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Abstract

The aim of this paper is to present a fusion approach of multi-granularity linguistic information for managing information
assessed in di�erent linguistic term sets (multi-granularity linguistic term sets) together with its application in a decision
making problem with multiple information sources, assuming that the linguistic performance values given to the alternatives
by the di�erent sources are represented in linguistic term sets with di�erent granularity and=or semantic. In this context, a
decision process based on two steps is proposed with a view to obtaining the solution set of alternatives. First, the fusion
of the multi-granularity linguistic performance values is carried out in order to obtain collective performance evaluations.
In this step, on the one hand, the multi-granularity linguistic information is made uniform using a linguistic term set as
the uniform representation base, the basic linguistic term set. On the other hand, the collective performance evaluations
of the alternatives are obtained by means of an aggregation operator, being fuzzy sets on the basic linguistic term set.
Second, the choice of the best alternative(s) from the collective performance evaluations is performed. To do that, a fuzzy
preference relation is computed from the collective performance evaluations using a ranking method of pairs of fuzzy sets
in the setting of Possibility Theory, applied to fuzzy sets on the basic linguistic term set. Then, a choice degree may be
applied on the preference relation in order to rank the alternatives. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many aspects of day-to-day activities are evaluated by means of imprecise and fuzzy qualitative values. As
was pointed out in [6] this may arise for di�erent reasons. There are some situations in which information may
be unquanti�able due to its nature, and thus, it can be stated only in linguistic terms (e.g., when evaluating
the “comfort” or “design” of a car, terms like “good”, “fair”, “poor” can be used). In other cases, precise
quantitative information cannot be stated because either it is unavailable or the cost for its computation is too
high and an “approximate value” can be tolerated (e.g., when evaluating the speed of a car, linguistic terms
like “fast”, “very fast”, “slow” can be used instead of numeric values).
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The use of Fuzzy Sets Theory has given very good results for modelling qualitative information [41]. It is a
technique that handles fuzziness and represents qualitative aspects as linguistic labels by means of “linguistic
variables”, that is, variables whose values are not numbers but words or sentences in a natural or arti�cial
language. The linguistic approach is used in di�erent �elds, such as for example, “information retrieval”
[2], “clinical diagnosis” [8, 34], “marketing” [40], “risk in software development” [25], “technology transfer
strategy selection” [5], “education” [24], “decision making” [10, 16, 33, 37], etc.
In any linguistic approach, an important parameter to determine is the “granularity of uncertainty”, i.e., the

cardinality of the linguistic term set used to express the information. According to the uncertainty degree that
an expert qualifying a phenomenon has on it, the linguistic term set chosen to provide his knowledge will
have more or less terms. When di�erent experts have di�erent uncertainty degrees on the phenomenon, then
several linguistic term sets with a di�erent granularity of uncertainty are necessary.
In this paper, we deal with the management of multi-granularity linguistic term sets applied to decision

making problems with numerous information sources. The information sources may be “experts” [22] or
“criteria” [13] or “purposes” [7, 23], but we do not distinguish among them, and interpret the decision
process with multiple information sources. Therefore, we consider decision making problems where a set of
alternatives must be analyzed according to di�erent sources in order to select the best one(s), being considered
as linguistic term sets with di�erent granularity and=or semantics, according to the uncertainty degree of each
source, in order to provide the performance evaluations.
We present a fusion approach of multi-granularity linguistic information which allows us to solve the

decision process. Following the classical decision scheme (aggregation and exploitation) [32], but considering
our particular decision context, we propose the following two steps for developing the decision process:
1. Fusion of multi-granularity linguistic information. A collective linguistic performance pro�le is obtained
by means of the fusion of multi-granularity linguistic performance pro�les provided by the di�erent
information sources. The fusion scheme presented is carried out in two phases:
(a) Making the information uniform. The performance values expressed using multi-granularity linguis-

tic term sets are converted into a speci�c linguistic domain, which is a basic linguistic term set
(BLTS), chosen so as not to impose useless precision to the original evaluations and in order to
allow an appropriate discrimination of the initial performance values. Each linguistic performance
value is de�ned as a fuzzy set on the BLTS, i.e., the semantic associated to the values of the initial
linguistic term sets is obtained by means of fuzzy sets de�ned in the new speci�c linguistic domain.

(b) Computing the collective performance values. For each alternative, a collective performance value is
obtained by means of the aggregation of the aforementioned fuzzy sets on the BLTS that represents
the individual performance values assigned to the alternative according to each information source.
Therefore, each collective performance value is a new fuzzy set on the speci�c linguistic domain,
the BLTS.

