>
<td>275</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>29</td>
<td>38</td>
<td>male</td>
<td>N</td>
<td>140</td>
<td>297</td>
<td>Normal</td>
<td>Normal</td>
<td>normal</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>N</td>
<td>Normal</td>
</tr>
</tbody>
</table>
For convenience, it is possible to sort the view based on a column (the underlying data is NOT changed; via Edit/Sort data one can sort the data permanently). This enables one to look for specific values, e.g., missing values. To better distinguish missing values from empty cells, the background of cells with missing values is colored grey.
Chapter 10

Bayesian Network Classifiers

10.1 Introduction

Let $U = \{x_1, \ldots, x_n\}, \ n \geq 1$ be a set of variables. A Bayesian network B over a set of variables U is a network structure B_S, which is a directed acyclic graph (DAG) over U and a set of probability tables $B_P = \{p(u|pa(u))|u \in U\}$ where $pa(u)$ is the set of parents of u in B_S. A Bayesian network represents a probability distributions $P(U) = \prod_{u \in U} p(u|pa(u))$.

Below, a Bayesian network is shown for the variables in the iris data set. Note that the links between the nodes class, petallength and petalwidth do not form a directed cycle, so the graph is a proper DAG.

This picture just shows the network structure of the Bayes net, but for each of the nodes a probability distribution for the node given its parents are specified as well. For example, in the Bayes net above there is a conditional distribution
for petallength given the value of class. Since class has no parents, there is an unconditional distribution for sepalwidth.

Basic assumptions

The classification task consist of classifying a variable \(y = x_0 \) called the \textit{class variable} given a set of variables \(x = x_1 \ldots x_n \), called \textit{attribute variables}. A classifier \(h : x \rightarrow y \) is a function that maps an instance of \(x \) to a value of \(y \). The classifier is learned from a dataset \(D \) consisting of samples over \((x, y) \). The learning task consists of finding an appropriate Bayesian network given a data set \(D \) over \(U \).

All Bayes network algorithms implemented in Weka assume the following for the data set:

- all variables are discrete finite variables. If you have a data set with continuous variables, you can use the following filter to discretize them: \texttt{weka.filters.unsupervised.attribute.Discretize}
- no instances have missing values. If there are missing values in the data set, values are filled in using the following filter: \texttt{weka.filters.unsupervised.attribute.ReplaceMissingValues}

The first step performed by \texttt{buildClassifier} is checking if the data set fulfills those assumptions. If those assumptions are not met, the data set is automatically filtered and a warning is written to STDERR.

Inference algorithm

To use a Bayesian network as a classifier, one simply calculates \(\arg\max_y P(y|x) \) using the distribution \(P(U) \) represented by the Bayesian network. Now note that

\[
P(y|x) = \frac{P(U)}{P(x)} \\
\propto P(U) \\
= \prod_{u \in U} p(u|pa(u)) \tag{10.1}
\]

And since all variables in \(x \) are known, we do not need complicated inference algorithms, but just calculate \(10.1 \) for all class values.

Learning algorithms

The dual nature of a Bayesian network makes learning a Bayesian network as a two stage process a natural division: first learn a network structure, then learn the probability tables.

There are various approaches to structure learning and in Weka, the following areas are distinguished:

\footnote{If there are missing values in the test data, but not in the training data, the values are filled in in the test data with a \texttt{ReplaceMissingValues} filter based on the training data.}
10.1. INTRODUCTION

• **local score metrics**: Learning a network structure B_S can be considered an optimization problem where a quality measure of a network structure given the training data $Q(B_S|D)$ needs to be maximized. The quality measure can be based on a Bayesian approach, minimum description length, information and other criteria. Those metrics have the practical property that the score of the whole network can be decomposed as the sum (or product) of the score of the individual nodes. This allows for local scoring and thus local search methods.

• **conditional independence tests**: These methods mainly stem from the goal of uncovering causal structure. The assumption is that there is a network structure that exactly represents the independencies in the distribution that generated the data. Then it follows that if a (conditional) independency can be identified in the data between two variables that there is no arrow between those two variables. Once locations of edges are identified, the direction of the edges is assigned such that conditional independencies in the data are properly represented.

• **global score metrics**: A natural way to measure how well a Bayesian network performs on a given data set is to predict its future performance by estimating expected utilities, such as classification accuracy. Cross-validation provides an out of sample evaluation method to facilitate this by repeatedly splitting the data in training and validation sets. A Bayesian network structure can be evaluated by estimating the network’s parameters from the training set and the resulting Bayesian network’s performance determined against the validation set. The average performance of the Bayesian network over the validation sets provides a metric for the quality of the network.

Cross-validation differs from local scoring metrics in that the quality of a network structure often cannot be decomposed in the scores of the individual nodes. So, the whole network needs to be considered in order to determine the score.

• **fixed structure**: Finally, there are a few methods so that a structure can be fixed, for example, by reading it from an XML BIF file\(^2\).

For each of these areas, different search algorithms are implemented in Weka, such as hill climbing, simulated annealing and tabu search.

Once a good network structure is identified, the conditional probability tables for each of the variables can be estimated.

You can select a Bayes net classifier by clicking the classifier ‘Choose’ button in the Weka explorer, experimenter or knowledge flow and find BayesNet under the weka.classifiers.bayes package (see below).

The Bayes net classifier has the following options:

- **BIFFile** option can be used to specify a Bayes network stored in file in BIF format. When the `toString()` method is called after learning the Bayes network, extra statistics (like extra and missing arcs) are printed comparing the network learned with the one on file.

- **searchAlgorithm** option can be used to select a structure learning algorithm and specify its options.

- **estimator** option can be used to select the method for estimating the conditional probability distributions (Section 10.6).

- When setting the **useADTree** option to `true`, counts are calculated using the ADTree algorithm of Moore [24]. Since I have not noticed a lot of improvement for small data sets, it is set off by default. Note that this ADTree algorithm is different from the ADTree classifier algorithm from `weka.classifiers.tree.ADTree`.

- The **debug** option has no effect.

The BIFFile option can be used to specify a Bayes network stored in file in BIF format. When the `toString()` method is called after learning the Bayes network, extra statistics (like extra and missing arcs) are printed comparing the network learned with the one on file.

The searchAlgorithm option can be used to select a structure learning algorithm and specify its options.

The estimator option can be used to select the method for estimating the conditional probability distributions (Section 10.6).

When setting the useADTree option to `true`, counts are calculated using the ADTree algorithm of Moore [24]. Since I have not noticed a lot of improvement for small data sets, it is set off by default. Note that this ADTree algorithm is different from the ADTree classifier algorithm from `weka.classifiers.tree.ADTree`.

The debug option has no effect.
10.2 Local score based structure learning

Distinguish score metrics (Section 2.1) and search algorithms (Section 2.2). A local score based structure learning can be selected by choosing one in the \texttt{weka.classifiers.bayes.net.search.local} package.

Local score based algorithms have the following options in common:

- \texttt{initAsNaiveBayes} if set \texttt{true} (default), the initial network structure used for starting the traversal of the search space is a naive Bayes network structure. That is, a structure with arrows from the class variable to each of the attribute variables.
- If set \texttt{false}, an empty network structure will be used (i.e., no arrows at all).
- \texttt{markovBlanketClassifier} (\texttt{false} by default) if set \texttt{true}, at the end of the traversal of the search space, a heuristic is used to ensure each of the attributes are in the Markov blanket of the classifier node. If a node is already in the Markov blanket (i.e., is a parent, child of sibling of the classifier node) nothing happens, otherwise an arrow is added.
- If set to \texttt{false} no such arrows are added.
- \texttt{scoreType} determines the score metric used (see Section 2.1 for details). Currently, K2, BDe, AIC, Entropy and MDL are implemented.
- \texttt{maxNrOfParents} is an upper bound on the number of parents of each of the nodes in the network structure learned.

10.2.1 Local score metrics

We use the following conventions to identify counts in the database D and a network structure B_S. Let r_i ($1 \leq i \leq n$) be the cardinality of x_i. We use q_i to denote the cardinality of the parent set of x_i in B_S, that is, the number of different values to which the parents of x_i can be instantiated. So, q_i can be calculated as the product of cardinalities of nodes in $pa(x_i)$, $q_i = \prod_{x_j \in pa(x_i)} r_j$.

Note $pa(x_i) = \emptyset$ implies $q_i = 1$. We use N_{ij} ($1 \leq i \leq n$, $1 \leq j \leq q_i$) to denote the number of records in D for which $pa(x_i)$ takes its jth value. We use N_{ijk} ($1 \leq i \leq n$, $1 \leq j \leq q_i$, $1 \leq k \leq r_i$) to denote the number of records in D for which $pa(x_i)$ takes its jth value and for which x_i takes its kth value. So, $N_{ij} = \sum_{k=1}^{r_i} N_{ijk}$. We use N to denote the number of records in D.

Let the entropy metric $H(B_S, D)$ of a network structure and database be defined as

$$H(B_S, D) = -N \sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} \frac{N_{ijk}}{N} \log \frac{N_{ijk}}{N_{ij}} \tag{10.2}$$

and the number of parameters K as

$$K = \sum_{i=1}^{n} (r_i - 1) \cdot q_i \tag{10.3}$$

AIC metric The AIC metric $Q_{AIC}(B_S, D)$ of a Bayesian network structure B_S for a database D is

$$Q_{AIC}(B_S, D) = H(B_S, D) + K \tag{10.4}$$

A term $P(B_S)$ can be added [15] representing prior information over network structures, but will be ignored for simplicity in the Weka implementation.

MDL metric The minimum description length metric $Q_{MDL}(B_S, D)$ of a Bayesian network structure B_S for a database D is defined as

$$Q_{MDL}(B_S, D) = H(B_S, D) + \frac{K}{2} \log N \tag{10.5}$$

Bayesian metric The Bayesian metric of a Bayesian network structure B_D for a database D is

$$Q_{Bayes}(B_S, D) = P(B_S) \prod_{i=0}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(N'_{ij})}{\Gamma(N'_{ij} + N_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N'_{ijk} + N_{ijk})}{\Gamma(N''_{ijk})}$$

where $P(B_S)$ is the prior on the network structure (taken to be constant hence ignored in the Weka implementation) and $\Gamma(.)$ the gamma-function. N'_{ij} and N''_{ijk} represent choices of priors on counts restricted by $N'_{ij} = \sum_{k=1}^{r_i} N''_{ijk}$. With $N''_{ijk} = 1$ (and thus $N'_{ij} = r_i$), we obtain the K2 metric [19]

$$Q_{K2}(B_S, D) = P(B_S) \prod_{i=0}^{n} \prod_{j=1}^{q_i} \frac{(r_i - 1)!}{(r_i - 1 + N_{ij})!} \prod_{k=1}^{r_i} N_{ijk}! \tag{10.6}$$

With $N''_{ijk} = 1/r_i \cdot q_i$ (and thus $N'_{ij} = 1/q_i$), we obtain the BDe metric [22].

10.2.2 Search algorithms

The following search algorithms are implemented for local score metrics:

- **K2** [19]: hill climbing add arcs with a fixed ordering of variables.
 - Specific option: `randomOrder` if `true` a random ordering of the nodes is made at the beginning of the search. If `false` (default) the ordering in the data set is used. The only exception in both cases is that in case the initial network is a naive Bayes network (`initAsNaiveBayes set true`) the class variable is made first in the ordering.
10.2. LOCAL SCORE BASED STRUCTURE LEARNING

- **Hill Climbing** [16]: hill climbing adding and deleting arcs with no fixed ordering of variables.

 `useArcReversal` if `true`, also arc reversals are consider when determining the next step to make.

- **Repeated Hill Climber** starts with a randomly generated network and then applies hill climber to reach a local optimum. The best network found is returned.

 `useArcReversal` option as for Hill Climber.

- **LAGD Hill Climbing** does hill climbing with look ahead on a limited set of best scoring steps, implemented by Manuel Neubach. The number of look ahead steps and number of steps considered for look ahead are configurable.

- **TAN** [17, 21]: Tree Augmented Naive Bayes where the tree is formed by calculating the maximum weight spanning tree using Chow and Liu algorithm [18].

 No specific options.

- **Simulated annealing** [15]: using adding and deleting arrows.

 The algorithm randomly generates a candidate network B'_{S} close to the current network B_{S}. It accepts the network if it is better than the current, i.e., $Q(B'_{S},D) > Q(B_{S},D)$. Otherwise, it accepts the candidate with probability

 $e^{t_i \cdot (Q(B'_{S},D) - Q(B_{S},D))}$

 where t_i is the temperature at iteration i. The temperature starts at t_0 and is slowly decreases with each iteration.

 Specific options:

 - `TStart` start temperature t_0.
 - `delta` is the factor δ used to update the temperature, so $t_{i+1} = t_i \cdot \delta$.
 - `runs` number of iterations used to traverse the search space.
 - `seed` is the initialization value for the random number generator.

- **Tabu search** [15]: using adding and deleting arrows.

 Tabu search performs hill climbing until it hits a local optimum. Then it
steps to the least worse candidate in the neighborhood. However, it does not consider points in the neighborhood it just visited in the last tl steps. These steps are stored in a so called tabu-list.

Specific options:
- **runs** is the number of iterations used to traverse the search space.
- **tabuList** is the length tl of the tabu list.

- **Genetic search**: applies a simple implementation of a genetic search algorithm to network structure learning. A Bayes net structure is represented by a array of $n \cdot n$ ($n =$ number of nodes) bits where bit $i \cdot n + j$ represents whether there is an arrow from node $j \rightarrow i$.

Specific options:
- **populationSize** is the size of the population selected in each generation.
- **descendantPopulationSize** is the number of offspring generated in each
10.3. CONDITIONAL INDEPENDENCE TEST BASED STRUCTURE LEARNING

runs is the number of generation to generate.
seed is the initialization value for the random number generator.
useMutation flag to indicate whether mutation should be used. Mutation is applied by randomly adding or deleting a single arc.
useCrossOver flag to indicate whether cross-over should be used. Cross-over is applied by randomly picking an index k in the bit representation and selecting the first k bits from one and the remainder from another network structure in the population. At least one of useMutation and useCrossOver should be set to true.
useTournamentSelection when false, the best performing networks are selected from the descendant population to form the population of the next generation. When true, tournament selection is used. Tournament selection randomly chooses two individuals from the descendant population and selects the one that performs best.

10.3 Conditional independence test based structure learning

Conditional independence tests in Weka are slightly different from the standard tests described in the literature. To test whether variables x and y are conditionally independent given a set of variables Z, a network structure with arrows $\forall z \in Z z \rightarrow y$ is compared with one with arrows $\{x \rightarrow y\} \cup \forall z \in Z z \rightarrow y$. A test is performed by using any of the score metrics described in Section 2.1.

At the moment, only the ICS [25] and CI algorithm are implemented.
The ICS algorithm makes two steps, first find a skeleton (the undirected graph with edges iff there is an arrow in network structure) and second direct
all the edges in the skeleton to get a DAG.

Starting with a complete undirected graph, we try to find conditional independencies \((x, y | Z) \) in the data. For each pair of nodes \(x, y \), we consider sets \(Z \) starting with cardinality 0, then 1 up to a user defined maximum. Furthermore, the set \(Z \) is a subset of nodes that are neighbors of both \(x \) and \(y \). If an independency is identified, the edge between \(x \) and \(y \) is removed from the skeleton.

The first step in directing arrows is to check for every configuration \(x \rightarrow z \leftarrow y \) where \(x \) and \(y \) not connected in the skeleton whether \(z \) is in the set \(Z \) of variables that justified removing the link between \(x \) and \(y \) (cached in the first step). If \(z \) is not in \(Z \), we can assign direction \(x \rightarrow z \leftarrow y \).

Finally, a set of graphical rules is applied [24] to direct the remaining arrows.

- **Rule 1:** \(i \rightarrow j -- k \) & \(i-/-k \) => \(j \rightarrow k \)
- **Rule 2:** \(i \rightarrow j \rightarrow k \) & \(i -- k \) => \(i \rightarrow k \)
- **Rule 3 m**
 \[
 \text{if } m \text{ is not in } Z \text{ then } \text{assign direction } i \rightarrow j \leftarrow k \]

- **Rule 4 m**
 \[
 \text{if } m \text{ is not in } Z \text{ then } \text{assign direction } i \rightarrow j \leftarrow k \]

- **Rule 5:** if no edges are directed then take a random one (first we can find)

The ICS algorithm comes with the following options.

Since the ICS algorithm is focused on recovering causal structure, instead of finding the optimal classifier, the Markov blanket correction can be made afterwards.

Specific options:
- The `maxCardinality` option determines the largest subset of \(Z \) to be considered in conditional independence tests \((x, y | Z) \).
- The `scoreType` option is used to select the scoring metric.
10.4 Global score metric based structure learning

Common options for cross-validation based algorithms are: initAsNaiveBayes, markovBlanketClassifier and maxNrOfParents (see Section 10.2 for description).

Further, for each of the cross-validation based algorithms the CVType can be chosen out of the following:

- **Leave one out cross-validation** (loo-cv) selects \(m = N \) training sets simply by taking the data set \(D \) and removing the \(i \)-th record for training set \(D_i \). The validation set consist of just the \(i \)-th single record. Loo-cv does not always produce accurate performance estimates.

- **K-fold cross-validation** (k-fold cv) splits the data \(D \) in \(m \) approximately equal parts \(D_1, \ldots , D_m \). Training set \(D_i \) is obtained by removing part \(D_i \) from \(D \). Typical values for \(m \) are 5, 10 and 20. With \(m = N \), k-fold cross-validation becomes loo-cv.

- **Cumulative cross-validation** (cumulative cv) starts with an empty data set and adds instances item by item from \(D \). After each time an item is added the next item to be added is classified using the then current state of the Bayes network.

Finally, the useProb flag indicates whether the accuracy of the classifier should be estimated using the zero-one loss (if set to false) or using the estimated probability of the class.
CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

The following search algorithms are implemented: K2, HillClimbing, RepeatedHillClimber, TAN, Tabu Search, Simulated Annealing and Genetic Search. See Section 10.2 for a description of the specific options for those algorithms.

10.5 Fixed structure 'learning'

The structure learning step can be skipped by selecting a fixed network structure. There are two methods of getting a fixed structure: just make it a naive Bayes network, or reading it from a file in XML BIF format.

10.6 Distribution learning

Once the network structure is learned, you can choose how to learn the probability tables selecting a class in the weka.classifiers.bayes.net.estimate
10.6. DISTRIBUTION LEARNING

The `SimpleEstimator` class produces direct estimates of the conditional probabilities, that is,

\[P(x_i = k | pa(x_i) = j) = \frac{N_{ijk} + N'_{ijk}}{N_{ij} + N'_{ij}} \]

where \(N'_{ijk} \) is the alpha parameter that can be set and is 0.5 by default. With \(\alpha = 0 \), we get maximum likelihood estimates.

With the `BMAEstimator`, we get estimates for the conditional probability tables based on Bayes model averaging of all network structures that are sub-structures of the network structure learned \([15]\). This is achieved by estimating the conditional probability table of a node \(x_i \) given its parents \(pa(x_i) \) as a weighted average of all conditional probability tables of \(x_i \) given subsets of \(pa(x_i) \). The weight of a distribution \(P(x_i | S) \) with \(S \subseteq pa(x_i) \) used is proportional to the contribution of network structure \(\forall y \in S \rightarrow x_i \) to either the BDe metric or K2 metric depending on the setting of the `useK2Prior` option (false and true respectively).
10.7 Running from the command line

These are the command line options of BayesNet.

General options:

-t <name of training file>
 Sets training file.
-T <name of test file>
 Sets test file. If missing, a cross-validation will be performed on the training data.
-c <class index>
 Sets index of class attribute (default: last).
-x <number of folds>
 Sets number of folds for cross-validation (default: 10).
-no-cv
 Do not perform any cross validation.
-split-percentage <percentage>
 Sets the percentage for the train/test set split, e.g., 66.
-preserve-order
 Preserves the order in the percentage split.
-s <random number seed>
 Sets random number seed for cross-validation or percentage split (default: 1).
-m <name of file with cost matrix>
 Sets file with cost matrix.
-l <name of input file>
 Sets model input file. In case the filename ends with '.xml', the options are loaded from the XML file.
-d <name of output file>
 Sets model output file. In case the filename ends with '.xml', only the options are saved to the XML file, not the model.
-v
 Outputs no statistics for training data.
-o
 Outputs statistics only, not the classifier.
-i
 Outputs detailed information-retrieval statistics for each class.
-k
10.7. RUNNING FROM THE COMMAND LINE

Outputs information-theoretic statistics.
-p <attribute range>
 Only outputs predictions for test instances (or the train
 instances if no test instances provided), along with attributes
 (0 for none).
-distribution
 Outputs the distribution instead of only the prediction
 in conjunction with the '-p' option (only nominal classes).
-r
 Only outputs cumulative margin distribution.
-g
 Only outputs the graph representation of the classifier.
-xml filename | xml-string
 Retrieves the options from the XML-data instead of the command line.

Options specific to weka.classifiers.bayes.BayesNet:

-D
 Do not use ADTree data structure
-B <BIF file>
 BIF file to compare with
-Q weka.classifiers.bayes.net.search.SearchAlgorithm
 Search algorithm
-E weka.classifiers.bayes.net.estimate.SimpleEstimator
 Estimator algorithm

The search algorithm option -Q and estimator option -E options are mandatory.
Note that it is important that the -E options should be used after the -Q option. Extra options can be passed to the search algorithm and the estimator after the class name specified following '--'.
For example:

java weka.classifiers.bayes.BayesNet -t iris.arff -D \n -Q weka.classifiers.bayes.net.search.local.K2 -- -P 2 -S ENTROPY \n -E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 1.0

Overview of options for search algorithms

- L <integer>
 Population size
- A <integer>
 Descendant population size
- U <integer>
 Number of runs
- M
 Use mutation.
(default true)

-C
Use cross-over.

(default true)

-O
Use tournament selection (true) or maximum subpopulation (false).

(default false)

-R <seed>
Random number seed

-mbc
Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

- weka.classifiers.bayes.net.search.local.HillClimber

-P <nr of parents>
Maximum number of parents

-R
Use arc reversal operation.

(default false)

-N
Initial structure is empty (instead of Naive Bayes)

-mbc
Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

- weka.classifiers.bayes.net.search.local.K2

-N
Initial structure is empty (instead of Naive Bayes)

-P <nr of parents>
Maximum number of parents

-R
Random order.

(default false)

-mbc
Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
10.7. RUNNING FROM THE COMMAND LINE

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.LAGDHillClimber

-L <nr of look ahead steps>
Look Ahead Depth
-G <nr of good operations>
Nr of Good Operations
-P <nr of parents>
Maximum number of parents
-R
Use arc reversal operation.
(default false)
-N
Initial structure is empty (instead of Naive Bayes)
-mbc
Applies a Markov Blanket correction to the network structure,
after a network structure is learned. This ensures that all
nodes in the network are part of the Markov blanket of the
classifier node.
-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.RepeatedHillClimber

-U <integer>
Number of runs
-A <seed>
Random number seed
-P <nr of parents>
Maximum number of parents
-R
Use arc reversal operation.
(default false)
-N
Initial structure is empty (instead of Naive Bayes)
-mbc
Applies a Markov Blanket correction to the network structure,
after a network structure is learned. This ensures that all
nodes in the network are part of the Markov blanket of the
classifier node.
-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.SimulatedAnnealing
-A <float>
Start temperature
-U <integer>
Number of runs
-D <float>
Delta temperature
-R <seed>
Random number seed

-mbc
Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.TabuSearch

-L <integer>
Tabu list length
-U <integer>
Number of runs
-P <nr of parents>
Maximum number of parents
-R
Use arc reversal operation.
(default false)
-P <nr of parents>
Maximum number of parents
-R
Use arc reversal operation.
(default false)
-N
Initial structure is empty (instead of Naive Bayes)
-mbc
Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.TAN

-mbc
Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the
classifier node.
-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.ci.CISearchAlgorithm

-mbc
Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.ci.ICSSearchAlgorithm

-cardinality <num>
When determining whether an edge exists a search is performed for a set Z that separates the nodes. MaxCardinality determines the maximum size of the set Z. This greatly influences the length of the search. (default 2)

-mbc
Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.global.GeneticSearch

-L <integer>
Population size
-A <integer>
Descendant population size
-U <integer>
Number of runs
-M
Use mutation.
(default true)
-C
Use cross-over.
(default true)
-O
Use tournament selection (true) or maximum subpopulation (false).
(default false)
-R <seed>
CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

- mbc
 Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

- S [LOO-CV|k-Fold-CV|Cumulative-CV]
 Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

- Q
 Use probabilistic or 0/1 scoring.
 (default probabilistic scoring)

- weka.classifiers.bayes.net.search.global.HillClimber

 - P \(<\text{nr of parents}>\)
 Maximum number of parents

 - R
 Use arc reversal operation.
 (default false)

 - N
 Initial structure is empty (instead of Naive Bayes)

 - mbc
 Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

 - S [LOO-CV|k-Fold-CV|Cumulative-CV]
 Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

 - Q
 Use probabilistic or 0/1 scoring.
 (default probabilistic scoring)

- weka.classifiers.bayes.net.search.global.K2

 - N
 Initial structure is empty (instead of Naive Bayes)

 - P \(<\text{nr of parents}>\)
 Maximum number of parents

 - R
 Random order.
 (default false)

 - mbc
 Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

 - S [LOO-CV|k-Fold-CV|Cumulative-CV]
 Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q
 Use probabilistic or 0/1 scoring.
 (default probabilistic scoring)

- weka.classifiers.bayes.net.search.global.RepeatedHillClimber
 -U <integer>
 Number of runs
 -A <seed>
 Random number seed
 -P <nr of parents>
 Maximum number of parents
 -R
 Use arc reversal operation.
 (default false)
 -N
 Initial structure is empty (instead of Naive Bayes)
 -mbc
 Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
 -S [LOO-CV, k-Fold-CV, Cumulative-CV]
 Score type (LOO-CV, k-Fold-CV, Cumulative-CV)
 -Q
 Use probabilistic or 0/1 scoring.
 (default probabilistic scoring)

- weka.classifiers.bayes.net.search.global.SimulatedAnnealing
 -A <float>
 Start temperature
 -U <integer>
 Number of runs
 -D <float>
 Delta temperature
 -R <seed>
 Random number seed
 -mbc
 Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
 -S [LOO-CV, k-Fold-CV, Cumulative-CV]
 Score type (LOO-CV, k-Fold-CV, Cumulative-CV)
 -Q
 Use probabilistic or 0/1 scoring.
 (default probabilistic scoring)
• `weka.classifiers.bayes.net.search.global.TabuSearch`

 `-L <integer>`
 Tabu list length

 `-U <integer>`
 Number of runs

 `-P <nr of parents>`
 Maximum number of parents

 `-R`
 Use arc reversal operation.
 (default false)

 `-P <nr of parents>`
 Maximum number of parents

 `-R`
 Use arc reversal operation.
 (default false)

 `-N`
 Initial structure is empty (instead of Naive Bayes)

 `-mbc`
 Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

 `-S [LOO-CV|k-Fold-CV|Cumulative-CV]`
 Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

 `-Q`
 Use probabilistic or 0/1 scoring.
 (default probabilistic scoring)

• `weka.classifiers.bayes.net.search.global.TAN`

 `-mbc`
 Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.

 `-S [LOO-CV|k-Fold-CV|Cumulative-CV]`
 Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

 `-Q`
 Use probabilistic or 0/1 scoring.
 (default probabilistic scoring)

• `weka.classifiers.bayes.net.search.fixed.FromFile`

 `-B <BIF File>`
 Name of file containing network structure in BIF format

• `weka.classifiers.bayes.net.search.fixed.NaiveBayes`
No options.

Overview of options for estimators

- `weka.classifiers.bayes.net.estimate.BayesNetEstimator`
 - `-A <alpha>`
 - Initial count (alpha)

- `weka.classifiers.bayes.net.estimate.BMAEstimator`
 - `-k2`
 - Whether to use K2 prior.
 - `-A <alpha>`
 - Initial count (alpha)

- `weka.classifiers.bayes.net.estimate.MultiNomialBMAEstimator`
 - `-k2`
 - Whether to use K2 prior.
 - `-A <alpha>`
 - Initial count (alpha)

- `weka.classifiers.bayes.net.estimate.SimpleEstimator`
 - `-A <alpha>`
 - Initial count (alpha)

Generating random networks and artificial data sets

You can generate random Bayes nets and data sets using

`weka.classifiers.bayes.net.BayesNetGenerator`

The options are:

- `-B`
 - Generate network (instead of instances)

- `-N <integer>`
 - Nr of nodes

- `-A <integer>`
 - Nr of arcs

- `-M <integer>`
 - Nr of instances

- `-C <integer>`
 - Cardinality of the variables

- `-S <integer>`
 - Seed for random number generator

- `-F <file>`
 - The BIF file to obtain the structure from.
The network structure is generated by first generating a tree so that we can ensure that we have a connected graph. If any more arrows are specified they are randomly added.

10.8 Inspecting Bayesian networks

You can inspect some of the properties of Bayesian networks that you learned in the Explorer in text format and also in graphical format.

Bayesian networks in text

Below, you find output typical for a 10 fold cross-validation run in the Weka Explorer with comments where the output is specific for Bayesian nets.

```text
=== Run information ===
Scheme: weka.classifiers.bayes.BayesNet -D -B iris.xml -Q weka.classifiers.bayes
Options for BayesNet include the class names for the structure learner and for the distribution estimator.
Instances: 150
Attributes: 5
  sepallength
  sepalwidth
  petallength
  petalwidth
  class
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
Bayes Network Classifier
not using ADTree
Indication whether the ADTree algorithm [24] for calculating counts in the data set was used.
#attributes=5 #classindex=4
This line lists the number of attribute and the number of the class variable for which the classifier was trained.
Network structure (nodes followed by parents)
sepallength(2): class
sepalwidth(2): class
petallength(2): class sepallength
petalwidth(2): class petallength
class(3):
```
This list specifies the network structure. Each of the variables is followed by a list of parents, so the *petallength* variable has parents *sepallength* and *class*, while *class* has no parents. The number in braces is the cardinality of the variable. It shows that in the iris dataset there are three class variables. All other variables are made binary by running it through a discretization filter.

LogScore Bayes: -374.9942769685747
LogScore BDeu: -351.85811477631626
LogScore MDL: -416.86897021246466
LogScore ENTROPY: -366.76261727150217
LogScore AIC: -386.76261727150217

These lines list the logarithmic score of the network structure for various methods of scoring.

If a BIF file was specified, the following two lines will be produced (if no such file was specified, no information is printed).

Missing: 0 Extra: 2 Reversed: 0
Divergence: -0.0719759699700729

In this case the network that was learned was compared with a file *iris.xml* which contained the naive Bayes network structure. The number after “Missing” is the number of arcs that was in the network in file that is not recovered by the structure learner. Note that a reversed arc is not counted as missing. The number after “Extra” is the number of arcs in the learned network that are not in the network on file. The number of reversed arcs is listed as well.

Finally, the divergence between the network distribution on file and the one learned is reported. This number is calculated by enumerating all possible instantiations of all variables, so it may take some time to calculate the divergence for large networks.

The remainder of the output is standard output for all classifiers.

Time taken to build model: 0.01 seconds

=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 116 77.3333 %
Incorrectly Classified Instances 34 22.6667 %

Bayesian networks in GUI

To show the graphical structure, right click the appropriate *BayesNet* in result list of the Explorer. A menu pops up, in which you select “Visualize graph”.

The Bayes network is automatically laid out and drawn thanks to a graph drawing algorithm implemented by Ashraf Kibriya.

When you hover the mouse over a node, the node lights up and all its children are highlighted as well, so that it is easy to identify the relation between nodes in crowded graphs.

Saving Bayes nets You can save the Bayes network to file in the graph visualizer. You have the choice to save as XML BIF format or as dot format. Select the floppy button and a file save dialog pops up that allows you to select the file name and file format.

Zoom The graph visualizer has two buttons to zoom in and out. Also, the exact zoom desired can be entered in the zoom percentage entry. Hit enter to redraw at the desired zoom level.
Graph drawing options Hit the ‘extra controls’ button to show extra options that control the graph layout settings.

The Layout Type determines the algorithm applied to place the nodes.
The Layout Method determines in which direction nodes are considered.
The Edge Concentration toggle allows edges to be partially merged.
The Custom Node Size can be used to override the automatically determined node size.

When you click a node in the Bayesian net, a window with the probability table of the node clicked pops up. The left side shows the parent attributes and lists the values of the parents, the right side shows the probability of the node clicked conditioned on the values of the parents listed on the left.

So, the graph visualizer allows you to inspect both network structure and probability tables.

10.9 Bayes Network GUI

The Bayesian network editor is a stand alone application with the following features:
• Edit Bayesian network completely by hand, with unlimited undo/redo stack, cut/copy/paste and layout support.
• Learn Bayesian network from data using learning algorithms in Weka.
• Edit structure by hand and learn conditional probability tables (CPTs) using
learning algorithms in Weka.
• Generate dataset from Bayesian network.
• Inference (using junction tree method) of evidence through the network, in-
teractively changing values of nodes.
• Viewing cliques in junction tree.
• Accelerator key support for most common operations.

The Bayes network GUI is started as
\texttt{java weka.classifiers.bayes.net.GUI \{bif file\}}.
The following window pops up when an XML BIF file is specified (if none is
specified an empty graph is shown).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{BayesNetwork.png}
\caption{Bayesian network GUI}
\end{figure}

\textbf{Moving a node}

Click a node with the left mouse button and drag the node to the desired
position.
10.9. BAYES NETWORK GUI

Selecting groups of nodes

Drag the left mouse button in the graph panel. A rectangle is shown and all
nodes intersecting with the rectangle are selected when the mouse is released.
Selected nodes are made visible with four little black squares at the corners (see
screenshot above).

The selection can be extended by keeping the shift key pressed while selecting
another set of nodes.

The selection can be toggled by keeping the ctrl key pressed. All nodes in
the selection selected in the rectangle are de-selected, while the ones not in the
selection but intersecting with the rectangle are added to the selection.

Groups of nodes can be moved by keeping the left mouse pressed on one of
the selected nodes and dragging the group to the desired position.

