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Evolutionary Parameter Optimization: Introduction

Evolutionary Algorithmes...

* Are function optimizers

* Inspired by natural evolution

* Population of individuals

* Are robust, hence preferred for real world problems
* Have little theory to explain how and why they work

* They come with various flavours



Evolutionary Parameter Optimization: Introduction

| am at the top
Height is ...

| will continue
Oo

| am not at the top.
My high is better!




Evolutionary Parameter Optimization: Introduction




Evolutionary Parameter Optimization: Introduction

F(x1,x2,x3,...)

Evolutionary Algorithms don’t
have this problem!!!



Evolutionary Parameter Optimization: Introduction

The 1dea of using simulated evolution to solve
engineering and design problems have been around since

the 1950’s (Fogel, 2000).
— Bremermann, 1962

— Box, 1957

— Friedberg, 1958

IMoOwce 1L dell L Llllul L1C C«

VCI I
to see three influential forms of
1997):

— Evolutionary Programming (Lawrence Fogel, 1962),
— Genetic Algorithms (Holland, 1962)
— Evolution Strategies (Rechenberg, 1965 & Schwefel, 1968),
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Evolutionary Parameter Optimization: Introduction

* The designers of each of the EC techniques saw that
their particular problems could be solved via simulated
evolution.

— Fogel was concerned with solving programs evolution.

— Rechenberg & Schwefel were concerned with solving
arameter optimization problems.

— Holland was concerned with developing robust adaptive
systems.




Evolutionary Parameter Optimization: Introduction

We focus our attention on the problem of finding the
global optimum of a function that is characterized by:

multiple minima
non-differentiable
non-linear
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and highly multimodal.



Evolutionary Parameter Optimization: Introduction

Problem Motivation

* There are a lot of applications where a scientist/engineer
has to optimize a non-linear, non-differentiable function
that has multiple minima. '

4 e
s

* An example of such an application is
found in the field of neural networks
where one has to optimize the
topology and weights of a neural
network to solve a mapping problem

* Neural networks have been
extensively used in the literature to
solve classification problems,
regression problems, prediction :
problems \




Evolutionary Parameter Optimization: Introduction

Most Popular Real-Parameter
Evolutionary Algorithms

» Real-coded (parameter) genetic algorithm (RCGAS)
» Evolution strategies (ES)

» Particle swarm optimization (PSO)

» Differential evolution (DE)

» Real coding memetic algorithms (RCMA)
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Pioneers and outstanding work

Binary Coding

1011001010011 “[IRBL I VAL¢]

101100101001 1{DERRLLELLLEL)

CROSS0YER is the fundamental mechanism ol gencetic rear Chromosomes line up and then swan the portions of their ge-
rangement for both real organisms and genetic algorithms. netic code bevond the crossover point.



Pioneers and outstanding work

Binary GAs in Continuous Search Space
Difficulties with binary-coded EAs

» Binary GAs make the search space discrete
» Hamming cliffs: (10000)'s neighbor (0O1111)
» Gray coding isn't the solution
» Arbitrary precision impossible due to fixed-length coding
» Search restricted with variable boundaries
» Not all Holland's schemata are important
» (1%*%**) more important than (****1])

» Solution: Redesign crossover which gives more importance
to meaningful schemata in real space




Pioneers and outstanding work

Real Coding Genetic Algorithms

» Decision variables are coded directly, instead of using
binary strings
» Recombination and mutation need structural changes

Recombination Mutation

= ? (xlx2 ................ X ):> ?

» Selection operator remains the same

» Simple exchanges are not adequate

| * » |
Discrete 1 i
i C; c, by




Pioneers and outstanding work

Problems with real crossover: Neighbourhood and Crossover

Crossover idea: combining pein. |

parents genotypes to get
children genotypes
“somewhere in between”
them

],:":'*i“L 2 [l L= T

Figure 2

Interpretation & Generalization

Traditional mutation & crossover have a natural interpretation in
the neighbourhood structure in terms of closeness and betweenness



Pioneers and outstanding work

First Real Coding proposal: Linear/Arithmetical crossover
Wright, A. (1991). Genetic Algorithms for Real Parameter Optimization. FOGA 1, 205-218.

e Linear Crossover

— From 2 parent points, 3 new points are generated:
o« (1/2)pl + (1/2)p2, (3/2)pl - (1/2)p2, (-1/2)p1+(3/2)p2
— (1/2)pl + (1/2)p2 is the midpoint of p1 and p2
— The others are on the line determined by p1 and p2
— The best 2 of the 3 points are sent to the next generation

— Disadvantage - Highly disrupted schemata. It is not compatible with
the schema theorem described in the next slide.

Extended models: Arithmetical crossover (Michalewicz, 1992), ————+ e¢o¢+——
Max-Min Arithmetic operator (Herrera, Lozano, Verdegay, 1995) a c, =3¥3¢ by




Pioneers and outstanding work

Variable-wise recombination: Blend Crossover (BLX-a)
Eshelman L.J., Schaffer J.D. (1993). Real-Coded Genetic Algorithms and Interval-Schemata. FOGA 2, 187-202.

Exploration Exploration
Cmin_ (XI I max + (XI

Explotation

» Uniform probability distribution within a bound controlled by a
» Diversity in children proportional to that in parents
» The search 1s too wide if parents are distant



Pioneers and outstanding work

Real-coded Genetic Algorithms: First studies

e Goldberg D.E. (1991).