2. Choosing the best alternative(s). A fuzzy preference relation is computed from the collective perfor-
mance values (their associated fuzzy sets) using a ranking method of pairs of fuzzy sets in the setting
of Possibility Theory, applied to the fuzzy sets on the BLTS. Then, a choice degree is used to reach a
solution set of alternatives.

In order to do so, this paper is set out as follows. Section 2 briey explains the linguistic approach in
decision making. Section 3 presents a decision process with the fusion approach for managing multi-granularity
linguistic term sets. Section 4 develops an example, and �nally, some conclusions are pointed out.

2. The linguistic approach in decision making

Usually, in a quantitative setting, the information is expressed by means of numerical values, however,
when we work with vague or imprecise knowledge, the information could not be estimated with an exact
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Fig. 1. Hierarchy of expression domains.

numerical value. Then, a more realistic approach may be to use linguistic assessments instead of numerical
values, that is, we suppose that the variables which participate in the problem are assessed by means of
linguistic terms [41]. This approach is appropriate for a lot of problems, since it allows a representation
of the information in a more direct and adequate form if we are unable to express it with precision. In
decision making there are a great number of approaches using linguistic information, such as, Multiattribute
Decision Making [33], Multiobjective Decision Making [35], Possibility Evaluation Based on Ordinal Utility
[20], Multicriteria Multiperson Decision Making [4, 38], Multicriteria Decision Making [5, 15, 26], Linguistic
Evidence Based Decision Model [10], Group Decision Making [16, 17, 25], Consensus in Group Decision
Making [3, 18, 19], etc.
A linguistic variable di�ers from a numerical one in that its values are not numbers, but words or sentences

in a natural or arti�cial language. Since words, in general, are less precise than numbers, the concept of a
linguistic variable serves the purpose of providing a means of approximate characterization of phenomena,
which are too complex, or too ill-de�ned to be amenable to their description in conventional quantitative
terms.

De�nition 1 (Zadeh [41]). A linguistic variable is characterized by a quintuple (H; T (H); U; G;M) in which
H is the name of the variable; T(H) (or simply T) denotes the term set of H, i.e., the set of names of
linguistic values of H, with each value being a fuzzy variable denoted generically by X and ranging across a
universe of discourse U which is associated with the base variable u; G is a syntactic rule (which usually takes
the form of a grammar) for generating the names of values of H; and M is a semantic rule for associating
its meaning with each H, M(X ), which is a fuzzy subset of U.

Usually, depending on the problem domain, an appropriate linguistic term set is chosen and used to describe
the vague or imprecise knowledge. The number of elements in the term set will determine the granularity
of the uncertainty, that is, the level of distinction among di�erent countings of uncertainty. In [1] the use of
term sets with an odd cardinal was studied, representing the midterm by an assessment of “approximately
0.5”, with the rest of the terms being placed symmetrically around it and the limit of granularity being 11 or
not more than 13.
Fig. 1 shows an example of a complete hierarchical structure of expression domains. Level 1 provides the

domains with linguistic granularity, formed by the linguistic term sets, level 2 shows a �ner granularity than
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Fig. 2. Linguistic term sets.

level 1, i.e., it uses fuzzy sets as the expression domain, and �nally, level 3 presents the �nest granularity,
the numerical values in [0; 1].
The semantic of the elements in a linguistic term set is given by fuzzy numbers de�ned in the [0, 1] interval,

which are described by their membership functions. We know that the linguistic assessments are just approx-
imate ones given by the individuals, therefore, we can consider that linear trapezoidal membership functions
are good enough to capture the vagueness of those linguistic assessments, since it may be impossible or un-
necessary to obtain more accurate values. This representation is achieved by the 4-tuple (x0; x1; x2; x3), x1 and
x2 indicate the interval in which the membership function value is 1, and x0 and x3 are the left and right limits
of the de�nition domain of trapezoidal membership function. A particular case of this type of representation
are the linguistic assesments whose membership functions are triangular, i.e., x1 = x2, then we represent this
type of membership functions by a 3-tuple (x0; x1; x2), where x1 is the point where the membership is 1 and
x0 and x2 are the left and right limits of the de�nition domain of the triangular membership function.
Formally speaking, it seems di�cult to accept that all individuals should agree on the same membership

function associated to linguistic terms, and therefore, there are no universality distribution concepts. We can
�nd some situations where term sets exist with a similar syntax and di�erent semantic are used to evaluate
them. For instance, let us look at the following term sets (see Fig. 2):