File menu

The New, Save, Save As, and Exit menu provide functionality as expected.
The file format used is XML BIF [20].

There are two file formats supported for opening
• .xml for XML BIF files. The Bayesian network is reconstructed from the
 information in the file. Node width information is not stored so the nodes are
 shown with the default width. This can be changed by laying out the graph
 (menu Tools/Layout).
• .arff Weka data files. When an arff file is selected, a new empty Bayesian net-
 work is created with nodes for each of the attributes in the arff file. Continuous
 variables are discretized using the \texttt{weka.filters.supervised.attribute.Discretize}
 filter (see note at end of this section for more details). The network structure
 can be specified and the CPTs learned using the Tools/Learn CPT menu.

The Print menu works (sometimes) as expected.

The Export menu allows for writing the graph panel to image (currently
supported are bmp, jpg, png and eps formats). This can also be activated using
the Alt-Shift-Left Click action in the graph panel.
Edit menu

Unlimited undo/redo support. Most edit operations on the Bayesian network are undoable. A notable exception is learning of network and CPTs.

Cut/copy/paste support. When a set of nodes is selected these can be placed on a clipboard (internal, so no interaction with other applications yet) and a paste action will add the nodes. Nodes are renamed by adding "Copy of" before the name and adding numbers if necessary to ensure uniqueness of name. Only the arrows to parents are copied, not these of the children.

The Add Node menu brings up a dialog (see below) that allows to specify the name of the new node and the cardinality of the new node. Node values are assigned the names 'Value1', 'Value2' etc. These values can be renamed (right click the node in the graph panel and select Rename Value). Another option is to copy/paste a node with values that are already properly named and rename the node.

The Add Arc menu brings up a dialog to choose a child node first;
Then a dialog is shown to select a parent. Descendants of the child node, parents of the child node and the node itself are not listed since these cannot be selected as child node since they would introduce cycles or already have an arc in the network.

The Delete Arc menu brings up a dialog with a list of all arcs that can be deleted.

The list of eight items at the bottom are active only when a group of at least two nodes are selected.
- Align Left/Right/Top/Bottom moves the nodes in the selection such that all nodes align to the utmost left, right, top or bottom node in the selection respectively.
- Center Horizontal/Vertical moves nodes in the selection halfway between left and right most (or top and bottom most respectively).
- Space Horizontal/Vertical spaces out nodes in the selection evenly between left and right most (or top and bottom most respectively). The order in which the nodes are selected impacts the place the node is moved to.

Tools menu

The Generate Network menu allows generation of a complete random Bayesian network. It brings up a dialog to specify the number of nodes, number of arcs, cardinality and a random seed to generate a network.
The Generate Data menu allows for generating a data set from the Bayesian network in the editor. A dialog is shown to specify the number of instances to be generated, a random seed and the file to save the data set into. The file format is arff. When no file is selected (field left blank) no file is written and only the internal data set is set.

The Set Data menu sets the current data set. From this data set a new Bayesian network can be learned, or the CPTs of a network can be estimated. A file choose menu pops up to select the arff file containing the data.

The Learn Network and Learn CPT menus are only active when a data set is specified either through
• Tools/Set Data menu, or
• Tools/Generate Data menu, or
• File/Open menu when an arff file is selected.

The Learn Network action learns the whole Bayesian network from the data set. The learning algorithms can be selected from the set available in Weka by selecting the Options button in the dialog below. Learning a network clears the undo stack.

The Learn CPT menu does not change the structure of the Bayesian network, only the probability tables. Learning the CPTs clears the undo stack.

The Layout menu runs a graph layout algorithm on the network and tries to make the graph a bit more readable. When the menu item is selected, the node size can be specified or left to calculate by the algorithm based on the size of the labels by deselecting the custom node size check box.
The Show Margins menu item makes marginal distributions visible. These are calculated using the junction tree algorithm [23]. Marginal probabilities for nodes are shown in green next to the node. The value of a node can be set (right click node, set evidence, select a value) and the color is changed to red to indicate evidence is set for the node. Rounding errors may occur in the marginal probabilities.

The Show Cliques menu item makes the cliques visible that are used by the junction tree algorithm. Cliques are visualized using colored undirected edges. Both margins and cliques can be shown at the same time, but that makes for rather crowded graphs.
View menu

The view menu allows for zooming in and out of the graph panel. Also, it allows for hiding or showing the status and toolbars.

Help menu

The help menu points to this document.

Toolbar
The toolbar allows a shortcut to many functions. Just hover the mouse over the toolbar buttons and a tooltip text pops up that tells which function is activated. The toolbar can be shown or hidden with the View/View Toolbar menu.

Statusbar

At the bottom of the screen the statusbar shows messages. This can be helpful when an undo/redo action is performed that does not have any visible effects, such as edit actions on a CPT. The statusbar can be shown or hidden with the View/View Statusbar menu.

Click right mouse button

Clicking the right mouse button in the graph panel outside a node brings up the following popup menu. It allows to add a node at the location that was clicked, or add select a parent to add to all nodes in the selection. If no node is selected, or no node can be added as parent, this function is disabled.

Clicking the right mouse button on a node brings up a popup menu. The popup menu shows list of values that can be set as evidence to selected node. This is only visible when margins are shown (menu Tools/Show margins). By selecting 'Clear', the value of the node is removed and the margins calculated based on CPTs again.

A node can be renamed by right click and select Rename in the popup menu. The following dialog appears that allows entering a new node name.
The CPT of a node can be edited manually by selecting a node, right-click/Edit CPT. A dialog is shown with a table representing the CPT. When a value is edited, the values of the remainder of the table are updated in order to ensure that the probabilities add up to 1. It attempts to adjust the last column first, then goes backward from there.

The whole table can be filled with randomly generated distributions by selecting the Randomize button.

The popup menu shows list of parents that can be added to selected node. CPT for the node is updated by making copies for each value of the new parent.

The popup menu shows list of parents that can be deleted from selected node. CPT of the node keeps only the one conditioned on the first value of the parent node.
The popup menu shows list of children that can be deleted from selected node. CPT of the child node keeps only the one conditioned on the first value of the parent node.

Selecting the Add Value from the popup menu brings up this dialog, in which the name of the new value for the node can be specified. The distribution for the node assign zero probability to the value. Child node CPTs are updated by copying distributions conditioned on the new value.

The popup menu shows list of values that can be renamed for selected node.
CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

Selecting a value brings up the following dialog in which a new name can be specified.

The popup menu shows list of values that can be deleted from selected node. This is only active when there are more then two values for the node (single valued nodes do not make much sense). By selecting the value the CPT of the node is updated in order to ensure that the CPT adds up to unity. The CPTs of children are updated by dropping the distributions conditioned on the value.

A note on CPT learning

Continuous variables are discretized by the Bayes network class. The discretization algorithm chooses its values based on the information in the data set.
However, these values are not stored anywhere. So, reading an arff file with continuous variables using the File/Open menu allows one to specify a network, then learn the CPTs from it since the discretization bounds are still known. However, opening an arff file, specifying a structure, then closing the application, reopening and trying to learn the network from another file containing continuous variables may not give the desired result since the discretization algorithm is re-applied and new boundaries may have been found. Unexpected behavior may be the result.

Learning from a dataset that contains more attributes than there are nodes in the network is ok. The extra attributes are just ignored.

Learning from a dataset with differently ordered attributes is ok. Attributes are matched to nodes based on name. However, attribute values are matched with node values based on the order of the values.

The attributes in the dataset should have the same number of values as the corresponding nodes in the network (see above for continuous variables).

10.10 Bayesian nets in the experimenter

Bayesian networks generate extra measures that can be examined in the experimenter. The experimenter can then be used to calculate mean and variance for those measures.

The following metrics are generated:

- measureExtraArcs: extra arcs compared to reference network. The network must be provided as BIFFile to the BayesNet class. If no such network is provided, this value is zero.
- measureMissingArcs: missing arcs compared to reference network or zero if not provided.
- measureReversedArcs: reversed arcs compared to reference network or zero if not provided.
- measureDivergence: divergence of network learned compared to reference network or zero if not provided.
- measureBayesScore: log of the K2 score of the network structure.
- measureBDeuScore: log of the BDeu score of the network structure.
- measureMDLScore: log of the MDL score.
- measureAICScore: log of the AIC score.
- measureEntropyScore: log of the entropy.

10.11 Adding your own Bayesian network learners

You can add your own structure learners and estimators.
Adding a new structure learner

Here is the quick guide for adding a structure learner:

1. Create a class that derives from `weka.classifiers.bayes.net.search.SearchAlgorithm`. If your searcher is score based, conditional independence based or cross-validation based, you probably want to derive from `ScoreSearchAlgorithm`, `CISearchAlgorithm` or `CVSearchAlgorithm` instead of deriving from `SearchAlgorithm` directly. Let’s say it is called `weka.classifiers.bayes.net.search.local.MySearcher` derived from `ScoreSearchAlgorithm`.

2. Implement the method
   ```java
   public void buildStructure(BayesNet bayesNet, Instances instances)
   ```
 Essentially, you are responsible for setting the parent sets in `bayesNet`. You can access the parent sets using `bayesNet.getParentSet(iAttribute)` where `iAttribute` is the number of the node/variable.

 To add a parent `iParent` to node `iAttribute`, use `bayesNet.getParentSet(iAttribute).AddParent(iParent, instances)` where `instances` need to be passed for the parent set to derive properties of the attribute.

 Alternatively, implement `public void search(BayesNet bayesNet, Instances instances)`. The implementation of `buildStructure` in the base class. This method is called by the `SearchAlgorithm` will call search after initializing parent sets and if the `initAsNaiveBase` flag is set, it will start with a naive Bayes network structure. After calling `search` in your custom class, it will add arrows if the `markovBlanketClassifier` flag is set to ensure all attributes are in the Markov blanket of the class node.

3. If the structure learner has options that are not default options, you want to implement `public Enumeration listOptions()`, `public void setOptions(String[] options)`, `public String[] getOptions()` and the get and set methods for the properties you want to be able to set.

 NB 1. do not use the `-E` option since that is reserved for the `BayesNet` class to distinguish the extra options for the `SearchAlgorithm` class and the `Estimator` class. If the `-E` option is used, it will not be passed to your `SearchAlgorithm` (and probably causes problems in the `BayesNet` class).

 NB 2. make sure to process options of the parent class if any in the get/setOptions methods.

Adding a new estimator

This is the quick guide for adding a new estimator:

1. Create a class that derives from `weka.classifiers.bayes.net.estimate.BayesNetEstimator`. Let’s say it is called `weka.classifiers.bayes.net.estimate.MyEstimator`.

2. Implement the methods
   ```java
   public void initCPTs(BayesNet bayesNet)
   ```
public void estimateCPTs(BayesNet bayesNet)
public void updateClassifier(BayesNet bayesNet, Instance instance),
and
public double[] distributionForInstance(BayesNet bayesNet, Instance instance).

3. If the structure learner has options that are not default options, you want to implement public Enumeration listOptions(), public void setOptions(String[] options), public String[] getOptions() and the get and set methods for the properties you want to be able to set.

NB do not use the -E option since that is reserved for the BayesNet class to distinguish the extra options for the SearchAlgorithm class and the Estimator class. If the -E option is used and no extra arguments are passed to the SearchAlgorithm, the extra options to your Estimator will be passed to the SearchAlgorithm instead. In short, do not use the -E option.

10.12 FAQ

How do I use a data set with continuous variables with the BayesNet classes?
Use the class weka.filters.unsupervised.attribute.Discretize to discretize them. From the command line, you can use
java weka.filters.unsupervised.attribute.Discretize -B 3 -i infile.arff -o outfile.arff
where the -B option determines the cardinality of the discretized variables.

How do I use a data set with missing values with the BayesNet classes?
You would have to delete the entries with missing values or fill in dummy values.

How do I create a random Bayes net structure?
Running from the command line
java weka.classifiers.bayes.net.BayesNetGenerator -B -N 10 -A 9 -C 2
will print a Bayes net with 10 nodes, 9 arcs and binary variables in XML BIF format to standard output.

How do I create an artificial data set using a random Bayes nets?
Running
java weka.classifiers.bayes.net.BayesNetGenerator -N 15 -A 20 -C 3
-M 300
will generate a data set in arff format with 300 instance from a random network with 15 ternary variables and 20 arrows.
How do I create an artificial data set using a Bayes nets I have on file?

Running

```
java weka.classifiers.bayes.net.BayesNetGenerator -F alarm.xml -M 1000
```

will generate a data set with 1000 instances from the network stored in the file `alarm.xml`.

How do I save a Bayes net in BIF format?

- **GUI:** In the Explorer
 - learn the network structure,
 - right click the relevant run in the result list,
 - choose “Visualize graph” in the pop up menu,
 - click the floppy button in the Graph Visualizer window.
 - a file “save as” dialog pops up that allows you to select the file name
 to save to.

- **Java:** Create a `BayesNet` and call `BayesNet.toXMLBIF()` which returns
 the Bayes network in BIF format as a String.

- **Command line:** use the `-g` option and redirect the output on stdout
 into a file.

How do I compare a network I learned with one in BIF format?

Specify the `-B <bif-file>` option to BayesNet. Calling `toString()` will produce
a summary of extra, missing and reversed arrows. Also the divergence between
the network learned and the one on file is reported.

How do I use the network I learned for general inference?

There is no general purpose inference in Weka, but you can export the network as
XML BIF file (see above) and import it in other packages, for example JavaBayes
available under GPL from http://www.cs.cmu.edu/~javabayes.

10.13 Future development

If you would like to add to the current Bayes network facilities in Weka, you
might consider one of the following possibilities.

- Implement more search algorithms, in particular,
 - general purpose search algorithms (such as an improved implementa-
 tion of genetic search).
 - structure search based on equivalent model classes.
 - implement those algorithms both for local and global metric based
 search algorithms.
10.13. **FUTURE DEVELOPMENT**

- implement more conditional independence based search algorithms.

 - Implement score metrics that can handle sparse instances in order to allow for processing large datasets.

 - Implement traditional conditional independence tests for conditional independence based structure learning algorithms.

 - Currently, all search algorithms assume that all variables are discrete. Search algorithms that can handle continuous variables would be interesting.

 - A limitation of the current classes is that they assume that there are no missing values. This limitation can be undone by implementing score metrics that can handle missing values. The classes used for estimating the conditional probabilities need to be updated as well.

 - Only leave-one-out, k-fold and cumulative cross-validation are implemented. These implementations can be made more efficient and other cross-validation methods can be implemented, such as Monte Carlo cross-validation and bootstrap cross validation.

 - Implement methods that can handle incremental extensions of the data set for updating network structures.

And for the more ambitious people, there are the following challenges.

 - A GUI for manipulating Bayesian network to allow user intervention for adding and deleting arcs and updating the probability tables.

 - General purpose inference algorithms built into the GUI to allow user defined queries.

 - Allow learning of other graphical models, such as chain graphs, undirected graphs and variants of causal graphs.

 - Allow learning of networks with latent variables.

 - Allow learning of dynamic Bayesian networks so that time series data can be handled.
Part III

Data
Chapter 11

ARFF

An ARFF (= Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of attributes.

11.1 Overview

ARFF files have two distinct sections. The first section is the Header information, which is followed the Data information.

The Header of the ARFF file contains the name of the relation, a list of the attributes (the columns in the data), and their types. An example header on the standard IRIS dataset looks like this:

```
% 1. Title: Iris Plants Database
% % 2. Sources:
% %    (a) Creator: R.A. Fisher
% %    (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
% %    (c) Date: July, 1988
% %
% @RELATION iris

@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
```

The Data of the ARFF file looks like the following:

```
@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
```
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa

Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and @DATA declarations are case insensitive.

11.2 Examples

Several well-known machine learning datasets are distributed with Weka in the $WEKAHOME/data directory as ARFF files.

11.2.1 The ARFF Header Section

The ARFF Header section of the file contains the relation declaration and attribute declarations.

The @relation Declaration

The relation name is defined as the first line in the ARFF file. The format is:

@relation <relation-name>

where <relation-name> is a string. The string must be quoted if the name includes spaces. Furthermore, relation names or attribute names (see below) cannot begin with

- a character below \u0021
- '{', '}', ',', or '%'

Moreover, it can only begin with a single or double quote if there is a corresponding quote at the end of the name.

The @attribute Declarations

Attribute declarations take the form of an ordered sequence of @attribute statements. Each attribute in the data set has its own @attribute statement which uniquely defines the name of that attribute and its data type. The order the attributes are declared indicates the column position in the data section of the file. For example, if an attribute is the third one declared then Weka expects that all that attributes values will be found in the third comma delimited column.

The format for the @attribute statement is:

@attribute <attribute-name> <datatype>

where the <attribute-name> must adhere to the constraints specified in the above section on the @relation declaration.

The <datatype> can be any of the four types supported by Weka:
11.2. EXAMPLES

- numeric
- integer is treated as numeric
- real is treated as numeric
- `<nominal-specification>`
- string
- `date` `<date-format>`
- `relational` for multi-instance data (for future use)

where `<nominal-specification>` and `<date-format>` are defined below. The keywords `numeric`, `real`, `integer`, `string` and `date` are case insensitive.

Numeric attributes

Numeric attributes can be real or integer numbers.

Nominal attributes

Nominal values are defined by providing an `<nominal-specification>` listing the possible values: `<nominal-name1>`, `<nominal-name2>`, `<nominal-name3>`, ...

For example, the class value of the Iris dataset can be defined as follows:

```plaintext
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
```

Values that contain spaces must be quoted.

String attributes

String attributes allow us to create attributes containing arbitrary textual values. This is very useful in text-mining applications, as we can create datasets with string attributes, then write Weka Filters to manipulate strings (like String-ToWordVectorFilter). String attributes are declared as follows:

```plaintext
@ATTRIBUTE LCC string
```

Date attributes

Date attribute declarations take the form:

```plaintext
@attribute <name> date [<date-format>]
```

where `<name>` is the name for the attribute and `<date-format>` is an optional string specifying how date values should be parsed and printed (this is the same format used by `SimpleDateFormat`). The default format string accepts the ISO-8601 combined date and time format: `yyyy-MM-dd'T'HH:mm:ss.

Dates must be specified in the data section as the corresponding string representations of the date/time (see example below).
Relational attributes

Relational attribute declarations take the form:

```plaintext
@attribute <name> relational
   <further attribute definitions>
@end <name>
```

For the multi-instance dataset MUSK1 the definition would look like this ("..." denotes an omission):

```plaintext
@attribute molecule_name {MUSK-jf78,...,NON-MUSK-199}
@attribute bag relational
   @attribute f1 numeric
   ...
   @attribute f166 numeric
@end bag
@attribute class {0,1}
...
```

11.2.2 The ARFF Data Section

The ARFF Data section of the file contains the data declaration line and the actual instance lines.

The @data Declaration

The @data declaration is a single line denoting the start of the data segment in the file. The format is:

```plaintext
@data
```

The instance data

Each instance is represented on a single line, with carriage returns denoting the end of the instance. A percent sign (%) introduces a comment, which continues to the end of the line.

Attribute values for each instance are delimited by commas. They must appear in the order that they were declared in the header section (i.e. the data corresponding to the nth @attribute declaration is always the nth field of the attribute).

Missing values are represented by a single question mark, as in:

```plaintext
@data
4.4,?,1.5,?,Iris-setosa
```

Values of string and nominal attributes are case sensitive, and any that contain space or the comment-delimiter character % must be quoted. (The code suggests that double-quotes are acceptable and that a backslash will escape individual characters.) An example follows:
11.3. SPARSE ARFF FILES

@crelation LCCvsLCSH

@attribute LCC string
@attribute LCSH string

@data
AG5, 'Encyclopedias and dictionaries.; Twentieth century.'
AS262, 'Science -- Soviet Union -- History.'
AE5, 'Encyclopedias and dictionaries.'
AS281, 'Astronomy, Assyro-Babylonian.; Moon -- Phases.'
AS281, 'Astronomy, Assyro-Babylonian.; Moon -- Tables.'

Dates must be specified in the data section using the string representation specified in the attribute declaration. For example:

@RELATION Timestamps

@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss"

@DATA
"2001-04-03 12:12:12"
"2001-05-03 12:59:55"

Relational data must be enclosed within double quotes "". For example an instance of the MUSK1 dataset ("...") denotes an omission:

MUSK-188,"42,...,30",1

11.3 Sparse ARFF files

Sparse ARFF files are very similar to ARFF files, but data with value 0 are not be explicitly represented.

Sparse ARFF files have the same header (i.e @relation and @attribute tags) but the data section is different. Instead of representing each value in order, like this:

@data
0, X, 0, Y, "class A"
0, 0, W, 0, "class B"

the non-zero attributes are explicitly identified by attribute number and their value stated, like this:

@data
{1 X, 3 Y, 4 "class A"}
{2 W, 4 "class B"}

Each instance is surrounded by curly braces, and the format for each entry is: <index> <space> <value> where index is the attribute index (starting from 0).
Note that the omitted values in a sparse instance are 0, they are not missing values! If a value is unknown, you must explicitly represent it with a question mark (?).

Warning: There is a known problem saving SparseInstance objects from datasets that have string attributes. In Weka, string and nominal data values are stored as numbers; these numbers act as indexes into an array of possible attribute values (this is very efficient). However, the first string value is assigned index 0: this means that, internally, this value is stored as a 0. When a SparseInstance is written, string instances with internal value 0 are not output, so their string value is lost (and when the arff file is read again, the default value 0 is the index of a different string value, so the attribute value appears to change). To get around this problem, add a dummy string value at index 0 that is never used whenever you declare string attributes that are likely to be used in SparseInstance objects and saved as Sparse ARFF files.

11.4 Instance weights in ARFF files

A weight can be associated with an instance in a standard ARFF file by appending it to the end of the line for that instance and enclosing the value in curly braces. E.g:

```plaintext
@data
0, X, 0, Y, "class A", {5}
```

For a sparse instance, this example would look like:

```plaintext
@data
{1 X, 3 Y, 4 "class A"}, {5}
```

Note that any instance without a weight value specified is assumed to have a weight of 1 for backwards compatibility.
Chapter 12

XRFF

The XRFF (Xml attribute Relation File Format) is a representing the data in a format that can store comments, attribute and instance weights.

12.1 File extensions

The following file extensions are recognized as XRFF files:

- .xrff
 the default extension of XRFF files
- .xrff.gz
 the extension for gzip compressed XRFF files (see Compression section for more details)

12.2 Comparison

12.2.1 ARFF

In the following a snippet of the UCI dataset iris in ARFF format:

```
@relation iris

@attribute sepallength numeric
@attribute sepalwidth numeric
@attribute petallength numeric
@attribute petalwidth numeric
@attribute class {Iris-setosa,Iris-versicolor,Iris-virginica}

@data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3,1.4,0.2,Iris-setosa
...```
12.2.2 XRFF

And the same dataset represented as XRFF file:

```xml
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE dataset [
<!ELEMENT dataset (header, body)>
<!ATTLIST dataset name CDATA #REQUIRED>
<!ATTLIST dataset version CDATA "3.5.4">

<!ELEMENT header (notes?, attributes)>
<!ELEMENT body (instances)>
<!ELEMENT notes ANY>

<!ELEMENT attributes (attribute*)>
<!ELEMENT attribute (labels?, metadata?, attributes?)>
<!ATTLIST attribute name CDATA #REQUIRED>
<!ATTLIST attribute type (numeric|date|nominal|string|relational) #REQUIRED>
<!ATTLIST attribute format CDATA #IMPLIED>
<!ATTLIST attribute class (yes|no) "no">
<!ELEMENT labels (label*)>
<!ELEMENT label ANY>
<!ELEMENT metadata (property*)>
<!ELEMENT property ANY>
<!ATTLIST property name CDATA #REQUIRED>

<!ELEMENT instances (instance*)>
<!ELEMENT instance (value*)>
<!ATTLIST instance type (normal|sparse) "normal">
<!ATTLIST instance weight CDATA #IMPLIED>
<!ELEMENT value (#PCDATA|instances)*>
<!ATTLIST value index CDATA #IMPLIED>
<!ATTLIST value missing (yes|no) "no">
]>

<dataset name="iris" version="3.5.3">
<header>
<attributes>
 <attribute name="sepallength" type="numeric"/>
 <attribute name="sepalwidth" type="numeric"/>
 <attribute name="petallength" type="numeric"/>
 <attribute name="petalwidth" type="numeric"/>
 <attribute class="yes" name="class" type="nominal">
 <labels>
 <label>Iris-setosa</label>
 <label>Iris-versicolor</label>
 <label>Iris-virginica</label>
 </labels>
 </attribute>
</attributes>

<instances>
</instances>
</header>
</dataset>
```
12.3 Sparse format

The XRFF format also supports a sparse data representation. Even though the iris dataset does not contain sparse data, the above example will be used here to illustrate the sparse format:

```
<instances>
 <instance type="sparse">
 <value index="1">5.1</value>
 <value index="2">3.5</value>
 <value index="3">1.4</value>
 <value index="4">0.2</value>
 <value index="5">Iris-setosa</value>
 </instance>
 <instance type="sparse">
 <value index="1">4.9</value>
 <value index="2">3</value>
 <value index="3">1.4</value>
 <value index="4">0.2</value>
 <value index="5">Iris-setosa</value>
 </instance>
 ...
</instances>
```
In contrast to the normal data format, each sparse instance tag contains a type attribute with the value sparse:

\[
<\text{instance type="sparse"}>
\]

And each value tag needs to specify the index attribute, which contains the 1-based index of this value.

\[
<\text{value index="1"}>5.1</\text{value}>
\]

12.4 Compression

Since the XML representation takes up considerably more space than the rather compact ARFF format, one can also compress the data via gzip. Weka automatically recognizes a file being gzip compressed, if the file’s extension is .xrff.gz instead of .xrff.

The Weka Explorer, Experimenter and command-line allow one to load/save compressed and uncompressed XRFF files (this applies also to ARFF files).

12.5 Useful features

In addition to all the features of the ARFF format, the XRFF format contains the following additional features:

- class attribute specification
- attribute weights

12.5.1 Class attribute specification

Via the class="yes" attribute in the attribute specification in the header, one can define which attribute should act as class attribute. A feature that can be used on the command line as well as in the Experimenter, which now can also load other data formats, and removing the limitation of the class attribute always having to be the last one.

Snippet from the iris dataset:

\[
<\text{attribute class="yes" name="class" type="nominal"}>
\]

12.5.2 Attribute weights

Attribute weights are stored in an attributes meta-data tag (in the header section). Here is an example of the petalwidth attribute with a weight of 0.9:

\[
<\text{attribute name="petalwidth" type="numeric"}>
<\text{metadata}>
<\text{property name="weight"}>0.9</\text{property}>
</\text{metadata}>
</\text{attribute}>
\]
12.5. USEFUL FEATURES

12.5.3 Instance weights

Instance weights are defined via the weight attribute in each instance tag. By default, the weight is 1. Here is an example:

```xml
<instance weight="0.75">
 <value>5.1</value>
 <value>3.5</value>
 <value>1.4</value>
 <value>0.2</value>
 <value>Iris-setosa</value>
</instance>
```
Chapter 13

Converters

13.1 Introduction

Weka offers conversion utilities for several formats, in order to allow import from
different sorts of datasources. These utilities, called converters, are all located
in the following package:

```
weka.core.converters
```

For a certain kind of converter you will find two classes

- one for **loading** (classname ends with `Loader`) and
- one for **saving** (classname ends with `Saver`).

Weka contains converters for the following data sources:

- **ARFF** files (`ArffLoader`, `ArffSaver`)
- **C4.5** files (`C45Loader`, `C45Saver`)
- **CSV** files (`CSVLoader`, `CSVSaver`)
- files containing **serialized instances** (`SerializedInstancesLoader`, `SerializedInstancesSaver`)
- **JDBC databases** (`DatabaseLoader`, `DatabaseSaver`)
- **libsvm** files (`LibSVMLoader`, `LibSVMsaver`)
- **XRFF** files (`XRFFLoader`, `XRFFSaver`)
- **text directories** for text mining (`TextDirectoryLoader`)
13.2 Usage

13.2.1 File converters

File converters can be used as follows:

- **Loader**
  
  They take one argument, which is the file that should be converted, and print the result to stdout. You can also redirect the output into a file:

  ```
 java <classname> <input-file> > <output-file>
  ```

  Here’s an example for loading the CSV file `iris.csv` and saving it as `iris.arff`:

  ```
 java weka.core.converters.CSVLoader iris.csv > iris.arff
  ```

- **Saver**

  For a Saver you specify the ARFF input file via `-i` and the output file in the specific format with `-o`:

  ```
 java <classname> -i <input> -o <output>
  ```

  Here’s an example for saving an ARFF file to CSV:

  ```
 java weka.core.converters.CSVSaver -i iris.arff -o iris.csv
  ```

  A few notes:

  - Using the `ArffSaver` from commandline doesn’t make much sense, since this Saver takes an ARFF file as input and output. The `ArffSaver` is normally used from Java for saving an object of `weka.core.Instances` to a file.

  - The `C45Loader` either takes the `.names`-file or the `.data`-file as input, it automatically looks for the other one.

  - For the `C45Saver` one specifies as output file a filename without any extension, since two output files will be generated: `.names` and `.data` are automatically appended.

13.2.2 Database converters

The database converters are a bit more complex, since they also rely on additional configuration files, besides the parameters on the commandline. The setup for the database connection is stored in the following props file:

```
DatabaseUtils.props
```

The default file can be found here:

```
weka/experiment/DatabaseUtils.props
```
• **Loader**
  You have to specify at least a SQL query with the `-Q` option (there are additional options for incremental loading)

  ```java
 java weka.core.converters.DatabaseLoader -Q "select * from employee"
  ```

• **Saver**
  The Saver takes an ARFF file as input like any other Saver, but then also the table where to save the data to via `-T`:

  ```java
 java weka.core.converters.DatabaseSaver -i iris.arff -T iris
  ```
Chapter 14

Stemmers

14.1 Introduction

Weka now supports stemming algorithms. The stemming algorithms are located in the following package:

weka.core.stemmers

Currently, the Lovins Stemmer (+ iterated version) and support for the Snowball stemmers are included.

14.2 Snowball stemmers

Weka contains a wrapper class for the Snowball (homepage: http://snowball.tartarus.org/) stemmers (containing the Porter stemmer and several other stemmers for different languages). The relevant class is weka.core.stemmers.Snowball.

The Snowball classes are not included, they only have to be present in the classpath. The reason for this is, that the Weka team doesn’t have to watch out for new versions of the stemmers and update them.

There are two ways of getting hold of the Snowball stemmers:

1. You can add the following pre-compiled jar archive to your classpath and you’re set (based on source code from 2005-10-19, compiled 2005-10-22). http://www.cs.waikato.ac.nz/~ml/weka/stemmers/snowball.jar

2. You can compile the stemmers yourself with the newest sources. Just download the following ZIP file, unpack it and follow the instructions in the README file (the zip contains an ANT (http://ant.apache.org/) build script for generating the jar archive).

http://www.cs.waikato.ac.nz/~ml/weka/stemmers/snowball.zip

Note: the patch target is specific to the source code from 2005-10-19.
14.3 Using stemmers

The stemmers can either used

- from commandline
- within the StringToWordVector (package weka.filters.unsupervised.attribute)

14.3.1 Commandline

All stemmers support the following options:

- `-h`
  for displaying a brief help

- `-i <input-file>`
  The file to process

- `-o <output-file>`
  The file to output the processed data to (default stdout)

- `-l`
  Uses lowercase strings, i.e., the input is automatically converted to lower case

14.3.2 StringToWordVector

Just use the GenericObjectEditor to choose the right stemmer and the desired options (if the stemmer offers additional options).

14.4 Adding new stemmers

You can easily add new stemmers, if you follow these guidelines (for use in the GenericObjectEditor):

- they should be located in the weka.core.stemmers package (if not, then the GenericObjectEditor.props/GenericPropertiesCreator.props file need to be updated) and

- they must implement the interface weka.core.stemmers.Stemmer.
Chapter 15

Databases

15.1 Configuration files

Thanks to JDBC it is easy to connect to Databases that provide a JDBC driver. Responsible for the setup is the following properties file, located in the weka.experiment package:

```
DatabaseUtils.props
```

You can get this properties file from the weka.jar or weka-src.jar jar-archive, both part of a normal Weka release. If you open up one of those files, you’ll find the properties file in the sub-folder weka/experiment.

Weka comes with example files for a wide range of databases:

- `DatabaseUtils.props.hsql` - HSQLDB (> 3.4.1)
- `DatabaseUtils.props.msaccess` - MS Access (> 3.4.14, > 3.5.8, > 3.6.0)
  see the `Windows databases` chapter for more information:
- `DatabaseUtils.props.mssqlserver` - MS SQL Server 2000 (> = 3.4.9, > = 3.5.4)
- `DatabaseUtils.props.mssqlserver2005` - MS SQL Server 2005 (> = 3.4.11, > = 3.5.6)
- `DatabaseUtils.props.mysql` - MySQL (> = 3.4.9, > = 3.5.4)
- `DatabaseUtils.props.odbc` - ODBC access via Sun’s ODBC/JDBC bridge, e.g., for MS Sql Server (> = 3.4.9, > = 3.5.4)
  see the `Windows databases` chapter for more information:
- `DatabaseUtils.props.oracle` - Oracle 10g (> = 3.4.9, > = 3.5.4)
- `DatabaseUtils.props.postgresql` - PostgreSQL 7.4 (> = 3.4.9, > = 3.5.4)
- `DatabaseUtils.props.sqlite3` - sqlite 3.x (> 3.4.12, > 3.5.7)
The easiest way is just to place the extracted properties file into your HOME directory. For more information on how property files are processed, check out the following URL:

http://weka.wikispaces.com/Properties+File

Note: Weka only looks for the DatabaseUtils.props file. If you take one of the example files listed above, you need to rename it first.

15.2 Setup

Under normal circumstances you only have to edit the following two properties:

- jdbcDriver
- jdbcURL

Driver

jdbcDriver is the classname of the JDBC driver, necessary to connect to your database, e.g.:

- HSQLDB
  org.hsqldb.jdbcDriver
- MS SQL Server 2000 (Desktop Edition)
  com.microsoft.jdbc.sqlserver.SQLServerDriver
- MS SQL Server 2005
  com.microsoft.sqlserver.jdbc.SQLServerDriver
- MySQL
  org.gjt.mm.mysql.Driver (or com.mysql.jdbc.Driver)
- ODBC - part of Sun’s JDKs/JREs, no external driver necessary
  sun.jdbc.odbc.JdbcOdbcDriver
- Oracle
  oracle.jdbc.driver.OracleDriver
- PostgreSQL
  org.postgresql.Driver
- sqlite 3.x
  org.sqlite.JDBC

URL

jdbcURL specifies the JDBC URL pointing to your database (can be still changed in the Experimenter/Explorer), e.g. for the database MyDatabase on the server server.my.domain:
15.3. MISSING DATATYPES

- HSQLDB
  jdbc:hsqldb:hsql://server.my.domain/MyDatabase

- MS SQL Server 2000 (Desktop Edition)
  jdbc:microsoft:sqlserver://v:1433
  (Note: if you add ;databasename=db-name you can connect to a different
database than the default one, e.g., MyDatabase)

- MS SQL Server 2005
  jdbc:sqlserver://server.my.domain:1433

- MySQL
  jdbc:mysql://server.my.domain:3306/MyDatabase

- ODBC
  jdbc:odbc:DSN_name (replace DSN_name with the DSN that you want to
  use)

- Oracle (thin driver)
  jdbc:oracle:thin:@server.my.domain:1526:orcl
  (Note: @machineName:port:SID)
  for the Express Edition you can use
  jdbc:oracle:thin:@server.my.domain:1521:XE

- PostgreSQL
  jdbc:postgresql://server.my.domain:5432/MyDatabase
  You can also specify user and password directly in the URL:
  jdbc:postgresql://server.my.domain:5432/MyDatabase?user=<...>&password=<...>
  where you have to replace the <...> with the correct values

- sqlite 3.x
  jdbc:sqlite:/path/to/database.db
  (you can access only local files)

15.3 Missing Datatypes

Sometimes (e.g., with MySQL) it can happen that a column type cannot be
interpreted. In that case it is necessary to map the name of the column type
to the Java type it should be interpreted as. E.g., the MySQL type TEXT is
returned as BLOB from the JDBC driver and has to be mapped to String (0
represents String - the mappings can be found in the comments of the properties
file):
<table>
<thead>
<tr>
<th>Java type</th>
<th>Java method</th>
<th>Identifier</th>
<th>Weka attribute type</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>getString()</td>
<td>0</td>
<td>nominal</td>
</tr>
<tr>
<td>boolean</td>
<td>getBoolean()</td>
<td>1</td>
<td>nominal</td>
</tr>
<tr>
<td>double</td>
<td>getDouble()</td>
<td>2</td>
<td>numeric</td>
</tr>
<tr>
<td>byte</td>
<td>getByte()</td>
<td>3</td>
<td>numeric</td>
</tr>
<tr>
<td>short</td>
<td>getByte()</td>
<td>4</td>
<td>numeric</td>
</tr>
<tr>
<td>int</td>
<td>getInteger()</td>
<td>5</td>
<td>numeric</td>
</tr>
<tr>
<td>long</td>
<td>getLong()</td>
<td>6</td>
<td>numeric</td>
</tr>
<tr>
<td>float</td>
<td>getFloat()</td>
<td>7</td>
<td>numeric</td>
</tr>
<tr>
<td>date</td>
<td>getDate()</td>
<td>8</td>
<td>date</td>
</tr>
<tr>
<td>text</td>
<td>getString()</td>
<td>9</td>
<td>string</td>
</tr>
<tr>
<td>time</td>
<td>getTime()</td>
<td>10</td>
<td>date</td>
</tr>
</tbody>
</table>

In the props file one lists now the type names that the database returns and what Java type it represents (via the identifier), e.g.:

```
CHAR=0
VARCHAR=0
```

CHAR and VARCHAR are both String types, hence they are interpreted as String (identifier 0)

Note: in case database types have blanks, one needs to replace those blanks with an underscore, e.g., DOUBLE PRECISION must be listed like this:

```
DOUBLEPRECISION=2
```

### 15.4 Stored Procedures

Let’s say you’re tired of typing the same query over and over again. A good way to shorten that, is to create a stored procedure.

**PostgreSQL 7.4.x**

The following example creates a procedure called employee_name that returns the names of all the employees in table employee. Even though it doesn’t make much sense to create a stored procedure for this query, nonetheless, it shows how to create and call stored procedures in PostgreSQL.

- **Create**
  ```
 CREATE OR REPLACE FUNCTION public.employee_name()
 RETURNS SETOF text AS 'select name from employee'
 LANGUAGE 'sql' VOLATILE;
  ```

- **SQL statement to call procedure**
  ```
 SELECT * FROM employee_name()
  ```

- **Retrieve data via InstanceQuery**
  ```
 java weka.experiment.InstanceQuery
 -Q "SELECT * FROM employee_name()"
 -U <user> -P <password>
  ```
15.5 Troubleshooting

- In case you’re experiencing problems connecting to your database, check out the WEKA Mailing List (see Weka homepage for more information). It is possible that somebody else encountered the same problem as you and you’ll find a post containing the solution to your problem.

- Specific MS SQL Server 2000 Troubleshooting
  - Error Establishing Socket with JDBC Driver
    Add TCP/IP to the list of protocols as stated in the following article:
    [http://support.microsoft.com/default.aspx?scid=kb;en-us;313178](http://support.microsoft.com/default.aspx?scid=kb;en-us;313178)
    For changing the authentication to mixed mode see the following article:

- MS SQL Server 2005: TCP/IP is not enabled for SQL Server, or the server or port number specified is incorrect. Verify that SQL Server is listening with TCP/IP on the specified server and port. This might be reported with an exception similar to: "The login has failed. The TCP/IP connection to the host has failed." This indicates one of the following:
  - SQL Server is installed but TCP/IP has not been installed as a network protocol for SQL Server by using the SQL Server Network Utility for SQL Server 2000, or the SQL Server Configuration Manager for SQL Server 2005
  - TCP/IP is installed as a SQL Server protocol, but it is not listening on the port specified in the JDBC connection URL. The default port is 1433.
  - The port that is used by the server has not been opened in the firewall

- The Added driver: ... output on the commandline does not mean that the actual class was found, but only that Weka will attempt to load the class later on in order to establish a database connection.

- The error message No suitable driver can be caused by the following:
  - The JDBC driver you are attempting to load is not in the CLASSPATH (Note: using -jar in the java commandline overwrites the CLASSPATH environment variable!). Open the SimpleCLI, run the command `java weka.core.SystemInfo` and check whether the property java.class.path lists your database jar. If not correct your CLASSPATH or the Java call you start Weka with.
  - The JDBC driver class is misspelled in the jdbcDriver property or you have multiple entries of jdbcDriver (properties files need unique keys!)
  - The jdbcURL property has a spelling error and tries to use a non-existing protocol or you listed it multiple times, which doesn’t work either (remember, properties files need unique keys!)
Chapter 16

Windows databases

A common query we get from our users is how to open a Windows database in the Weka Explorer. This page is intended as a guide to help you achieve this. It is a complicated process and we cannot guarantee that it will work for you. The process described makes use of the JDBC-ODBC bridge that is part of Sun’s JRE/JDK 1.3 (and higher).

The following instructions are for Windows 2000. Under other Windows versions there may be slight differences.

Step 1: Create a User DSN

1. Go to the Control Panel
2. Choose Administrative Tools
3. Choose Data Sources (ODBC)
4. At the User DSN tab, choose Add...
5. Choose database
   - Microsoft Access
     (a) Note: Make sure your database is not open in another application before following the steps below.
     (b) Choose the Microsoft Access driver and click Finish
     (c) Give the source a name by typing it into the Data Source Name field
     (d) In the Database section, choose Select...
     (e) Browse to find your database file, select it and click OK
     (f) Click OK to finalize your DSN
   - Microsoft SQL Server 2000 (Desktop Engine)
     (a) Choose the SQL Server driver and click Finish
     (b) Give the source a name by typing it into the Name field
     (c) Add a description for this source in the Description field
     (d) Select the server you’re connecting to from the Server combobox
(e) For the verification of the authenticity of the login ID choose **With SQL Server...**

(f) Check **Connect to SQL Server to obtain default settings...**
and supply the user ID and password with which you installed the Desktop Engine

(g) Just click on **Next** until it changes into **Finish** and click this, too

(h) For testing purposes, click on **Test Data Source...** - the result should be **TESTS COMPLETED SUCCESSFULLY!**

(i) Click on **OK**

- **MySQL**
  (a) Choose the **MySQL ODBC** driver and click **Finish**
  (b) Give the source a name by typing it into the **Data Source Name** field
  (c) Add a description for this source in the **Description** field
  (d) Specify the server you’re connecting to in **Server**
  (e) Fill in the user to use for connecting to the database in the **User** field, the same for the password
  (f) Choose the database for this DSN from the **Database** combobox
  (g) Click on **OK**

6. Your DSN should now be listed in the **User Data Sources** list

**Step 2: Set up the DatabaseUtils.props file**

You will need to configure a file called **DatabaseUtils.props**. This file already exists under the path **weka/experiment/** in the **weka.jar** file (which is just a ZIP file) that is part of the Weka download. In this directory you will also find a sample file for ODBC connectivity, called **DatabaseUtils.props.odbc**, and one specifically for MS Access, called **DatabaseUtils.props.msaccess**, also using ODBC. You should use one of the sample files as basis for your setup, since they already contain default values specific to ODBC access.

This file needs to be recognized when the Explorer starts. You can achieve this by making sure it is in the working directory or the home directory (if you are unsure what the terms **working directory** and **home directory** mean, see the **Notes** section). The easiest is probably the second alternative, as the setup will apply to all the Weka instances on your machine.

Just make sure that the file contains the following lines at least:

```java
jdbcDriver=sun.jdbc.odbc.JdbcOdbcDriver
jdbcURL=jdbc:odbc:dbname
```

where **dbname** is the name you gave the user DSN. (This can also be changed once the Explorer is running.)
Step 3: Open the database

1. Start up the Weka Explorer.
2. Choose Open DB...
3. The URL should read "jdbc:odbc:dbname" where dbname is the name you gave the user DSN.
4. Click Connect
5. Enter a Query, e.g., "select * from tablename" where tablename is the name of the database table you want to read. Or you could put a more complicated SQL query here instead.
6. Click Execute
7. When you’re satisfied with the returned data, click OK to load the data into the Preprocess panel.

Notes

• Working directory
  The directory a process is started from. When you start Weka from the Windows Start Menu, then this directory would be Weka's installation directory (the java process is started from that directory).

• Home directory
  The directory that contains all the user’s data. The exact location depends on the operating system and the version of the operating system. It is stored in the following environment variable:
  – Unix/Linux
    $HOME
  – Windows
    %USERPROFILE%
  – Cygwin
    $USERPROFILE
  You should be able output the value in a command prompt/terminal with the echo command. E.g., for Windows this would be:
  
  echo %USERPROFILE%
Part IV

Appendix
Chapter 17

Research

17.1 Citing Weka

If you want to refer to Weka in a publication, please cite following SIGKDD Explorations\footnote{http://www.kdd.org/explorations/issues/11-1-2009-07/p2V11n1.pdf} paper. The full citation is:

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten (2009); *The WEKA Data Mining Software: An Update*; SIGKDD Explorations, Volume 11, Issue 1.

17.2 Paper references

Due to the introduction of the `weka.core.TechnicalInformationHandler` interface it is now easy to extract all the paper references via `weka.core.ClassDiscovery` and `weka.core.TechnicalInformation`.

The script listed at the end, extracts all the paper references from Weka based on a given jar file and dumps it to stdout. One can either generate simple plain text output (option `-p`) or BibTeX compliant one (option `-b`).

Typical use (after an `ant exejar`) for BibTeX:

```
get_wekatechinfo.sh -d .. -w ..dist/weka.jar -b > ../tech.txt
```

(command is issued from the same directory the Weka `build.xml` is located in)
Bash shell script `get_wekatechnfo.sh`

```bash
#!/bin/bash
#
This script prints the information stored in TechnicalInformationHandlers
to stdout.
#
$Revision: 4582 $
the usage of this script
function usage()
{
 echo "${0##*/} -d <dir> [-w <jar>] [-p|-b] [-h]"
 echo "Prints the information stored in TechnicalInformationHandlers to stdout."
 echo " -d <dir> the directory to look for packages, must be the one just above"
 echo " -w <jar> the weka jar to use, if not in CLASSPATH"
 echo " -p prints the information in plaintext format"
 echo " -b prints the information in BibTeX format"
}

generates a filename out of the classname TMP and returns it in TMP
uses the directory in DIR
function class_to_filename()
{
 TMP=$DIR"/""echo $TMP | sed s/"."/"/g"".java"
}

variables
DIR=".
PLAINTEXT="no"
BIBTEX="no"
WEKA=""
TECHINFOHANDLER="weka.core.TechnicalInformationHandler"
TECHINFO="weka.core.TechnicalInformation"
CLASSDISCOVERY="weka.core.ClassDiscovery"

interprete parameters
while getopts "hpbd:w" flag do
 case $flag in
 h)
 usage
 exit 0
 ;;
 p) PLAINTEXT="yes"
 ;;
 b) BIBTEX="yes"
 ;;
 d) DIR=$OPTARG
 ;;
 w) WEKA=$OPTARG
 ;;
 esac
 esac
 esac
done

either plaintext or bibtex
if ["$PLAINTEXT" != "$BIBTEX"]
 then
 echo "ERROR: either -p or -b has to be given!"
 usage
 exit 2
 fi
```
# do we have everything?
if [ "$DIR" = "" ] || [ ! -d "$DIR" ]
then
echo
  "ERROR: no directory or non-existing one provided!"
echo
  usage
  exit 3
fi

# generate Java call
if [ "$WEKA" = "" ]
then
  JAVA="java"
else
  JAVA="java -classpath $WEKA"
fi
if [ "$PLAINTEXT" = "yes" ]
then
  CMD="$JAVA $TECHINFO -plaintext"
elif [ "$BIBTEX" = "yes" ]
then
  CMD="$JAVA $TECHINFO -bibtex"
fi

# find packages
TMP='find $DIR -mindepth 1 -type d | grep -v CVS | sed s/".*weka"/"weka"/g | sed s/"\"/"/g'
PACKAGES='echo $TMP | sed s/" "/,/g'

# get technicalinformationhandlers
TECHINFOHANDLERS='echo $TECHINFOHANDLER $PACKAGES | grep ". weka" | sed s/"\"/"/g'

# output information
for i in $TECHINFOHANDLERS
do
  TMP=${i}; class_to_filename
  if [ ! -f $TMP ]
  then
    continue
  fi
  $CMD -W $i
  echo
done
Chapter 18

Using the API

Using the graphical tools, like the Explorer, or just the command-line is in most cases sufficient for the normal user. But WEKA’s clearly defined API (“application programming interface”) makes it very easy to “embed” it in another projects. This chapter covers the basics of how to achieve the following common tasks from source code:

- Setting options
- Creating datasets in memory
- Loading and saving data
- Filtering
- Classifying
- Clustering
- Selecting attributes
- Visualization
- Serialization

Even though most of the code examples are for the Linux platform, using forward slashes in the paths and file names, they do work on the MS Windows platform as well. To make the examples work under MS Windows, one only needs to adapt the paths, changing the forward slashes to backslashes and adding a drive letter where necessary.

**Note**

WEKA is released under the GNU General Public License version 3 (GPLv3), i.e., that derived code or code that uses WEKA needs to be released under the GPLv3 as well. If one is just using WEKA for a personal project that does not get released publicly then one is not affected. But as soon as one makes the project publicly available (e.g., for download), then one needs to make the source code available under the GLPv3 as well, alongside the binaries.


207
18.1 Option handling

Configuring an object, e.g., a classifier, can either be done using the appropriate get/set-methods for the property that one wishes to change, like the Explorer does. Or, if the class implements the weka.core.OptionHandler interface, one can just use the object’s ability to parse command-line options via the setOptions(String[]) method (the counterpart of this method is getOptions(), which returns a String[] array). The difference between the two approaches is, that the setOptions(String[]) method cannot be used to set the options incrementally. Default values are used for all options that haven’t been explicitly specified in the options array.

The most basic approach is to assemble the String array by hand. The following example creates an array with a single option (“-R”) that takes an argument (“1”) and initializes the Remove filter with this option:

```java
import weka.filters.unsupervised.attribute.Remove;
...
String[] options = new String[2];
options[0] = "-R";
options[1] = "1";
Remove rm = new Remove();
rm.setOptions(options);
```

Since the setOptions(String[]) method expects a fully parsed and correctly split up array (which is done by the console/command prompt), some common pitfalls with this approach are:

- Combination of option and argument – Using “-R 1” as an element of the String array will fail, prompting WEKA to output an error message stating that the option “R 1” is unknown.
- Trailing blanks – Using “-R ” will fail as well, since no trailing blanks are removed and therefore option “R ” will not be recognized.

The easiest way to avoid these problems, is to provide a String array that has been generated automatically from a single command-line string using the splitOptions(String) method of the weka.core.Utils class. Here is an example:

```java
import weka.core.Utils;
...
String[] options = Utils.splitOptions("-R 1");
```

As this method ignores whitespaces, using “-R 1” or “-R 1” will return the same result as “-R 1”.

Complicated command-lines with lots of nested options, e.g., options for the support-vector machine classifier SMO (package weka.classifiers.functions) including a kernel setup, are a bit tricky, since Java requires one to escape double quotes and backslashes inside a String. The Wiki article “Use Weka in your Java code” references the Java class OptionsToCode, which turns any command-line into appropriate Java source code. This example class is also available from the Weka Examples collection: weka.core.OptionsToCode.
Instead of using the Remove filter's `setOptions(String[])` method, the following code snippet uses the actual `set`-method for this property:

```java
import weka.filters.unsupervised.attribute.Remove;
...
Remove rm = new Remove();
rm.setAttributeIndices("1");
```

In order to find out, which option belongs to which property, i.e., `get/set`-method, it is best to have a look at the `setOptions(String[])` and `getOptions()` methods. In case these methods use the member variables directly, one just has to look for the methods making this particular member variable accessible to the outside.

Using the `set`-methods, one will most likely come across ones that require a `weka.core.SelectedTag` as parameter. An example for this, is the `setEvaluation` method of the meta-classifier GridSearch (located in package `weka.classifiers.meta`). The `SelectedTag` class is used in the GUI for displaying drop-down lists, enabling the user to chose from a predefined list of values. GridSearch allows the user to chose the statistical measure to base the evaluation on (accuracy, correlation coefficient, etc.).

A `SelectedTag` gets constructed using the array of all possible `weka.core.Tag` elements that can be chosen and the integer or string ID of the `Tag`. For instance, GridSearch's `setOptions(String[])` method uses the supplied string ID to set the evaluation type (e.g., "ACC" for accuracy), or, if the evaluation option is missing, the default integer ID `EVALUATION_ACC`. In both cases, the array `TAGS_EVALUATION` is used, which defines all possible options:

```java
import weka.core.SelectedTag;
...
String tmpStr = Utils.getOption('E', options);
if (tmpStr.length() != 0)
 setEvaluation(new SelectedTag(tmpStr, TAGS_EVALUATION));
else
 setEvaluation(new SelectedTag(EVALUATION_CC, TAGS_EVALUATION));
```
18.2 Loading data

Before any filter, classifier or clusterer can be applied, data needs to be present. WEKA enables one to load data from files (in various file formats) and also from databases. In the latter case, it is assumed in that the database connection is set up and working. See chapter 15 for more details on how to configure WEKA correctly and also more information on JDBC (Java Database Connectivity) URLs.

Example classes, making use of the functionality covered in this section, can be found in the `wekaexamples.core.converters` package of the Weka Examples collection.

The following classes are used to store data in memory:

- `weka.core.Instances` – holds a complete dataset. This data structure is row-based; single rows can be accessed via the `instance(int)` method using a 0-based index. Information about the columns can be accessed via the `attribute(int)` method. This method returns `weka.core.Attribute` objects (see below).
- `weka.core.Instance` – encapsulates a single row. It is basically a wrapper around an array of double primitives. Since this class contains no information about the type of the columns, it always needs access to a `weka.core.Instances` object (see methods `dataset` and `setDataset`). The class `weka.core.SparseInstance` is used in case of sparse data.
- `weka.core.Attribute` – holds the type information about a single column in the dataset. It stores the type of the attribute, as well as the labels for nominal attributes, the possible values for string attributes or the datasets for relational attributes (these are just `weka.core.Instances` objects again).

18.2.1 Loading data from files

When loading data from files, one can either let WEKA choose the appropriate loader (the available loaders can be found in the `weka.core.converters` package) based on the file’s extension or one can use the correct loader directly. The latter case is necessary if the files do not have the correct extension.

The `DataSource` class (inner class of the `weka.core.converters.ConverterUtils` class) can be used to read data from files that have the appropriate file extension. Here are some examples:

```java
import weka.core.converters.ConverterUtils.DataSource;
import weka.core.Instances;
...
Instances data1 = DataSource.read("/some/where/dataset.arff");
Instances data2 = DataSource.read("/some/where/dataset.csv");
Instances data3 = DataSource.read("/some/where/dataset.xrff");
```

In case the file does have a different file extension than is normally associated with the loader, one has to use a loader directly. The following example loads a CSV (“comma-separated values”) file:

```java
import weka.core.converters.CSVLoader;
```
**18.2. LOADING DATA**

```java
import weka.core.Instances;
import java.io.File;
...
CSVLoader loader = new CSVLoader();
loader.setSource(new File("/some/where/some.data"));
Instances data = loader.getDataSet();
```

**NB:** Not all file formats allow to store information about the class attribute (e.g., ARFF stores no information about class attribute, but XRFF does). If a class attribute is required further down the road, e.g., when using a classifier, it can be set with the `setClassIndex(int)` method:

```java
// uses the first attribute as class attribute
if (data.classIndex() == -1)
 data.setClassIndex(0);
...
// uses the last attribute as class attribute
if (data.classIndex() == -1)
 data.setClassIndex(data.numAttributes() - 1);
```

### 18.2.2 Loading data from databases

For loading data from databases, one of the following two classes can be used:

- weka.experiment.InstanceQuery
- weka.core.converters.DatabaseLoader

The differences between them are, that the `InstanceQuery` class allows one to retrieve sparse data and the `DatabaseLoader` can retrieve the data incrementally.

Here is an example of using the `InstanceQuery` class:

```java
import weka.core.Instances;
import weka.experiment.InstanceQuery;
...
InstanceQuery query = new InstanceQuery();
query.setDatabaseURL("jdbc_url");
query.setUsername("the_user");
query.setPassword("the_password");
query.setQuery("select * from whatsoever");
// if your data is sparse, then you can say so, too:
// query.setSparseData(true);
Instances data = query.retrieveInstances();
```

And an example using the `DatabaseLoader` class in “batch retrieval”:

```java
import weka.core.Instances;
import weka.core.converters.DatabaseLoader;
...
DatabaseLoader loader = new DatabaseLoader();
loader.setSource("jdbc_url", "the_user", "the_password");
loader.setQuery("select * from whatsoever");
Instances data = loader.getDataSet();
```
The DatabaseLoader is used in “incremental mode” as follows:

```java
import weka.core.Instance;
import weka.core.Instances;
import weka.core.converters.DatabaseLoader;
...
DatabaseLoader loader = new DatabaseLoader();
loader.setSource("jdbc_url", "the_user", "the_password");
loader.setQuery("select * from whatsoever");
Instances structure = loader.getStructure();
Instances data = new Instances(structure);
Instance inst;
while ((inst = loader.getNextInstance(structure)) != null)
 data.add(inst);
```

Notes:

- Not all database systems allow incremental retrieval.
- Not all queries have a unique key to retrieve rows incrementally. In that case, one can supply the necessary columns with the `setKeys(String)` method (comma-separated list of columns).
- If the data cannot be retrieved in an incremental fashion, it is first fully loaded into memory and then provided row-by-row (“pseudo-incremental”).
18.3 Creating datasets in memory

Loading datasets from disk or database are not the only ways of obtaining data in WEKA: datasets can be created in memory or on-the-fly. Generating a dataset memory structure (i.e., a `weka.core.Instances` object) is a two-stage process:

1. Defining the format of the data by setting up the attributes.
2. Adding the actual data, row by row.

The class `wekaexamples.core.CreateInstances` of the Weka Examples collection generates an `Instances` object containing all attribute types WEKA can handle at the moment.

18.3.1 Defining the format

There are currently five different types of attributes available in WEKA:

- **numeric** – continuous variables
- **date** – date variables
- **nominal** – predefined labels
- **string** – textual data
- **relational** – contains other relations, e.g., the bags in case of multi-instance data

For all of the different attribute types, WEKA uses the same class, `weka.core.Attribute`, but with different constructors. In the following, these different constructors are explained.

- **numeric** – The easiest attribute type to create, as it requires only the name of the attribute:
  ```java
 Attribute numeric = new Attribute("name_of_attr");
  ```

- **date** – Date attributes are handled internally as numeric attributes, but in order to parse and present the date value correctly, the format of the date needs to be specified. The `date` and `time patterns` are explained in detail in the Javadoc of the `java.text.SimpleDateFormat` class. In the following, an example of how to create a date attribute using a date format of 4-digit year, 2-digit month and a 2-digit day, separated by hyphens:
  ```java
 Attribute date = new Attribute("name_of_attr", "yyyy-MM-dd");
  ```

- **nominal** – Since nominal attributes contain predefined labels, one needs to supply these, stored in form of a `java.util.ArrayList<String>` object:
  ```java
 ArrayList<String> labels = new ArrayList<String>();
 labels.addElement("label_a");
 labels.addElement("label_b");
 labels.addElement("label_c");
 labels.addElement("label_d");
 Attribute nominal = new Attribute("name_of_attr", labels);
  ```

- **string** – In contrast to nominal attributes, this type does not store a predefined list of labels. Normally used to store textual data, i.e., content of documents for text categorization. The same constructor as for the nominal attribute is used, but a `null` value is provided instead of an instance of `java.util.ArrayList<String>`:
  ```java
 Attribute string = new Attribute("name_of_attr", (ArrayList<String>) null);
  ```
18.3. CREATING DATASETS IN MEMORY

- relational – This attribute just takes another `weka.core.Instances` object for defining the relational structure in the constructor. The following code snippet generates a relational attribute that contains a relation with two attributes, a numeric and a nominal attribute:

```java
ArrayList<Attribute> atts = new ArrayList<Attribute>();
atts.addElement(new Attribute("rel.num"));
ArrayList<String> values = new ArrayList<String>();
values.addElement("val_A");
values.addElement("val_B");
values.addElement("val_C");
atts.addElement(new Attribute("rel.nom", values));
Instances rel_struct = new Instances("rel", atts, 0);
Attribute relational = new Attribute("name_of_attr", rel_struct);
```

A `weka.core.Instances` object is then created by supplying a `java.util.ArrayList<Attribute>` object containing all the attribute objects. The following example creates a dataset with two numeric attributes and a nominal class attribute with two labels “no” and “yes”:

```java
Attribute num1 = new Attribute("num1");
Attribute num2 = new Attribute("num2");
ArrayList<String> labels = new ArrayList<String>();
labels.addElement("no");
labels.addElement("yes");
Attribute cls = new Attribute("class", labels);
ArrayList<Attribute> attributes = new ArrayList<Attribute>();
attributes.addElement(num1);
attributes.addElement(num2);
attributes.addElement(cls);
Instances dataset = new Instances("Test-dataset", attributes, 0);
```

The final argument in the `Instances` constructor above tells WEKA how much memory to reserve for upcoming `weka.core.Instance` objects. If one knows how many rows will be added to the dataset, then it should be specified as it saves costly operations for expanding the internal storage. It doesn’t matter, if one aims to high with the amount of rows to be added, it is always possible to trim the dataset again, using the `compactify()` method.

### 18.3.2 Adding data

After the structure of the dataset has been defined, one can add the actual data to it, row by row. `weka.core.Instance` was turned into an interface to provide greater flexibility. `weka.core.AbstractInstance` implements this interface and provides basic functionality that is common to `weka.core.DenseInstance` (formerly `weka.core.Instance`) and `weka.core.SparseInstance` (which stores only non-zero values). In the following examples, only the `DenseInstance` class is used; the `SparseInstance` class is very similar in handling.
CHAPTER 18. USING THE API

There are basically two constructors of the DenseInstance class that one can use for instantiating a data row:

- **DenseInstance(double weight, double[] attValues)** – this constructor generates a DenseInstance object with the specified weight and the given double values. WEKA’s internal format is using doubles for all attribute types. For nominal, string and relational attributes this is just an index of the stored values.
- **DenseInstance(int numAttributes)** – generates a new DenseInstance object with weight 1.0 and all missing values.

The second constructor may be easier to use, but setting values using the methods of the DenseInstance is a bit costly, especially if one is adding a lot of rows. Therefore, the following code examples cover the first constructor. For simplicity, an Instances object “data” based on the code snippets for the different attribute introduced used above is used, as it contains all possible attribute types.

For each instance, the first step is to create a new double array to hold the attribute values. It is important not to reuse this array, but always create a new one, since WEKA only references it and does not create a copy of it, when instantiating the DenseInstance object. Reusing means changing the previously generated DenseInstance object:

```java
double[] values = new double[data.numAttributes()];
```

After that, the double array is filled with the actual values:

- **numeric** – just sets the numeric value:
  ```java
 values[0] = 1.23;
  ```
- **date** – turns the date string into a double value:
  ```java
 values[1] = data.attribute(1).parseDate("2001-11-09");
  ```
- **nominal** – determines the index of the label:
  ```java
 values[2] = data.attribute(2).indexOf("label_b");
  ```
- **string** – determines the index of the string, using the addStringValue method (internally, a hashtable holds all the string values):
  ```java
 values[3] = data.attribute(3).addStringValue("This is a string");
  ```
- **relational** – first, a new Instances object based on the attribute’s relational definition has to be created, before the index of it can be determined, using the addRelation method:
  ```java
 Instances dataRel = new Instances(data.attribute(4).relation(),0);
 valuesRel = new double[dataRel.numAttributes()];
 valuesRel[0] = 2.34;
 valuesRel[1] = dataRel.attribute(1).indexOf("val_C");
 dataRel.add(new DenseInstance(1.0, valuesRel));
 values[4] = data.attribute(4).addRelation(dataRel);
  ```

Finally, an Instance object is generated with the initialized double array and added to the dataset:

```java
Instance inst = new DenseInstance(1.0, values);
data.add(inst);
```
18.4 Generating artificial data

Using WEKA’s data generators it is very easy to generate artificial datasets. There are two possible approaches to generating data, which get discussed in turn in the following sections.

18.4.1 Generate ARFF file

Simply generating an ARFF file is achieved using the static DataGenerator.makeData method. In order to write to a file, the generator needs to have a java.io.PrintWriter object for writing to, in this case a FileWriter.

The code below writes data generated by RDG1 to the file rdg1.arff:

```java
import weka.datagenerators.DataGenerator;
import weka.datagenerators.classifiers.classification.RDG1;
...
// configure generator
RDG1 generator = new RDG1();
generator.setMaxRuleSize(5);
// set where to write output to
java.io.PrintWriter output = new java.io.PrintWriter(
 new java.io.BufferedWriter(new java.io.FileWriter("rdg1.arff")));
generator.setOutput(output);
DataGenerator.makeData(generator, generator.getOptions());
output.flush();
output.close();
```

18.4.2 Generate Instances

Rather than writing the artificial data directly to a file, it is possible to obtain the data in the form of Instance/Instances directly. Depending on the generator, the data can be retrieved instance by instance (determined by getSingleModeFlag()), or as full dataset.

The example below generates data using the Agrawal generator:

```java
import weka.datagenerators.classifiers.classification.Agrawal;
...
// configure data generator
Agrawal generator = new Agrawal();
generator.setBalanceClass(true);
// initialize dataset and get header
generator.setDatasetFormat(generator.defineDataFormat());
Instances header = generator.getDatasetFormat();
// generate data
if (generator.getSingleModeFlag()) {
 for (int i = 0; i < generator.getNumExamplesAct(); i++) {
 Instance inst = generator.generateExample();
 }
} else {
 Instances data = generator.generateExamples();
}
```
18.5 Randomizing data

Since learning algorithms can be prone to the order the data arrives in, randomizing (also called “shuffling”) the data is a common approach to alleviate this problem. Especially repeated randomizations, e.g., as during cross-validation, help to generate more realistic statistics.

WEKA offers two possibilities for randomizing a dataset:

- Using the randomize(Random) method of the weka.core.Instances object containing the data itself. This method requires an instance of the java.util.Random class. How to correctly instantiate such an object is explained below.
- Using the Randomize filter (package weka.filters.unsupervised.instance).
  For more information on how to use filters, see section 18.6.

A very important aspect of Machine Learning experiments is, that experiments have to be repeatable. Subsequent runs of the same experiment setup have to yield the exact same results. It may seem weird, but randomization is still possible in this scenario. Random number generators never return a completely random sequence of numbers anyway, only a pseudo-random one. In order to achieve repeatable pseudo-random sequences, seeded generators are used. Using the same seed value will always result in the same sequence then.

The default constructor of the java.util.Random random number generator class should never be used, as such created objects will generate most likely different sequences. The constructor Random(long), using a specified seed value, is the recommended one to use.

In order to get a more dataset-dependent randomization of the data, the getRandomNumberGenerator(int) method of the weka.core.Instances class can be used. This method returns a java.util.Random object that was seeded with the sum of the supplied seed and the hashcode of the string representation of a randomly chosen weka.core.Instance of the Instances object (using a random number generator seeded with the seed supplied to this method).
18.6 Filtering

In WEKA, filters are used to preprocess the data. They can be found below package `weka.filters`. Each filter falls into one of the following two categories:

- supervised – The filter requires a class attribute to be set.
- unsupervised – A class attribute is not required to be present.

And into one of the two sub-categories:

- attribute-based – Columns are processed, e.g., added or removed.
- instance-based – Rows are processed, e.g., added or deleted.

These categories should make it clear, what the difference between the two `Discretize` filters in WEKA is. The supervised one takes the class attribute and its distribution over the dataset into account, in order to determine the optimal number and size of bins, whereas the unsupervised one relies on a user-specified number of bins.

Apart from this classification, filters are either stream- or batch-based. Stream filters can process the data straight away and make it immediately available for collection again. Batch filters, on the other hand, need a batch of data to setup their internal data structures. The `Add` filter (this filter can be found in the `weka.filters.unsupervised.attribute` package) is an example of a stream filter. Adding a new attribute with only missing values does not require any sophisticated setup. However, the `ReplaceMissingValues` filter (same package as the `Add` filter) needs a batch of data in order to determine the means and modes for each of the attributes. Otherwise, the filter will not be able to replace the missing values with meaningful values. But as soon as a batch filter has been initialized with the first batch of data, it can also process data on a row-by-row basis, just like a stream filter.

Instance-based filters are a bit special in the way they handle data. As mentioned earlier, all filters can process data on a row-by-row basis after the first batch of data has been passed through. Of course, if a filter adds or removes rows from a batch of data, this no longer works when working in single-row processing mode. This makes sense, if one thinks of a scenario involving the `FilteredClassifier` meta-classifier: after the training phase (= first batch of data), the classifier will get evaluated against a test set, one instance at a time. If the filter now removes the only instance or adds instances, it can no longer be evaluated correctly, as the evaluation expects to get only a single result back. This is the reason why instance-based filters only pass through any subsequent batch of data without processing it. The `Resample` filters, for instance, act like this.

One can find example classes for filtering in the `wekaexamples.filters` package of the `Weka Examples` collection.\[3\]
The following example uses the Remove filter (the filter is located in package `weka.filters.unsupervised.attribute`) to remove the first attribute from a dataset. For setting the options, the `setOptions(String[])` method is used.