Real-Coded Genetic Algorithms,

Virtual Alphabets, and Blocking. —>
Complex Systems 5, 139-167.

e Wright, A. (1991). Genetic Algorithms for Real Parameter s d & b
Optimization. FOGA 1, 205-218. | | ’ |
e Eshelman L.J., Schaffer J.D. (1993). Real-Coded Genetic . | g

Algorithms and Interval-Schemata. FOGA 2, 187-202. J - i




Pioneers and outstanding work

Variable-wise recombination of Parents
(RCGA first generation)
» Use a probability distribution to create offspring
» Different implementations since 1991:
» Blend crossover (BLX-a), 1993
» Simulated binary crossover (SBX-3), 1995
» Fuzzy recombination (FR-d), 1995
» Fuzzy connectives based operator (FCB), 1994

» Main feature: Difference between parents used to create
children

» Provides self-adaptive property

Experimental analysis: F. Herrera, M. Lozano, J.L. Verdegay (1998). Tackling real-coded
genetic algorithms: operators and tools for the behavioural analysis.
Artificial Intelligence Reviews 12(4): 265-319




Pioneers and outstanding work

BLX-a (Eshelman et al., 1993)

SBX (Deb et al., 1995)

A

d!

Fuzz’y recombination (Voigt et
al., 1995)

VAVAN

1 3
a, € 'c: b:

Fuzzy Connectives based
Operator (Herrera et al. 1994)
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Pioneers and outstanding work

Taxonomy of Crossover operators

. | L L |
Discrete crossover ﬂ; b
filel e
Aggregation based
Crossover
+ r el b,
Neighborhood

based Crossover

Herrera, F., Lozano, M., Sanchez, A.M. (2003). A taxonomy for the crossover operator for real-coded
genetic algorithms. An experimental study. /nternational Journal of Intelligent Systems 18(3): 309-338.



Pioneers and outstanding work

Parent Center based Crossover operators

- -~
e
£ -l N -
/ \ y » FR (Voigt et al, 1995)
I ' » SBX (Deb et al, 1995)
| I Male Parent %] M (Takahashi et al 2001)
‘' Femaleparem  / » PCX (Deb et al, 2002)
N 4 » VSBX (Ballester et al, 2003)
SN > PNX (Ballester et al, 2004)

Probability Distribution PBX-a (Lozano et al, 2004)

PNX (Ballester et al., 2004)

Similar behaviour than auto-adapted operators



Pioneers and outstanding work

Vector-Wise Recombination Operators

» Variable-wise recombination cannot capture nonlinear
interactions

» Alternative: Recombine parents as vectors (RCGA second
generation)

» Parent-centric recombination (PCX)
» Unimodal normally-distributed crossover (UNDX)
» Simplex crossover (SPX)

» Difference between parents 1s used to create offspring solutions
(some models in this special issue).

_ F. Herrera, M. Lozano (Eds.) (2005). Special Issue on
ST Real Coded Genetic Algorithms: Foundations, Models and
=  Operators. Soft Computing 9:4.



Pioneers and outstanding work

Recombine parents as vectors
PCX, UNDX & SPX Operators

PCX UNDX SPX

Deb, K., Anand, A., Joshi, D. (2002). A computationally efficient evolutionary algorithm for
real-parameter evolution.Evolutionary Computation Journal 10(4): 371-395.



Pioneers and outstanding work

Vector-Wise Recombination Operators

» Variable-wise recombination cannot capture nonlinear
interactions

» Alternative: Recombine parents as vectors (RCGA second generation)

» Parent-centric recombination (PCX)
» Unimodal normally-distributed crossover (UNDX)
» Simplex crossover (SPX)

» Difference between parents 1s used to create offspring solutions
(some models in this special issue).

@ew algorithms (second EAs generation): DE, PSO, CMA-@




Pioneers and outstanding work

Evolution Strategies

Rechenberg & Schwefel (1964) were concerned with solving parameter
optimization problems. Autoadaptation of parameters.

0.50F 7 7T

Mut: 1 > |
Mut (X) =x"=X; T2, .., X, T Z ) E

0.10F

2
Zl ~N1(O’G’ ) 0.00_4“4. .

State of the art of the first generation: Schwefel, H.P Evolution and Optimum
Seeking. Sixth-Generation Computer Technology Series. Wiley, New York, 1995.




Pioneers and outstanding work

State of the art of the ES second generation: CMA-ES

Evolution Strategy with Covariance Matrix Adaptation (Hansen & Ostermeier, 1996)

» Selection-mutation ES 1s run
for n i1terations

» Successful steps are recorded

» They are analyzed to find
uncorrelated basis directions
and strengths

» Required O(n’) computations to
solve an eigenvalue problem

» Rotation invariant

Nikolaus Hansen
www.lri.fr/~hansen/
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Hansen, N. and A. Ostermeier (2001).
Completely Derandomized Self-Adaptation in
Evolution Strategies. Evolutionary Computation,
9(2), pp. 159-195;

Hansen, N., S.D. Miiller and P. Koumoutsakos
(2003). Reducing the Time Complexity of the
Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES).
Evolutionary Computation, 11(1), pp. 1-18;



Pioneers and outstanding work

Particle Swarm Optimization

The PSO (Kennedy and Eberhart (1995)) starts
from an initial population of solutions (particles)
for the optimization problem.

It finds new solutions by co-jointly exploring the
space and exploiting the information provided by
already found, good solutions.

J. Kennedy and R.C. Eberhart. Particle Swarm Optimization.
Proceeding of IEEE International Conference on Neural Networks, IV, pages 1942—1948, 1995.



Pioneers and outstanding work

Particle Swarm Optimization

Particles fly through the search space
(biological inspiration) %“ e
-

Kennedy, J., Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kauffmann.