Label set A Label set B

N None (0; 0; 0; 0:1) N None (0; 0; 0:16)
VL Very Low (0:04; 0:1; 0:18; 0:23) VL Very Low (0; 0:16; 0:33)
L Low (0:1; 0:15; 0:25; 0:35) L Low (0:16; 0:33; 0:49)
M Medium (0:25; 0:4; 0:6; 0:65) M Medium (0:33; 0:5; 0:67)
H High (0:58; 0:63; 0:8; 0:86) H High (0:49; 0:67; 0:84)
VH Very High (0:75; 0:90; 0:95; 0:99) VH Very High (0:67; 0:84; 1)
P Perfect (0:9; 1; 1; 1) P Perfect (0:84; 1; 1):

The �rst priority ought to be to establish what kind of term set to use. Let S = {si}; i∈H = {0; : : : ; T},
be a �nite and totally ordered term set in [0, 1] in the usual sense [1, 9]. Any label, si; represents a possible
value for a linguistic variable, that is, a vague property or constraint in [0, 1]. We consider a �nite term set,
S, as in [1] with its semantic given by linear trapezoidal=triangular membership functions. Moreover, it must
have the following characteristics:
(1) The set is ordered: si¿sj if i¿j.
(2) There is the negation operator: Neg(si)= sj such that j=T − i.
(3) There is the maximization operator: Max(si; sj)= si if si¿sj.
(4) There is the minimization operator: Min(si; sj)= si if si6sj.
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3. Managing multi-granularity linguistic term sets in decision making

The decision-making problem considered is de�ned as follows. Let X = {x1; x2; : : : ; xn} (n¿2) be a �nite
set of alternatives to be quali�ed according to a �nite set of information sources P= {p1; p2; : : : ; pm} (m¿2).
Each source pj provides a linguistic performance value pij for each alternative xi. Given that we deal with
multi-granularity linguistic term sets in decision-making problems, we assume that each pj may use a di�erent
linguistic term set Sj to express the performance values. The linguistic term sets {Sj; ∀j} may have a di�erent
granularity and=or semantics. Therefore, for each pj, the performance pro�le of the alternatives is de�ned as
a linguistic fuzzy choice subset de�ned over X and assessed linguistically on Sj:

pj→ (p1j; : : : ; pnj) pij∈Sj Sj = {sj0; : : : ; sjkj} j∈{1; : : : ; m};

where kj+1 is the cardinality of Sj. In this framework, the objective of a decision process is the identi�cation
of the alternatives which are judged the best according to the evaluations provided by the sources.
As was mentioned earlier, the decision process proposed is developed in two steps:
1. Fusion of multi-granularity linguistic information.
2. Choosing the best alternatives.
In the following subsections, we analyze each step in greater detail. But, before this, we should point out

some previous considerations:
• We assume a representation of performance pro�les based on linguistic fuzzy choice subsets, but if some
sources prefer to use linguistic preference relations [16], then we may easily obtain their respective linguistic
fuzzy choice subsets applying some of the linguistic choice functions proposed in [14], and so on using
another linguistic preference structure. In this sense, there is no lack of generality on the representation
approach.

• We assume that all sources assess the alternatives on the same scale (speci�cally the unit interval [0,1]),
i.e., with term sets covering the same range of that scale and the only di�erence being the granularity. The
problem of managing information when di�erent scales are used is not addressed here.

3.1. Fusion of multi-granularity linguistic information

It consists of obtaining a collective performance pro�le on the alternatives according to the individual
performance pro�les (assessed in multi-granularity linguistic term sets). So, we present a fusion tool of multi-
granularity linguistic information which, as was mentioned earlier, is performed in two phases:
1. Making the information uniform.
2. Computing the collective performance values.

They are analyzed in the following subsections.

3.1.1. Making the information uniform
With a view to managing the information we must make it uniform, i.e., the multi-granularity linguistic

information provided by all the sources must be transformed (under a transformation function) into a uni�ed
linguistic term set, as we mentioned, called BLTS, and denoted as ST .
Before de�ning a transformation function to this BLTS, ST , we have to decide how to choose ST . We think

that ST must be a linguistic term set which allows us to maintain the uncertainty degrees associated to each
purpose and the ability of discrimination to express the performance values. With this goal in mind, we look
for a BLTS with the maximum granularity. We consider two possibilities:
• When there is only one term set with the maximum granularity, then, it is chosen as ST .
• If we have two or more linguistic term sets with maximum granularity, then ST is chosen depending on
the semantics of these linguistic term sets, �nding two possible situations to establish ST :
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Fig. 3. Term set with 15 terms.

