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Abstract

The purpose of this paper is to study a fuzzy multipurpose decision making problem, where the information about the
alternatives provided by the experts can be of a diverse nature. The information can be represented by means of preference
orderings, utility functions and fuzzy preference relations, and our objective is to establish a general model which cover
all possible representations. Firstly, we must make the information uniform, using fuzzy preference relations as uniform
preference context. Secondly, we present some selection processes for multiple preference relations based on the concept of
fuzzy majority. Fuzzy majority is represented by a fuzzy quantifier, and applied in the aggregation, by means of an OWA
operator whose weights are calculated by the fuzzy quantifier. We use two quantifier guided choice degrees of alternatives,
a dominance degree used to quantify the dominance that one alternative has over all the others, in a fuzzy majority sense,
and a non dominance degree, that generalises Orlovski’s non dominated alternative concept. The application of the two
above choice degrees can be carried out according to two different selection processes, a sequential selection process and a
conjunction selection process. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Multipurpose decision making; Preference orderings; Utility functions; Fuzzy preference relations; Fuzzy majo-
rity; Selection process

1. Introduction

A process of decision making, consisting in deriv-
ing the best option from a feasible set, is present in just
about every conceivable human task. As a result, the
study of decision making is necessary and very impor-
tant not only in Decision Theory but also in areas such
as Operations Research, Management Science, Poli-
tics, Social Psychology, Artificial Intelligence, etc.

The basic model of a decision in a classical norma-
tive Decision Theory has very little in common with
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real decision making because it portrays a decision as a
clear-cut act of choice, in an environment in which the
goals, constraints, information and consequences of
possible actions are supposed to be precisely known.
The only component in which uncertainty is permit-
ted is the occurrence of the different states of nature,
for which probabilistic descriptions are allowed. How-
ever, when the uncertainty is of a qualitative nature,
the use of other techniques is necessary.

Fuzzy sets theory might provide the flexibility
needed to represent the uncertainty resulting from
the lack of knowledge. There exist many opportuni-
ties to apply fuzzy sets theory in decision making.
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Fuzzy tools and methodologies can be used either
to translate imprecise and vague information in the
problem specification into fuzzy relationships (fuzzy
objectives, fuzzy constraints, fuzzy preferences,...)
or to design a decision process trying to establish
preference orderings of alternatives. Different fuzzy
decision making problems were described in [13]. It
is obvious that the comparison of different actions
according to their desirability in decision problems,
in many cases, cannot be done by using a single
criterion or an unique person. We do not distinguish
between “‘persons” and “criteria”, and interpret the
decision process in the framework of multipurpose
decision making (MPDM) [14]. This has led to nu-
merous evaluation schemes, and has become a ma-
jor concern of research in decision making. Several
authors have provided interesting results on group
decision making or social choice theory and multicri-
teria decision making with the help of fuzzy theory
[6-8, 12, 14, 15, 18, 26]. In all these decision making
problems, procedures have been established to com-
bine opinions about alternatives related to different
points of view. Most procedures are based on pair
comparisons, in the sense that processes are linked
to some degree of credibility of preference of any
alternative over another, even if the input data cor-
responds to an evaluation (utility, physical or mone-
tary value) related to each alternative considered for
each point of view. In this latter case a pair of alter-
natives can be compared in a transitive way on the
basis of their evaluations.

A classical MPDM procedure follows two steps
before to achieve a decision [3}: aggregation and
exploitation. The aggregation phase defines an out-
ranking relation which indicates the global preference
between every ordered pair of alternatives, taking
into consideration the different points of view. The
exploitation phase transforms the global information
about the alternatives into a global ranking of them.
This can be done in different ways, the most common
one being the use of a ranking method to obtain a
score function.

We will consider MPDM problems where, for each
purpose (expert or criterion), the information about
the alternatives can be supplied in different ways. Usu-
ally, nonfuzzy preferences may be represented as the
set of preferred alternatives (choice set), preference
relations (orderings), or utility functions (cardinal)

[22]. Analogously, the following three representations
of fuzzy preferences may be considered: fuzzy choice
sets, fuzzy preference relations, and fuzzy utility func-
tions [22]. With a view to build a more flexible frame-
work and to give more freedom degree to represent
the preferences, we will assume a MPDM model in
which the preferences can be provided in any of these
three ways:

e As a preference ordering of the alternatives. In
this case the alternatives are ordered from the best
to the worst, without any other supplementary in-
formation.

e As a fuzzy preference relation. This is the usual
case, i.e., when an expert supplies a fuzzy binary re-
lation over the set of alternatives, reflecting the de-
gree to which an alternative is preferred to another.

o As an utility function. In this case an expert sup-
plies a real evaluation (physical or monetary value)
for each alternative, i.e., a function that associates
each alternative with a real number indicating the
performance of that alternative according to his
point of view.

Assuming this framework, our objective in this pa-
per is to establish general MPDM models so that we
can cover all those possible representations of the in-
formation, i.e., preference orderings, utility functions
and fuzzy preference relations. With this objective
in mind, firstly, we make the information uniform,
using fuzzy preference relations as the main element
of the uniform representation of the preferences. And,
secondly, we design generic selection processes in
MPDM (i) based on the concept of fuzzy majority
[9], which is used to represent the concept of a so-
cial opinion, and (ii) using the OWA operator [23] as
aggregation operator.