Pioneers and outstanding work

Particle Swarm Optimization

» Kennedy and Eberhart, 1995

» Particles fly through the search space Vector-Wise
» Velocity dynamically adjusted Recombination
B X =XV, <

VvV, = Vi+c1md()(pi,best'Xi)+C2md()(pg'Xi)

» p.: best position of i1-th particle
Il Ir I

» p,: position of best particle so far
» 15t term: momentum part (history)
» 27 term: cognitive part (private thinking) 2
» 3™ term: social part (collaboration) >
» |¢c,c,in[0,2] ° 0




Evolutionary Parameter Optimization: Introduction

Differential Evolution

The DE approach (Storn and Price (1997)) starts
from an initial population of solutions that are
mutated and crossed over to eventually obtain
better solutions for the optimization problem at

hand
1naiiu.

Journal
of Global
Optimization

R. Storn and K. V. Price, “Differential evolution-A simple and Efficient Heuristic for Global | * -
Optimization over Continuous Spaces,” Journal of Global Optimization, 11:341-359,1997. m



Pioneers and outstanding work

Differential Evolution

1. Start with a pool of random — v =x 4+ A\(x®) - xO)

solutions Vj with a prob. p

o 1 .
2. Create achild v — i = {LJ |
. . X, else

3. x, and v are recombined with v

P [
4. Keep better of y and x® . J‘,;f’” i
« Dafference of parents in ,'\7 A

creating a child is important LS el

. . —;.,r X ;.-'"""' - IT_.H""

A number of modifications / f,fyjff‘

exist S

L
S

Vector-Wise Recombination
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Milestone: CEC’'2005 Real Parameter

. | A

Special Session on Real-Parameter Optimization.
2005 IEEE CEC, Edinburgh, UK, Sept 2-5. 2005.
Organizers: K. Deb and P.N. Suganthan.
Unimodal Functions

Success Performance Indices

Multimodal Functions
Solved in at least one run

Multimodal Functions

Never solved

The study was made with dimensions D =10, D = 30, D=50.
The maximum number of fitness evaluations is 10,000-D.
Each run stops when the maximal number of evaluations is achieved.

P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari, "Problem
Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter

Optimization", Technical Report, Nanyang Technological University, Singapore, May 2005 AND
KanGAL Report #2005005, IIT Kanpur, India.




Milestone: CEC’'2005 Real Parameter

Special Session on Real-Parameter Optimization.
2005 IEEE CEC, Edinburgh, UK, Sept 2-5. 2005.
Organizers: K. Deb and P.N. Suganthan.
Unimodal Functions

Success Performance Indices
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Solved in at least one run

. o 20 NG
6 functions R\ BT oo® . S e@ﬁeﬁ
. asgf#" \{\@"“ ﬁ\{\@ﬁ 2@ 5 et A i °
o 0% O @ 3
Multimodal Functions
Never solved
)| E} " Ly G\".ﬁ
. N ‘q_‘&‘a" el (\ﬁﬁ"g “{\\5
13 functions §° (o8 (8 5 (W s @ 0 s
o 20° @@07 0¥ P @ AR IR e
ﬁfh@q © Wﬁﬁ 1-‘@5{\ ) P \J;G‘ q‘:ﬁ“&' qﬁ{‘[}' \J;G“E}' qa“[}' q*a“[}' q*a“[}' ot© \:,0“[}'
AN N A AT R SN qu\ T f;b‘”\ B



Milestone: CEC’'2005 Real Parameter

Algorithms involved in the comparison: (11 algorithms)

B BLX-GL50 (Garcia-Martinez & Lozano, 2005 ): Hybrid Real-Coded Genetic
Algorithms with Female and Male Differentiation

B BLX-MA (Molina et al., 2005): Adaptive Local Search Parameters for Real-Coded
Memetic Algorithms

B CoEVO (Posik, 2005): Mutation Step Co-evolution

B DE (Ronkkonen et al.,2005):Differential Evolution

B DMS-L-PSO: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search

B EDA (Yuan & Gallagher, 2005): Estimation of Distribution Algorithm

B G-CMA-ES (Auger & Hansen, 2005): A restart Covariance Matrix Adaptation
Evolution Strategy with increasing population size

B K-PCX (Sinha et al., 2005): A Population-based, Steady-State real-parameter
optimization algorithm with parent-centric recombination operator, a polynomial
mutation operator and a niched -selection operation.

B L|L-CMA-ES (Auger & Hansen, 2005): A restart local search Covariance Matrix
Adaptation Evolution Strategy

B L|-SaDE (Qin & Suganthan, 2005): Self-adaptive Differential Evolution algorithm
with Local Search

B SPC-PNX (Ballester et al.,2005): A steady-state real-parameter GA with PNX

crossover UDEFETDF
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g -
8

BLY-MA  COEVO DE DMS-L-PSD  EDA

[ I I I I . I I I

BLX-GLS0 ELX-MA COENVO -CMA- PCX L-CMAES  SPC-PNX

I
—
(=]
Fanking

PCX LCMAES L-SaDE EPC-PMNK

30

O
[

Ranking Medio

S. Garcia, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric Tests for Analyzing the
Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on Real Parameter
Optimization. Journal of Heuristics, 15 (2009) 617-644. doi: 10.1007/s10732-0058-9050-4.
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G-CMA-ES vs. RT R~ p-value
BLX-GL50 289.5 35.5 0.001
BLX-MA 205.5 20.5 0.001
CoEVO 301.0 24.0 0.000
DE 262.5 62.5 0.009
DMS-L-PSO 199.0 126.0 0.357
EDA 284.5 40.5 0.001
K-PCX 269.0 56.0 0.004
L-CMA-ES 273.0 52.0 0.003
L-SaDE 209.0 116.0 0.259
SPC-PNX 3055 19.5 0.000