1. If all the linguistic term sets have the same semantics, then ST is any of them.
2. There are some linguistic term sets with di�erent semantics. Then, ST is a basic linguistic term set with
a larger number of terms than the number of terms that a person is able to discriminate (normally 11
or 13, see [27]). We de�ne a BLTS with 15 terms and the following semantics (see Fig. 3):

s0 (0; 0; 0:07) s1 (0; 0:07; 0:15)
s2 (0:07; 0:15; 0:22) s3 (0:15; 0:22; 0:29)
s4 (0:22; 0:29; 0:36) s5 (0:29; 0:36; 0:43)
s6 (0:36; 0:43; 0:5) s7 (0:43; 0:5; 0:58)
s8 (0:5; 0:58; 0:65) s9 (0:58; 0:65; 0:72)
s10 (0:65; 0:72; 0:79) s11 (0:72; 0:79; 0:86)
s12 (0:79; 0:86; 0:93) s13 (0:86; 0:93; 1)
s14 (0:93; 1; 1):

Remark 1. We should point out that the justi�cation on this choice is based under the idea that the semantic
is a parameter used by the conversion process, and thus, it has e�ect on the �nal result. We decide to use a
symmetrical term set with a granularity bigger than the number of terms that an expert is able to discriminate
(11 or 13, see [27]).

We de�ne a transformation function, which represents each linguistic performance value as a fuzzy set
de�ned in the BLTS, ST , as follows.

De�nition 2. Let A= {l0; : : : ; lp} and ST = {c0; : : : ; cg} be two linguistic term sets, such that, g¿p. Then, a
multi-granularity transformation function, �AST is de�ned as

�AST :A→F(ST );

�AST (li)= {(ck ; �ik) =k∈{0; : : : ; g}}; ∀li∈A;
�ik = maxy

min{�li(y); �ck (y)};

where F(ST ) is the set of fuzzy sets de�ned in ST , and �li(y) and �ck (y) are the membership functions of
the fuzzy sets associated to the terms li and ck , respectively.

Therefore, the result of �AST for any linguistic value of A is a fuzzy set de�ned in the BLTS, ST .
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Fig. 4. Term sets A and ST .

Remark 2. As was mentioned earlier, we consider that all the information sources use the same scale ([0,1]).
Then, we have chosen the max–min operation in this de�nition because it is a classical tool to set the
matching degree between fuzzy sets [13, 43]. However, many other speci�cations could be chosen, e.g., to
use a t-conorm and a t-norm [13] instead of max and min operations, respectively.

Example. Let A= {l0; l1; : : : ; l4} and ST = {c0; c1; : : : ; c6} be two term sets, with 5 and 7 labels, respectively,
and with the following semantics associated (see Fig. 4):

l0 (0; 0; 0:25) c0 (0; 0; 0:16)
l1 (0; 0:25; 0:5) c1 (0; 0:16; 0:34)
l2 (0:25; 0:5; 0:75) c2 (0:16; 0:34; 0:5)
l3 (0:5; 0:75; 0:1) c3 (0:34; 0:5; 0:66)
l4 (0:75; 1; 1) c4 (0:5; 0:66; 0:84)

c5 (0:66; 0:84; 1)
c6 (0:84; 1; 1):

The fuzzy sets obtained after applying �AST for l0 and l1 are:

�AST (l0)= {(c0; 1); (c1; 0:58); (c2; 0:18); (c3; 0); (c4; 0); (c5; 0); (c6; 0)};
�AST (l1)= {(c0; 0:39); (c1; 0:85); (c2; 0:85); (c3; 0:39); (c4; 0); (c5; 0); (c6; 0)}:

In Fig. 5, we can see the conversion process for both labels graphically.
Using the multi-granularity transformation functions {�SjST ; ∀j} a conversion process consists of the

transformation of all the linguistic performance pro�les provided by the multiple information sources

{p1j; : : : ; pnj}; ∀pj (pij∈Sj)
into ST . Then we represent each linguistic performance value pij as a fuzzy set de�ned on ST = {c0; : : : ; cg}
characterized by the following expression:

�SjST (p
ij)= {(c0; �ij0 ); : : : ; (cg; �ijg )}:

Thus, the performance pro�le of a source pj is represented as a set of fuzzy sets on ST ,

{�SjST (p1j); : : : ; �SjST (pnj)}:
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Fig. 5. l0 and l1 as fuzzy sets on ST .

We denote �SjST (p
ij) as r ij, and represent each fuzzy set of performance, r ij, by means of its respective

membership degrees, i.e.,

r ij =(�ij0 ; : : : ; �
ij
g ):

In the following subsection, we present how to obtain the collective performance values of each alternative
assuming the given representation of the individual performance values.