```java
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;
...
String[] options = new String[2];
options[0] = "-R"; // "range"
options[1] = "1"; // first attribute
Remove remove = new Remove(); // new instance of filter
remove.setOptions(options); // set options
remove.setInputFormat(data); // inform filter about dataset

Instances newData = Filter.useFilter(data, remove); // apply filter
```

A common trap to fall into is setting options after the `setInputFormat(Instances)` has been called. Since this method is (normally) used to determine the output format of the data, all the options have to be set before calling it. Otherwise, all options set afterwards will be ignored.

### 18.6.1 Batch filtering

Batch filtering is necessary if two or more datasets need to be processed according to the same filter initialization. If batch filtering is not used, for instance when generating a training and a test set using the `StringToWordVector` filter (package `weka.filters.unsupervised.attribute`), then these two filter runs are completely independent and will create two most likely incompatible datasets. Running the `StringToWordVector` on two different datasets, this will result in two different word dictionaries and therefore different attributes being generated.

The following code example shows how to standardize, i.e., transforming all numeric attributes to have zero mean and unit variance, a training and a test set with the `Standardize` filter (package `weka.filters.unsupervised.attribute`):

```java
Instances train = ... // from somewhere
Instances test = ... // from somewhere
Standardize filter = new Standardize();
// initializing the filter once with training set
filter.setInputFormat(train);
// configures the Filter based on train instances and returns
// filtered instances
Instances newTrain = Filter.useFilter(train, filter);
// create new test set
Instances newTest = Filter.useFilter(test, filter);
```
18.6. FILTERING

18.6.2 Filtering on-the-fly

Even though using the API gives one full control over the data and makes it easier to juggle several datasets at the same time, filtering data on-the-fly makes life even easier. This handy feature is available through meta schemes in WEKA, like FilteredClassifier (package weka.classifiers.meta), FilteredClusterer (package weka.clusterers), FilteredAssociator (package weka.associations) and FilteredAttributeEval/FilteredSubsetEval (in weka.attributeSelection). Instead of filtering the data beforehand, one just sets up a meta-scheme and lets the meta-scheme do the filtering for one.

The following example uses the FilteredClassifier in conjunction with the Remove filter to remove the first attribute (which happens to be an ID attribute) from the dataset and J48 (J48 is WEKA’s implementation of C4.5; package weka.classifiers.trees) as base-classifier. First the classifier is built with a training set and then evaluated with a separate test set. The actual and predicted class values are printed in the console. For more information on classification, see chapter 18.7.

```java
import weka.classifiers.meta.FilteredClassifier;
import weka.classifiers.trees.J48;
import weka.core.Instances;
import weka.filters.unsupervised.attribute.Remove;
...
Instances train = ... // from somewhere
Instances test = ... // from somewhere
// filter
Remove rm = new Remove();
rm.setAttributeIndices("1"); // remove 1st attribute
// classifier
J48 j48 = new J48();
j48.setUnpruned(true); // using an unpruned J48
// meta-classifier
FilteredClassifier fc = new FilteredClassifier();
fcs.setFilter(rm);
fcs.setClassifier(j48);
// train and output model
fcs.buildClassifier(train);
System.out.println(fc);
for (int i = 0; i < test.numInstances(); i++) {
 double pred = fc.classifyInstance(test.instance(i));
 double actual = test.instance(i).classValue();
 System.out.print("ID: ");
 System.out.print("actual: ");
 System.out.println("predicted: ");
}
```
18.7 Classification

Classification and regression algorithms in WEKA are called “classifiers” and are located below the `weka.classifiers` package. This section covers the following topics:

- Building a classifier — batch and incremental learning.
- Evaluating a classifier — various evaluation techniques and how to obtain the generated statistics.
- Classifying instances — obtaining classifications for unknown data.

The `Weka Examples` collection contains example classes covering classification in the `wekaexamples.classifiers` package.

18.7.1 Building a classifier

By design, all classifiers in WEKA are batch-trainable, i.e., they get trained on the whole dataset at once. This is fine, if the training data fits into memory. But there are also algorithms available that can update their internal model on-the-go. These classifiers are called incremental. The following two sections cover the batch and the incremental classifiers.

**Batch classifiers**

A batch classifier is really simple to build:

- set options — either using the `setOptions(String[])` method or the actual set-methods.
- train it — calling the `buildClassifier(Instances)` method with the training set. By definition, the `buildClassifier(Instances)` method resets the internal model completely, in order to ensure that subsequent calls of this method with the same data result in the same model (“repeatable experiments”).

The following code snippet builds an unpruned J48 on a dataset:

```java
import weka.core.Instances;
import weka.classifiers.trees.J48;
...
Instances data = ... // from somewhere
String[] options = new String[1];
options[0] = "-U";
// unpruned tree
J48 tree = new J48();
// new instance of tree
tree.setOptions(options);
// set the options
tree.buildClassifier(data); // build classifier
```

**Incremental classifiers**

All incremental classifiers in WEKA implement the interface `UpdateableClassifier` (located in package `weka.classifiers`). Bringing up the Javadoc for this particular interface tells one what classifiers implement this interface. These classifiers can be used to process large amounts of data with a small memory-footprint, as the training data does not have to fit in memory. ARFF files, for instance, can be read incrementally (see chapter 18.2).
Training an incremental classifier happens in two stages:

1. *initialize* the model by calling the `buildClassifier(Instances)` method. One can either use a `weka.core.Instances` object with no actual data or one with an initial set of data.

2. *update* the model row-by-row, by calling the `updateClassifier(Instance)` method.

The following example shows how to load an ARFF file incrementally using the `ArffLoader` class and train the `NaiveBayesUpdateable` classifier with one row at a time:

```java
import weka.core.converters.ArffLoader;
import weka.classifiers.bayes.NaiveBayesUpdateable;
import java.io.File;
...
// load data
ArffLoader loader = new ArffLoader();
loader.setFile(new File("/some/where/data.arff"));
Instances structure = loader.getStructure();
structure.setClassIndex(structure.numAttributes() - 1);

// train NaiveBayes
NaiveBayesUpdateable nb = new NaiveBayesUpdateable();
nb.buildClassifier(structure);
Instance current;
while ((current = loader.getNextInstance(structure)) != null)
 nb.updateClassifier(current);
```
18.7.2 Evaluating a classifier

Building a classifier is only one part of the equation, evaluating how well it performs is another important part. WEKA supports two types of evaluation:

- **Cross-validation** – If one only has a single dataset and wants to get a reasonable realistic evaluation. Setting the number of folds equal to the number of rows in the dataset will give one leave-one-out cross-validation (LOOCV).

- **Dedicated test set** – The test set is solely used to evaluate the built classifier. It is important to have a test set that incorporates the same (or similar) concepts as the training set, otherwise one will always end up with poor performance.

The evaluation step, including collection of statistics, is performed by the *Evaluation* class (package *weka.classifiers*).

Cross-validation

The *crossValidateModel* method of the *Evaluation* class is used to perform cross-validation with an untrained classifier and a single dataset. Supplying an untrained classifier ensures that no information leaks into the actual evaluation. Even though it is an implementation requirement, that the *buildClassifier* method resets the classifier, it cannot be guaranteed that this is indeed the case (“leaky” implementation). Using an untrained classifier avoids unwanted side-effects, as for each train/test set pair, a copy of the originally supplied classifier is used.

Before cross-validation is performed, the data gets randomized using the supplied random number generator (*java.util.Random*). It is recommended that this number generator is “seeded” with a specified seed value. Otherwise, subsequent runs of cross-validation on the same dataset will not yield the same results, due to different randomization of the data (see section 18.5 for more information on randomization).

The code snippet below performs 10-fold cross-validation with a J48 decision tree algorithm on a dataset *newData*, with random number generator that is seeded with “1”. The summary of the collected statistics is output to *stdout*. 
import weka.classifiers.Evaluation;
import weka.classifiers.trees.J48;
import weka.core.Instances;
import java.util.Random;
...
Instances newData = ... // from somewhere
Evaluation eval = new Evaluation(newData);
J48 tree = new J48();
eval.crossValidateModel(tree, newData, 10, new Random(1));
System.out.println(eval.toSummaryString("\nResults\n\n", false));

The Evaluation object in this example is initialized with the dataset used in the evaluation process. This is done in order to inform the evaluation about the type of data that is being evaluated, ensuring that all internal data structures are setup correctly.

**Train/test set**

Using a dedicated test set to evaluate a classifier is just as easy as cross-validation. But instead of providing an untrained classifier, a trained classifier has to be provided now. Once again, the weka.classifiers.Evaluation class is used to perform the evaluation, this time using the evaluateModel method.

The code snippet below trains a J48 with default options on a training set and evaluates it on a test set before outputting the summary of the collected statistics:

```java
import weka.core.Instances;
import weka.classifiers.Evaluation;
import weka.classifiers.trees.J48;
...
Instances train = ... // from somewhere
Instances test = ... // from somewhere
// train classifier
Classifier cls = new J48();
cls.buildClassifier(train);
// evaluate classifier and print some statistics
Evaluation eval = new Evaluation(train);
eval.evaluateModel(cls, test);
System.out.println(eval.toSummaryString("\nResults\n\n", false));
```
Statistics

In the previous sections, the `toSummaryString` of the `Evaluation` class was already used in the code examples. But there are other summary methods for nominal class attributes available as well:

- `toMatrixString` – outputs the confusion matrix.
- `toClassDetailsString` – outputs TP/FP rates, precision, recall, F-measure, AUC (per class).
- `toCumulativeMarginDistributionString` – outputs the cumulative margins distribution.

If one does not want to use these summary methods, it is possible to access the individual statistical measures directly. Below, a few common measures are listed:

- **nominal class attribute**
  - `correct()` – The number of correctly classified instances. The incorrectly classified ones are available through `incorrect()`.
  - `pctCorrect()` – The percentage of correctly classified instances (accuracy). `pctIncorrect()` returns the number of misclassified ones.
  - `areaUnderROC(int)` – The AUC for the specified class label index (0-based index).

- **numeric class attribute**
  - `correlationCoefficient()` – The correlation coefficient.

- **general**
  - `meanAbsoluteError()` – The mean absolute error.
  - `rootMeanSquaredError()` – The root mean squared error.
  - `numInstances()` – The number of instances with a class value.
  - `unclassified()` - The number of unclassified instances.
  - `pctUnclassified()` - The percentage of unclassified instances.

For a complete overview, see the Javadoc page of the `Evaluation` class. By looking up the source code of the summary methods mentioned above, one can easily determine what methods are used for which particular output.
18.7. CLASSIFICATION

18.7.3 Classifying instances

After a classifier setup has been evaluated and proven to be useful, a built classifier can be used to make predictions and label previously unlabeled data. Section 18.6.2 already provided a glimpse of how to use a classifier’s classifyInstance method. This section here elaborates a bit more on this.

The following example uses a trained classifier tree to label all the instances in an unlabeled dataset that gets loaded from disk. After all the instances have been labeled, the newly labeled dataset gets written back to disk to a new file.

```java
// load unlabeled data and set class attribute
Instances unlabeled = DataSource.read("/some/where/unlabeled.arff");
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
// create copy
Instances labeled = new Instances(unlabeled);
// label instances
for (int i = 0; i < unlabeled.numInstances(); i++) {
double clsLabel = tree.classifyInstance(unlabeled.instance(i));
labeled.instance(i).setClassValue(clsLabel);
}
// save newly labeled data
DataSink.write("/some/where/labeled.arff", labeled);
```

The above example works for classification and regression problems alike, as long as the classifier can handle numeric classes, of course. Why is that? The classifyInstance(Instance) method returns for numeric classes the regression value and for nominal classes the 0-based index in the list of available class labels.

If one is interested in the class distribution instead, then one can use the distributionForInstance(Instance) method (this array sums up to 1). Of course, using this method makes only sense for classification problems. The code snippet below outputs the class distribution, the actual and predicted label side-by-side in the console:

```java
// load data
Instances train = DataSource.read(args[0]);
train.setClassIndex(train.numAttributes() - 1);
Instances test = DataSource.read(args[1]);
test.setClassIndex(test.numAttributes() - 1);
// train classifier
J48 cls = new J48();
cls.buildClassifier(train);
// output predictions
System.out.println("# - actual - predicted - distribution");
for (int i = 0; i < test.numInstances(); i++) {
double pred = cls.classifyInstance(test.instance(i));
double[] dist = cls.distributionForInstance(test.instance(i));
System.out.print((i+1) + " - ");
System.out.print(test.instance(i).toString(test.classIndex()) + " - ");
System.out.print(test.classAttribute().value((int) pred) + " - ");
System.out.println(Utils.arrayToString(dist));
}
```
18.8  Clustering

Clustering is an unsupervised Machine Learning technique of finding patterns in the data, i.e., these algorithms work without class attributes. Classifiers, on the other hand, are supervised and need a class attribute. This section, similar to the one about classifiers, covers the following topics:

- Building a clusterer – batch and incremental learning.
- Evaluating a clusterer – how to evaluate a built clusterer.
- Clustering instances – determining what clusters unknown instances belong to.

Fully functional example classes are located in the `wekaexamples.clusterers` package of the Weka Examples collection[3].

18.8.1 Building a clusterer

Clusterers, just like classifiers, are by design batch-trainable as well. They all can be built on data that is completely stored in memory. But a small subset of the cluster algorithms can also update the internal representation incrementally. The following two sections cover both types of clusterers.

Batch clusterers

Building a batch clusterer, just like a classifier, happens in two stages:

- set options – either calling the `setOptions(String[])` method or the appropriate `set`-methods of the properties.
- build the model with training data – calling the `buildClusterer(Instances)` method. By definition, subsequent calls of this method must result in the same model (“repeatable experiments”). In other words, calling this method must completely reset the model.

Below is an example of building the EM clusterer with a maximum of 100 iterations. The options are set using the `setOptions(String[])` method:

```java
import weka.clusterers.EM;
import weka.core.Instances;
...
Instances data = ... // from somewhere
String[] options = new String[2];
options[0] = "-I"; // max. iterations
options[1] = "100";
EM clusterer = new EM(); // new instance of clusterer
clusterer.setOptions(options); // set the options
clusterer.buildClusterer(data); // build the clusterer
```

Incremental clusterers

Incremental clusterers in WEKA implement the interface `UpdateableClusterer` (package `weka.clusterers`). Training an incremental clusterer happens in three stages, similar to incremental classifiers:

1. initialize the model by calling the `buildClusterer(Instances)` method. Once again, one can either use an empty `weka.core.Instances` object or one with an initial set of data.
2. update the model row-by-row by calling the `updateClusterer(Instance)` method.
3. finish the training by calling `updateFinished()` method. In case cluster algorithms need to perform computational expensive post-processing or clean up operations.
An **ArffLoader** is used in the following example to build the **Cobweb** clusterer incrementally:

```java
import weka.clusterers.Cobweb;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.converters.ArffLoader;
...
// load data
ArffLoader loader = new ArffLoader();
loader.setFile(new File("/some/where/data.arff"));
Instances structure = loader.getStructure();
// train Cobweb
Cobweb cw = new Cobweb();
cw.buildClusterer(structure);
Instance current;
while ((current = loader.getNextInstance(structure)) != null)
 cw.updateClusterer(current);
cw.updateFinished();
```
18.8. CLUSTERING

18.8.2 Evaluating a clusterer

Evaluation of clusterers is not as comprehensive as the evaluation of classifiers. Since clustering is unsupervised, it is also a lot harder determining how good a model is. The class used for evaluating cluster algorithms, is `ClusterEvaluation` (package `weka.clusterers`).

In order to generate the same output as the Explorer or the command-line, one can use the `evaluateClusterer` method, as shown below:

```java
import weka.clusterers.EM;
import weka.clusterers.ClusterEvaluation;
...
String[] options = new String[2];
options[0] = "-t";
options[1] = "/some/where/somefile.arff";
System.out.println(ClusterEvaluation.evaluateClusterer(new EM(), options));
```

Or, if the dataset is already present in memory, one can use the following approach:

```java
import weka.clusterers.ClusterEvaluation;
import weka.clusterers.EM;
import weka.core.Instances;
...
Instances data = ... // from somewhere
EM cl = new EM();
cl.buildClusterer(data);
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(cl);
eval.evaluateClusterer(new Instances(data));
System.out.println(eval.clusterResultsToString());
```

Density based clusterers, i.e., algorithms that implement the interface named `DensityBasedClusterer` (package `weka.clusterers`) can be cross-validated and the log-likelihood obtained. Using the `MakeDensityBasedClusterer` metaclusterer, any non-density based clusterer can be turned into such. Here is an example of cross-validating a density based clusterer and obtaining the log-likelihood:

```java
import weka.clusterers.ClusterEvaluation;
import weka.clusterers.DensityBasedClusterer;
import weka.core.Instances;
import java.util.Random;
...
Instances data = ... // from somewhere
DensityBasedClusterer clusterer = new ... // the clusterer to evaluate
double logLikelihood = ClusterEvaluation.crossValidateModel(// cross-validate
 clusterer, data, 10, // with 10 folds
 new Random(1)); // and random number generator
```
Classes to clusters

Datasets for supervised algorithms, like classifiers, can be used to evaluate a clusterer as well. This evaluation is called classes-to-clusters, as the clusters are mapped back onto the classes.

This type of evaluation is performed as follows:

1. **create a copy** of the dataset containing the class attribute and remove the class attribute, using the Remove filter (this filter is located in package `weka.filters.unsupervised.attribute`).
2. **build the clusterer** with this new data.
3. **evaluate the clusterer** now with the original data.

And here are the steps translated into code, using EM as the clusterer being evaluated:

1. create a copy of data without class attribute
   
   ```java
 Instances data = ... // from somewhere
 Remove filter = new Remove();
 filter.setAttributeIndices("" + (data.classIndex() + 1));
 filter.setInputFormat(data);
 Instances dataClusterer = Filter.useFilter(data, filter);
   ```

2. build the clusterer
   
   ```java
 EM clusterer = new EM();
 // set further options for EM, if necessary...
 clusterer.buildClusterer(dataClusterer);
   ```

3. evaluate the clusterer
   
   ```java
 ClusterEvaluation eval = new ClusterEvaluation();
 eval.setClusterer(clusterer);
 eval.evaluateClusterer(data);
 // print results
 System.out.println(eval.clusterResultsToString());
   ```
18.8.3 Clustering instances

Clustering of instances is very similar to classifying unknown instances when using classifiers. The following methods are involved:

- `clusterInstance(Instance)` – determines the cluster the `Instance` would belong to.
- `distributionForInstance(Instance)` – predicts the cluster membership for this `Instance`. The sum of this array adds up to 1.

The code fragment outlined below trains an EM clusterer on one dataset and outputs for a second dataset the predicted clusters and cluster memberships of the individual instances:

```java
import weka.clusterers.EM;
import weka.core.Instances;
...
Instances dataset1 = ... // from somewhere
Instances dataset2 = ... // from somewhere
// build clusterer
EM clusterer = new EM();
clusterer.buildClusterer(dataset1);
// output predictions
System.out.println("# - cluster - distribution");
for (int i = 0; i < dataset2.numInstances(); i++) {
 int cluster = clusterer.clusterInstance(dataset2.instance(i));
 double[] dist = clusterer.distributionForInstance(dataset2.instance(i));
 System.out.print((i+1));
 System.out.print(" - ");
 System.out.print(cluster);
 System.out.print(" - ");
 System.out.print(Utils.arrayToString(dist));
 System.out.println();
}
```
18.9 Selecting attributes

Preparing one’s data properly is a very important step for getting the best results. Reducing the number of attributes can not only help speeding up runtime with algorithms (some algorithms’ runtime are quadratic in regards to number of attributes), but also help avoid “burying” the algorithm in a mass of attributes, when only a few are essential for building a good model.

There are three different types of evaluators in WEKA at the moment:

- **single attribute evaluators** – perform evaluations on single attributes. These classes implement the `weka.attributeSelection.AttributeEvaluator` interface. The Ranker search algorithm is usually used in conjunction with these algorithms.

- **attribute subset evaluators** – work on subsets of all the attributes in the dataset. The `weka.attributeSelection.SubsetEvaluator` interface is implemented by these evaluators.

- **attribute set evaluators** – evaluate sets of attributes. Not to be confused with the subset evaluators, as these classes are derived from the `weka.attributeSelection.AttributeSetEvaluator` superclass.

Most of the attribute selection schemes currently implemented are supervised, i.e., they require a dataset with a class attribute. Unsupervised evaluation algorithms are derived from one of the following superclasses:

- `weka.attributeSelection.UnsupervisedAttributeEvaluator` e.g., LatentSemanticAnalysis, PrincipalComponents
- `weka.attributeSelection.UnsupervisedSubsetEvaluator` none at the moment

Attribute selection offers filtering on-the-fly, like classifiers and clusterers, as well:

- `weka.attributeSelection.FilteredAttributeEval` – filter for evaluators that evaluate attributes individually.
- `weka.attributeSelection.FilteredSubsetEval` – for filtering evaluators that evaluate subsets of attributes.

So much about the differences among the various attribute selection algorithms and back to how to actually perform attribute selection. WEKA offers three different approaches:

- **Using a meta-classifier** – for performing attribute selection on-the-fly (similar to FilteredClassifier’s filtering on-the-fly).

- **Using a filter** - for preprocessing the data.

- **Low-level API usage** - instead of using the meta-schemes (classifier or filter), one can use the attribute selection API directly as well.

The following sections cover each of the topics, accompanied with a code example. For clarity, the same evaluator and search algorithm is used in all of these examples.

Feel free to check out the example classes of the Weka Examples collection, located in the `wekaexamples.attributeSelection` package.
18.9. SELECTING ATTRIBUTES

18.9.1 Using the meta-classifier

The meta-classifier `AttributeSelectedClassifier` (this classifier is located in package `weka.classifiers.meta`), is similar to the `FilteredClassifier`. But instead of taking a base-classifier and a filter as parameters to perform the filtering, the `AttributeSelectedClassifier` uses a search algorithm (derived from `weka.attributeSelection.ASEvaluation`), an evaluator (superclass is `weka.attributeSelection.ASSearch`) to perform the attribute selection and a base-classifier to train on the reduced data.

This example here uses J48 as base-classifier, `CfsSubsetEval` as evaluator and a backwards operating `GreedyStepwise` as search method:

```java
import weka.attributeSelection.CfsSubsetEval;
import weka.attributeSelection.GreedyStepwise;
import weka.classifiers.Evaluation;
import weka.classifiers.meta.AttributeSelectedClassifier;
import weka.classifiers.trees.J48;
import weka.core.Instances;
...
Instances data = ... // from somewhere
// setup meta-classifier
AttributeSelectedClassifier classifier = new AttributeSelectedClassifier();
CfsSubsetEval eval = new CfsSubsetEval();
GreedyStepwise search = new GreedyStepwise();
search.setSearchBackwards(true);
J48 base = new J48();
classifier.setClassifier(base);
classifier.setEvaluator(eval);
classifier.setSearch(search);
// cross-validate classifier
Evaluation evaluation = new Evaluation(data);
evaluation.crossValidateModel(classifier, data, 10, new Random(1));
System.out.println(evaluation.toSummaryString());
```
18.9.2 Using the filter

In case the data only needs to be reduced in dimensionality, but not used for training a classifier, then the filter approach is the right one. The `AttributeSelection` filter (package `weka.filters.supervised.attribute`) takes an evaluator and a search algorithm as parameter.

The code snippet below uses once again `CfsSubsetEval` as evaluator and a backwards operating `GreedyStepwise` as search algorithm. It just outputs the reduced data to `stdout` after the filtering step:

```java
import weka.attributeSelection.CfsSubsetEval;
import weka.attributeSelection.GreedyStepwise;
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.supervised.attribute.AttributeSelection;
...
Instances data = ... // from somewhere
// setup filter
AttributeSelection filter = new AttributeSelection();
CfsSubsetEval eval = new CfsSubsetEval();
GreedyStepwise search = new GreedyStepwise();
search.setSearchBackwards(true);
filtet.setEvaluator(eval);
filtet.setSearch(search);
filtet.setInputFormat(data);
// filter data
Instances newData = Filter.useFilter(data, filter);
System.out.println(newData);
```
18.9. SELECTING ATTRIBUTES

18.9.3 Using the API directly

Using the meta-classifier or the filter approach makes attribute selection fairly easy. But it might not satisfy everybody’s needs. For instance, if one wants to obtain the ordering of the attributes (using \textit{Ranker}) or retrieve the indices of the selected attributes instead of the reduced data.

Just like the other examples, the one shown here uses the \texttt{CfsSubsetEval} evaluator and the \texttt{GreedyStepwise} search algorithm (in backwards mode). But instead of outputting the reduced data, only the selected indices are printed in the console:

```java
import weka.attributeSelection.AttributeSelection;
import weka.attributeSelection.CfsSubsetEval;
import weka.attributeSelection.GreedyStepwise;
import weka.core.Instances;
...
Instances data = ... // from somewhere
// setup attribute selection
AttributeSelection attsel = new AttributeSelection();
CfsSubsetEval eval = new CfsSubsetEval();
GreedyStepwise search = new GreedyStepwise();
search.setSearchBackwards(true);
attsel.setEvaluator(eval);
attsel.setSearch(search);
// perform attribute selection
attsel.SelectAttributes(data);
int[] indices = attsel.selectedAttributes();
System.out.println(
 "selected attribute indices (starting with 0):
" + Utils.arrayToString(indices));
```
18.10 Saving data

Saving `weka.core.Instances` objects is as easy as reading the data in the first place, though the process of storing the data again is far less common than of reading the data into memory. The following two sections cover how to save the data in files and in databases.

Just like with loading the data in chapter 18.2, examples classes for saving data can be found in the `wekaexamples.core.converters` package of the Weka Examples collection.

18.10.1 Saving data to files

Once again, one can either let WEKA choose the appropriate converter for saving the data or use an explicit converter (all savers are located in the `weka.core.converters` package). The latter approach is necessary, if the file name under which the data will be stored does not have an extension that WEKA recognizes.

Use the `DataSink` class (inner class of `weka.core.converters.ConverterUtils`), if the extensions are not a problem. Here are a few examples:

```java
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSink;
...
// data structure to save
Instances data = ...
// save as ARFF
DataSink.write("/some/where/data.arff", data);
// save as CSV
DataSink.write("/some/where/data.csv", data);
```

And here is an example of using the `CSVSaver` converter explicitly:

```java
import weka.core.Instances;
import weka.core.converters.CSVSaver;
import java.io.File;
...
// data structure to save
Instances data = ...
// save as CSV
CSVSaver saver = new CSVSaver();
saver.setInstances(data);
saver.setFile(new File("/some/where/data.csv"));
saver.writeBatch();
```

18.10.2 Saving data to databases

Apart from the KnowledgeFlow, saving to databases is not very obvious in WEKA, unless one knows about the `DatabaseSaver` converter. Just like the `DatabaseLoader`, the saver counterpart can store the data either in batch mode or incrementally as well.
The first example shows how to save the data in batch mode, which is the easier way of doing it:

```java
import weka.core.Instances;
import weka.core.converters.DatabaseSaver;
...
// data structure to save
Instances data = ...
// store data in database
DatabaseSaver saver = new DatabaseSaver();
saver.setDestination("jdbc_url", "the_user", "the_password");
// we explicitly specify the table name here:
saver.setTableName("whatsoever2");
saver.setRelationForTableName(false);
// or we could just update the name of the dataset:
// saver.setRelationForTableName(true);
// saver.setTableName("whatsoever2");
saver.setInstances(data);
saver.writeBatch();
```

Saving the data incrementally, requires a bit more work, as one has to specify that writing the data is done incrementally (using the `setRetrieval` method), as well as notifying the saver when all the data has been saved:

```java
import weka.core.Instances;
import weka.core.converters.DatabaseSaver;
...
// data structure to save
Instances data = ...
// store data in database
DatabaseSaver saver = new DatabaseSaver();
saver.setDestination("jdbc_url", "the_user", "the_password");
// we explicitly specify the table name here:
saver.setTableName("whatsoever2");
saver.setRelationForTableName(false);
// or we could just update the name of the dataset:
// saver.setRelationForTableName(true);
// saver.setRelationName("whatsoever2");
saver.setRetrieval(DatabaseSaver.INCREMENTAL);
saver.setStructure(data);
count = 0;
for (int i = 0; i < data.numInstances(); i++) {
 saver.writeIncremental(data.instance(i));
}
// notify saver that we’re finished
saver.writeIncremental(null);
```
CHAPTER 18. USING THE API

18.11 Visualization

The concepts covered in this chapter are also available through the example classes of the *Weka Examples* collection[3]. See the following packages:

- `wekaexamples.gui.graphvisualizer`
- `wekaexamples.gui.treevisualizer`
- `wekaexamples.gui.visualize`

18.11.1 ROC curves

WEKA can generate “Receiver operating characteristic” (ROC) curves, based on the collected predictions during an evaluation of a classifier. In order to display a ROC curve, one needs to perform the following steps:

1. Generate the plotable data based on the Evaluation’s collected predictions, using the `ThresholdCurve` class (package `weka.classifiers.evaluation`).
2. Put the plotable data into a plot container, an instance of the `PlotData2D` class (package `weka.gui.visualize`).
3. Add the plot container to a visualization panel for displaying the data, an instance of the `ThresholdVisualizePanel` class (package `weka.gui.visualize`).
4. Add the visualization panel to a `JFrame` (package `javax.swing`) and display it.

And now, the four steps translated into actual code:

1. Generate the plotable data:

   ```java
 Evaluation eval = ... // from somewhere
 ThresholdCurve tc = new ThresholdCurve();
 int classIndex = 0; // ROC for the 1st class label
 Instances curve = tc.getCurve(eval.predictions(), classIndex);
   ```

2. Put the plotable into a plot container:

   ```java
 PlotData2D plotdata = new PlotData2D(curve);
   ```

3. Add the plot container to a visualization panel:

   ```java
 ThresholdVisualizePanel tvp = new ThresholdVisualizePanel();
 tvp.setROCString("(Area under ROC = " +
 Utils.doubleToString(ThresholdCurve.getROCArea(curve),4)+")");
   ```

4. Add the visualization panel to a `JFrame`:

   ```java
 final JFrame jf = new JFrame("WEKA ROC: " + tvp.getName());
 jf.setSize(500,400);
   ```
18.11.2 Graphs

Classes implementing the `weka.core.Drawable` interface can generate graphs of their internal models which can be displayed. There are two different types of graphs available at the moment, which are explained in the subsequent sections:

- Tree – decision trees.
- BayesNet – bayesian net graph structures.

18.11.2.1 Tree

It is quite easy to display the internal tree structure of classifiers like J48 or M5P (package `weka.classifiers.trees`). The following example builds a J48 classifier on a dataset and displays the generated tree visually using the `TreeVisualizer` class (package `weka.gui.treevisualizer`). This visualization class can be used to view trees (or digraphs) in GraphViz’s DOT language.[26]

```java
import weka.classifiers.trees.J48;
import weka.core.Instances;
import weka.gui.treevisualizer.PlaceNode2;
import weka.gui.treevisualizer.TreeVisualizer;
import java.awt.BorderLayout;
import javax.swing.JFrame;
...