G-CMAES versus the remaining algorithms. D =10
P-value obtained through normal approximation
S. Garcia, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric Tests for Analyzing the

Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on Real Parameter
Optimization. Journal of Heuristics, 15 (2009) 617-644. doi: 10.1007/s10732-0058-9050-4.
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Two recent algorithms with good ranking and similar statistical
behaviour:

AMALGAM - SO: Vrugt, J.A.; Robinson, B.A.; Hyman, J.M.; , "Self-Adaptive

Multimethod Search for Global Optimization in Real-Parameter Spaces," Evolutionary
Computation, IEEE Transactions on , vol.13, no.2, pp.243-259, April 2009

http://math.lanl.gov/~vrugt/software/

AMALGAM - SO: A Multi ALgorithm Genetically Adaptive Method for Single
Objective Optimization. This method simultaneously merges the strengths of the
Covariance Matrix Adaptation (CMA) evolution strategy, Genetic Algorithm
(GA) and Particle Swarm Optimizer (PSO) for population evolution and
implements a self-adaptive learning strategy to automatically tune the number of
offspring these three individual algorithms are allowed to contribute during each
generation.
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Two recent algorithms with good ranking and similar statistical
behaviour:

MA-CMA-Chains: D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms

for Continuous Optimization Based on Local Search Chains. Evolutionary Computation, 18(1),
2010, 27-63.

Steady-state GA population

Iteration & “oe Iteration ¢ o Iteration

Figure 3: Example of LS chain. p;;, is the final parameter value reached by the LS
algorithm when it started with a value of p;. pp is the default value for the strategy
parameter

MA-CMA-Chains: Local search adaptation
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27-63

Every time the LS algorithm is applied to refine a particular chromosome, a fixed LS
intensity should be considered for it, which will be called LS intensity stretch (1_str). In
this way, a LS chain formed throughout n_app LS applications and started from solution
s 0 will return the same solution as the application of the continuous LS algorithm tos 0
employing n_app - I str fitness function evaluations.

After the LS operation, the parameters that define the current state of the LS processing
are stored along with the reached final individual (in the steady-state GA population).
When this individual is latter selected to be improved, the initial values for the
parameters of the LS algorithm will be directly available. For example, if we employ the
Solis and Wets’ algorithm as LS algorithm, the stored strategy parameter may be the
current value of the p parameter. For the more elaborate CMA-ES, the state of the LS
operation may be defined by the covariance matrix (C), the mean of the distribution
(~m), the size (o), and some additional variables used to guide the adaptation of these
parameters.
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27-63

1. Generate the initial population.
2. Perform the steady-state GA throughout ny,.. evaluations.

3. Build the set Sps with those individuals that potentially may be
refined by LS.

4. Pick the best individual in Sps (Let's cps to be this individual).

5. if cps belongs to an existing LS chain then

6.  Initialise the LS operator with the Ls state stored together with crs.
7. else

8.  Initialise the LS operator with the default LS state.

=]

. Apply the LS algorithm to cr s with an LS intensity of I (Let’s ¢f 5 to be the
resulting individual).

10. Replace er.s by ¢f g in the steady-state GA population.
11. Store the final LS state along with ¢} .

12. If (not termination-condition) go to step 2.

Figure 4: Pseudocode algorithm for the proposed MACO model
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010

MA-LSCh-CMA &1 i a-d
Steady-state GA. " :l U3 b,
BLX-a.

Negative Assortative Mating.

. Figure 5: BLX-a
BGA Mutation Operator.

Standard replacement strategy Hansen, N. and Ostermeier,A. (2001). Completely
. . derandomized self-adaptation in evolution strategies.
CMA-ES as Continuous LS algorithm. Evolutionary Computation 9(2): 159-195.

Parameter setting. For the experiments, MA-LSCh-CMA applies BLX-a with a = 0.5.
The population size is 60 individuals and the probability of updating a chromosome by
mutation 1s 0.125. The n_ass parameter associated with the negative assortative mating is
set to 3. The value of the L G ratio, r L/G, was set to 0.5, which represents an equilibrated
choice. Finally, a value of 1e-8 was assigned to the d6min LS threshold.
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27-63

] 1m0
25 Ml 50

Average 27
ranking 77

10 D 0

Dimension

Figure 6: Rankings obtained by MA-LSCh-CMA instances with difterent I, values

I str =500 1s the best choice
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27-63

Dimension 10
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Figure 7: Percentages of LS chains with ditferent lengths (D = 10)
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27-63

Dimension 30
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Figure 8: Percentages of LS chains with different lengths (D = 30)
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27-63
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Figure 9: Percentages ot LS chains with ditferent lengths (D) = 50)
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search

Chains. Evolutionary Computation, 18(1), 2010, 27-63

Comparison with State-of-the-Art MACOs

D H4 R— Critical value Sig. differences?
(MA-LSCh-CMA) (DEahcSPX)
10 135 75 52 Moy
30 169.5 40.5 o Yes
50 176.5 33.5 52 Yes

Table 7: DEahcSPX versus MA-LSCh-CMA (Wilcoxon's test with p-value = 0.05)

Noman, N. and Iba, H. (2008). Accelerating differential evolution using an adaptive local search.
IEEE Transactions on Evolutionary Computation. 12:1 (2008)107-125.
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MA-CMA-Chains: Local search adaptation

D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010,

Comparison with the Winner of the CEC200S Competition: G-CMA-ES

D R+ R— Critical value | Sig. dif.? | Sig. dit.?
(MA-LSCh-CMA) | (G-CMA-ES) | (p=0.05/p=0.1) (p=0.05) (p=0.1)
10 325 177.5 52/ 60 Yes Yes
30 139 7] 52/ 60 Mo Mo
50 154 i) 52/ 60 Mo Yes

Table 8: G-CMA-ES versus MA-LSCh-CMA (Wilcoxon's test with p-value = 0.05 and
p-value=0.1)

Auger, A. and Hansen, N. (2005a). A restart CMA evolution strategy with increasing population size. In
Proc. of the 2005 IEEE Congress on Evolutionary Computation, pages 1769-1776.