3.1.2. Computing collective performance values
As we have just shown, the individual performance value over an alternative xi provided by a information

source pj is de�ned as the performance fuzzy set r ij on the BLTS, ST . Then, the collective performance value
of an alternative xi according to all the source evaluations {r ij;∀j} is obtained by means of the aggregation
of these fuzzy sets. This collective performance value, denoted r i, is a new fuzzy set de�ned on ST , i.e.,

r i=(�i0; : : : ; �
i
g);

characterized by the following membership function:

�ik =f(�
i1
k ; : : : ; �

im
k );

where f is an “aggregation operator”.
Therefore, the result of this step in our decision process is a set of collective evaluations, that provides

the collective performance value of each alternative according to all the source evaluations supplied for those
alternatives, i.e.,

{r1; : : : ; rn}:
In the following subsection, we show how to achieve a solution set of alternatives from the collective

evaluation of the alternatives.

3.2. Choosing the best alternatives

The goal of the decision process is to reach a set with the best alternative(s) according to the performance
values of all the sources. In our case, the performance values of the alternatives are fuzzy sets on the BLTS,
r i, and in this framework, it is not an easy task to de�ne a choice method. We solve this di�culty by
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changing the representation of the collective evaluations based on fuzzy sets in ST , for a representation based
on a fuzzy preference relation. We have decided to use a fuzzy preference relation because it contains a large
quantity of information for the choice of alternatives. It is a well studied and applied preference structure
in the literature [7, 13, 21, 23, 28, 29, 31]. Then, we use a ranking method of pairs of fuzzy sets in the
setting of Possibility Theory. We apply the degree of possibility of dominance on fuzzy numbers [12] acting
on fuzzy sets (r i) in a discrete universe (the BLTS). Therefore, we present a method to obtain the solution
set of alternatives composed by two steps:
1. Computing a fuzzy preference relation.
2. Applying a choice degree to this relation in order to rank the alternatives and to choose the best one(s).

3.2.1. Computing a fuzzy preference relation
We present the de�nition of the degree of possibility of dominance and its particularization to act on fuzzy

sets de�ned in the BLTS.

De�nition 3 (Dubois and Prade [12]). Let u and v be two fuzzy numbers, the degree of possibility of dom-
inance of u over v is:

P(u¿v)= max
z
min
y6z

{�u(z); �v(y)}:

De�nition 4. Let xi; xj∈X (i 6= j) be two alternatives with their respective collective performance fuzzy sets
r i; r j∈F(ST ); then the degree of possibility of dominance of xi over xj, bij, is obtained according to the
following expression:

bij = max
cl
min
ch6cl

{�ri(cl); �r j (ch)}; cl; ch∈ST ;

where �ri(cl)= �
i
l and �rj (ch)= �

j
h.

Applying this de�nition over all the possible pairs of the alternatives (i 6= j), we obtain a fuzzy preference
relation B= [bij].

Remark 3. The collective performance values on the alternatives are fuzzy sets, and then, for obtaining a
ranking of the alternatives, a fuzzy set comparison procedure is needed. When we have to rank various fuzzy
sets there are at least two ways of achieving this purpose:
1. to extend the pairwise possibilistic indices to n-ary versions, and
2. to build fuzzy relations through pairwise comparison of the fuzzy sets, and then to process these relations
so as to obtain some �nal rankings.

We have decided to use the second approach because the fuzzy preference relations contain the maximum
information for the choice of alternatives. For computing the fuzzy preference relation we have proposed the
method based on Possibility Theory because this has demonstrated to be a natural framework for the derivation
of comparison indices aiming at ranking fuzzy numbers. It is applied in decision-analysis problems where the
attractiveness of alternatives must be evaluated and compared [12]. Furthermore, we have simpli�ed it using
only the fuzzy relation obtained from a particular index of possibility of dominance (maxz miny¿z). We �nd
that it gives the maximum information for computing a fuzzy preference relation [12].

3.2.2. Applying a choice degree
Finally, the decision process �nds the solution set of alternatives applying a choice degree or function to

the fuzzy preference relation, B. Di�erent choice functions can be found in [13, 31]. Using one of them we
can rank the alternatives and choose those ones with the maximum value of choice degree.
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The following section presents a particular example of this described decision process.

4. Example of a decision process under multiple sources of multi-granularity linguistic information

4.1. Example of application

Suppose an investment company, which wants to invest a sum of money in the best option. There is a
panel with four possible alternatives of where to invest the money:
• x1 is a car industry,
• x2 is a food company,
• x3 is a computer company,
• x4 is an arms industry.
The investment company has a group of four consultancy departments.