Instances data = ... // from somewhere
// train classifier
J48 cls = new J48();
cls.buildClassifier(data);
// display tree
TreeVisualizer tv = new TreeVisualizer(
 null, cls.graph(), new PlaceNode2());
JFrame jf = new JFrame("Weka Classifier Tree Visualizer: J48");
jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
jf.setSize(800, 600);
jf.getContentPane().setLayout(new BorderLayout());
jf.getContentPane().add(tv, BorderLayout.CENTER);
jf.setVisible(true);
// adjust tree
tv.fitToScreen();
```
18.11.2.2 BayesNet

The graphs that the BayesNet classifier (package weka.classifiers.bayes) generates can be displayed using the GraphVisualizer class (located in package weka.gui.graphvisualizer). The GraphVisualizer can display graphs that are either in GraphViz’s DOT language\[26\] or in XML BIF\[20\] format. For displaying DOT format, one needs to use the method readDOT, and for the BIF format the method readBIF.

The following code snippet trains a BayesNet classifier on some data and then displays the graph generated from this data in a frame:

```java
import weka.classifiers.bayes.BayesNet;
import weka.core.Instances;
import weka.gui.graphvisualizer.GraphVisualizer;
import java.awt.BorderLayout;
import javax.swing.JFrame;
...
Instances data = ... // from somewhere
// train classifier
BayesNet cls = new BayesNet();
cls.buildClassifier(data);
// display graph
GraphVisualizer gv = new GraphVisualizer();
gv.readBIF(cls.graph());
JFrame jf = new JFrame("BayesNet graph");
jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
jf.setSize(800, 600);
jf.getContentPane().setLayout(new BorderLayout());
jf.getContentPane().add(gv, BorderLayout.CENTER);
jf.setVisible(true);
// layout graph
gv.layoutGraph();
```
18.12 Serialization

Serialization is the process of saving an object in a persistent form, e.g., on the hard disk as a bytestream. Deserialization is the process in the opposite direction, creating an object from a persistently saved data structure. In Java, an object can be serialized if it imports the java.io.Serializable interface. Members of an object that are not supposed to be serialized, need to be declared with the keyword transient.

In the following are some Java code snippets for serializing and deserializing a J48 classifier. Of course, serialization is not limited to classifiers. Most schemes in WEKA, like clusterers and filters, are also serializable.

Serializing a classifier

The weka.core.SerializationHelper class makes it easy to serialize an object. For saving, one can use one of the write methods:

```java
import weka.classifiers.Classifier;
import weka.classifiers.trees.J48;
import weka.core.converters.ConverterUtils.DataSource;
import weka.core.SerializationHelper;
...
// load data
Instances inst = DataSource.read("/some/where/data.arff");
inst.setClassIndex(inst.numAttributes() - 1);
// train J48
Classifier cls = new J48();
cls.buildClassifier(inst);
// serialize model
SerializationHelper.write("/some/where/j48.model", cls);
```

Deserializing a classifier

Deserializing an object can be achieved by using one of the read methods:

```java
import weka.classifiers.Classifier;
import weka.core.SerializationHelper;
...
// deserialize model
Classifier cls = (Classifier) SerializationHelper.read("/some/where/j48.model");
```

Deserializing a classifier saved from the Explorer

The Explorer does not only save the built classifier in the model file, but also the header information of the dataset the classifier was built with. By storing the dataset information as well, one can easily check whether a serialized classifier can be applied on the current dataset. The `readAll` methods returns an array with all objects that are contained in the model file.

```java
import weka.classifiers.Classifier;
import weka.core.Instances;
import weka.core.SerializationHelper;

// the current data to use with classifier
Instances current = ... // from somewhere
// deserialze model
Object o[] = SerializationHelper.readAll("/some/where/j48.model");
Classifier cls = (Classifier) o[0];
Instances data = (Instances) o[1];
// is the data compatible?
if (!data.equalHeaders(current))
 throw new Exception("Incompatible data!");
```

Serializing a classifier for the Explorer

If one wants to serialize the dataset header information alongside the classifier, just like the Explorer does, then one can use one of the `writeAll` methods:

```java
import weka.classifiers.Classifier;
import weka.classifiers.trees.J48;
import weka.core.converters.ConverterUtils.DataSource;
import weka.core.SerializationHelper;

// load data
Instances inst = DataSource.read("/some/where/data.arff");
inst.setClassIndex(inst.numAttributes() - 1);
// train J48
Classifier cls = new J48();
cls.buildClassifier(inst);
// serialize classifier and header information
Instances header = new Instances(inst, 0);
SerializationHelper.writeAll("/some/where/j48.model", new Object[]{cls, header});
```
Chapter 19

Extending WEKA

For most users, the existing WEKA framework will be sufficient to perform the task at hand, offering a wide range of filters, classifiers, clusterers, etc. Researchers, on the other hand, might want to add new algorithms and compare them against existing ones. The framework with its existing algorithms is not set in stone, but basically one big plugin framework. With WEKA’s automatic discovery of classes on the classpath, adding new classifiers, filters, etc. to the existing framework is very easy.

Though algorithms like clusterers, associators, data generators and attribute selection are not covered in this chapter, their implementation is very similar to the one of implementing a classifier. You basically choose a superclass to derive your new algorithm from and then implement additional interfaces, if necessary. Just check out the other algorithms that are already implemented.

The section covering the GenericObjectEditor (see chapter 21.4) shows you how to tell WEKA where to find your class(es) and therefore making it/them available in the GUI (Explorer/Experimenter) via the GenericObjectEditor.
19.1 Writing a new Classifier

19.1.1 Choosing the base class

Common to all classifiers in WEKA is the `weka.classifiers.Classifier` interface. Your new classifier must implement this interface in order to be visible through the GenericObjectEditor. But in order to make implementations of new classifiers even easier, WEKA comes already with a range of other abstract classes that implement `weka.classifiers.Classifier`. In the following you will find an overview that will help you decide what base class to use for your classifier. For better readability, the `weka.classifiers` prefix was dropped from the class names:

- simple classifier
  - `AbstractClassifier` – not randomizable
  - `RandomizableClassifier` – randomizable
- meta classifier
  - single base classifier
    - `SingleClassifierEnhancer` – not randomizable, not iterated
    - `RandomizableSingleClassifierEnhancer` – randomizable, not iterated
    - `IteratedSingleClassifierEnhancer` – not randomizable, iterated
    - `RandomizableIteratedSingleClassifierEnhancer` – randomizable, iterated
  - multiple base classifiers
    - `MultipleClassifiersCombiner` – not randomizable
    - `RandomizableMultipleClassifiersCombiner` – randomizable

In order to make the most of multi-core machines, WEKA offers also meta-classifiers that can build the base-classifiers in parallel:

- `ParallelIteratedSingleClassifierEnhancer`
- `ParallelMultipleClassifiersCombiner`
- `RandomizableParallelIteratedSingleClassifierEnhancer` – e.g., Bagging
- `RandomizableParallelMultipleClassifiersCombiner` – e.g., Stacking

If you are still unsure about what superclass to choose, then check out the Javadoc of those superclasses. In the Javadoc you will find all the classifiers that are derived from it, which should give you a better idea whether this particular superclass is suited for your needs.
19.1.2 Additional interfaces

The abstract classes listed above basically just implement various combinations of the following two interfaces:

- `weka.core.Randomizable` – to allow (seeded) randomization taking place
- `weka.classifiers.IterativeClassifier` – to make the classifier an iterated one

But these interfaces are not the only ones that can be implemented by a classifier. Here is a list for further interfaces:

- `weka.core.AdditionalMeasureProducer` – the classifier returns additional information, e.g., J48 returns the tree size with this method.
- `weka.core.WeightedInstancesHandler` – denotes that the classifier can make use of weighted `Instance` objects (the default weight of an `Instance` is 1.0).
- `weka.core.TechnicalInformationHandler` – for returning paper references and publications this classifier is based on.
- `weka.classifiers.Sourcable` – classifiers implementing this interface can return Java code of a built model, which can be used elsewhere.
- `weka.classifiers.UpdateableClassifier` – for classifiers that can be trained incrementally, i.e., row by row like `NaiveBayesUpdateable`.

19.1.3 Packages

A few comments about the different sub-packages in the `weka.classifiers` package:

- `bayes` – contains bayesian classifiers, e.g., `NaiveBayes`
- `evaluation` – classes related to evaluation, e.g., confusion matrix, threshold curve (= ROC)
- `functions` – e.g., Support Vector Machines, regression algorithms, neural nets
- `lazy` – “learning” is performed at prediction time, e.g., k-nearest neighbor (k-NN)
- `meta` – meta-classifiers that use a base one or more classifiers as input, e.g., boosting, bagging or stacking
- `mi` – classifiers that handle multi-instance data
- `misc` – various classifiers that don’t fit in any another category
- `rules` – rule-based classifiers, e.g., `ZeroR`
- `trees` – tree classifiers, like decision trees with J48 a very common one
19.1.4 Implementation

In the following you will find information on what methods need to be implemented and other coding guidelines for methods, option handling and documentation of the source code.

19.1.4.1 Methods

This section explains what methods need to be implemented in general and more specialized ones in case of meta-classifiers (either with single or multiple base-classifiers).

General

Here is an overview of methods that your new classifier needs to implement in order to integrate nicely into the WEKA framework. Since AbstractClassifier implements weka.core.OptionHandler, these methods are listed as well.

全局Info()

returns a short description that is displayed in the GUI, like the Explorer or Experimenter. How long this description will be is really up to you, but it should be sufficient to understand the classifier’s underlying algorithm. If the classifier implements the weka.core.TechnicalInformationHandler interface then you could refer to the publication(s) by extending the returned string by getTechnicalInformation().toString().

listOptions()

returns a java.util.Enumeration of weka.core.Option objects. This enumeration is used to display the help on the command-line, hence it needs to return the Option objects of the superclass as well.

setOptions(String[])

parses the options that the classifier would receive from a command-line invocation. A parameter and argument are always two elements in the string array. A common mistake is to use a single cell in the string array for both of them, e.g., 

"-S 1" instead of "-S", "1". You can use the methods getOption and getFlag of the weka.core.Utils class to retrieve the values of an option or to ascertain whether a flag is present. But note that these calls remove the option and, if applicable, the argument from the string array (“destructive”). The last call in the setOptions methods should always be the super.setOptions(String[]) one, in order to pass on any other arguments still present in the array to the superclass.
The following code snippet just parses the only option “alpha” that an imaginary classifier defines:

```java
import weka.core.Utils;
...
public void setOptions(String[] options) throws Exception {
 String tmpStr = Utils.getOption("alpha", options);
 if (tmpStr.length() == 0) {
 setAlpha(0.75);
 } else {
 setAlpha(Double.parseDouble(tmpStr));
 }
 super.setOptions(options);
}
```

`getOptions()` returns a string array of command-line options that resemble the current classifier setup. Supplying this array to the `setOptions(String[])` method must result in the same configuration. This method will get called in the GUI when copying a classifier setup to the clipboard. Since handling of arrays is a bit cumbersome in Java (due to fixed length), using an instance of `java.util.Vector` is a lot easier for creating the array that needs to be returned. The following code snippet just adds the only option “alpha” that the classifier defines to the array that is being returned, including the options of the superclass:

```java
import java.util.Arrays;
import java.util.Vector;
...
public String[] getOptions() {
 Vector<String> result = new Vector<String>();
 result.add("-alpha");
 result.add("" + getAlpha());
 result.addAll(Arrays.asList(super.getOptions())); //superclass
 return result.toArray(new String[result.size()]);
}
```

Note, that the `getOptions()` method requires you to add the preceding dash for an option, opposed to the `getOption/getFlag` calls in the `setOptions` method.

`getCapabilities()` returns meta-information on what type of data the classifier can handle, in regards to attributes and class attributes. See section “Capabilities” on page 247 for more information.
buildClassifier(Instances)
builds the model from scratch with the provided dataset. Each subsequent call of this method must result in the same model being built. The buildClassifier method also tests whether the supplied data can be handled at all by the classifier, utilizing the capabilities returned by the getCapabilities() method:

```java
public void buildClassifier(Instances data) throws Exception {
 // test data against capabilities
 getCapabilities().testWithFail(data);
 // remove instances with missing class value,
 // but don’t modify original data
 data = new Instances(data);
 data.deleteWithMissingClass();
 // actual model generation
 ...
}
```

toString() is used for outputting the built model. This is not required, but it is useful for the user to see properties of the model. Decision trees normally output the tree, support vector machines the support vectors and rule-based classifiers the generated rules.

distributionForInstance(Instance)
returns the class probabilities array of the prediction for the given weka.core.Instance object. If your classifier handles nominal class attributes, then you need to override this method.

classifyInstance(Instance)
returns the classification or regression for the given weka.core.Instance object. In case of a nominal class attribute, this method returns the index of the class label that got predicted. You do not need to override this method in this case as the weka.classifiers.Classifier superclass already determines the class label index based on the probabilities array that the distributionForInstance(Instance) method returns (it returns the index in the array with the highest probability; in case of ties the first one). For numeric class attributes, you need to override this method, as it has to return the regression value predicted by the model.

main(String[]) executes the classifier from command-line. If your new algorithm is called FunkyClassifier, then use the following code as your main method:

```java
/**
 * Main method for executing this classifier.
 *
 * @param args the options, use "-h" to display options
 */
public static void main(String[] args) {
 AbstractClassifier.runClassifier(new FunkyClassifier(), args);
}
```
Meta-classifiers

Meta-classifiers define a range of other methods that you might want to override. Normally, this should not be the case. But if your classifier requires the base-classifier(s) to be of a certain type, you can override the specific set-method and add additional checks.

**SingleClassifierEnhancer**

The following methods are used for handling the single base-classifier of this meta-classifier.

- `defaultClassifierString()`
  returns the class name of the classifier that is used as the default one for this meta-classifier.

- `setClassifier(Classifier)`
  sets the classifier object. Override this method if you require further checks, like that the classifiers needs to be of a certain class. This is necessary, if you still want to allow the user to parametrize the base-classifier, but not choose another classifier with the GenericObjectEditor. Be aware that this method does not create a copy of the provided classifier.

- `getClassifier()`
  returns the currently set classifier object. Note, this method returns the internal object and not a copy.

**MultipleClassifiersCombiner**

This meta-classifier handles its multiple base-classifiers with the following methods:

- `setClassifiers(Classifier[])`  
sets the array of classifiers to use as base-classifiers. If you require the base-classifiers to implement a certain interface or be of a certain class, then override this method and add the necessary checks. Note, this method does not create a copy of the array, but just uses this reference internally.

- `getClassifiers()`
  returns the array of classifiers that is in use. Careful, this method returns the internal array and not a copy of it.

- `getClassifier(int)`
  returns the classifier from the internal classifier array specified by the given index. Once again, this method does not return a copy of the classifier, but the actual object used by this classifier.
19.1.4.2 Guidelines

WEKA’s code base requires you to follow a few rules. The following sections can be used as guidelines in writing your code.

Parameters

There are two different ways of setting/obtaining parameters of an algorithm. Both of them are unfortunately completely independent, which makes option handling so prone to errors. Here are the two:

1. command-line options, using the `setOptions/getOptions` methods
2. using the properties through the GenericObjectEditor in the GUI

Each command-line option must have a corresponding GUI property and vice versa. In case of GUI properties, the get- and set-method for a property must comply with Java Beans style in order to show up in the GUI. You need to supply three methods for each property:

- **public void set<PropertyName>(<Type>)** – checks whether the supplied value is valid and only then updates the corresponding member variable. In any other case it should ignore the value and output a warning in the console or throw an `IllegalArgumentException`.
- **public <Type> get<PropertyName>()** – performs any necessary conversions of the internal value and returns it.
- **public String <propertyName>TipText()** – returns the help text that is available through the GUI. Should be the same as on the command-line. Note: everything after the first period “.” gets truncated from the tooltip that pops up in the GUI when hovering with the mouse cursor over the field in the GenericObjectEditor.

With a property called “alpha” of type “double”, we get the following method signatures:

- **public void setAlpha(double)**
- **public double getAlpha()**
- **public String alphaTipText()**

These get- and set-methods should be used in the `getOptions` and `setOptions` methods as well, to impose the same checks when getting-setting parameters.

Randomization

In order to get repeatable experiments, one is not allowed to use unseeded random number generators like `Math.random()`. Instead, one has to instantiate a `java.util.Random` object in the `buildClassifier(Instances)` method with a specific seed value. The seed value can be user supplied, of course, which all the `Randomizable...` abstract classifiers already implement.
19.1. WRITING A NEW CLASSIFIER

Capabilities
By default, the `weka.classifiers.AbstractClassifier` superclass returns an object that denotes that the classifier can handle any type of data. This is useful for rapid prototyping of new algorithms, but also very dangerous. If you do not specifically define what type of data can be handled by your classifier, you can end up with meaningless models or errors. This can happen if you devise a new classifier which is supposed to handle only numeric attributes. By using the `value(int/Attribute)` method of a `weka.core.Instance` to obtain the numeric value of an attribute, you also obtain the internal format of nominal, string and relational attributes. Of course, treating these attribute types as numeric ones does not make any sense. Hence it is highly recommended (and required for contributions) to override this method in your own classifier.

There are three different types of capabilities that you can define:

1. attribute related – e.g., nominal, numeric, date, missing values, ...
2. class attribute related – e.g., no-class, nominal, numeric, missing class values, ...
3. miscellaneous – e.g., only multi-instance data, minimum number of instances in the training data

There are some special cases:

- **incremental classifiers** – need to set the minimum number of instances in the training data to 0, since the default is 1:
  ```java
 setMinimumNumberInstances(0)
  ```
- **multi-instance classifiers** – in order to signal that the special multi-instance format (bag-id, bag-data, class) is used, they need to enable the following capability:
  ```java
 enable(Capability.ONLY_MULTIINSTANCE)
  ```
  These classifiers also need to implement the interface specific to multi-instance, `weka.core.MultiInstanceCapabilitiesHandler`, which returns the capabilities for the bag-data.
- **cluster algorithms** – since clusterers are unsupervised algorithms, they cannot process data with the class attribute set. The capability that denotes that an algorithm can handle data without a class attribute is `Capability.NO_CLASS`

And a note on enabling/disabling nominal attributes or nominal class attributes. These operations automatically enable/disable the binary, unary and empty nominal capabilities as well. The following sections list a few examples of how to configure the capabilities.
Simple classifier
A classifier that handles only numeric classes and numeric and nominal attributes, but no missing values at all, would configure the `Capabilities` object like this:

```java
public Capabilities getCapabilities() {
 Capabilities result = new Capabilities(this);
 // attributes
 result.enable(Capability.NOMINAL_ATTRIBUTES);
 result.enable(Capability.NUMERIC_ATTRIBUTES);
 // class
 result.enable(Capability.NUMERIC_CLASS);
 return result;
}
```

Another classifier, that only handles binary classes and only nominal attributes and missing values, would implement the `getCapabilities()` method as follows:

```java
public Capabilities getCapabilities() {
 Capabilities result = new Capabilities(this);
 // attributes
 result.enable(Capability.NOMINAL_ATTRIBUTES);
 result.enable(Capability.MISSING_VALUES);
 // class
 result.enable(Capability.BINARY_CLASS);
 result.disable(Capability.UNNARY_CLASS);
 result.enable(Capability.MISSING_CLASS_VALUES);
 return result;
}
```

Meta-classifier
Meta-classifiers, by default, just return the capabilities of their base classifiers - in case of descendants of the `weka.classifier.MultipleClassifiersCombiner`, an `AND` over all the `Capabilities` of the base classifiers is returned.

Due to this behavior, the capabilities depend – normally – only on the currently configured base classifier(s). To soften filtering for certain behavior, meta-classifiers also define so-called `Dependencies` on a per-Capability basis. These dependencies tell the filter that even though a certain capability is not supported right now, it is possible that it will be supported with a different base classifier. By default, all capabilities are initialized as `Dependencies`. `weka.classifiers.meta.LogitBoost`, e.g., is restricted to nominal classes. For that reason it disables the `Dependencies` for the class:

```java
result.disableAllClasses(); // disable all class types
result.disableAllClassDependencies(); // no dependencies!
result.enable(Capability.NOMINAL_CLASS); // only nominal classes allowed
```
Javadoc
In order to keep code-quality high and maintenance low, source code needs to be well documented. This includes the following Javadoc requirements:

- **class**
  - description of the classifier
  - listing of command-line parameters
  - publication(s), if applicable
  - @author and @version tag

- **methods** (all, not just public)
  - each parameter is documented
  - return value, if applicable, is documented
  - exception(s) are documented
  - the setOptions(String[]) method also lists the command-line parameters

Most of the class-related and the setOptions Javadoc is already available through the source code:

- description of the classifier – globalInfo()
- listing of command-line parameters – listOptions()
- publication(s), if applicable – getTechnicalInformation()

In order to avoid manual syncing between Javadoc and source code, WEKA comes with some tools for updating the Javadoc automatically. The following tools take a concrete class and update its source code (the source code directory needs to be supplied as well, of course):

- **weka.core.AllJavadoc** – executes all Javadoc-producing classes (this is the tool, you would normally use)
- **weka.core.GlobalInfoJavadoc** – updates the globalinfo tags
- **weka.core.OptionHandlerJavadoc** – updates the option tags
- **weka.core.TechnicalInformationHandlerJavadoc** – updates the technical tags (plain text and BibTeX)

These tools look for specific comment tags in the source code and replace everything in between the start and end tag with the documentation obtained from the actual class.

- **description of the classifier**
  ```
 <!-- globalinfo-start -->
 will be automatically replaced
 <!-- globalinfo-end -->
  ```

- **listing of command-line parameters**
  ```
 <!-- options-start -->
 will be automatically replaced
 <!-- options-end -->
  ```

- **publication(s), if applicable**
  ```
 <!-- technical-bibtex-start -->
 will be automatically replaced
 <!-- technical-bibtex-end -->
  ```

for a shortened, plain-text version use the following:

```
<!-- technical-plaintext-start -->
will be automatically replaced
<!-- technical-plaintext-end -->
```
Here is a template of a Javadoc class block for an imaginary classifier that also implements the `weka.core.TechnicalInformationHandler` interface:

```java
/**
 * Parses a given list of options.
 */

public String getRevision() {
 return RevisionUtils.extract("$Revision: 8032 $");
}
```

Running the `weka.core.AllJavadoc` tool over this code will output code with the comments filled out accordingly.

**Revisions**

Classifiers implement the `weka.core.RevisionHandler` interface. This provides the functionality of obtaining the Subversion revision from within Java. Classifiers that are not part of the official WEKA distribution do not have to implement the method `getRevision()` as the `weka.classifiers.Classifier` class already implements this method. Contributions, on the other hand, need to implement it as follows, in order to obtain the revision of this particular source file:

```java
/**
 * Returns the revision string.
 */

public String getRevision() {
 return RevisionUtils.extract("$Revision: 8032 $");
}
```

Note, a commit into Subversion will replace the revision number above with the actual revision number.
19.1. WRITING A NEW CLASSIFIER

Testing
WEKA provides already a test framework to ensure correct basic functionality of a classifier. It is essential for the classifier to pass these tests.

Option handling
You can check the option handling of your classifier with the following tool from command-line:

```
weka.core.CheckOptionHandler -W classname [-- additional parameters]
```

All tests need to return "yes".

GenericObjectEditor
The CheckGOE class checks whether all the properties available in the GUI have a tooltip accompanying them and whether the `globalInfo()` method is declared:

```
weka.core.CheckGOE -W classname [-- additional parameters]
```

All tests, once again, need to return "yes".

Source code
Classifiers that implement the `weka.classifiers.Sourcable` interface can output Java code of the built model. In order to check the generated code, one should not only compile the code, but also test it with the following test class:

```
weka.classifiers.CheckSource
```

This class takes the original WEKA classifier, the generated code and the dataset used for generating the model (and an optional class index) as parameters. It builds the WEKA classifier on the dataset and compares the output, the one from the WEKA classifier and the one from the generated source code, whether they are the same.

Here is an example call for `weka.filters.trees.J48` and the generated class `weka.filters.WEKAWrapper` (it wraps the actual generated code in a pseudo-classifier):

```
java weka.classifiers.CheckSource \
 -W weka.classifiers.trees.J48 \
 -S weka.classifiers.WEKAWrapper \
 -t data.arff
```

It needs to return "Tests OK!".

Unit tests
In order to make sure that your classifier applies to the WEKA criteria, you should add your classifier to the junit unit test framework, i.e., by creating a Test class. The superclass for classifier unit tests is `weka.classifiers.AbstractClassifierTest`. 
19.2 Writing a new Filter

The “work horses” of preprocessing in WEKA are filters. They perform many tasks, from resampling data, to deleting and standardizing attributes. In the following are two different approaches covered that explain in detail how to implement a new filter:

- **default** – this is how filters had to be implemented in the past.
- **simple** – since there are mainly two types of filters, batch or stream, additional abstract classes were introduced to speed up the implementation process.

19.2.1 Default approach

The default approach is the most flexible, but also the most complicated one for writing a new filter. This approach has to be used, if the filter cannot be written using the simple approach described further below.

19.2.1.1 Implementation

The following methods are of importance for the implementation of a filter and explained in detail further down. It is also a good idea studying the Javadoc of these methods as declared in the `weka.filters.Filter` class:

- `getCapabilities()`
- `setInputFormat(Instances)`
- `getInputFormat()`
- `setOutputFormat(Instances)`
- `getOutputFormat()`
- `input(Instance)`
- `bufferInput(Instance)`
- `push(Instance)`
- `output()`
- `batchFinished()`
- `flushInput()`
- `getRevision()`

But only the following ones normally need to be modified:

- `getCapabilities()`
- `setInputFormat(Instances)`
- `input(Instance)`
- `batchFinished()`
- `getRevision()`

For more information on “Capabilities” see section 19.2.3. Please note, that the `weka.filters.Filter` superclass does not implement the `weka.core.OptionHandler` interface. See section “Option handling” on page 254.
19.2. WRITING A NEW FILTER

`setInputFormat(Instances)`
With this call, the user tells the filter what structure, i.e., attributes, the input data has. This method also tests, whether the filter can actually process this data, according to the capabilities specified in the `getCapabilities()` method.

If the output format of the filter, i.e., the new `Instances` header, can be determined based alone on this information, then the method should set the output format via `setOutputFormat(Instances)` and return `true`, otherwise it has to return `false`.

`getInputFormat()`
This method returns an `Instances` object containing all currently buffered `Instance` objects from the input queue.

`setOutputFormat(Instances)`
`setOutputFormat(Instances)` defines the new `Instances` header for the output data. For filters that work on a row-basis, there should not be any changes between the input and output format. But filters that work on attributes, e.g., removing, adding, modifying, will affect this format. This method must be called with the appropriate `Instances` object as parameter, since all `Instance` objects being processed will rely on the output format (they use it as dataset that they belong to).

`getOutputFormat()`
This method returns the currently set `Instances` object that defines the output format. In case `setOutputFormat(Instances)` has not been called yet, this method will return `null`.

`input(Instance)`
returns `true` if the given `Instance` can be processed straight away and can be collected immediately via the `output()` method (after adding it to the output queue via `push(Instance)`, of course). This is also the case if the first batch of data has been processed and the `Instance` belongs to the second batch. Via `isFirstBatchDone()` one can query whether this `Instance` is still part of the first batch or of the second.

If the `Instance` cannot be processed immediately, e.g., the filter needs to collect all the data first before doing some calculations, then it needs to be buffered with `bufferInput(Instance)` until `batchFinished()` is called. In this case, the method needs to return `false`.

`bufferInput(Instance)`
In case an `Instance` cannot be processed immediately, one can use this method to buffer them in the input queue. All buffered `Instance` objects are available via the `getInputFormat()` method.

`push(Instance)`
adds the given `Instance` to the output queue.

`output()`
Returns the next `Instance` object from the output queue and removes it from there. In case there is no `Instance` available this method returns `null`. 
**batchFinished()**

signals the end of a dataset being pushed through the filter. In case of a filter that could not process the data of the first batch immediately, this is the place to determine what the output format will be (and set if via `setOutputFormat(Instances)`) and finally process the input data. The currently available data can be retrieved with the `getInputFormat()` method. After processing the data, one needs to call `flushInput()` to remove all the pending input data.

**flushInput()**

`flushInput()` removes all buffered `Instance` objects from the input queue. This method must be called after all the `Instance` objects have been processed in the `batchFinished()` method.

**Option handling**

If the filter should be able to handle command-line options, then the interface `weka.core.OptionHandler` needs to be implemented. In addition to that, the following code should be added at the end of the `setOptions(String[])` method:

```java
if (getInputFormat() != null) {
 setInputFormat(getInputFormat());
}
```

This will inform the filter about changes in the options and therefore reset it.
19.2. WRITING A NEW FILTER

19.2.1.2 Examples

The following examples, covering batch and stream filters, illustrate the filter framework and how to use it.

Unseeded random number generators like Math.random() should never be used since they will produce different results in each run and repeatable experiments are essential in machine learning.

BatchFilter

This simple batch filter adds a new attribute called 'blah' at the end of the dataset. The rows of this attribute contain only the row's index in the data. Since the batch-filter does not have to see all the data before creating the output format, the setInputFormat(Instances) sets the output format and returns true (indicating that the output format can be queried immediately). The batchFinished() method performs the processing of all the data.

```java
import weka.core.*;
import weka.core.Capabilities.*;

public class BatchFilter extends Filter {

 public String globalInfo() {
 return "A batch filter that adds an additional attribute 'blah' at the end " + "containing the index of the processed instance. The output format " + "can be collected immediately."
 }

 public Capabilities getCapabilities() {
 Capabilities result = super.getCapabilities();
 result.enableAllAttributes();
 result.enableAllClasses();
 result.enable(Capability.NO_CLASS); // filter doesn't need class to be set
 return result;
 }

 public boolean setInputFormat(Instances instanceInfo) throws Exception {
 super.setInputFormat(instanceInfo);
 Instances outFormat = new Instances(instanceInfo, 0);
 outFormat.insertAttributeAt(new Attribute("blah"), outFormat.numAttributes());
 setOutputFormat(outFormat); return true; // output format is immediately available
 }

 public boolean batchFinished() throws Exception {
 if (getInputFormat() == null)
 throw new NullPointerException("No input instance format defined");
 Instances inst = getInputFormat();
 Instances outFormat = getOutputFormat();
 for (int i = 0; i < inst.numInstances(); i++) {
 double[] newValues = new double[outFormat.numAttributes()];
 double[] oldValues = inst.instance(i).toDoubleArray();
 System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);
 newValues[newValues.length - 1] = i;
 push(new Instance(1.0, newValues));
 }
 flushInput();
 _m_NewBatch = true;
 _m_FirstBatchDone = true;
 return (numPendingOutput() != 0);
 }

 public static void main(String[] args) {
 runFilter(new BatchFilter(), args);
 }
}
```
BatchFilter2

In contrast to the first batch filter, this one here cannot determine the output format immediately (the number of instances in the first batch is part of the attribute name now). This is done in the `batchFinished()` method.

```java
import weka.core.*;
import weka.core.Capabilities.*;

public class BatchFilter2 extends Filter {

 public String globalInfo() {
 return "A batch filter that adds an additional attribute ‘blah’ at the end "+
 "containing the index of the processed instance. The output format "+
 "cannot be collected immediately.;";
 }

 public Capabilities getCapabilities() {
 Capabilities result = super.getCapabilities();
 result.enableAllAttributes();
 result.enableAllClasses();
 result.enable(Capability.NO_CLASS); // filter doesn’t need class to be set
 return result;
 }

 public boolean batchFinished() throws Exception {
 if (getInputFormat() == null)
 throw new NullPointerException("No input instance format defined");
 // output format still needs to be set (depends on first batch of data)
 if (!isFirstBatchDone()) {
 Instances outFormat = new Instances(getInputFormat(), 0);
 outFormat.insertAttributeAt(new Attribute("blah-" + getInputFormat().numInstances()), outFormat.numAttributes());
 setOutputFormat(outFormat);
 }
 Instances inst = getInputFormat();
 Instances outFormat = getOutputFormat();
 for (int i = 0; i < inst.numInstances(); i++) {
 double[] newValues = new double[outFormat.numAttributes()];
 double[] oldValues = inst.instance(i).toDoubleArray();
 System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);
 newValues[newValues.length - 1] = i;
 push(new Instance(1.0, newValues));
 }
 flushInput();
 m_NewBatch = true;
 m_FirstBatchDone = true;
 return (numPendingOutput() != 0);
 }

 public static void main(String[] args) {
 runFilter(new BatchFilter2(), args);
 }
}
```
19.2. WRITING A NEW FILTER

BatchFilter3

As soon as this batch filter’s first batch is done, it can process Instance objects immediately in the input(Instance) method. It adds a new attribute which contains just a random number, but the random number generator being used is seeded with the number of instances from the first batch.

```java
import weka.core.*;
import weka.core.Capabilities.*;
import java.util.Random;

public class BatchFilter3 extends Filter {
 protected int m_Seed;
 protected Random m_Random;

 public String globalInfo() {
 return "A batch filter that adds an attribute 'blah' at the end " + "containing a random number. The output format cannot be collected " + "immediately.';
 }

 public Capabilities getCapabilities() {
 Capabilities result = super.getCapabilities();
 result.enableAllAttributes();
 result.enableAllClasses();
 result.enable(Capability.NO_CLASS); // filter doesn't need class to be set
 return result;
 }

 public boolean input(Instance instance) throws Exception {
 if (getInputFormat() == null)
 throw new NullPointerException("No input instance format defined");
 if (isNewBatch()) {
 resetQueue();
 m_NewBatch = false;
 }
 if (!isFirstBatchDone())
 convertInstance(instance);
 else
 bufferInput(instance);
 return isFirstBatchDone();
 }

 public boolean batchFinished() throws Exception {
 if (getInputFormat() == null)
 throw new NullPointerException("No input instance format defined");
 // output format still needs to be set (random number generator is seeded
 // with number of instances of first batch)
 if (!isFirstBatchDone()) {
 m_Seed = getInputFormat().numInstances();
 Instances outFormat = new Instances(getInputFormat(), 0);
 outFormat.insertAttributeAt(new Attribute("blah-" + getInputFormat().numInstances()), outFormat.numAttributes());
 setOutputFormat(outFormat);
 }
 Instances inst = getInputFormat();
 for (int i = 0; i < inst.numInstances(); i++) {
 convertInstance(inst.instance(i));
 }
 flushInput();
 m_NewBatch = true;
 m_FirstBatchDone = true;
 m_Random = null;
 return (numPendingOutput() != 0);
 }

 protected void convertInstance(Instance instance) {
 if (m_Random == null)
 m_Random = new Random(m_Seed);
 double[] newValues = new double[instance.numAttributes() + 1];
 double[] oldValues = instance.toDoubleArray();
 newValues[newValues.length - 1] = m_Random.nextInt();
 System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);
 push(new Instance(1.0, newValues));
 }

 public static void main(String[] args) {
 runFilter(new BatchFilter3(), args);
 }
}
```
StreamFilter

This stream filter adds a random number (the seed value is hard-coded) at the end of each Instance of the input data. Since this does not rely on having access to the full data of the first batch, the output format is accessible immediately after using setInputFormat(Instances). All the Instance objects are immediately processed in input(Instance) via the convertInstance(Instance) method, which pushes them immediately to the output queue.