S. Garcia, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric Tests for Analyzing
the Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on Real
Parameter Optimization. Journal of Heuristics, doi: 10.1007/s10732-008-9080-4, 15 (2009) 617-644
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OTHER SPECIAL TRACKS

Arecombina o e Timamai cor A GECCO 2009 Workshop for Real-Parameter Optimization: Black-
Box Optimization Benchmarking (BBOB) 2009. GECCO 2009,
Computation Conference  Montreal, Canada, July 8-12 2009. Organizers: Anne Auger, Hans-
Oule e O Georg Beyer, Nikolaus Hansen, Steffen Finck, Raymond Ros, Marc
o on- oo Schoenauer, and Darrell Whitley.

A GECCO 2010 Workshop for Real-Parameter Optimization: Black-
Box Optimization Benchmarking (BBOB) 2010. GECCO 2010,
Portland, USA, July 7-11 2010. Organizers: Anne Auger, Hans-Georg
Beyer, Steffen Finck, Nikolaus Hansen, Petr Posik, Raymond Ros.
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Large Scale Global Optimization

Nowadays, the ability to tackle high-dimensional problems
is crucial to many real problems (bio-computing, data
mining, etc.), arising high-dimensional optimization
problems as a very interesting field of research.

The ability of being scalable for high-dimensional problems
becomes an essential requirement for modern optimization
algorithm approaches.

G-CMA-ES presents good results with a low/medium
number of variables but its drawback is associated to the
scalability — More than 100 variables



Large Scale Global Optimization

@ IEEE Special Session & Competition on Large Scale Global

Optimization at CEC 2008.

Workshop for Evolutionary Algorithms and other Metaheuristics
for Continuous Optimization Problems - A Scalability Test at
ISDA 2009.

Special Session & Competition on Large Scale Global

@ IEEE Optimization at CEC 2010.

Winner: Algorithm: MA-SSW-Chains

MA-SW-Chains: Memetic Algorithm Based on Local Search Chains for Large Scale
Continuous Global Optimization

D. Molina, M. Lozano, F. Herrera

Evolutionary Computation, 2010. WCCI 2010 IEEE World Congress on Computational
Intelligence. IEEE Congress on July, 18-23, 2010 Page(s): 3153 - 3160 .




Large Scale Global Optimization

Special Issue of Soft Computing:
I St Cotnprating Scalability of Evolutionary Algorithms and other Metaheuristics
for Large Scale Continuous Optimization Problems
= Volume 15, Number 11, 2011

http://sci2s.ugr.es/EAMHCO/#LSCOP-special-issue-SOCO
6. Complementary Material: SOCO Special Issue on Large Scale Continuous Optimization
Problems

» A set of 19 scalable function optimization problems were provided:

¢ 6 Funcionts: F1-Fé6 of the CEC'2008 test suite. A detailled d::acnptmn may be found in: K. Tan._ 1 ‘jao
P N. '%uu:mtha:n C. MacNish, Y. P. Chen, C. M. Chen, and Z. '1311': 3enchmark Functions for the C 00
Session and Competition on Large Scale Global Optimiz Tes.hmual Repm‘t Nature [n-‘pued
Ccrmputatmn :md Applications Laboratory, USTC, China, 2007. (So de

e 5 Shifted Functions: Schwefel’s Problem 2.22 (F7), Schwefel’s Problem 1.2 (F8), Extended f10 (F9),
Bohachevsky (F10), and Schaffer (F11). (Description) (Source code).

* 8 Hybrid Composition Functions (F12-F19%): ThEV are non- nepm able functions built by combining two
functions belonging to the set of functions F1-F11 (De Hon) (S ode).

The study was made with dimensions D =50, D = 100, D=200, D=500, and D =
1,000. The maximum number of fitness evaluations is 5,000-D.
Each run stops when the maximal number of evaluations is achieved.



Large Scale Global Optimization

= Special Issue of Soft Computing: Scalability of Evolutionary Algorithms and other Metaheuristics for
= Large Scale Continuous Optimization Problems Volume 15, Number 11, 2011 (7 DE approaches)

P01 - SOUPDE Shuffle Or Update Parallel Differential Evolution for Large Scale Optimization

P02 - DE-D0+M”m Role Differentiation and Malleable Mating for Differential Evolution: An Analysis on
Large Scale Optimisation

P03 -GODE Enhanced Opposition-Based Differential Evolution for Solving High-Dimensional Continuous
Optimization Problems

P04 - GaDE Scalability of Generalized Adaptive Differential Evolution for Large-Scale Continuous Optimization
P05 - jDEIlscop Self-adaptive Differential Evolution Algorithm using Population Size Reduction and Three
Strategies

P06 - SaDE-MMTS Self-adaptive Differential Evolution with Multi-trajectory Search for Large Scale
Optimization