• p1 is the risk analysis department,
• p2 is the growth analysis department,
• p3 is the social-political analysis department,
• p4 is the environmental impact analysis department.
Each department is directed by an expert, and thus, each expert is a information source. These experts use,

to provide their preferences over the alternative set, di�erent linguistic term sets. Speci�cally:
• p1 provides his preferences in the set of 9 labels, A:
• p2 provides his preferences in the set of 7 labels, B:
• p3 provides his preferences in the set of 5 labels, C:
• p4 provides his preferences in the set of 9 labels, D:

Label set A Label set B

a0 (0; 0; 0:12) b0 (0; 0; 0:16)
a1 (0; 0:12; 0:25) b1 (0; 0:16; 0:33)
a2 (0:12; 0:25; 0:37) b2 (0:16; 0:33; 0:5)
a3 (0:25; 0:37; 0:5) b3 (0:33; 0:5; 0:66)
a4 (0:37; 0:5; 0:62) b4 (0:5; 0:66; 0:83)
a5 (0:5; 0:62; 0:75) b5 (0:66; 0:83; 0:1)
a6 (0:62; 0:75; 0:87) b6 (0:83; 1; 1)
a7 (0:75; 0:87; 0:1)
a8 (0:87; 1; 1)

Label set C Label set D

c0 (0; 0; 0:25) d0 (0; 0; 0; 0)
c1 (0; 0:25; 0:5) d1 (0; 0:01; 0:02; 0:07)
c2 (0:25; 0:5; 0:75) d2 (0:04; 0:1; 0:18; 0:23)
c3 (0:5; 0:75; 1) d3 (0:17; 0:22; 0:36; 0:42)
c4 (0:75; 1; 1) d4 (0:32; 0:41; 0:58; 0:65)

d5 (0:58; 0:63; 0:80; 0:86)
d6 (0:72; 0:78; 0:92; 0:97)
d7 (0:93; 0:98; 0:99; 1)
d8 (1; 1; 1; 1)
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After an in depth study each expert provides the following performance values:

Alternatives
x1 x2 x3 x4

p1 a4 a6 a3 a5
Experts p2 b3 b4 b3 b5

p3 c2 c3 c2 c1
p4 d4 d5 d3 d5

In the following subsection, we present a particular decision process which allows us to solve this example.

4.2. A decision process under multiple sources of multi-granularity linguistic information based on the
OWA operator and the non-dominance choice degree

This particular decision process follows the same scheme as the proposed general decision process, but it
presents the following two peculiarities:
1. The collective performance values r i are obtained using as the aggregation operator f the OWA operator
guided by a fuzzy linguistic quanti�er [36, 39], representing the concept of “fuzzy majority”.

2. The choice scheme is guided by the “non-dominance choice degree” de�ned by Orlovski [28].
Both elements are presented in Appendix A.
Then, the decision process with multiple sources of multi-granularity linguistic information may be sum-

marized by the following steps:
1. Fusion of multi-granularity linguistic information
It is performed in the following two phases:

• Making the information uniform. In this phase, we have to choose the appropriate BLTS, ST = {c0; : : : ;
cg}: In this case, there are two term sets with the maximum granularity and di�erent semantics, then, we
choose as ST the special term set of 15 labels given in Fig. 3. All the assessments must be converted to
ST by means of the set of muti-granularity tranformation functions {�AST ; �BST �CST ; �DST }. We obtain the
following results:

r11 (0; 0; 0; 0; 0:05; 0:45; 0:8; 0:82; 0:48; 0:23; 0; 0; 0; 0; 0)

r12 (0; 0; 0; 0; 0:11; 0:45; 0:65; 0:95; 0:68; 0:39; 0:1; 0; 0; 0; 0)

r13 (0; 0; 0; 0:22; 0:35; 0:59; 0:8; 0:98; 0:75; 0:52; 0:32; 0:1; 0; 0; 0)

r14 (0; 0; 0; 0; 0:3; 0:77; 1; 1; 1; 0:51; 0; 0; 0; 0; 0)

r21 (0; 0; 0; 0; 0; 0; 0; 0; 0:25; 0:99; 0:7; 0:31; 0:01; 0; 0)

r22 (0; 0; 0; 0; 0; 0; 0; 0:35; 0:63; 0:94; 0:76; 0:46; 0:2; 0; 0)

r23 (0; 0; 0; 0; 0; 0; 0:01; 0:25; 0:5; 0:7; 0:9; 0:9; 0:65; 0:45; 0:2)

r24 (0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 0:55; 0; 0)

r31 (0; 0; 0; 0:18; 0:55; 0:95; 0:7; 0:35; 0; 0; 0; 0; 0; 0; 0)

r32 (0; 0; 0; 0; 0:1; 0:45; 0:65; 0:95; 0:68; 0:39; 0:1; 0; 0; 0; 0)