```java
import weka.core.*;
import weka.core.Capabilities.*;
import java.util.Random;

public class StreamFilter extends Filter {

 protected Random m_Random;

 public String globalInfo() {
 return "A stream filter that adds an attribute 'blah' at the end " + "containing a random number. The output format can be collected " + "immediately."
 }

 public Capabilities getCapabilities() {
 Capabilities result = super.getCapabilities();
 result.enableAllAttributes();
 result.enableAllClasses();
 result.enable(Capability.NO_CLASS); // filter doesn't need class to be set
 return result;
 }

 public boolean setInputFormat(Instances instanceInfo) throws Exception {
 super.setInputFormat(instanceInfo);
 Instances outFormat = new Instances(instanceInfo, 0);
 outFormat.insertAttributeAt(new Attribute("blah"), outFormat.numAttributes());
 setOutputFormat(outFormat);
 m_Random = new Random(1);
 return true; // output format is immediately available
 }

 public boolean input(Instance instance) throws Exception {
 if (getInputFormat() == null)
 throw new NullPointerException("No input instance format defined");
 if (isNewBatch()) {
 resetQueue();
 m_NewBatch = false;
 }
 convertInstance(instance);
 return true; // can be immediately collected via output()
 }

 protected void convertInstance(Instance instance) {
 double[] newValues = new double[instance.numAttributes() + 1];
 double[] oldValues = instance.toDoubleArray();
 newValues[newValues.length - 1] = m_Random.nextInt();
 System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);
 push(new Instance(1.0, newValues));
 }

 public static void main(String[] args) {
 runFilter(new StreamFilter(), args);
 }
}
```
19.2.2 Simple approach

The base filters and interfaces are all located in the following package:

`weka.filters`

One can basically divide filters roughly into two different kinds of filters:

- **batch filters** – they need to see the whole dataset before they can start processing it, which they do in one go
- **stream filters** – they can start producing output right away and the data just passes through while being modified

You can subclass one of the following abstract filters, depending on the kind of classifier you want to implement:

- `weka.filters.SimpleBatchFilter`
- `weka.filters.SimpleStreamFilter`

These filters simplify the rather general and complex framework introduced by the abstract superclass `weka.filters.Filter`. One only needs to implement a couple of abstract methods that will process the actual data and override, if necessary, a few existing methods for option handling.

19.2.2.1 SimpleBatchFilter

Only the following abstract methods need to be implemented:

- `globalInfo()` – returns a short description of what the filter does; will be displayed in the GUI
- `determineOutputFormat(Instances)` – generates the new format, based on the input data
- `process(Instances)` – processes the whole dataset in one go
- `getRevision()` – returns the Subversion revision information, see section “Revisions” on page 263

If you need access to the full input dataset in `determineOutputFormat(Instances)`, then you need to also override the method `allowAccessToFullInputFormat()` and make it return true.

If more options are necessary, then the following methods need to be overridden:

- `listOptions()` – returns an enumeration of the available options; these are printed if one calls the filter with the -h option
- `setOptions(String[])` – parses the given option array, that were passed from command-line
- `getOptions()` – returns an array of options, resembling the current setup of the filter

See section “Methods” on page 242 and section “Parameters” on page 246 for more information.
In the following an example implementation that adds an additional attribute at the end, containing the index of the processed instance:

```java
import weka.core.*;
import weka.core.Capabilities.*;
import weka.filters.*;

public class SimpleBatch extends SimpleBatchFilter {

 public String globalInfo() {
 return "A simple batch filter that adds an additional attribute 'blah' at the end " + "containing the index of the processed instance."
 }

 public Capabilities getCapabilities() {
 Capabilities result = super.getCapabilities();
 result.enableAllAttributes();
 result.enableAllClasses();
 result.enable(Capability.NO_CLASS); // filter doesn't need class to be set
 return result;
 }

 protected Instances determineOutputFormat(Instances inputFormat) {
 Instances result = new Instances(inputFormat, 0);
 result.insertAttributeAt(new Attribute("blah"), result.numAttributes());
 return result;
 }

 protected Instances process(Instances inst) {
 Instances result = new Instances(determineOutputFormat(inst), 0);
 double[] values = new double[result.numAttributes()];
 for (int n = 0; n < inst.numAttributes(); n++) {
 values[n] = inst.instance(i).value(n);
 }
 values[values.length - 1] = i;
 result.add(new Instance(1, values));
 return result;
 }

 public static void main(String[] args) {
 runFilter(new SimpleBatch(), args);
 }
}
```
19.2. WRITING A NEW FILTER

19.2.2.2 SimpleStreamFilter

Only the following abstract methods need to be implemented for a stream filter:

- `globalInfo()` – returns a short description of what the filter does; will be displayed in the GUI
- `determineOutputFormat(Instances)` – generates the new format, based on the input data
- `process(Instance)` – processes a single instance and turns it from the old format into the new one
- `getRevision()` – returns the Subversion revision information, see section “Revisions” on page 263

If more options are necessary, then the following methods need to be overridden:

- `listOptions()` – returns an enumeration of the available options; these are printed if one calls the filter with the -h option
- `setOptions(String[])` – parses the given option array, that were passed from command-line
- `getOptions()` – returns an array of options, resembling the current setup of the filter

See also section 19.1.4.1 covering “Methods” for classifiers.
In the following an example implementation of a stream filter that adds an extra attribute at the end, which is filled with random numbers. The `reset()` method is only used in this example, since the random number generator needs to be re-initialized in order to obtain repeatable results.

```java
import weka.core.*;
import weka.core.Capabilities.*;
import weka.filters.*;
import java.util.Random;

public class SimpleStream extends SimpleStreamFilter {
 protected Random m_Random;

 public String globalInfo() {
 return "A simple stream filter that adds an attribute 'blah' at the end " + "containing a random number."
 }

 public Capabilities getCapabilities() {
 Capabilities result = super.getCapabilities();
 result.enableAllAttributes();
 result.enableAllClasses();
 result.enable(Capability.NO_CLASS); // filter doesn't need class to be set
 return result;
 }

 protected void reset() {
 super.reset();
 m_Random = new Random(1);
 }

 protected Instances determineOutputFormat(Instances inputFormat) {
 Instances result = new Instances(inputFormat, 0);
 result.insertAttributeAt(new Attribute("blah"), result.numAttributes());
 return result;
 }

 protected Instance process(Instance inst) {
 double[] values = new double[inst.numAttributes() + 1];
 for (int n = 0; n < inst.numAttributes(); n++)
 values[n] = inst.value(n);
 values[values.length - 1] = m_Random.nextInt();
 Instance result = new Instance(1, values);
 return result;
 }

 public static void main(String[] args) {
 runFilter(new SimpleStream(), args);
 }
}
```

A real-world implementation of a stream filter is the `MultiFilter` class (package `weka.filters`), which passes the data through all the filters it contains. Depending on whether all the used filters are streamable or not, it acts either as stream filter or as batch filter.
19.2. WRITING A NEW FILTER

19.2.2.3 Internals

Some useful methods of the filter classes:

- `isNewBatch()` – returns `true` if an instance of the filter was just instantiated or a new batch was started via the `batchFinished()` method.
- `isFirstBatchDone()` – returns `true` as soon as the first batch was finished via the `batchFinished()` method. Useful for supervised filters, which should not be altered after being trained with the first batch of instances.

19.2.3 Capabilities

Filters implement the `weka.core.CapabilitiesHandler` interface like the classifiers. This method returns what kind of data the filter is able to process. Needs to be adapted for each individual filter, since the default implementation allows the processing of all kinds of attributes and classes. Otherwise correct functioning of the filter cannot be guaranteed. See section “Capabilities” on page 247 for more information.

19.2.4 Packages

A few comments about the different filter sub-packages:

- `supervised` – contains supervised filters, i.e., filters that take class distributions into account. Must implement the `weka.filters.SupervisedFilter` interface.
  - `attribute` – filters that work column-wise.
  - `instance` – filters that work row-wise.
- `unsupervised` – contains unsupervised filters, i.e., they work without taking any class distributions into account. The filter must implement the `weka.filters.UnsupervisedFilter` interface.
  - `attribute` – filters that work column-wise.
  - `instance` – filters that work row-wise.

Javadoc

The Javadoc generation works the same as with classifiers. See section “Javadoc” on page 249 for more information.

19.2.5 Revisions

Filters, like classifiers, implement the `weka.core.RevisionHandler` interface. This provides the functionality of obtaining the Subversion revision from within Java. Filters that are not part of the official WEKA distribution do not have to implement the method `getRevision()` as the `weka.filters.Filter` class already implements this method. Contributions, on the other hand, need to implement it, in order to obtain the revision of this particular source file. See section “Revisions” on page 250.
19.2.6 Testing

WEKA provides already a test framework to ensure correct basic functionality of a filter. It is essential for the filter to pass these tests.

19.2.6.1 Option handling

You can check the option handling of your filter with the following tool from command-line:

    weka.core.CheckOptionHandler -W classname [-- additional parameters]

All tests need to return yes.

19.2.6.2 GenericObjectEditor

The CheckGOE class checks whether all the properties available in the GUI have a tooltip accompanying them and whether the globalInfo() method is declared:

    weka.core.CheckGOE -W classname [-- additional parameters]

All tests, once again, need to return yes.

19.2.6.3 Source code

Filters that implement the weka.filters.Sourcable interface can output Java code of their internal representation. In order to check the generated code, one should not only compile the code, but also test it with the following test class:

    weka.filters.CheckSource

This class takes the original WEKA filter, the generated code and the dataset used for generating the source code (and an optional class index) as parameters. It builds the WEKA filter on the dataset and compares the output, the one from the WEKA filter and the one from the generated source code, whether they are the same.

Here is an example call for weka.filters.unsupervised.attribute.ReplaceMissingValues and the generated class weka.filters.WEKAWrapper (it wraps the actual generated code in a pseudo-filter):

    java weka.filters.CheckSource \
    -W weka.filters.unsupervised.attribute.ReplaceMissingValues \
    -S weka.filters.WEKAWrapper \
    -t data.arff

It needs to return Tests OK!.

19.2.6.4 Unit tests

In order to make sure that your filter applies to the WEKA criteria, you should add your filter to the junit unit test framework, i.e., by creating a Test class. The superclass for filter unit tests is weka.filters.AbstractFilterTest.
19.3 Writing other algorithms

The previous sections covered how to implement classifiers and filters. In the following you will find some information on how to implement clusterers, associators and attribute selection algorithms. The various algorithms are only covered briefly, since other important components (capabilities, option handling, revisions) have already been discussed in the other chapters.

19.3.1 Clusterers

Superclasses and interfaces

All clusterers implement the interface `weka.clusterers.Clusterer`, but most algorithms will be most likely derived (directly or further up in the class hierarchy) from the abstract superclass `weka.clusterers.AbstractClusterer`. `weka.clusterers.SingleClustererEnhancer` is used for meta-clusterers, like the `FilteredClusterer` that filters the data on-the-fly for the base-clusterer.

Here are some common interfaces that can be implemented:

- `weka.clusterers.DensityBasedClusterer` – for clusterers that can estimate the density for a given instance. `AbstractDensityBasedClusterer` already implements this interface.
- `weka.clusterers.UpdateableClusterer` – clusterers that can generate their model incrementally implement this interface, like `CobWeb`.
- `NumberOfClustersRequestable` – is for clusterers that allow to specify the number of clusters to generate, like `SimpleKMeans`.
- `weka.core.Randomizable` – for clusterers that support randomization in one way or another. `RandomizableClusterer`, `RandomizableDensityBasedClusterer` and `RandomizableSingleClustererEnhancer` all implement this interface already.

Methods

In the following a short description of methods that are common to all cluster algorithms, see also the Javadoc for the `Clusterer` interface.

`buildClusterer(Instances)`

Like the `buildClassifier(Instances)` method, this method completely rebuilds the model. Subsequent calls of this method with the same dataset must result in exactly the same model being built. This method also tests the training data against the capabilities of this this clusterer:

```java
public void buildClusterer(Instances data) throws Exception {
 // test data against capabilities
 getCapabilities().testWithFail(data);
 // actual model generation
 ...
}
```

`clusterInstance(Instance)`

returns the index of the cluster the provided `Instance` belongs to.
distributionForInstance(Instance)
returns the cluster membership for this Instance object. The membership is a double array containing the probabilities for each cluster.

numberOfClusters()
returns the number of clusters that the model contains, after the model has been generated with the buildClusterer(Instances) method.

capabilities()
see section “Capabilities” on page 247 for more information.

toString()
should output some information on the generated model. Even though this is not required, it is rather useful for the user to get some feedback on the built model.

main(String[])
exectues the clusterer from command-line. If your new algorithm is called FunkyClusterer, then use the following code as your main method:

```java
/**
 * Main method for executing this clusterer.
 * @param args the options, use "-h" to display options
 */
public static void main(String[] args) {
 AbstractClusterer.runClusterer(new FunkyClusterer(), args);
}
```

Testing
For some basic tests from the command-line, you can use the following test class:

```
weka.clusterers.CheckClusterer -W classname [further options]
```

For junit tests, you can subclass the weka.clusterers.AbstractClustererTest class and add additional tests.
19.3. WRITING OTHER ALGORITHMS

19.3.2 Attribute selection
Attribute selection consists basically of two different types of classes:

- **evaluator** – determines the merit of single attributes or subsets of attributes
- **search algorithm** – the search heuristic

Each of them will be discussed separately in the following sections.

Evaluator
The evaluator algorithm is responsible for determining merit of the current attribute selection.

Superclasses and interfaces
The ancestor for all evaluators is the `weka.attributeSelection.ASEvaluation` class.

Here are some interfaces that are commonly implemented by evaluators:

- **AttributeEvaluator** – evaluates only single attributes
- **SubsetEvaluator** – evaluates subsets of attributes
- **AttributeTransformer** – evaluators that transform the input data

Methods
In the following a brief description of the main methods of an evaluator.

**buildEvaluator(Instances)**
Generates the attribute evaluator. Subsequent calls of this method with the same data (and the same search algorithm) must result in the same attributes being selected. This method also checks the data against the capabilities:

```java
public void buildEvaluator (Instances data) throws Exception {
 // can evaluator handle data?
 getCapabilities().testWithFail(data);
 // actual initialization of evaluator
 ...
}
```

**postProcess(int[])**
can be used for optional post-processing of the selected attributes, e.g., for ranking purposes.
main(String[]) executes the evaluator from command-line. If your new algorithm is called FunkyEvaluator, then use the following code as your main method:

```java
/**
 * Main method for executing this evaluator.
 * @param args the options, use "-h" to display options
 */
public static void main(String[] args) {
 ASEvaluation.runEvaluator(new FunkyEvaluator(), args);
}
```

**Search**

The search algorithm defines the heuristic of searching, e.g., exhaustive search, greedy or genetic.

**Superclasses and interfaces**

The ancestor for all search algorithms is the weka.attributeSelection.ASSearch class.

Interfaces that can be implemented, if applicable, by a search algorithm:

- RankedOutputSearch – for search algorithms that produce ranked lists of attributes
- StartSetHandler – search algorithms that can make use of a start set of attributes implement this interface

**Methods**

Search algorithms are rather basic classes in regards to methods that need to be implemented. Only the following method needs to be implemented:

`search(ASEvaluation, Instances)`

uses the provided evaluator to guide the search.

**Testing**

For some basic tests from the command-line, you can use the following test class:

```bash
weka.attributeSelection.CheckAttributeSelection
- eval classname -search classname [further options]
```

For junit tests, you can subclass the `weka.attributeSelection.AbstractEvaluatorTest` or `weka.attributeSelection.AbstractSearchTest` class and add additional tests.
19.3. WRITING OTHER ALGORITHMS

19.3.3 Associators

Superclasses and interfaces

The interface `weka.associations.Associator` is common to all associator algorithms. But most algorithms will be derived from `AbstractAssociator`, an abstract class implementing this interface. As with classifiers and clusterers, you can also implement a meta-associator, derived from `SingleAssociatorEnhancer`. An example for this is the `FilteredAssociator`, which filters the training data on-the-fly for the base-associator.

The only other interface that is used by some other association algorithms, is the `weka.clusterers.CARuleMiner` one. Associators that learn class association rules implement this interface, like `Apriori`.

Methods

The associators are very basic algorithms and only support building of the model.

`buildAssociations(Instances)`

Like the `buildClassifier(Instances)` method, this method completely rebuilds the model. Subsequent calls of this method with the same dataset must result in exactly the same model being built. This method also tests the training data against the capabilities:

```java
public void buildAssociations(Instances data) throws Exception {
 // other necessary setups
 ...
 // test data against capabilities
 getCapabilities().testWithFail(data);
 // actual model generation
 ...
}
```

`getCapabilities()`

see section “Capabilities” on page 247 for more information.

`toString()`

should output some information on the generated model. Even though this is not required, it is rather useful for the user to get some feedback on the built model.
main(String[]) executes the associator from command-line. If your new algorithm is called FunkyAssociator, then use the following code as your main method:

```java
/**
 * Main method for executing this associator.
 *
 * @param args the options, use "-h" to display options
 */
public static void main(String[] args) {
 AbstractAssociator.runAssociator(new FunkyAssociator(), args);
}
```

Testing

For some basic tests from the command-line, you can use the following test class:

```bash
weka.associations.CheckAssociator -W classname [further options]
```

For junit tests, you can subclass the `weka.associations.AbstractAssociatorTest` class and add additional tests.
19.4 Extending the Explorer

The plugin architecture of the Explorer allows you to add new functionality easily without having to dig into the code of the Explorer itself. In the following you will find information on how to add new tabs, like the “Classify” tab, and new visualization plugins for the “Classify” tab.

19.4.1 Adding tabs

The Explorer is a handy tool for initial exploration of your data – for proper statistical evaluation, the Experimenter should be used instead. But if the available functionality is not enough, you can always add your own custom-made tabs to the Explorer.

19.4.1.1 Requirements

Here is roughly what is required in order to add a new tab (the examples below go into more detail):

- your class must be derived from `javax.swing.JPanel`
- the interface `weka.gui.explorer.Explorer.ExplorerPanel` must be implemented by your class
- optional interfaces
  - `weka.gui.explorer.Explorer.LogHandler` – in case you want to take advantage of the logging in the Explorer
  - `weka.gui.explorer.Explorer.CapabilitiesFilterChangeListener` – in case your class needs to be notified of changes in the Capabilities, e.g., if new data is loaded into the Explorer
- adding the classname of your class to the Tabs property in the `Explorer.props` file

19.4.1.2 Examples

The following examples demonstrate the plugin architecture. Only the necessary details are discussed, as the full source code is available from the WEKA Examples [3] (package `wekaexamples.gui.explorer`).

SQL worksheet

Purpose

Displaying the SqlViewer as a tab in the Explorer instead of using it either via the Open DB... button or as standalone application. Uses the existing components already available in WEKA and just assembles them in a JPanel. Since this tab does not rely on a dataset being loaded into the Explorer, it will be used as a standalone one.
Useful for people who are working a lot with databases and would like to have an SQL worksheet available all the time instead of clicking on a button every time to open up a database dialog.

Implementation

- class is derived from `javax.swing.JPanel` and implements the interface `weka.gui.Explorer.ExplorerPanel` (the full source code also imports the `weka.gui.Explorer.LogHandler` interface, but that is only additional functionality):

  ```java
 public class SqlPanel
 extends JPanel
 implements ExplorerPanel {
  ```

- some basic members that we need to have

  ```java
 /** the parent frame */
 protected Explorer m_Explorer = null;

 /** sends notifications when the set of working instances gets changed*/
 protected PropertyChangeSupport m_Support = new PropertyChangeSupport(this);
  ```

- methods we need to implement due to the used interfaces

  ```java
 /** Sets the Explorer to use as parent frame */
 public void setExplorer(Explorer parent) {
 m_Explorer = parent;
 }

 /** returns the parent Explorer frame */
 public Explorer getExplorer() {
 return m_Explorer;
 }

 /** Returns the title for the tab in the Explorer */
 public String getTabTitle() {
 return "SQL"; // what’s displayed as tab-title, e.g., Classify
 }

 /** Returns the tooltip for the tab in the Explorer */
 public String getTabTitleToolTip() {
 return "Retrieving data from databases"; // the tooltip of the tab
 }

 /** ignored, since we "generate" data and not receive it */
 public void setInstances(Instances inst) {
 }

 /** PropertyChangeListener which will be notified of value changes. */
 public void addPropertyChangeListener(PropertyChangeListener l) {
 m_Support.addPropertyChangeListener(l);
 }

 /** Removes a PropertyChangeListener. */
 public void removePropertyChangeListener(PropertyChangeListener l) {
 m_Support.removePropertyChangeListener(l);
 }
  ```
19.4. EXTENDING THE EXPLORER

• additional GUI elements
  
  /** the actual SQL worksheet */
  protected SqlViewer m_Viewer;

  /** the panel for the buttons */
  protected JPanel m_PanelButtons;

  /** the Load button - makes the data available in the Explorer */
  protected JButton m_ButtonLoad = new JButton("Load data");

  /** displays the current query */
  protected JLabel m_LabelQuery = new JLabel("");

• loading the data into the Explorer by clicking on the Load button will fire a propertyChange event:

  m_ButtonLoad.addActionListener(new ActionListener() {
    
    public void actionPerformed(ActionEvent evt){
      m_Support.firePropertyChange("", null, null);  
    }
  });

• the propertyChange event will perform the actual loading of the data, hence we add an anonymous property change listener to our panel:

  addPropertyChangeListener(new PropertyChangeListener() {
    
    public void propertyChange(PropertyChangeEvent e) {
      try {
        // load data
        InstanceQuery query = new InstanceQuery();
        query.setDatabaseURL(m_Viewer.getURL());
        query.setUsername(m_Viewer.getUser());
        query.setPassword(m_Viewer.getPassword());
        Instances data = query.retrieveInstances(m_Viewer.getQuery());

        // set data in preprocess panel (also notifies of capabilities changes)
        getExplorer().getPreprocessPanel().setInstances(data);
      }
      catch (Exception ex) {
        ex.printStackTrace();
      }
    }
  });

• In order to add our SqlPanel to the list of tabs displayed in the Explorer, we need to modify the Explorer.props file (just extract it from the weka.jar and place it in your home directory). The Tabs property must look like this:

  Tabs=weka.gui.explorer.SqlPanel,\
  weka.gui.explorer.ClassifierPanel,\
  weka.gui.explorer.ClustererPanel,\
  weka.gui.explorer.AssociationsPanel,\
  weka.gui.explorer.AttributeSelectionPanel,\
  weka.gui.explorer.VisualizePanel
CHAPTER 19. EXTENDING WEKA

Screenshot
19.4. EXTENDING THE EXPLORER

Artificial data generation

Purpose

Instead of only having a Generate... button in the PreprocessPanel or using it from command-line, this example creates a new panel to be displayed as extra tab in the Explorer. This tab will be available regardless whether a dataset is already loaded or not (= standalone).

Implementation

- class is derived from `javax.swing.JPanel` and implements the interface `weka.gui.Explorer.ExplorerPanel` (the full source code also imports the `weka.gui.Explorer.LogHandler` interface, but that is only additional functionality):

  ```java
 public class GeneratorPanel
 extends JPanel
 implements ExplorerPanel {
 ...
 }
  ```

- some basic members that we need to have (the same as for the SqlPanel class):

  ```java
 /** the parent frame */
 protected Explorer m_Explorer = null;

 /** sends notifications when the set of working instances gets changed*/
 protected PropertyChangeSupport m_Support = new PropertyChangeSupport(this);
  ```

- methods we need to implement due to the used interfaces (almost identical to SqlPanel):

  ```java
 /** Sets the Explorer to use as parent frame */
 public void setExplorer(Explorer parent) {
 m_Explorer = parent;
 }

 /** returns the parent Explorer frame */
 public Explorer getExplorer() {
 return m_Explorer;
 }

 /** Returns the title for the tab in the Explorer */
 public String getTabTitle() {
 return "DataGeneration";
 // what's displayed as tab-title, e.g., Classify
 }

 /** Returns the tooltip for the tab in the Explorer */
 public String getTabTitleToolTip() {
 return "Generating artificial datasets";
 // the tooltip of the tab
 }

 /** ignored, since we "generate" data and not receive it */
 public void setInstances(Instances inst) {
 }

 /** PropertyChangeListener which will be notified of value changes. */
 public void addPropertyChangeListener(PropertyChangeListener l) {
 m_Support.addPropertyChangeListener(l);
 }

 /** Removes a PropertyChangeListener. */
 public void removePropertyChangeListener(PropertyChangeListener l) {
 m_Support.removePropertyChangeListener(l);
 }
  ```
additional GUI elements:

```java
/** the GOE for the generators */
protected GenericObjectEditor m_GeneratorEditor = new GenericObjectEditor();

/** the text area for the output of the generated data */
protected JTextArea m_Output = new JTextArea();

/** the Generate button */
protected JButton m_ButtonGenerate = new JButton("Generate");

/** the Use button */
protected JButton m_ButtonUse = new JButton("Use");
```

the Generate button does not load the generated data directly into the Explorer, but only outputs it in the JTextArea (the Use button loads the data - see further down):

```java
m_ButtonGenerate.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent evt){
 DataGenerator generator = (DataGenerator) m_GeneratorEditor.getValue();
 String relName = generator.getRelationName();

 String cname = generator.getClass().getName().replaceAll(".*\.", "");
 String cmd = generator.getClass().getName();
 if (generator instanceof OptionHandler)
 cmd += " "+Utils.joinOptions(((OptionHandler)generator).getOptions());

 try {
 // generate data
 StringWriter output = new StringWriter();
 generator.setOutput(new PrintWriter(output));
 DataGenerator.makeData(generator, generator.getOptions());
 m_Output.setText(output.toString());
 } catch (Exception ex) {
 ex.printStackTrace();
 JOptionPane.showMessageDialog(getExplorer(), "Error generating data:

 " + ex.getMessage(), "Error", JOptionPane.ERROR_MESSAGE);
 }

 generator.setRelationName(relName);
 }
});
```

the Use button finally fires a propertyChange event that will load the data into the Explorer:

```java
m_ButtonUse.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent evt){
 m_Support.firePropertyChange("", null, null);
 }
});
```
19.4. EXTENDING THE EXPLORER

- the `propertyChange` event will perform the actual loading of the data, hence we add an anonymous property change listener to our panel:

```java
addPropertyChangeListener(new PropertyChangeListener() {
 public void propertyChange(PropertyChangeEvent e) {
 try {
 Instances data = new Instances(new StringReader(m_Output.getText()));
 // set data in preprocess panel (also notifies of capabilities changes)
 getExplorer().getPreprocessPanel().setInstances(data);
 } catch (Exception ex) {
 ex.printStackTrace();
 JOptionPane.showMessageDialog(getExplorer(), "Error generating data:\n\n" + ex.getMessage(), "Error", JOptionPane.ERROR_MESSAGE);
 }
 }
});
```

- In order to add our `GeneratorPanel` to the list of tabs displayed in the Explorer, we need to modify the `Explorer.props` file (just extract it from the `weka.jar` and place it in your home directory). The `Tabs` property must look like this:

```
Tabs=weka.gui.explorer.GeneratorPanel:standalone,\
weka.gui.explorer.ClassifierPanel,\
weka.gui.explorer.ClustererPanel,\
weka.gui.explorer.AssociationsPanel,\
weka.gui.explorer.AttributeSelectionPanel,\
weka.gui.explorer.VisualizePanel
```

- Note: the standalone option is used to make the tab available without requiring the preprocess panel to load a dataset first.
CHAPTER 19. EXTENDING WEKA

Experimenter "light"

Purpose

By default the Classify panel only performs 1 run of 10-fold cross-validation. Since most classifiers are rather sensitive to the order of the data being presented to them, those results can be too optimistic or pessimistic. Averaging the results over 10 runs with differently randomized train/test pairs returns more reliable results. And this is where this plugin comes in: it can be used to obtain statistical sound results for a specific classifier/dataset combination, without having to setup a whole experiment in the Experimenter.

Implementation

- Since this plugin is rather bulky, we omit the implementation details, but the following can be said:
  - based on the weka.gui.explorer.ClassifierPanel
  - the actual code doing the work follows the example in the Using the Experiment API wiki article [2]
- In order to add our ExperimentPanel to the list of tabs displayed in the Explorer, we need to modify the Explorer.props file (just extract it from the weka.jar and place it in your home directory). The Tabs property must look like this:

  Tabs=weka.gui.explorer.ClassifierPanel, \
  weka.gui.explorer.ExperimentPanel, \
  weka.gui.explorer.ClustererPanel, \
  weka.gui.explorer.AssociationsPanel, \
  weka.gui.explorer.AttributeSelectionPanel, \
  weka.gui.explorer.VisualizePanel

Screenshot

![Screenshot of the Experimenter panel with the ExperimentPanel plugin added.](image-url)
19.4.2 Adding visualization plugins

19.4.2.1 Introduction

You can add visualization plugins in the Explorer (Classify panel). This makes it easy to implement custom visualizations, if the ones WEKA offers are not sufficient. The following examples can be found in the Examples collection \[3\] (package \texttt{wekaexamples.gui.visualize.plugins}). The following types of plugins are available and explained in the sections below:

- predictions – for displaying the predictions
- errors – for plotting actual vs predicted
- graphs – for displaying graphs generated by \texttt{BayesNet}
- trees – for displaying trees generated by classifiers like \texttt{J48}

19.4.2.2 Predictions

Requirements

- custom visualization class must implement the following interface
  \begin{verbatim}
  weka.gui.visualize.plugins.VisualizePlugin
  \end{verbatim}

- the class must either reside in the following package (visualization classes are automatically discovered during run-time)
  \begin{verbatim}
  weka.gui.visualize.plugins
  \end{verbatim}

- or you must list the package this class belongs to in the properties file \texttt{weka/gui/GenericPropertiesCreator.props} (or the equivalent in your home directory) under the key \texttt{weka.gui.visualize.plugins.VisualizePlugin}.

Implementation

The visualization interface contains the following four methods:

- \texttt{getMinVersion} – This method returns the minimum version (inclusive) of WEKA that is necessary to execute the plugin, e.g., 3.5.0.
- \texttt{getMaxVersion} – This method returns the maximum version (exclusive) of WEKA that is necessary to execute the plugin, e.g., 3.6.0.
- \texttt{getDesignVersion} – Returns the actual version of WEKA this plugin was designed for, e.g., 3.5.1
- \texttt{getVisualizeMenuItem} – The \texttt{JMenuItem} that is returned via this method will be added to the plugins menu in the popup in the Explorer. The \texttt{ActionListener} for clicking the menu item will most likely open a new frame containing the visualized data.
Examples

Table with predictions

The PredictionTable.java example simply displays the actual class label and the one predicted by the classifier. In addition to that, it lists whether it was an incorrect prediction and the class probability for the correct class label.

<table>
<thead>
<tr>
<th>Index</th>
<th>Actual</th>
<th>Predicted</th>
<th>Error</th>
<th>Prob for 'Actual'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>bad</td>
<td>good</td>
<td>+</td>
<td>0.9</td>
</tr>
<tr>
<td>1</td>
<td>bad</td>
<td>bad</td>
<td></td>
<td>0.7620853164...</td>
</tr>
<tr>
<td>2</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.91930094535...</td>
</tr>
<tr>
<td>3</td>
<td>good</td>
<td>bad</td>
<td>+</td>
<td>0.2379146835...</td>
</tr>
<tr>
<td>4</td>
<td>good</td>
<td>bad</td>
<td>+</td>
<td>0.2379146835...</td>
</tr>
<tr>
<td>5</td>
<td>good</td>
<td>good</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>bad</td>
<td>bad</td>
<td>+</td>
<td>0.8496732026...</td>
</tr>
<tr>
<td>7</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>8</td>
<td>good</td>
<td>good</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8599033775...</td>
</tr>
<tr>
<td>10</td>
<td>good</td>
<td>bad</td>
<td>+</td>
<td>0.1503267973...</td>
</tr>
<tr>
<td>11</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8599033775...</td>
</tr>
<tr>
<td>12</td>
<td>bad</td>
<td>bad</td>
<td></td>
<td>0.82956255942...</td>
</tr>
<tr>
<td>13</td>
<td>good</td>
<td>bad</td>
<td></td>
<td>0.82956255942...</td>
</tr>
<tr>
<td>14</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8145204627...</td>
</tr>
<tr>
<td>15</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8145204627...</td>
</tr>
<tr>
<td>16</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8145204627...</td>
</tr>
<tr>
<td>17</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8145204627...</td>
</tr>
<tr>
<td>18</td>
<td>bad</td>
<td>bad</td>
<td>+</td>
<td>0.9803921568...</td>
</tr>
<tr>
<td>19</td>
<td>bad</td>
<td>bad</td>
<td>+</td>
<td>0.9803921568...</td>
</tr>
<tr>
<td>20</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.9667175947...</td>
</tr>
<tr>
<td>21</td>
<td>good</td>
<td>bad</td>
<td>+</td>
<td>0.0196078431...</td>
</tr>
<tr>
<td>22</td>
<td>good</td>
<td>bad</td>
<td>+</td>
<td>0.0754147812...</td>
</tr>
<tr>
<td>23</td>
<td>good</td>
<td>bad</td>
<td>+</td>
<td>0.0196078431...</td>
</tr>
<tr>
<td>24</td>
<td>bad</td>
<td>bad</td>
<td></td>
<td>0.82956252942...</td>
</tr>
<tr>
<td>25</td>
<td>bad</td>
<td>bad</td>
<td></td>
<td>0.82956252942...</td>
</tr>
<tr>
<td>26</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8627262942...</td>
</tr>
<tr>
<td>27</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8627262942...</td>
</tr>
<tr>
<td>28</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8627262942...</td>
</tr>
<tr>
<td>29</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8627262942...</td>
</tr>
<tr>
<td>30</td>
<td>bad</td>
<td>good</td>
<td>+</td>
<td>0.12548038...</td>
</tr>
<tr>
<td>31</td>
<td>bad</td>
<td>bad</td>
<td></td>
<td>0.9208553142...</td>
</tr>
<tr>
<td>32</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.8748509803...</td>
</tr>
<tr>
<td>33</td>
<td>good</td>
<td>bad</td>
<td>+</td>
<td>0.0799468857...</td>
</tr>
<tr>
<td>34</td>
<td>good</td>
<td>good</td>
<td></td>
<td>0.7631855572...</td>
</tr>
</tbody>
</table>
19.4. EXTENDING THE EXPLORER

Bar plot with probabilities
The PredictionError.java example uses the JMathTools library (needs the jmathplot.jar in the CLASSPATH) to display a simple bar plot of the predictions. The correct predictions are displayed in blue, the incorrect ones in red. In both cases the class probability that the classifier returned for the correct class label is displayed on the y axis. The x axis is simply the index of the prediction starting with 0.
19.4.2.3 Errors

Requirements
Almost the same requirements as for the visualization of the predictions (see section 19.4.2.2), but with the following differences:

- `weka.gui.visualize.plugins.ErrorVisualizePlugin` – is the interface to implement
- `weka.gui.visualize.plugins.ErrorVisualizePlugin` – is the key in the `GenericPropertiesCreator.props` file to list the package name

Examples
`weka.classifiers.functions.LinearRegression` was used to generate the following screenshots using default parameters on the UCI dataset `bolts`, using a percentage split of 66% for the training set and the remainder for testing.

Using WEKA panels
The `ClassifierErrorsWeka.java` example simply displays the classifier errors like the `Visualize classifier errors` menu item already available in WEKA. It is just to demonstrate how to use existing WEKA classes.
Using JMathtools’ Boxplot
The ClassifierErrorsMathtools.java example uses the JMathTools library (needs the jmathplot.jar in the CLASSPATH) to display a boxplot (the width of the boxes is 0, to make it look like an error plot). The relative error per prediction is displayed as vertical line.

Note: This display is only available for numeric classes.
19.4.2.4 Graphs

Requirements
Almost the same requirements as for the visualization of the predictions (see section 19.4.2.2), but with the following differences:

- `weka.gui.visualize.plugins.GraphVisualizePlugin` – is the interface to implement
- `weka.gui.visualize.plugins.GraphVisualizePlugin` – is the key in the GenericPropertiesCreator.props file to list the package name

Examples
prefuse visualization toolkit

The PrefuseGraph.java example uses the prefuse visualization toolkit (prefuse-beta, 2007.10.21 [28]). It is based on the `prefuse.demos.GraphView` demo class.

The following screenshot was generated using BayesNet on the UCI dataset anneal with the following parametrization:

```
weka.classifiers.bayes.BayesNet -D -Q
weka.classifiers.bayes.net.search.local.K2 -- -P 3 -S BAYES -E
weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5
```
19.4. EXTENDING THE EXPLORER

19.4.2.5 Trees

Requirements
Almost the same requirements as for the visualization of the predictions (see section 19.4.2.2), but with the following differences:

- `weka.gui.visualize.plugins.TreeVisualizePlugin` – is the interface to implement
- `weka.gui.visualize.plugins.TreeVisualizePlugin` – is the key in the `GenericPropertiesCreator.props` file to list the package name

Examples

prefuse visualization toolkit

The `PrefuseTree.java` example uses the `prefuse visualization toolkit` (prefuse-beta, 2007.10.21 [28]). It is based on the `prefuse.demos.TreeView` demo class. The following screenshot was generated using J48 on the UCI dataset `anneal` with default parameters:
And here is an example of Cobweb on the same dataset, once again with default parameters:
19.5 Extending the Knowledge Flow

The plugin architecture of the Knowledge Flow allows you to add new steps and perspectives easily. Plugins for the Knowledge Flow are managed by the \textit{PluginManager} class and can easily be deployed by creating a WEKA package (see Chapter 19) that includes a \texttt{PluginManager.props} file that lists the components to add.

The source code for all the examples described in the following sections are available in the \texttt{newKnowledgeFlowStepExamples} package that can be installed via the package manager.

19.5.1 Creating a simple batch processing Step

Steps are the building blocks of Knowledge Flow processes. The new Knowledge Flow implementation has a fresh API and a collection of helper classes that makes creating a new Step fairly simple.
The need-to-know API elements for new Steps are:

- `weka.knowledgeflow.steps.Step` - the main interface for Step implementations

- `weka.knowledgeflow.steps.BaseStepExtender` - a minimal subset of the `Step` interface's methods that a new Step would need to implement in order to function as a start point and/or processing step in the Knowledge Flow.

- `weka.knowledgeflow.steps.BaseStep` - a handy base class for new Steps to extend. Provides functions for automatically setting up the Step's name and “about” info, resolving environment variables and gaining access to the Step’s `StepManager` class. This class implements `Step` and `BaseStepExtender`.

- `weka.knowledgeflow.steps.StepManager` - an implementation of `StepManager` is provided to every Step by the Knowledge Flow environment. `StepManager` has lots of utility functions that allow a Step to find out information about things such as its incoming connections, outgoing connections, and execution environment. It also provides methods to handle the output of data and for informing the Knowledge Flow environment of the Step’s status.

- `weka.knowledgeflow.steps.KFStep` - a class annotation that Step implementations can use for specifying their name, category, tool tip and icon path.

Let’s take a look at a simple Step that can accept batch datasets and compute summary statistics for a user-specified attribute.

**Implementation**

Our new `StatsCalculator` step extends `BaseStep`. As `BaseStep` is abstract, the methods that we must implement are shown in the skeleton class below:

```java
public class StatsCalculator extends BaseStep {

 @Override
 public void stepInit() throws WekaException {
 // TODO
 }

 @Override
 public List<String> getIncomingConnectionTypes() {
 // TODO
 return null;
 }

 @Override
 public List<String> getOutgoingConnectionTypes() {
 // TODO
 return null;
 }
}
```

The `stepInit()` function is called on all steps before the knowledge flow starts executing a flow. It allows a step to reset its state and check the validity of any user-specified configuration. At this point the Step is guaranteed to have access to a `StepManager`. 
The `getIncomingConnectionTypes()` method allows a Step to specify which incoming connection types it can accept. This should take into account the current configuration of the step and any existing connections in (or out) of the step (e.g., a step might only allow one incoming `trainingSet` connection, so if one is already present then the list of connection types returned by this method should not include `trainingSet`).

Similarly, the `getOutgoingConnectionTypes()` method allows the Step to specify which outgoing connection types can be made from it. Again, this should take into account the current state of the step and (possibly) the incoming connections.
CHAPTER 19. EXTENDING WEKA

Let's take a look at implementing these methods in StatsCalculator:

```java
public class StatsCalculator extends BaseStep {

protected String m_attName = "petallength";

@Override
public void stepInit() throws WekaException {
 if (m_attName == null || m_attName.length() == 0) {
 throw new WekaException("You must specify an attribute to compute " + "stats for!");
 }
}

@Override
public List<String> getIncomingConnectionTypes() {
 return Arrays.asList(StepManager.CON_DATASET, StepManager.CON_TRAININGSET, StepManager.CON_TESTSET);
}

@Override
public List<String> getOutgoingConnectionTypes() {
 List<String> outgoing = new ArrayList<String>();
 if (getStepManager().numIncomingConnections() > 0) {
 outgoing.add(StepManager.CON_TEXT);
 }
 if (getStepManager().numIncomingConnectionsOfType(StepManager.CON_DATASET) > 0) {
 outgoing.add(StepManager.CON_DATASET);
 }
 if (getStepManager().numIncomingConnectionsOfType(StepManager.CON_TRAININGSET) > 0) {
 outgoing.add(StepManager.CON_TRAININGSET);
 }
 if (getStepManager().numIncomingConnectionsOfType(StepManager.CON_TESTSET) > 0) {
 outgoing.add(StepManager.CON_TESTSET);
 }
 return outgoing;
}
}
```

The code specifies that the step can accept any number of incoming dataset, trainingSet or testSet connections. There are a whole lot of constants defined in StepManager for connection types and auxiliary data. The getOutgoingConnectionTypes() method specifies that the step will only produce a text connection/output if it has at least one incoming connection. The text output will contain our computed attribute summary statistics. Furthermore, the step also passes through any instances that it receives, so it will only produce a particular dataset type (dataset, trainingSet or testSet) if it has a corresponding incoming connection of that type.
At this point there is some important functionality missing - namely a method to do some actual processing when data is received by the step. In fact, there are two methods related to this in BaseStep that have no-op implementations. One or both should be overridden by a Step implementation in order to do some processing. The start() method should be overridden if the step can act as a starting point in a flow (i.e. a step that, typically, loads, sources or generates data of some sort). Any step that doesn’t have any incoming connections is considered as a potential start point by the Knowledge Flow environment and has its start() method invoked. The processIncoming() method should be overridden by steps that can accept incoming connections (and the data that they typically carry).
Let's add a `processIncoming()` method to the `StatsCalculator`.

```java
public void setAttName(String attName) { m_attName = attName; }

public String getAttName() { return m_attName; }

@Override
public void processIncoming(Data data) throws WekaException {
 getStepManager().processing();
 Instances insts = data.getPrimaryPayload();
 Attribute att = insts.attribute(getAttName());
 if (att == null) {
 throw new WekaException("Incoming data does not contain attribute '" + getAttName() + '");
 }
 AttributeStats stats = insts.attributeStats(att.index());
 Data textOut = new Data(StepManager.CON_TEXT, stats.toString());
 textOut.setPayloadElement(StepManager.CON_AUX_DATA_TEXT_TITLE, "Stats for: " + getAttName());
 getStepManager().outputData(textOut); // output the textual stats
 getStepManager().outputData(data); // pass the original dataset on
 getStepManager().finished();
}
```

In the code above, we've added accessor and mutator methods for our single user-supplied parameter - i.e. the name of the attribute to compute stats for. Then we've overridden the no-op implementation of the `processIncoming()` method from `BaseStep`. This method is passed a `Data` object, which is the data structure used by the Knowledge Flow environment for transferring all types of data between steps. The code first tells the Knowledge Flow environment that it is actively processing by calling the `processing()` method on the step's `StepManager`. It then retrieves the `Instances` dataset via the `getPrimaryPayload()` method of the `Data` object. The stats are then computed and a new `Data` object is created to hold the results. In this case the results are textual, so the data’s associated connection type is `StepManager.CON_TEXT`. The two argument constructor for `Data` takes the connection type and the associated primary payload data (i.e. the textual stats in this case). Additional data can be attached to a `Data` object by storing it in a “payload” map. In this case we have a textual title for our stats result that includes the name of the attribute. Finally, the new data object, and the original dataset, is output by calling the `outputData()` method on the `StepManager`, and the environment is informed that our step has finished processing.
The last thing we can add to this step is the \texttt{KFStep} class annotation. This provides some information about the step, including where it should appear in the folders of the design palette in the GUI Knowledge Flow.

\begin{verbatim}
@KFStep(name = "StatsCalculator", category = "Examples",
        toolTipText = "Compute summary stats for an attribute",
        iconPath = KFGUIConsts.BASE_ICON_PATH + "DiamondPlain.gif")
public class StatsCalculator extends BaseStep {

    ...  

    The screenshot above shows the step, the results after execution on the iris data and the GUI configuration dialog for the step. A simple, GUI configuration dialog is provided dynamically by the Knowledge Flow environment, but you have the option of overriding this to a greater or lesser extent in order to provide a customized configuration dialog.

19.5.2 Creating a simple streaming Step

\texttt{StepManager} defines a number of constant strings that identify various types of connections and data. Most data/connections in the Knowledge Flow are batch ones - e.g. \texttt{dataSet}, \texttt{trainingSet}, \texttt{testSet} and \texttt{batchClassifier} (to name a few). When the Knowledge Flow’s execution environment invokes \texttt{processIncoming()} on a target step, it does so in a separate thread for batch connections. Thus, each step automatically does its processing within a separate thread. There are several types of incremental connections/data defined in \texttt{StepManager} as well: \texttt{instance}, \texttt{incrementalClassifier} and \texttt{chart} are all examples. Furthermore, for your own purposes it is possible to create your own connection/data types (as they are just defined with a string identifier) and mark them as “incremental”. This can be done by setting payload flag (\texttt{StepManager.CON_AUX_DATA_IS_INCREMENTAL} to \texttt{true}) when configuring a \texttt{Data} object. Incremental connections/data do not get executed in a new thread because it is assumed that processing individual pieces of incremental data does not require much effort, and the overhead in creating/invoking processing in a new thread could outweigh this.
Now let's take a look at a step that does some simple processing in a streaming fashion. Our new step, RoundRobin, simply accepts a single streaming "instance" connection as input and distributes individual instances in a round-robin fashion to the connected steps immediately downstream from it.

Implementation

```java
@KFStep(name = "RoundRobin", category = "Examples",
 toolTipText = "Round robin instances to outputs",
 iconPath = KFGUIConsts.BASE_ICON_PATH + "DiamondPlain.gif")
public class RoundRobin extends BaseStep {
 protected int m_counter;
 protected int m_numConnected;

 @Override
 public void stepInit() throws WekaException {
 m_counter = 0;
 m_numConnected = getStepManager().numOutgoingConnections();
 }

 @Override
 public List<String> getIncomingConnectionTypes() {
 List<String> result = new ArrayList<String>();
 if (getStepManager().numIncomingConnections() == 0) {
 result.add(StepManager.CON_INSTANCE);
 }
 return result;
 }

 @Override
 public List<String> getOutgoingConnectionTypes() {
 List<String> result = new ArrayList<String>();
 if (getStepManager().numIncomingConnections() == 1) {
 result.add(StepManager.CON_INSTANCE);
 }
 return result;
 }

 @Override
 public void processIncoming(Data data) throws WekaException {
 if (isStopRequested()) {
 getStepManager().interrupted();
 return;
 }
 if (getStepManager().numOutgoingConnections() > 0) {
 getStepManager().throughputUpdateStart();
 if (!getStepManager().isStreamFinished(data)) {
 List<StepManager> outgoing =
 getStepManager().getOutgoingConnectedStepsOfConnectionType(
 StepManager.CON_INSTANCE);
 int target = m_counter++ % m_numConnected;
 String targetStepName = outgoing.get(target).getName();
 getStepManager().outputData(StepManager.CON_INSTANCE, targetStepName,
 data);
 getStepManager().throughputUpdateEnd();
 } else {
 // step manager notifies all downstream steps of stream end
 getStepManager().throughputFinished(data);
 }
 }
 }
}
```
This example step demonstrates a several different things over the one in the previous section. Firstly the `getIncomingConnectionTypes()` and `getOutgoingConnectionTypes()` methods demonstrate some constraints based on the current state of incoming and outgoing connections. In the former method a constraint of a single incoming instance connection is enforced; in the later method any number of outgoing instance connections are allowed as long as there is an incoming connection present. It also demonstrates checking to see whether a request has been made to stop processing in the `processIncoming()` method. We omitted this from the previous example for brevity, but all steps should check periodically to see if a stop has been requested. If so, then they should indicate to the environment as soon as possible that they have been interrupted by calling `StepManager.interrupted()`. This method will ensure that an interrupted message appears in the status area of the GUI Knowledge Flow.

The code also demonstrates several features of incremental processing in the `processIncoming()` method. To get throughput statistics displayed in the status area of the GUI Knowledge Flow interface the methods `StepManager.throughputUpdateStart()` and `StepManager.throughputUpdateEnd()` are used to indicate the start and end of processing for the incoming Data object respectively. A utility method `StepManager.isStreamFinished()` can be called to see if the end of the stream has been reached. This method takes the current Data object (as a flag is set in the payload map of the Data object to indicate the end of the stream). By convention, the primary payload of a Data object that is marked as end-of-stream is empty/null. However, auxiliary data could be present, depending on what processing has been done (e.g. a final classifier object if training a classifier incrementally). If the end of stream has been reached, then a step should call `StepManager.throughputFinished()` with a final Data object as an argument - this tells the environment that processing is finished for the step and ensures that downstream steps are informed of the end-of-stream along with any final auxiliary data in the final Data object.
In the previous example, we had simply output data to all downstream steps with the appropriate connection type by calling `StepManager.outputData()` with a single `Data` object as an argument. The environment routes this data to appropriate connected steps because the `Data` object is constructed with a connection type that it is associated with. In our round robin example, we further constrain the destination of the data by calling a version of `StepManager.outputData()` that takes a step name as an additional argument.

### 19.5.3 Features of StepManager

Aside from methods to query the state of incoming and outgoing connections from a step, and support for outputting data, the `StepManager` also has a number of other useful facilities. It provides methods for writing to the status and log in the KnowledgeFlow. Messages can be logged at various logging levels, where the user can configure up to which level they are interested in seeing in the log. The following status and logging methods can be used by steps during execution:

- `statusMessage()` - write to the status area
- `logLow()`
- `logBasic()`
- `logDetailed()`
- `logDebug()`
- `logWarning()` - always gets to the log, regardless of user-specified logging level
- `logError()` - always gets to the log; can supply an optional `Throwable` cause

`StepManager` also provides access to the `ExecutionEnvironment`. The `ExecutionEnvironment` can be used to find out whether the system is running headless, get the values of environment variables and to launch separate processing “tasks” on the executor service. In most cases, the processing done by a step will not require launching additional tasks/threads as `processIncoming()` is called in a separate thread (when batch processing) by the Knowledge Flow environment. In some cases, it might be beneficial to make use of additional threads. The `BoundaryPlotter` step is an example that makes use of this facility - it computes each row of a plotted graphic using a separate task/thread. Steps wanting to use the executor service directly can call `StepManager.getExecutionEnvironment().submitTask()` and supply a concrete subclass of `StepTask` to do the processing. The step can work with either the `Future<ExecutionResult>` returned by `submitTask()` or, alternatively, supply a `StepTaskCallback` when constructing a `StepTask` for asynchronous notification.

### 19.5.4 PairedDataHelper

A common processing pattern in machine learning is to deal with paired datasets - i.e. typically train/test pairs. In the multi-threaded environment of the Knowledge Flow, where usually each `Data` object is passed to a target step in a separate thread of execution, it is likely that training and test sets may arrive at the target step out of order. Furthermore, in the case of multiple pairs (e.g. cross-validation folds) they might not arrive in the order that the folds are created. Handling this scenario within a step can be tedious, so a helper class is available for use by step implementations needing to deal with paired datasets - `PairedDataHelper`. 
The PairedDataHelper has the concept of a primary and secondary connection/data type, where the secondary connection/data for a given set number typically needs to be processed using a result generated from the corresponding primary connection/data. This class takes care of ensuring that the secondary connection/data is only processed once the primary has completed. Users of this helper need to provide an implementation of the PairedProcessor inner interface, where the processPrimary() method will be called to process the primary data/connection (and return a result), and processSecondary() called to deal with the secondary connection/data. The result of execution on a particular primary data set number can be retrieved by calling the getIndexedPrimaryResult() method, passing in the set number of the primary result to retrieve.

The PairedDataHelper class also provides an arbitrary storage mechanism for additional results beyond the primary type of result. It also takes care of invoking processing() and finished() on the client step’s StepManager.
Below is a code skeleton (taken from the javadoc for `PairedDataHelper`) that shows the basic usage of this helper class.

```java
public class MyFunkyStep extends BaseStep
 implements PairedDataHelper.PairedProcessor<MyFunkyMainResult> {
 ...
 protected PairedDataHelper<MyFunkyMainResult> m_helper;
 ...
 public void stepInit() {
 m_helper = new PairedDataHelper<MyFunkyMainResult>(this, this,
 StepManager.[CON_WHATEVER_YOUR_PRIMARY_CONNECTION_IS],
 StepManager.[CON_WHATEVER_YOUR_SECONDARY_CONNECTION_IS]);
 ...
 }

 public void processIncoming(Data data) throws WekaException {
 // delegate to our helper to handle primary/secondary synchronization
 // issues
 m_helper.process(data);
 }

 public MyFunkyMainResult processPrimary(Integer setNum, Integer maxSetNum,
 Data data, PairedDataHelper<MyFunkyMainResult> helper) throws WekaException {
 SomeDataTypeToProcess someData = data.getPrimaryPayload();
 MyFunkyMainResult processor = new MyFunkyMainResult();
 // do some processing using MyFunkyMainResult and SomeDataToProcess
 ...
 // output some data to downstream steps if necessary
 ...
 return processor;
 }

 public void processSecondary(Integer setNum, Integer maxSetNum, Data data,
 PairedDataHelper<MyFunkyMainResult> helper) throws WekaException {
 SomeDataTypeToProcess someData = data.getPrimaryPayload();
 // get the MyFunkyMainResult for this set number
 MyFunkyMainResult result = helper.getIndexedPrimaryResult(setNum);
 // do some stuff with the result and the secondary data
 ...
 // output some data to downstream steps if necessary
 }
}
```

The `newKnowledgeFlowStepExamples` package includes an example called `ExampleClassifier` that demonstrates the use of `PairedDataHelper` to train and evaluate a classifier on train/test splits.
Chapter 20

Weka Packages

The previous chapter described how to extend Weka to add your own learning algorithms and various enhancements to the user interfaces. This chapter describes how such enhancements can be assembled into a "package" that can be accessed via Weka's package management system. Bundling your enhancements in a package makes it easy to share with other Weka users.

In this chapter we refer to a "package" as an archive containing various resources such as compiled code, source code, javadocs, package description files (meta data), third-party libraries and configuration property files. Not all of the preceding may be in a given package, and there may be other resources included as well. This concept of a "package" is quite different to that of a Java packages, which simply define how classes are arranged hierarchically.

20.1 Where does Weka store packages and other configuration stuff?

By default, Weka stores packages and other information in $WEKA_HOME. The default location for $WEKA_HOME is user.home/wekafiles, where user.home is the user’s home directory. You can change the default location for WEKA_HOME by setting this either as an environment variable for your platform, or by specifying it as a Java property when starting Weka. E.g.:

```
export WEKA_HOME=/home/somewhere/weka_bits_and_bobs
```

will set the directory that Weka uses to /home/somewhere/weka_bits_and_bobs under the LINUX operating system.
The same thing can be accomplished when starting Weka by specifying a Java property on the command line, e.g.:

```
java -DWEKA_HOME=/home/somewhere/weka_bits_and_bobs -jar weka.jar
```

Inside "$WEKA_HOME" you will find the main weka log file (weka.log) and a number of directories:

- **packages** holds installed packages. Each package is contained in its own subdirectory.
- **props** holds various Java property files used by Weka. This directory replaces the user’s home directory (used in earlier releases of Weka) as one of the locations checked by Weka for properties files (such as DatabaseUtils.props). Weka first checks, in order, the current directory (i.e. the directory that Weka is launched from), then "$WEKA_HOME/props" and finally the weka.jar file for property files.
- **repCache** holds the cached copy of the metadata from the central package repository. If the contents of this directory get corrupted it can be safely deleted and Weka will re-create it on the next restart.
- **systemDialogs** holds marker files that are created when you check “Don’t show this again” in various system popup dialogs. Removing this directory or its contents will cause Weka to display those prompts anew.

### 20.2 Anatomy of a package

A Weka package is a zip archive that must unpack to the current directory. For example, the DTNB package contains the decision table naive Bayes hybrid classifier and is delivered in a file called DTNB.zip. When unpacked this zip file creates the following directory structure:

```
<current directory>
+-DTNB.jar
+-Description.props
+-build_package.xml
+-src
 +-main
 +-java
 +-weka
 +-classifiers
 +-rules
 +-DTNB.java
 +-test
 +-java
 +-weka
 +-classifiers
 +-rules
 +-DTNBTest.java
+-lib
+-doc
```

When installing, the package manager will use the value of the “PackageName” field in the **Description.props** file (see below) to create a directory in "$WEKA_HOME/packages" to hold the package contents. The contents of the **doc** directory have not been shown in the above diagram, but this directory contains javadoc for the DTNB class. A package **must** have a **Description.props** file and contain at least one **jar** file with compiled java classes. The package manager will attempt to load all **jar** files that it finds in the root directory and the **lib** directory. Other files are optional, but if the package is open-source then it is nice to include the source code and an ant build file that can be used to compile the code. Template versions of the **Description.props** file and **build_package.xml** file are available from the Weka site and from the Weka wiki.

#### 20.2.1 The description file

A valid package must contain a **Description.props** file that provides metadata on the package. Identical files are stored at the central package repository and the local cache maintained by the package manager. The package manager
The `Description.props` contains basic information on the package in the following format:

```
Template Description file for a Weka package

Package name (required)
PackageName=funkyPackage

Version (required)
Version=1.0.0

Date (year-month-day)
Date=2010-01-01

Title (required)
Title=My cool algorithm

Category (recommended)
Category=Classification

Author (required)
Author=Joe Dev <joe@somewhere.net>, Dev2 <dev2@somewhereelse.net>

Maintainer (required)
Maintainer=Joe Dev <joe@somewhere.net>

License (required)
License=GPL 2.0|Mozilla

Description (required)
Description=This package contains the famous Funky Classifier that performs truly funky prediction.

Package URL for obtaining the package archive (required)
PackageURL=http://somewhere.net/weka/funkyPackage.zip

URL for further information
URL=http://somewhere.net/funkyResearchInfo.html

Enhances various other packages?
Enhances=packageName1,packageName2,...

Related to other packages?
Related=packageName1,packageName2,...

Dependencies (format: packageName (equality/inequality version_number)
Depends=weka (>=3.7.1), packageName1 (=x.y.z), packageName2 (>u.v.w|<=x.y.z),...
```

Lines that begin with `#` are comments. The `packageName`, `Version`, `Title`, `Author`, `Maintainer`, `License`, `Description`, and `PackageURL` fields are mandatory, the others are optional.

The `packageName` and `Version` give the name of the package and version number respectively. The name can consist of letters, numbers, and the dot character. It should not start with a dot and should not contain any spaces. The version number is a sequence of three non-negative integers separated by single `.` or `-` characters.

The `Title` field should give a one sentence description of the package. The `Description` field can give a longer description of the package spanning multiple sentences. It may include technical references and can use HTML markup.
CHAPTER 20. WEKA PACKAGES

The "Category" field is strongly recommended as this information is displayed on both the repository web site and in the GUI package manager client. In the latter, the user can sort the packages on the basis of the category field. It is recommended that an existing category be assigned if possible. Some examples include (Classification, Text classification, Ensemble learning, Regression, Clustering, Associations, Preprocessing, Visualization, Explorer, Experimenter, KnowledgeFlow).

The "Author" field describes who wrote the package and may include multiple names (separated by commas). Email addresses may be given in angle brackets after each name. The field is intended for human readers and no email addresses are automatically extracted.

The "Maintainer" field lists who maintains the package and should include a single email address, enclosed in angle brackets, for sending bug reports to.

The "License" field lists the license(s) that apply to the package. This field may contain the short specification of a license (such as LGPL, GPL 2.0 etc.) or the string "file LICENSE", where "LICENSE" exists as a file in the top-level directory of the package. The string "Unlimited" may be supplied to indicate that there are no restrictions on distribution or use aside from those imposed by relevant laws.

The "PackageURL" field lists valid URL that points to the package zip file. This URL is used by the package manager to download and install the package.

The optional "Depends" field gives a comma separated list of packages which this package depends on. The name of a package is optionally followed by a version number constraint enclosed in parenthesis. Valid operators for version number constraints include =, <, >, <=, >=. The keyword "weka" is reserved to refer to the base Weka system and can be used to indicate a dependency on a particular version of Weka. For example:

Depends=weka (>=3.7.2), DTNB (=1.0.0)

states that this package requires Weka 3.7.2 or higher and version 1.0.0 of the package DTNB.

Depends=weka (>3.7.1|<3.8.0)

states that this package requires a version of Weka between 3.7.1 and 3.8.0.

Depends=DTNB (<1.5.0|>=2.0.1)

states that this package requires that a version of the DTNB package be installed that is either less than version 1.5.0 or greater than or equal to version 2.0.1.

If there is no version number constraint following a package name, the package manager assumes that the latest version of the dependent package is suitable.

The optional "URL" field gives a URL at which the user can find additional online information about the package or its constituent algorithms.

The optional "Enhances" field can be used to indicate which other packages this package is based on (i.e. if it extends methods/algorithms from another package in some fashion).
20.2. ANATOMY OF A PACKAGE

The optional ‘’Related’’ field is similar to the ‘’Enhances’’ field. It can be used to point the user to other packages that are related in some fashion to this one.

There are several other fields that can be used to provide information to assist the user with completing installation (if it can’t be completely accomplished with the package zip file) or display error messages if necessary components are missing:

- **MessageToDisplayOnInstall**: Funky package requires some extra stuff to be installed after installing this package. You will need to blah, blah, blah in order to blah, blah, blah...
- **DoNotLoadIfFileNotPresent**: lib/someLibrary.jar,otherStuff/important,...
- **DoNotLoadIfFileNotPresentMessage**: Funky package can’t be loaded because some \ funky libraries are missing. Please download funkyLibrary.jar from \ http://www.funky.com and install in $WEKA_HOME/packages/funkyPackage/lib
- **DoNotLoadIfClassNotPresent**: com.some.class.from.some.Where,org.some.other.Class,...
- **DoNotLoadIfClassNotPresentMessage**: Funky package can’t be instantiated. Have you downloaded and run \ the funky software installer for your platform?

The optional ‘’MessageToDisplayOnInstall’’ field allows you to specify special instructions to the user in order to help them complete the installation manually. This message gets displayed on the console, written to the log and appears in a pop-up information dialog if using the GUI package manager. It should include “\n” in order to avoid long lines when displayed in a GUI pop-up dialog.

The optional ‘’DoNotLoadIfFileNotPresent’’ field can be used to prevent Weka from loading the package if the named files and/or directories are not present in the package’s installation directory. An example is the massiveOnlineAnalysis package. This package is a connector only package and does not include the MOA library. Users of this package must download the moa.jar file separately and copy it to the package’s lib directory manually. Multiple files and directories can be specified as a comma separated list. All paths are relative to the top-level directory of the package. **IMPORTANT**: use forward slashes as separator characters, as these are portable across all platforms. The ‘’DoNotLoadIfFileNotPresentMessage’’ field can be used to supply an optional message to display to the user if Weka detects that a file or directory is missing from the package. This message will be displayed on the console and in the log.
The optional ‘‘DoNotLoadIfClassNotPresent’’ field can be used to prevent Weka from loading the package if the named class(es) can’t be instantiated. This is useful for packages that rely on stuff that has to be installed manually by the user. For example, Java3D is a separate download on all platforms except for OSX, and installs itself into the system JRE/JDK. The ‘‘DoNotLoadIfClassNotPresentMessage’’ field can be used to supply an optional message to display to the user if Weka detects that a class can’t be instantiated. Again, this will be displayed on the console and in the log.

### 20.2.2 Additional configuration files

Certain types of packages may require additional configuration files to be present as part of the package. The last chapter covered various ways in which Weka can be extended without having to alter the core Weka code. These plugin mechanisms have been subsumed by the package management system, so some of the configuration property files they require must be present in the package’s top-level directory if the package in question contains such a plugin. Examples include additional tabs for the Explorer, mappings to custom property editors for Weka’s GenericObjectEditor and Knowledge Flow plugins. Here are some examples:

The scatterPlot3D package adds a new tab to the Explorer. In order to accomplish this a property has to be set in the Explorer.props file (which contains default values for the Explorer) in order to tell Weka to instantiate and display the new panel. The scatterPlot3D file includes an “Explorer.props” file in its top-level directory that has the following contents:

```
Explorer.props file. Adds the Explorer3DPanel to the Tabs key.
Tabs=weka.gui.explorer.Explorer3DPanel
TabsPolicy=append
```

This property file is read by the package management system when the package is loaded and any key-value pairs are added to existing Explorer properties that have been loaded by the system at startup. If the key already exists in the Explorer properties, then the package has the option to either replace (i.e. overwrite) or append to the existing value. This can be specified with the TabsPolicy key. In this case, the value weka.gui.explorer.Explorer3DPanel is appended to any existing value associated with the Tabs key. Explorer3DPanel gets instantiated and added as a new tab when the Explorer starts.
Another example is the kfGroovy package. This package adds a plugin component to Weka's Knowledge Flow that allows a Knowledge Flow step to be implemented and compiled dynamically at runtime as a Groovy script. In order for the Knowledge Flow to make the new step appear in its “Plugins” toolbar, there needs to be a "Beans.props" file in the package’s top-level directory. In the case of kfGroovy, this property file has the following contents:

```
Specifies that this component goes into the Plugins toolbar
```

More information on Knowledge Flow plugins is given in Section 7.5.

### 20.3 Contributing a package

If you have created a package for Weka then there are two options for making it available to the community. In both cases, hosting the package's zip archive is the responsibility of the contributor.

The first, and official, route is to contact the current Weka maintainer (normally also the admin of the Weka homepage) and supply your package's Description.props file. The Weka team will then test downloading and using your package to make sure that there are no obvious problems with what has been specified in the Description.props file and that the software runs and does not contain any malware/malicious code. If all is well, then the package will become an “official” Weka package and the central package repository meta data will be updated with the package's Description.props file. Responsibility for maintaining and supporting the package resides with the contributor.

The second, and unofficial, route is to simply make the package's zip archive available on the web somewhere and advertise it yourself. Although users will not be able to browse it’s description in the official package repository, they will be able to download and install it directly from your URL by using the command line version of the package manager. This route could be attractive for people who have published a new algorithm and want to quickly make a beta version available for others to try without having to go through the official route.

### 20.4 Creating a mirror of the package meta data repository

In this section we discuss an easy approach to setting up and maintaining a mirror of the package meta data repository. Having a local mirror may provide faster access times than to that of the official repository on Sourceforge. Extending this approach to the creation of an alternative central repository (hosting packages not available at the official repository) should be straightforward.
CHAPTER 20. WEKA PACKAGES

Just about everything necessary for creating a mirror exists in the local meta data cache created by Weka’s package management system. This cache resides at $WEKA_HOME/repCache. The only thing missing (in Weka 3.7.2) for a complete mirror is the file “images.txt”, that lists all the image files used in the html index files. This file contains the following two lines:

Title-Bird-Header.gif
pentaho_logo_rgb_sm.png

“images.txt” is downloaded automatically by the package management system in Weka 3.7.3 and higher.

To create a mirror:

1. Copy the contents of $WEKA_HOME/repCache to a temporary directory. For the purposes of this example we’ll call it tempRep
2. Change directory into tempRep and run

   java weka.core.RepositoryIndexGenerator

   Don’t forget the “.” after the command (this tells RepositoryIndexGenerator to operate on the current directory)
3. Change directory to the parent of tempRep and synchronize its contents to wherever your web server is located (this is easy via rsync under Nix-like operating systems).

   RepositoryIndexGenerator automatically creates the main index.html file, all the package index.html files and html files corresponding to all version prop files for each package. It will also create packageList.txt and numPackages.txt files.

   IMPORTANT: Make sure that all the files in tempRep are world readable.

   It is easy to make packages available that are not part of the official Weka repository. Assuming you want to add a package called “funkyPackage” (as specified by the “PackageName” field in the Description.props file):

   1. Create a directory called “funkyPackage” in tempRep
   2. Copy the Description.props file to tempRep/funkyPackage/Latest.props
   3. Copy the Description.props file to tempRep/funkyPackage/<version number>.props, where “version number” is the version number specified in the “Version” field of Description.props
   4. Run RepositoryIndexGenerator as described previously and sync tempRep to your web server

   Adding a new version of an existing package is very similar to what has already been described. All that is required is that the new Description.props file corresponding to the new version is copied to Latest.props and to <version number>.props in the package’s folder. Running RepositoryIndexGenerator will ensure that all necessary html files are created and supporting text files are updated.
Automating the mirroring process would simply involve using your OS’s scheduler to execute a script that:

1. Runs `weka.core.WekaPackageManager -refresh-cache`
2. rsyncs `$WEKA_HOME/repCache` to `tempRep`
3. Runs `weka.core.RepositoryIndexGenerator`
4. rsyncs `tempRep` to your web server
Chapter 21

Technical documentation

21.1 ANT

What is ANT? This is how the ANT homepage \[http://ant.apache.org/\] defines its tool:

*Apache Ant is a Java-based build tool. In theory, it is kind of like Make, but without Make’s wrinkles.*

21.1.1 Basics

- the ANT build file is based on XML \[http://www.w3.org/XML/\]
- the usual name for the build file is: `build.xml`
- invocation—the usual build file needs not be specified explicitly, if it's in the current directory; if not target is specified, the default one is used
  
  \[
  \text{ant [-f <build-file>] [<target>]}
  \]
- displaying all the available targets of a build file
  
  \[
  \text{ant [-f <build-file>] -projecthelp}
  \]

21.1.2 Weka and ANT

- a build file for Weka is available from subversion
- some targets of interest
  - `clean`–Removes the build, dist and reports directories; also any class files in the source tree
  - `compile`–Compile weka and deposit class files in `${path_modifier}/build/classes`
  - `docs`–Make javadocs into `${path_modifier}/doc`
  - `exejar`–Create an executable jar file in `${path_modifier}/dist`
21.2 CLASSPATH

The CLASSPATH environment variable tells Java where to look for classes. Since Java does the search in a first-come-first-serve kind of manner, you’ll have to take care where and what to put in your CLASSPATH. I, personally, never use the environment variable, since I’m working often on a project in different versions in parallel. The CLASSPATH would just mess up things, if you’re not careful (or just forget to remove an entry). ANT (http://ant.apache.org/) offers a nice way for building (and separating source code and class files) Java projects. But still, if you’re only working on totally separate projects, it might be easiest for you to use the environment variable.

21.2.1 Setting the CLASSPATH

In the following we add the mysql-connector-java-5.1.7-bin.jar to our CLASSPATH variable (this works for any other jar archive) to make it possible to access MySQL databases via JDBC.

Win32 (2k and XP)

We assume that the mysql-connector-java-5.1.7-bin.jar archive is located in the following directory:

C:\Program Files\Weka-3-7

In the Control Panel click on System (or right click on My Computer and select Properties) and then go to the Advanced tab. There you’ll find a button called Environment Variables, click it. Depending on, whether you’re the only person using this computer or it’s a lab computer shared by many, you can either create a new system-wide (you’re the only user) environment variable or a user dependent one (recommended for multi-user machines). Enter the following name for the variable.

CLASSPATH

and add this value

C:\Program Files\Weka-3-7\mysql-connector-java-5.1.7-bin.jar

If you want to add additional jars, you will have to separate them with the path separator, the semicolon “;” (no spaces!).

Unix/Linux

We make the assumption that the mysql jar is located in the following directory:

/home/johndoe/jars/
Open a shell and execute the following command, depending on the shell you're using:

- **bash**
  
  ```bash
 export CLASSPATH=$CLASSPATH:/home/johndoe/jars/mysql-connector-java-5.1.7-bin.jar
  ```

- **c shell**
  
  ```csh
 setenv CLASSPATH $CLASSPATH:/home/johndoe/jars/mysql-connector-java-5.1.7-bin.jar
  ```

**Cygwin**

The process is like with Unix/Linux systems, but since the host system is Win32 and therefore the Java installation also a Win32 application, you'll have to use the semicolon ; as separator for several jars.

### 21.2.2 RunWeka.bat

From version 3.5.4, Weka is launched differently under Win32. The simple batch file got replaced by a central launcher class (= RunWeka.class) in combination with an INI-file (= RunWeka.ini). The RunWeka.bat only calls this launcher class now with the appropriate parameters. With this launcher approach it is possible to define different launch scenarios, but with the advantage of having placeholders, e.g., for the max heap size, which enables one to change the memory for all setups easily.

The key of a command in the INI-file is prefixed with cmd_, all other keys are considered placeholders:

```ini
cmd_blah=java ... command blah
bloerk= ... placeholder bloerk
```

A placeholder is surrounded in a command with #:

```ini
cmd_blah=java #bloerk#
```

**Note:** The key wekajar is determined by the -w parameter with which the launcher class is called.

By default, the following commands are predefined:

- **default**
  
  The default Weka start, without a terminal window.

- **console**
  
  For debugging purposes. Useful as Weka gets started from a terminal window.

- **explorer**
  
  The command that’s executed if one double-clicks on an ARFF or XRFF file.

In order to change the **maximum heap size** for all those commands, one only has to modify the maxheap placeholder.
For more information check out the comments in the INI-file.

21.2.3 java -jar

When you're using the Java interpreter with the -jar option, be aware of the fact that it overwrites your CLASSPATH and not augments it. Out of convenience, people often only use the -jar option to skip the declaration of the main class to start. But as soon as you need more jars, e.g., for database access, you need to use the -classpath option and specify the main class.

Here's once again how you start the Weka Main-GUI with your current CLASSPATH variable (and 128MB for the JVM):

- Linux
  ```
 java -Xmx128m -classpath $CLASSPATH:weka.jar weka.gui.Main
  ```

- Win32
  ```
 java -Xmx128m -classpath "%CLASSPATH%;weka.jar" weka.gui.Main
  ```

21.3 Subversion

21.3.1 General

The Weka Subversion repository is accessible and browseable via the following URL:

https://svn.scms.waikato.ac.nz/svn/weka/

A Subversion repository has usually the following layout:

root

|   
| +- trunk
|   | 
|   +- tags
|   | 
|   +- branches

Where trunk contains the main trunk of the development, tags snapshots in time of the repository (e.g., when a new version got released) and branches development branches that forked off the main trunk at some stage (e.g., legacy versions that still get bugfixed).

21.3.2 Source code

The latest version of the Weka source code can be obtained with this URL:

https://svn.scms.waikato.ac.nz/svn/weka/trunk/weka

If you want to obtain the source code of the book version, use this URL:
21.3. SUBVERSION

21.3.3 JUnit

The latest version of Weka’s JUnit tests can be obtained with this URL:

https://svn.scms.waikato.ac.nz/svn/weka/trunk/tests

And if you want to obtain the JUnit tests of the book version, use this URL:

https://svn.scms.waikato.ac.nz/svn/weka/branches/book2ndEd-branch/tests

21.3.4 Specific version

Whenever a release of Weka is generated, the repository gets tagged

- dev-X-Y-Z
  the tag for a release of the developer version, e.g., dev-3.7.0 for Weka 3.7.0
  https://svn.scms.waikato.ac.nz/svn/weka/tags/dev-3-7-0

- stable-X-Y-Z
  the tag for a release of the book version, e.g., stable-3-4-15 for Weka 3.4.15
  https://svn.scms.waikato.ac.nz/svn/weka/tags/stable-3-4-15

21.3.5 Clients

Commandline

Modern Linux distributions already come with Subversion either pre-installed or easily installed via the package manager of the distribution. If that shouldn’t be case, or if you are using Windows, you have to download the appropriate client from the Subversion homepage (http://subversion.tigris.org/).

A checkout of the current developer version of Weka looks like this:

svn co https://svn.scms.waikato.ac.nz/svn/weka/trunk/weka

SmartSVN

SmartSVN (http://smartsvn.com/) is a Java-based, graphical, cross-platform client for Subversion. Though it is not open-source/free software, the foundation version is for free.

TortoiseSVN

Under Windows, TortoiseCVS was a CVS client, neatly integrated into the Windows Explorer. TortoiseSVN (http://tortoisesvn.tigris.org/) is the equivalent for Subversion.
21.4 GenericObjectEditor

21.4.1 Introduction

As of version 3.4.4 it is possible for WEKA to dynamically discover classes at runtime (rather than using only those specified in the GenericObjectEditor.props (GOE) file). In some versions (3.5.8, 3.6.0) this facility was not enabled by default as it is a bit slower than the GOE file approach, and, furthermore, does not function in environments that do not have a CLASSPATH (e.g., application servers). Later versions (3.6.1, 3.7.0) enabled the dynamic discovery again, as WEKA can now distinguish between being a standalone Java application or being run in a non-CLASSPATH environment.

If you wish to enable or disable dynamic class discovery, the relevant file to edit is GenericPropertiesCreator.props (GPC). You can obtain this file either from the weka.jar or weka-src.jar archive. Open one of these files with an archive manager that can handle ZIP files (for Windows users, you can use 7-Zip (http://7-zip.org/) for this) and navigate to the weka/gui directory, where the GPC file is located. All that is required, is to change the UseDynamic property in this file from false to true (for enabling it) or the other way round (for disabling it). After changing the file, you just place it in your home directory. In order to find out the location of your home directory, do the following:

- **Linux/Unix**
  - Open a terminal
  - run the following command:
    ```bash
echo $HOME
```

- **Windows**
  - Open a command prompt
  - run the following command:
    ```cmd
echo %USERPROFILE%
```

If dynamic class discovery is too slow, e.g., due to an enormous CLASSPATH, you can generate a new GenericObjectEditor.props file and then turn dynamic class discovery off again. It is assumed that you already placed the GPC file in your home directory (see steps above) and that the weka.jar jar archive with the WEKA classes is in your CLASSPATH (otherwise you have to add it to the java call using the -classpath option).
For generating the GOE file, execute the following steps:

- **generate a new `GenericObjectEditor.props` file using the following command:**
  - Linux/Unix
    ```bash
 java weka.gui.GenericPropertiesCreator \
 $HOME/GenericPropertiesCreator.props \
 $HOME/GenericObjectEditor.props
    ```
  - Windows (command must be in one line)
    ```bash
 java weka.gui.GenericPropertiesCreator \
 %USERPROFILE%\GenericPropertiesCreator.props \
 %USERPROFILE%\GenericObjectEditor.props
    ```

- **edit the `GenericPropertiesCreator.props` file in your home directory and set `UseDynamic` to `false`.

A limitation of the GOE prior to 3.4.4 was, that additional classifiers, filters, etc., had to fit into the same package structure as the already existing ones, i.e., all had to be located below `weka`. WEKA can now display multiple class hierarchies in the GUI, which makes adding new functionality quite easy as we will see later in an example (it is not restricted to classifiers only, but also works with all the other entries in the GPC file).

### 21.4.2 File Structure

The structure of the GOE is a key-value-pair, separated by an equals-sign. The value is a comma separated list of classes that are all derived from the superclass/superinterface key. The GPC is slightly different, instead of declaring all the classes/interfaces one need only to specify all the packages descendants are located in (only non-abstract ones are then listed). E.g., the `weka.classifiers.Classifier` entry in the GOE file looks like this:

```ini
```

The entry producing the same output for the classifiers in the GPC looks like this (7 lines instead of over 70 for WEKA 3.4.4):

```ini
weka.classifiers.Classifier=\n weka.classifiers.bayes,\n weka.classifiers.functions,\n weka.classifiers.lazy,\n weka.classifiers.meta,\n weka.classifiers.trees,\n weka.classifiers.rules
```
21.4.3 Exclusion

It may not always be desired to list all the classes that can be found along the CLASSPATH. Sometimes, classes cannot be declared abstract but still shouldn’t be listed in the GOE. For that reason one can list classes, interfaces, superclasses for certain packages to be excluded from display. This exclusion is done with the following file:

```
weca/gui/GenericPropertiesCreator.excludes
```

The format of this properties file is fairly simple:

```
<key>=<prefix>:<class>[,<prefix>:<class>]
```

Where the `<key>` corresponds to a key in the `GenericPropertiesCreator.props` file and the `<prefix>` can be one of the following:

- `S` = Superclass
  any class derived from this will be excluded
- `I` = Interface
  any class implementing this interface will be excluded
- `C` = Class
  exactly this class will be excluded

Here are a few examples:

```
exclude all ResultListeners that also implement the ResultProducer interface
(all ResultProducers do that!)
weka.experiment.ResultListener=\n I:weka.experiment.ResultProducer
exclude J48 and all SingleClassifierEnhancers
```

21.4.4 Class Discovery

Unlike the `Class.forName(String)` method that grabs the first class it can find in the CLASSPATH, and therefore fixes the location of the package it found the class in, the dynamic discovery examines the complete CLASSPATH you are starting the Java Virtual Machine (= JVM) with. This means that you can have several parallel directories with the same WEKA package structure, e.g., the standard release of WEKA in one directory (\distribution\weka.jar) and another one with your own classes (\development\weka/...), and display all of the classifiers in the GUI. In case of a name conflict, i.e., two directories contain the same class, the first one that can be found is used. In a nutshell, your java call of the GUIChooser can look like this:

```
java -classpath "/development:/distribution/weka.jar" weka.gui.GUIChooser
```

**Note:** Windows users have to replace the “.” with “;” and the forward slashes with backslashes.
21.4.5 Multiple Class Hierarchies

In case you are developing your own framework, but still want to use your classifiers within WEKA that was not possible with WEKA prior to 3.4.4. Starting with the release 3.4.4 it is possible to have multiple class hierarchies being displayed in the GUI. If you have developed a modified version of NaiveBayes, let us call it DummyBayes and it is located in the package dummy.classifiers then you will have to add this package to the classifiers list in the GPC file like this:

```java
weka.classifiers.Classifier=\
weka.classifiers.bayes,\
weka.classifiers.functions,\
weka.classifiers.lazy,\
weka.classifiers.meta,\
weka.classifiers.trees,\
weka.classifiers.rules,\
dummy.classifiers
```

Your java call for the GUIChooser might look like this:
```
java -classpath "weka.jar:dummy.jar" weka.gui.GUIChooser
```

Starting up the GUI you will now have another root node in the tree view of the classifiers, called root, and below it the weka and the dummy package hierarchy as you can see here:
21.4.6 Capabilities

Version 3.5.3 of Weka introduced the notion of Capabilities. Capabilities basically list what kind of data a certain object can handle, e.g., one classifier can handle numeric classes, but another cannot. In case a class supports capabilities the additional buttons Filter... and Remove filter will be available in the GOE. The Filter... button pops up a dialog which lists all available Capabilities:

One can then choose those capabilities an object, e.g., a classifier, should have. If one is looking for classification problem, then the Nominal class Capability can be selected. On the other hand, if one needs a regression scheme, then the Capability Numeric class can be selected. This filtering mechanism makes the search for an appropriate learning scheme easier. After applying that filter, the tree with the objects will be displayed again and lists all objects that can handle all the selected Capabilities black, the ones that cannot grey and the ones that might be able to handle them blue (e.g., meta classifiers which depend on their base classifier(s)).
21.5 Properties

A properties file is a simple text file with this structure:

<key>=<value>

Comments start with the hash sign #.

To make a rather long property line more readable, one can use a backslash to continue on the next line. The Filter property, e.g., looks like this:

```java
weka.filters.Filter=
weka.filters.supervised.attribute,
weka.filters.supervised.instance,
weka.filters.unsupervised.attribute,
weka.filters.unsupervised.instance
```

21.5.1 Precedence

The Weka property files (extension .props) are searched for in the following order:

- current directory
- the user’s home directory (*nix $HOME, Windows %USERPROFILE%)
- the class path (normally the weka.jar file)

If Weka encounters those files it only supplements the properties, never overrides them. In other words, a property in the property file of the current directory has a higher precedence than the one in the user’s home directory.

Note: Under Cygwin (http://cygwin.com/), the home directory is still the Windows one, since the java installation will be still one for Windows.

21.5.2 Examples

- `weka/gui/LookAndFeel.props`
- `weka/gui/GenericPropertiesCreator.props`
- `weka/gui/beans/Beans.props`
21.6 XML

Weka now supports XML ([http://www.w3c.org/XML/](http://www.w3c.org/XML/)) in several places.

21.6.1 Command Line

WEKA now allows Classifiers and Experiments to be started using an -xml option followed by a filename to retrieve the command line options from the XML file instead of the command line.

For such simple classifiers like e.g. J48 this looks like overkill, but as soon as one uses Meta-Classifiers or Meta-Meta-Classifiers the handling gets tricky and one spends a lot of time looking for missing quotes. With the hierarchical structure of XML files it is simple to plug in other classifiers by just exchanging tags.

The DTD for the XML options is quite simple:


```xml
<!DOCTYPE options [
 <!ELEMENT options (option)>
 <!ATTLIST options type CDATA "classifier">
 <!ATTLIST options value CDATA ">
 <!ELEMENT option (#PCDATA | options)>*
 <!ATTLIST option name CDATA #REQUIRED>
 <!ATTLIST option type (flag | single | hyphens | quotes) "single">
]>
```

The type attribute of the option tag needs some explanations. There are currently four different types of options in WEKA:

- **flag**
  The simplest option that takes no arguments, like e.g. the -V flag for inversing an selection.

  `<option name="V" type="flag"/>`

- **single**
  The option takes exactly one parameter, directly following after the option, e.g., for specifying the training file with `-t somefile.arff`. Here the parameter value is just put between the opening and closing tag. Since single is the default value for the type tag we don’t need to specify it explicitly.

  `<option name="t">somefile.arff</option>`

- **hyphens**
  Meta-Classifiers like AdaBoostM1 take another classifier as option with the -W option, where the options for the base classifier follow after the --. And here it is where the fun starts: where to put parameters for the base classifier if the Meta-Classifier itself is a base classifier for another Meta-Classifier?
E.g., does `-W weka.classifiers.trees.J48 -- -C 0.001` become this:

```xml
<option name="W" type="hyphens">
 <options type="classifier" value="weka.classifiers.trees.J48">
 <option name="C">0.001</option>
 </options>
</option>
```

Internally, all the options enclosed by the `options` tag are pushed to the end after the `--` if one transforms the XML into a command line string.

- **quotes**
  A Meta-Classifier like `Stacking` can take several `-B` options, where each single one encloses other options in quotes (this itself can contain a Meta-Classifier!). From `-B 'weka.classifiers.trees.J48'` we then get this XML:

```xml
<option name="B" type="quotes">
 <options type="classifier" value="weka.classifiers.trees.J48"/>
</option>
```

With the XML representation one doesn’t have to worry anymore about the level of quotes one is using and therefore doesn’t have to care about the correct escaping (i.e. `' ... " ... \" ...'`) since this is done automatically.
And if we now put all together we can transform this more complicated command line (java and the CLASSPATH omitted):

```xml
<options type="class" value="weka.classifiers.meta.Stacking">
 <option name="B" type="quotes">
 <options type="classifier" value="weka.classifiers.meta.AdaBoostM1">
 <option name="W" type="hyphens">
 <options type="classifier" value="weka.classifiers.trees.J48">
 <option name="C">0.001</option>
 </options>
 </options>
 </options>
 </option>
</options>

<option name="B" type="quotes">
 <options type="classifier" value="weka.classifiers.meta.Bagging">
 <option name="W" type="hyphens">
 <options type="classifier" value="weka.classifiers.meta.AdaBoostM1">
 <option name="W" type="hyphens">
 <options type="classifier" value="weka.classifiers.trees.J48"/>
 </options>
 </options>
 </options>
 </option>
</options>

<option name="B" type="quotes">
 <options type="classifier" value="weka.classifiers.meta.Stacking">
 <option name="B" type="quotes">
 <options type="classifier" value="weka.classifiers.trees.J48"/>
 </options>
 </option>
</options>

<option name="t">test/datasets/hepatitis.arff</option>
</options>

Note: The type and value attribute of the outermost options tag is not used while reading the parameters. It is merely for documentation purposes, so that one knows which class was actually started from the command line.

Responsible Class(es):

weka.core.xml.XMLOptions
21.6.2 Serialization of Experiments

It is now possible to serialize the Experiments from the WEKA Experimenter not only in the proprietary binary format Java offers with serialization (with this you run into problems trying to read old experiments with a newer WEKA version, due to different SerialUIDs), but also in XML. There are currently two different ways to do this:

- **built-in**
 The built-in serialization captures only the necessary informations of an experiment and doesn’t serialize anything else. It’s sole purpose is to save the setup of a specific experiment and can therefore not store any built models. Thanks to this limitation we’ll never run into problems with mismatching SerialUIDs.

 This kind of serialization is always available and can be selected via a Filter (*.xml) in the Save/Open-Dialog of the Experimenter.

 The DTD is very simple and looks like this (for version 3.4.5):

  ```xml
  <!DOCTYPE object[
    <!ELEMENT object (#PCDATA | object)*>
    <!ATTLIST object name CDATA #REQUIRED>
    <!ATTLIST object class CDATA #REQUIRED>
    <!ATTLIST object primitive CDATA "no">
    <!ATTLIST object array CDATA "no">
    <!ATTLIST object null CDATA "no">
    <!ATTLIST object version CDATA "3.4.5">
  ]>
  ```

 Prior to versions 3.4.5 and 3.5.0 it looked like this:

  ```xml
  <!DOCTYPE object[
    <!ELEMENT object (#PCDATA | object)*>
    <!ATTLIST object name CDATA #REQUIRED>
    <!ATTLIST object class CDATA #REQUIRED>
    <!ATTLIST object primitive CDATA "yes">
    <!ATTLIST object array CDATA "no">
  ]>
  ```

 Responsible Class(es):

 `weka.experiment.xml.XMLExperiment`

 for general Serialization:

 `weka.core.xml.XMLSerialization`
 `weka.core.xml.XMLBasicSerialization`
• KOML (http://old.koalateam.com/xml/serialization/)

The Koala Object Markup Language (KOML) is published under the LGPL (http://www.gnu.org/copyleft/lgpl.html) and is an alternative way of serializing and deserializing Java Objects in an XML file. Like the normal serialization it serializes everything into XML via an ObjectOutputStream, including the SerialUID of each class. Even though we have the same problems with mismatching SerialUIDs it is at least possible edit the XML files by hand and replace the offending IDs with the new ones.

In order to use KOML one only has to assure that the KOML classes are in the CLASSPATH with which the Experimenter is launched. As soon as KOML is present another Filter (*.koml) will show up in the Save/Open-Dialog.

The DTD for KOML can be found at http://old.koalateam.com/xml/koml12.dtd

Responsible Class(es):

`weka.core.xml.KOML`

The experiment class can of course read those XML files if passed as input or output file (see options of `weka.experiment.Experiment` and `weka.experiment.RemoteExperiment`)

21.6.3 Serialization of Classifiers

The options for models of a classifier, `-l` for the input model and `-d` for the output model, now also supports XML serialized files. Here we have to differentiate between two different formats:

- **built-in**

 The built-in serialization captures only the options of a classifier but not the built model. With the `-l` one still has to provide a training file, since we only retrieve the options from the XML file. It is possible to add more options on the command line, but it is no check performed whether they collide with the ones stored in the XML file.

 The file is expected to end with `.xml`.

- **KOML**

 Since the KOML serialization captures everything of a Java Object we can use it just like the normal Java serialization.

 The file is expected to end with `.koml`.

The **built-in** serialization can be used in the `Experimenter` for loading/saving options from algorithms that have been added to a Simple Experiment. Unfortunately it is not possible to create such a hierarchical structure like mentioned in Section 21.6.1. This is because of the loss of information caused by the `getOptions()` method of classifiers: it returns only a flat String-Array and not a tree structure.
Responsible Class(es):
weka.core.xml.KQML
weka.classifiers.xml.XMLClassifier

21.6.4 Bayesian Networks
The GraphVisualizer (weka.gui.graphvisualizer.GraphVisualizer) can save graphs into the Interchange Format (http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/) for Bayesian Networks (BIF). If started from command line with an XML filename as first parameter and not from the Explorer it can display the given file directly.

The DTD for BIF is this:

```xml
<!DOCTYPE BIF [ 
  <!ELEMENT BIF ( NETWORK )*>
  <!ATTLIST BIF VERSION CDATA #REQUIRED> 
  <!ELEMENT NETWORK ( NAME, ( PROPERTY | VARIABLE | DEFINITION )* )> 
  <!ELEMENT NAME (#PCDATA)> 
  <!ELEMENT VARIABLE ( NAME, ( OUTCOME | PROPERTY )* )>
  <!ATTLIST VARIABLE TYPE (nature|decision|utility) "nature"> 
  <!ELEMENT OUTCOME (#PCDATA)> 
  <!ELEMENT DEFINITION ( FOR | GIVEN | TABLE | PROPERTY )* > 
  <!ELEMENT FOR (#PCDATA)> 
  <!ELEMENT GIVEN (#PCDATA)> 
  <!ELEMENT TABLE (#PCDATA)> 
  <!ELEMENT PROPERTY (#PCDATA)> ]>
```

Responsible Class(es):
weka.classifiers.bayes.BayesNet#toXMLBIF03()
weka.classifiers.bayes.net.BIFReader
weka.gui.graphvisualizer.BIFParser

21.6.5 XRFF files
With Weka 3.5.4 a new, more feature-rich, XML-based data format got introduced: XRFF. For more information, please see Chapter 12.
Chapter 22

Other resources

22.1 Mailing list

The WEKA Mailing list can be found here:

- http://list.scms.waikato.ac.nz/mailman/listinfo/wekalist for subscribing/unsubscribing the list

22.2 Troubleshooting

Here are a few of things that are useful to know when you are having trouble installing or running Weka successfully on your machine.

NB these java commands refer to ones executed in a shell (bash, command prompt, etc.) and **NOT** to commands executed in the SimpleCLI.

22.2.1 Weka download problems

When you download Weka, make sure that the resulting file size is the same as on our webpage. Otherwise things won’t work properly. Apparently some web browsers have trouble downloading Weka.

22.2.2 OutOfMemoryException

Most Java virtual machines only allocate a certain maximum amount of memory to run Java programs. Usually this is much less than the amount of RAM in your computer. However, you can extend the memory available for the virtual machine by setting appropriate options. With Sun’s JDK, for example, you can go...
to set the maximum Java heap size to 100MB. For more information about these options see http://java.sun.com/docs/hotspot/VMOptions.html.

22.2.2.1 Windows

Book version
You have to modify the JVM invocation in the RunWeka.bat batch file in your installation directory.

Developer version

- up to Weka 3.5.2
 just like the book version.

- Weka 3.5.3
 You have to modify the link in the Windows Start menu, if you’re starting the console-less Weka (only the link with console in its name executes the RunWeka.bat batch file)

- Weka 3.5.4 and higher Due to the new launching scheme, you no longer modify the batch file, but the RunWeka.ini file. In that particular file, you’ll have to change the maxheap placeholder. See section 21.2.2.

22.2.3 Mac OSX

In your Weka installation directory (weka-3-x-y.app) locate the Contents subdirectory and edit the Info.plist file. Near the bottom of the file you should see some text like:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
 <dict>
 <key>VMOptions</key>
 <string>-Xmx256M</string>
 </dict>
</plist>

Alter the 256M to something higher.

22.2.4 StackOverflowError

Try increasing the stack of your virtual machine. With Sun’s JDK you can use this command to increase the stacksize:

```java
java -Xss512k ...
```
to set the maximum Java stack size to 512KB. If still not sufficient, slowly
increase it.

22.2.5 just-in-time (JIT) compiler
For maximum enjoyment, use a virtual machine that incorporates a just-in-
time compiler. This can speed things up quite significantly. Note also that
there can be large differences in execution time between different virtual ma-
chines.

22.2.6 CSV file conversion
Either load the CSV file in the Explorer or use the CVS converter on the com-
mmandline as follows:

 java weka.core.converters.CSVLoader filename.csv > filename.arff

22.2.7 ARFF file doesn’t load
One way to figure out why ARFF files are failing to load is to give them to the
Instances class. At the command line type the following:

 java weka.core.Instances filename.arff

where you substitute 'filename' for the actual name of your file. This should
return an error if there is a problem reading the file, or show some statistics if
the file is ok. The error message you get should give some indication of what is
wrong.

22.2.8 Spaces in labels of ARFF files
A common problem people have with ARFF files is that labels can only have
spaces if they are enclosed in single quotes, i.e. a label such as:

 some value

should be written either 'some value' or some.value in the file.

22.2.9 CLASSPATH problems
Having problems getting Weka to run from a DOS/UNIX command prompt?
Getting java.lang.NoClassDefFoundError exceptions? Most likely your CLASS-
PATH environment variable is not set correctly - it needs to point to the
Weka.jar file that you downloaded with Weka (or the parent of the Weka direc-
tory if you have extracted the jar). Under DOS this can be achieved with:

 set CLASSPATH=c:\weka-3-4\weka.jar;%CLASSPATH%
CHAPTER 22. OTHER RESOURCES

Under UNIX/Linux something like:

 export CLASSPATH=/home/weka/weka.jar:$CLASSPATH

An easy way to get avoid setting the variable this is to specify the CLASSPATH
when calling Java. For example, if the jar file is located at c:\weka-3-4\weka.jar
you can use:

 java -cp c:\weka-3-4\weka.jar weka.classifiers... etc.

See also Section [21.2]

22.2.10 Instance ID

People often want to tag their instances with identifiers, so they can keep
track of them and the predictions made on them.

22.2.10.1 Adding the ID

A new ID attribute is added real easy: one only needs to run the AddID filter
over the dataset and it’s done. Here’s an example (at a DOS/Unix command
prompt):

 java weka.filters.unsupervised.attribute.AddID
 -i data_without_id.arff
 -o data_with_id.arff

(all on a single line).

Note: the AddID filter adds a numeric attribute, not a String attribute
to the dataset. If you want to remove this ID attribute for the classifier in a
FilteredClassifier environment again, use the Remove filter instead of the
RemoveType filter (same package).

22.2.10.2 Removing the ID

If you run from the command line you can use the -p option to output predic-
tions plus any other attributes you are interested in. So it is possible to have a
string attribute in your data that acts as an identifier. A problem is that most
classifiers don’t like String attributes, but you can get around this by using the
RemoveType (this removes String attributes by default).

Here’s an example. Lets say you have a training file named train.arff,
a testing file named test.arff, and they have an identifier String attribute
as their 5th attribute. You can get the predictions from J48 along with the
identifier strings by issuing the following command (at a DOS/Unix command
prompt):

 java weka.classifiers.meta.FilteredClassifier
 -F weka.filters.unsupervised.attribute.RemoveType
 -W weka.classifiers.trees.J48
 -t train.arff -T test.arff -p 5

(all on a single line).
If you want, you can redirect the output to a file by adding "> output.txt" to the end of the line.

In the Explorer GUI you could try a similar trick of using the String attribute identifiers here as well. Choose the FilteredClassifier, with RemoveType as the filter, and whatever classifier you prefer. When you visualize the results you will need click through each instance to see the identifier listed for each.

22.2.11 Visualization

Access to visualization from the ClassifierPanel, ClusterPanel and Attribute-Selection panel is available from a popup menu. Click the right mouse button over an entry in the Result list to bring up the menu. You will be presented with options for viewing or saving the text output and—depending on the scheme—further options for visualizing errors, clusters, trees etc.

22.2.12 Memory consumption and Garbage collector

There is the ability to print how much memory is available in the Explorer and Experimenter and to run the garbage collector. Just right click over the Status area in the Explorer/Experimenter.

22.2.13 GUIChooser starts but not Experimenter or Explorer

The GUIChooser starts, but Explorer and Experimenter don’t start and output an Exception like this in the terminal:

```
/usr/share/themes/Mist/gtk-2.0/gtkrc:48: Engine "mist" is unsupported, ignoring
---Registering Weka Editors---
java.lang.NullPointerException
    at weka.gui.explorer.PreprocessPanel.addPropertyChangeListener(PreprocessPanel.java:519)
    at javax.swing.plaf.synth.SynthPanelUI.installListeners(SynthPanelUI.java:49)
    at javax.swing.plaf.synth.SynthPanelUI.installUI(SynthPanelUI.java:38)
    at javax.swing.JComponent.setUI(JComponent.java:652)
    at javax.swing.JPanel.setUI(JPanel.java:131)
...
```

This behavior happens only under Java 1.5 and Gnome/Linux, KDE doesn’t produce this error. The reason for this is, that Weka tries to look more “native” and therefore sets a platform-specific Swing theme. Unfortunately, this doesn’t seem to be working correctly in Java 1.5 together with Gnome. A workaround for this is to set the cross-platform Metal theme.

In order to use another theme one only has to create the following properties file in ones home directory:

```
LookAndFeel.props
```

With this content:
22.2.14 **KnowledgeFlow toolbars are empty**

In the terminal, you will most likely see this output as well:

```
Failed to instantiate: weka.gui.beans.Loader
```

This behavior can happen under Gnome with Java 1.5, see Section 22.2.13 for a solution.

22.2.15 **Links**

Bibliography

[3] *Weka Examples* – A collection of example classes, as part of an ANT project, included in the WEKA snapshots (available for download on the homepage) or directly from subversion https://svn.scms.waikato.ac.nz/svn/weka/trunk/wekaexamples/

[27] JMathPlot. See http://code.google.com/p/jmathplot/ for more information on the project.

[28] Prefuse Visualization Toolkit. See http://prefuse.org/ for more information on the project.