P07 - MOS A MOS-based Dynamic Memetic Differential Evolution Algorithm for Continuous Optimization A
Scalability Test (best results)

P08 - MA-SSW-Chains Memetic Algorithms Based on Local Search Chains for Large Scale Continuous
Optimisation Problems: MA-SSW-Chains

P09 - RPSO-vm Restart Particle Swarm Optimization with Velocity Modulation: A Scalability Test

P10 - Tuned IPSOLS An Incremental Particle Swarm for Large-Scale Optimization Problems: An Example of
Tuning-in-the-loop (Re)Design of Optimization Algorithms

P11 -multi-scale PSO Multi-Scale Particle Swarm Optimization Algorithm

P12 - EVOPROpt Path Relinking for Large Scale Global Optimization

P13 - EM323 EM323 : A Line Search based algorithm for solving high-dimensional continuous non-linear
optimization problems

P14 - VXQR VXQR: Derivative-free unconstrained optimization based on QR factorizations




Large Scale Global Optimization

lecurqmil;

——  Special Issue of Soft Computing: Scalability of Evolutionary Algorithms and other Metaheuristics for

= Large Scale Continuous Optimization Problems Volume 15, Number 11, 2011
18

° =500

DE-D40+0m EvoPROpt GADE GCMAES GODE IPSOLS JDElEcop MASSWChains RPSOvm SADEMMTS SOUPDE WAORL

14
f=1]
g 12
-
= 10
L
(15 ;]
@
o &
= 4
2
o
DE-D40+Mm EM323 EvoPROpt GADE GCMAES GODE  IPSOLS  [DElscopMASSWChains RPSOvm SADEMMTS SOUPDE  WXQR1
Algorithm
16
4 D =1000
12
=)
E 10
=
] B
(15
c
= ]
L1}
= 4
2
o
I

Algorithm

A MOS-based Dynamic Memetic Differential Evolution Algorithm for Continuous Optimization A
Scalability Test. A. LaTorre, S. Muelas, J. M. Peria. Soft Computing, 15, pages: 2187-2199, 2011.



Large Scale Global Optimization

I Sl

Compalisg

= Large Scale Continuous Optimization Problems Volume 15, Number 11, 2011

The algorithm with best values is MOS, in the following Wilcoxon's test we compare this one
with the other algorithms,

D =500

—  Special Issue of Soft Computing: Scalability of Evolutionary Algorithms and other Metaheuristics for

Algorithm MOS value Other value Critical value Sig. differences?
p-value 5% error
CHC 189,5 0,5 46 Yes
DE 172 18 46 Yes
DE-D40+Mm 157 33 46 Yes
EM323 176 14 46 Yes
EvoPROpt 189,5 0,5 46 Yes
GADE 138 52 46 No
G-CMA-ES 166,5 23,5 46 Yes
GODE 167,5 22,5 46 Yes
IPSOLS 109 81 46 No
JDElscop 143,5 46,5 46 Yes
MASSWChains |182,5 7,5 46 Yes
RPSOvm 176 14 46 Yes
SADEMMTS 1325 57,5 46 Yes
SOUPDE 157 33 46 Yes
VXQRI 163,5 26,5 46 Yes




Large Scale Global Optimization

— Special Issue of Soft Computing: Scalability of Evolutionary Algorithms and other Metaheuristics for
= Large Scale Continuous Optimization Problems Volume 15, Number 11, 2011

The algorithm with best values is MOS, in the following Wilcoxon's test we compare this one
with the other algorithms,

D =1000

Algorithm MOS value Other value Critical value Sig. differences?
p-value 5% error
CHC 189,5 0,5 46 Yes
DE 176 14 46 Yes
DE-D40+Mm 157 33 46 Yes
EvoPROpt 190 0 46 Yes
GADE 138 52 46 No
G-CMA-ES 170,5 15,5 46 Yes
GODE 159 31 46 Yes
IPSOLS 95 95 46 No
JDElscop 153 37 46 Yes
MAS5WChains |163.5 26,5 46 Yes
RPSOvm 178 18 46 Yes
SADEMMTS 136,5 53,5 46 No
SOUPDE 167,5 22,5 46 Yes
VXQRI 160,5 29,5 46 Yes
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Real-world Numerical Optimization Problems

Special Track: Competition: Testing Evolutionary Algorithms on
@ IEEE Real-world Numerical Optimization Problems CEC'2011, New
Orleans, USA, Jun 5 - 8, 2011. Organizer: P.N. Suganthan.

4. Special Sessions and Workshops: Problem definitions and contributions (pdf files)
http://sci2s.ugr.es/ EAMHCO/#SS

Transmission Network Expansion Planning (TNEP) Problem
Large Scale Transmission Pricing Problem

9. Circular Antenna Array Design Problem

10. Dynamic Economic Dispatch (DED) Problem

11. Static Economic Load Dispatch (ELD) Problem

12. Hydrothermal Scheduling Problem

13. Messenger: Spacecraft Trajectory Optimization Problem

14. Cassini 2: Spacecraft Trajectory Optimization Problem

1. Parameter Estimation for Frequency-Modulated (FM) Sound Waves

2. Lennard-Jones Potential Problem

3. The Bifunctional Catalyst Blend Optimal Control Problem

4. Optimal Control of a Non-Linear Stirred Tank Reactor 13 Algorithms

S. Tersoff Potential Function Minimization Problem participate in the
6. Spread Spectrum Radar Polly phase Code Design Special Track

7.

8.