r33 (0; 0; 0; 0:22; 0:35; 0:59; 0:8; 0:98; 0:75; 0:52; 0:32; 0:1; 0; 0; 0)

r34 (0; 0; 0:41; 1; 1; 0:99; 0; 0; 0; 0; 0; 0; 0; 0; 0)

r41 (0; 0; 0; 0; 0; 0; 0; 0:36; 0:71; 0:91; 0:56; 0:22; 0; 0; 0)
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r42 (0; 0; 0; 0; 0; 0; 0; 0; 0; 0:23; 0:54; 0:84; 0:86; 0:58; 0:3)

r43 (0:25; 0:4; 0:7; 0:9; 0:87; 0:65; 0:4; 0:2; 0; 0; 0; 0; 0; 0; 0)

r44 (0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1:55; 0; 0):

• Computing the collective performance values. In this phase, for each alternative xi; we compute its
collective performance value using the OWA operator, FQ; guided by a fuzzy linguistic quanti�er Q
(see Appendix A) as the aggregation operator f. Particularly, we use the quanti�er “As many as possible”
with its parameters (0.5,1), i.e., with weighting vector W = {0; 0; 0:5; 0:5}. Then, the collective performance
values obtained are:

r1 (0; 0; 0; 0; 0:08; 0:45; 0:72; 0:88; 0:58; 0:31; 0; 0; 0; 0; 0)

r2 (0; 0; 0; 0; 0; 0; 0; 0; 0:12; 0:82; 0:73; 0:38; 0:1; 0; 0)

r3 (0; 0; 0; 0:05; 0:23; 0:52; 0:32; 0:17; 0; 0; 0; 0; 0; 0; 0)

r4 (0; 0; 0; 0; 0; 0; 0; 0; 0; 0:12; 0:27; 0:11; 0; 0; 0);

where, for example, the value �16 is obtained according to this expression:

�16 =FQ(0:8; 0:65; 0:8; 1)=0:72:

2. Choosing the best alternatives
It is also performed in the following two phases:

• Computing a fuzzy preference relation. In this phase, we obtain the collective preference relation B= [bij]
according to De�nition 4. Therefore, from the above collective evaluations we �nd out the following fuzzy
preference relation B:

B=




− 0:31 0:52 0:12

0:82 − 0:52 0:27

0:45 0 − 0

0:27 0:27 0:27 −


 :

For example, we show how the preference degrees b12 and b13 are computed:

b12 = max
ci
min
cj6ci

{�r1 (ci); �r 2 (cj)}=(0:58 ∧ 0:12) ∨ (0:31 ∧ 0:12) ∨ (0:31 ∧ 0:82)=0:31

b13 = (0:08 ∧ 0:05) ∨ (0:08 ∧ 0:23) ∨ (0:45 ∧ 0:05) ∨ (0:45 ∧ 0:23)
∨ (0:45 ∧ 0:52) ∨ (0:72 ∧ 0:05)
∨ (0:72 ∧ 0:23) ∨ (0:72; 0:52) ∨ (0:72 ∧ 0:32) ∨ (0:88 ∧ 0:05)
∨ (0:88 ∧ 0:23) ∨ (0:88 ∧ 0:52) ∨ (0:88 ∧ 0:32)
∨(0:88 ∧ 0:17) ∨ (0:58 ∧ 0:05) ∨ (0:58 ∧ 0:23) ∨ (0:58 ∧ 0:52)
∨ (0:58 ∧ 0:32) ∨ (0:58 ∧ 0:17) ∨ (0:31 ∧ 0:05) ∨ (0:31 ∧ 0:23)
∨ (0:31 ∧ 0:52) ∨ (0:31 ∧ 0:32) ∨ (0:31 ∧ 0:17)=0:52;

where ∨ stands for “max” and ∧ stands for “min”.
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• Applying the non-dominance choice degree. For each alternative xi, we calculate its non-dominance choice
degree NDDi as is shown in the Appendix A. First, the strict preference relation Bs is computed:

Bs =




− 0 0:07 0

0:51 − 0:52 0

0:0 0 − 0

0:15 0 0:27 −


 :

Then, we compute the non-dominance choice degree of each alternative:

{NDD1 = 0:49; NDD2 = 1; NDD3 = 0:48; NDD4 = 1};
where, for example NDD1 is computed as:

NDD1 = min{(1− 0:51); (1− 0); (1− 0:15)}=0:49:
And �nally, we obtain the maximal solution set of alternatives, which is the set of maximal non-dominated
alternatives, according to the following expression:

XND=

{
xi=xi∈X; NDDi= sup

xj∈X
{NDDj}

}
:

Therefore, our decision process ends obtaining the following solution set of alternatives:

XND= {x2; x4}:

Remark 4. The alternatives x2 and x4 are non-dominated with degree 1 and are the chosen alternatives.
If we want to achieve a more speci�c solution set of the alternatives, we could also apply other di�erent
choice functions over the set X, as for example, it occurs in [7] where the total solution is obtained as the
intersection of the partial solutions. Of course, the last consideration does not imply to do an iterative sequence
of application of a same choice function over the maximal solution sets, because we may �nd non-monotone
choice functions which, in such a case, obtain contradictory solutions (for example, it may occur with the
non-dominance choice degree, see [30]).