Real-world Numerical Optimization Problems

Special Track: Competition: Testing Evolutionary Algorithms on
@ IEEE Real-world Numerical Optimization Problems CEC'2011, New
Orleans, USA, Jun 5 - 8, 2011. Organizer: P.N. Suganthan.

4. Special Sessions and Workshops: Problem definitions and contributions (pdf files)
http://sci2s.ugr.es/ EAMHCO/#SS (9 DE approaches)

Algorithm: Hybrid DE-RHC

Algorithm: GA-MPC (GA with a New Multi-Parent Crossover)

Algorithm: SAMODE (Differential Evolution with Multiple Strategies)

Algorithm: Elite GA (Genetic Algorithm)

Algorithm: IADE (Adaptive Differential Evolution Algorithm)

Aigoritnm: ED-DE (Estimation of Distribution and Differential Evolution Cooperation)

Algorithm: EA-DE-MA (Hybrid EA-DE-Memetic Algorithm)

Algorithm: CDASA (Continuous Differential Ant-Stigmergy Algorithm)

Algorithm: SAPMCSBX (Modified SBX and Adaptive Mutation)

0. Algorithm: SACWIDE (Self Adaptive Cluster Based and Weed Inspired Differential
Evolution)

11. Algorithm: DE-Acr (Hybrid DE Algorithm With Adaptive Crossover Operator)

12. Algorithm: EPSDE (Ensemble Differential Evolution)

13. Algorithm: CDELS (Modified Differential Evolution with Local Search)

HOONOOR~WNE



Real-world Numerical Optimization Problems

Special Track: Competition: Testing Evolutionary Algorithms on Real-world Numerical
Optimization Problems CEC'2011, New Orleans, USA, Jun 5 - 8, 2011. : P.N. Suganthan.

12
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o
CDASA CDELS DE-ACr DE-RCH  EA-DE-MA ED-DE Elite GA EPSDE g IADE SACWIDE  SAMODE  SAPMCSBX
Algorithm

Algorithm: GA-MPC

GA with a New Multi-Parent Crossover for Solving IEEE-CEC2011 Competition Problems
Saber M. Elsayed; Ruhul A. Sarker, Daryl L. Essam

IEEE Congress on Evolutionary Computation, 2011. Jun, 5-8, 2011 Page(s): 1034 - 1040

STEP 4: For each three consecutive individuals, If u € [0,1] < cr

i)  Rank these three individuals from f(x;) < f(xi11) < f(x42)
ii) If one of the selected individuals is the same to another. then replace one of them with a random individual from the selection pool.
iii) Calculate p =N (1. o)
iv)  Generate three offspring (0;):
0y = x;+ B X (x; —x3)
02 =X+ B X (x3—x1)
03 = X3+ B X (X1 —x2)



Real-world Numerical Optimization Problems

Special Track: Competition: Testing Evolutionary Algorithms on Real-world Numerical
Optimization Problems CEC'2011, New Orleans, USA, Jun 5 - 8, 2011. : P.N. Suganthan.

The algorithm with best values is GA-MPC, in the following Wilcoxon's test we compare this
one with‘ the other algorithms.

Algorithm GA-MPC value  |Other value Critical value Sig. differences?
p-value 5% error
CDASA 2425 10,5 65 Yes
CDE-LS 239 14 65 Yes
DE-ACr 158,5 94,5 65 No
DE-RCH 2425 10,5 65 Yes
EA-DE-MA 235,5 17,5 65 Yes
ED-DE 230,5 22,5 65 Yes
Elite GA 229,5 23,5 65 Yes
EPSDE 235 18 65 Yes
IADE 2225 30,5 65 Yes
SACWIDE 2245 28,5 65 Yes
SAMODE 202 51 65 Yes
SAPMCSBX 2425 10,5 65 Yes

Algorithm: GA-MPC: GA with a New Multi-Parent Crossover for Solving IEEE-CEC2011 Competition Problems
Saber M. Elsayed; Ruhul A. Sarker; Daryl L. Essam
Evolutionary Computation, 2011. IEEE Congress on Jun, 5-8, 2011 Page(s): 1034 - 1040
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Non Rigorous Experiments:

It 1s usual to find a paper with a novel proposal:
“Advanced xxx algorithm”

For example: Advanced PSO, advanced DE ....

Authors compare the new proposal “Advanced xxx algorithm” with
the basic “xxx algorithm” or recent ““xxx algorithms” that are far from
the state of the art.

The proposal “Advanced xxx algorithm™ is better than previous
ones (of course) and authors claim on the “high quality of the
proposal”

From the local point of view is good but ... But the proposal

“Advanced xxx algorithm™ 1s far from the state of the art (G-
CMAES, MA-CMA-Chais, AMALGAM - SO)



Non Rigorous Experiments:

- lLocalvs Global Comparison

Examples for comparison:

SaDE: A. K. Qin, V. L. Huang, P. N. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, IEEE Transactions on Evolutionary
Computation, vol. 13, number 2, pp 398—417. 2009.

JADE: J. Zhang, A. C. Sanderson, JADE: Adaptive differential evolution with optional
external archive, IEEE Transactions on Evolutionary Computation, vol. 13, number 5, pp.
945-958. 20009.

DEGL: S. Das, A. Abraham, U. K. Chakraborty, A. Konar, Differential evolution using a
neighborhood-based mutation operator, IEEE Transactions on Evolutionary Computation,
vol. 13,

number 3, pp 526-553. 2009.