5. Concluding remarks

In this paper, we have presented a fusion tool of multi-granularity linguistic information applied in a decision
making problem with multiple information sources (purposes or experts or criteria) that provide the linguistic
performance values on the alternatives using linguistic fuzzy choice subsets assessed on linguistic term sets
with di�erent multi-granularity and=or semantic.
We are setting frameworks in which the sources that participate in the decision processes may express

their judgments by means of information of a di�erent nature according to their preferences. In [11], we
studied group decision making problems in which the experts used numerical ([0, 1]) and linguistic (a term
set Si) expression domains to give their preferences. We proposed techniques and operators for combining
the numerical and linguistic information to solve the group decision making processes. Therefore, by joining
both proposals, we shall be able to manage multi-source decision making problems with numerical and multi-
granularity linguistic information.
Finally, an aspect of this paper that is worth to be pointed out, is the introduction of a tool for managing

multi-granularity linguistic information, which represents a �rst approach to model multi-granularity linguistic
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frameworks. We have shown its application in decision theory, but, of course, it may be used in other �elds,
e.g., information retrieval, diagnosis, etc.
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Appendix A. The OWA operator and the non-dominance degree

A.1. The OWA operator as quanti�er guided aggregation operator

In any decision process with multiple information sources the �nal decisions must be made according to
the majority of performance pro�les given by the di�erent sources. Traditionally, the majority is de�ned as
a threshold number of individuals. However the majority is itself a fuzzy nature concept. Fuzzy majority is
a soft majority concept, which is manipulated via a fuzzy logic based calculus of linguistically quanti�ed
propositions [42]. In [21] Kacprzyk speci�ed fuzzy majority rule by means of a fuzzy linguistic quanti�er
[42] to derive various solution concepts for group decision making problems. Here, we work in a similar way,
but in the �eld of quanti�er guided aggregations as in [39].

De�nition 5 (Yager [36]). Let A= {a1; : : : ; an} be a set of values to be aggregated; the ordered weighted
averaging (OWA) operator F is de�ned as

F(a1; : : : ; an)=WBT =
n∑
i=1

wibi;

where W = {w1; : : : ; wn} is a weighting vector, such that, wi∈[0; 1] and
∑

i wi=1 and B is the associated
ordered value vector, where bi∈B is the ith largest value in A.

Given that we are interested in the area of quanti�er guided aggregations, following Yager’s method [36],
we may calculate weights of the OWA operator using fuzzy linguistic quanti�ers, which, for a non-decreasing
relative quanti�er, Q, is given by

wi=Q(i=m)− Q((i − 1)=m); i=1; : : : ; m:

The non-decreasing relative quanti�er, Q, is de�ned as [42]

Q(y)=




0 if y¡a;

y − a
b− a if a6y6b;

1 if y¿b;

with a; b; y∈[0; 1], and Q(y) indicating the degree to which the proportion y is compatible with the meaning
of the quanti�er it represents. Some examples of non-decreasing relative quanti�ers are shown in Fig. 6, where
the parameters (a; b) are (0:3; 0:8), (0; 0:5) and (0:5; 1), respectively.
In the following, FQ denotes the OWA operator whose weights are computed using the linguistic quanti-

�er, Q.



F. Herrera et al. / Fuzzy Sets and Systems 114 (2000) 43–58 57

Fig. 6. Non-decreasing relative quanti�ers.

A.2. The non-dominance degree acting over fuzzy preference relations

This degree is obtained for each alternative xi from a fuzzy preference relation and it indicates the degree
in which the alternative xi is not dominated by the remaining alternatives. Its de�nition is given as:

De�nition 6 (Orlovski [28]). Let B= [bij] be a fuzzy preference relation de�ned over a set of alternatives X .
For the alternative xi, its non-dominance degree, NDDi; is obtained as

NDDi= min
xj

{1− bsji; j 6= i};

where bsji= max{bji − bij; 0} represents the degree to which xi is strictly dominated by xj.
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