Frankestein PSO: MA. Montes de Oca, T. Stiitzle, M. Birattari, M. Dorigo,
Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm IEEE
Transactions on Evolutionary Computation, Vol 13:5 (2009) pp. 1120-1132

OLPSO: Z-H Zhan, J. Zhang, Y. L1, Y-H. Shi, Orthogonal Learning Particle

Swarm Optimization, IEEE Transactions on Evolutionary Computation, (2011)



Non Rigorous Experiments:

G-CMA-ES Vs RT R~ P-value
Frankenstein PSO | 278.0 | 22.0 | 6.39E-5
OLPSO Global 310.0 | 15.0 | 8.166E-6
SADE 263.0 | 37.0 | 6.498E-4
DEGL 325.0 | 0.0 | 5.960E-8
JADE 208.0 | 27.0 | 7.498E-5
-CMA-ES Vs RT R~ P-value
Frankenstein PSO | 286.5 | 385 | 4.030E-4
OLPSO Glaobal 325.0 0.0 5.960E-8
SADE 217.0 83.0 0.0564
DEGL 277.0 | 48.0 0.0013
JADE 216.5 | 108.5 0.1524
G-CMA-ES Vs R™ R~ P-value
Frankenstein PSO | 276.0 | 24.0 | 9.084E-5
OLPSO Global 281.0 44.0 8.082E-4
SADE 205.0 | 120.0 0.2457
DEGL 276.0 49.0 0.0015
JADE 217.0 | 108.0 0.148

Table 1: Results obtained by the
Wilcoxon test for algorithm G-
CMA-ES (D=10)

Table 2: Results obtained by the
Wilcoxon test for algorithm G-
CMA-ES (D=30)

Table 3: Results obtained by the
Wilcoxon test for algorithm G-
CMA-ES (D=50)



Non Rigorous Experiments:

- lLocalvs Global Comparison

Of course, the two following Kind of studies are important :

A) To propose new advances inside of techniques (DE, PSO, ...),
but authors must try to reach the state of the art.

B) New optimization frameworks, as a first idea on a new research
branch, are welcome: (third generation?)

Estimation of Distribution Algorithms

Chang Wook Ahn, Ramakrishna, R.S. (2008). On the scalability of real-coded bayesian
optimization algorithm. IEEE Transaction of Evolutionary Computation 12(3), 307-322 doi:
10.1109/TEVC.2007.902856.

Central Force Optimization

Formato, R.A. (2007). Central Force Optimization: A New Metaheuristic with Applications
in Applied Electromagnetics. Progress In Electromagnetics Research 77, 425-491 doi:
10.2528/PIER07082403.




Non Rigorous Experiments:

- lLocalvs Global Comparison

B) New optimization frameworks, as a first idea on a new research

branch, are welcome:

Artificial Bee Colony Optimization

Karaboga, D., Basturk, B. (2007). A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of Global
Optimization, 39, 459-471 doi: 10.1007/s10898-007-9149-x.

Variable mesh optimization

A. Puris, R. Bello, D. Molina, F. Herrera, Variable mesh optimization for continuous
optimization problems. Soft Computing - A Fusion of Foundations, Methodologies and
Applications (2011) 1-15, doi: 10.1007/s00500-011-0753-9, in press (2011).

Now it is necessary to advance in the development of
new/novel proposals inside of these frameworks,
making them competitive with the state of the art.
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Current trends

There are different areas of research that focus the attention of
researchers in “evolutionary parameter optimization”:

* The algorithms’ scalability: High dimensional problems

Recent review

Real-parameter evolutionary multimodal optimization — A survey
of the state-of-the-art

Swarm and Evolutionary Computation, 1:2 (2011), 7/-88
Swagatam Das, Sayan Maity, Bo-Yang Qu, P.N. Suganthan




Current trends

There are different areas of research that focus the attention of
researchers in “evolutionary parameter optimization”:

e Constraint optimization

Recent event: CEC10 Special Session / Competition on Evolutionary Constrained
Real Parameter single objective optimization

e Multi-objective optimization

The last high quality algorithm (state of the art): MOEA/D Homepage
http://dces.essex.ac.uk/staff/gzhang/webofmoead.htm

Q. Zhang and H. Li, MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition,
IEEE Trans. on Evolutionary Computation, vol.11, no. 6, pp712-731 2007.

H. Li and Q. Zhang, Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D
and NSGA-II, IEEE Trans on Evolutionary Computation, vol. 12, no 2, pp 284-302, April/2009

Q. Zhang, W. Liu, E. Tsang and B. Virginas, Expensive Multiobjective Optimization by MOEA/D with
Gaussian Process Model, IEEE Trans on Evolutionary Computation, vol. 14, no.3, pp 456-474, 2010.



Current trends

There are different areas of research that focus the attention of
researchers in “evolutionary parameter optimization”:

 New frameworks for Evolutionary parameter optimization
and the development of advanced approaches to compete
with the state of the art.

e Memetic Algorithms as the extension of hybrid approaches
(new frameworks and local search).

Recent high quality methods are MAs: MA-CMA-Chains
(Genetic Algorithm and CMAES as local search, standar dimension) MOS
(Dynamic Memetic Differential Evolution , large scale optimization)
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Final Comments

» Many real-world problems may be formulated as
optimization problems of parameters with variables in
continuous domains (parameter optimization problems).

» The development of high quality evolutionary algorithms
(improving known or developing new algorithms ) allows us
to tackle a large number of real-world applications.

» 1Itis very important to understand stochastic search in
continuous and high-dimensional search spaces to advance in
the topic.



Final Comments

Website: Evolutionary Algorithms and other Metaheuristics E :qg & ml )
for Continuous Optimization Problems Continuo ﬁgpﬁmkﬂﬂﬂ 4
http://sci2s.ugr.es’ EAMHCO/ *}Li :
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