In order to do this, the paper is set out as follows.
The MPDM problem is presented in Section 2. How to
make the information uniform is discussed in Section
3, where we present a general model to relate pref-
erence orderings, utility values and fuzzy preference
relations. Section 4 presents the selection processes
of alternatives for multiple fuzzy preference relations.
Then, and for the sake of illustrating the classifica-
tion method of alternatives, Section 5 is devoted to
develop an example. In Section 6 some conclusions
are pointed out. Finally, the descriptions of fuzzy ma-
jority concept and the OW A operator are presented in
the Appendices A and B, respectively.
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2. Presentation of the problem

The problem we will deal with is that of choos-
ing the best alternative(s) among a finite set, X =
{x1,X2,...,%,}, (n=2). The alternatives will be
classified from best to worst, using the informa-
tion known according to a set of general purposes
(experts or criteria). In the following, without lack
of generality, we will use the term experts, ie.,
E ={ey,e,...,en} (m=2). As each expert, ¢; € E,
is characterised by their own ideas, attitudes, moti-
vations and personality, it is quite natural to think
that different experts will provide their preferences in
a different way. Then, we assume that the experts’
preferences over the set of alternatives, X, may be
represented in one of the following three ways:

1. A preference ordering of the alternatives. In
this case, an expert, e;, provides his preferences
on X as an individual preference ordering, O =
{o*(1),...,0"(n)}, where o*(-) is a permutation func-
tion over the index set {1,...,n} for the expert e
[3, 19). Therefore, according to the viewpoint of each
expert, an ordered vector of alternatives, from the
best one to the worst one, is given.

2. A fuzzy preference relation. With this repre-
sentation, the expert’s preferences on X is described
by a fuzzy preference relation, P* C X x X, with
membership function, pp: X x X — [0, 1], where
ppr(xi,x;) = p{‘j denotes the preference degree of the
alternative x; over x; [9, 11, 14, 20, 21]. We assume
that P* is reciprocal without loss of generality, i.e.,
by definition [17, 20, 21]: (i) pfj + pf,- = 1 and (ii)
pE = — (undefined), Vi, j, k.

3. Ar utility function. In this case, an expert e
provides his preferences on X as a set of n utility
values UF = {u¥, i = 1,...,n}, u* € [0,1], where
u* represents the utility evaluation given by the expert
e to the alternative x; [16, 22].

In this context, the resolution process of the MPDM
problem consists of obtaining a set of solution alter-
natives X C X from the preferences given by the ex-
perts. Since the experts provide their preferences in
different ways, to obtain a uniform representation of
the preferences must be the first step of the resolu-
tion process of the MPDM problem. Achieving this
uniform representation, we can develop from it any
known selection process [3, 7, 9]. In this sense, the
resolution process of the considered MPDM problem
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Fig. 1. Resolution process of the MPDM problem.

presents the scheme given in Fig. 1. Therefore, the
general model that we propose is developed in the
following 2 steps:

1. Making the information uniform. For every
preference ordering and set of utility values we derive
an individual fuzzy preference relation. To do this,
several transformation functions, which are a gener-
alisation of methods used in [3, 20, 21], are proposed.

2. Application of a selection process. As we said
earlier, we apply selection processes in two steps [3]:

(a) Aggregation phase. Using the concept of
fuzzy majority represented by a linguistic quan-
tifier and applied in the aggregation operations
by means of an OWA operator [23], a collective
fuzzy preference relation is obtained from all in-
dividual fuzzy preference relations.

(b) Exploitation phase. Using again the con-
cept of fuzzy majority, but in another sense, two
choice degrees of alternatives are used: the quan-
tifier guided dominance degree and the quantifier



36 F. Chiclana et al. | Fuzzy Sets and Systems 97 (1998) 3348

guided non dominance degree [3]. These choice

degrees will act over the collective preference

relation supplying a selection set of alternatives.

In the next section we study the problem of the uni-

form representation and analyze different transforma-

tion functions to achieve an uniform representation,
which are based on fuzzy preference relations.

3. Making the information uniform

In this general framework, where the information
provided by a group of experts is supposed to be of a
diverse nature (with these three different representa-
tions of the information), we need to make the infor-
mation uniform. As we said at the beginning, due to
their apparent merits, we propose to use fuzzy pref-
erence relations as the base element of the uniform
representation. The use of fuzzy preference relations
in decision making situations to represent an expert’s
opinion about a set of alternatives, appears to be a
useful tool in modelling decision processes, overcoat
when we want to aggregate experts’ preferences into
group preferences, that is, in the resolution processes
of the MPDM problems {1, 2, 7-10, 17, 18, 20, 21].
Furthermore, preference orderings and utility values
are included in the family of fuzzy preference rela-
tions {22] and most of the existing results on MPDM
are obtained under fuzzy preferences relations [1, 2,
7-11, 14, 17, 20, 21].

Therefore, as it is shown in Fig. 1, we need some
transformation functions to transform preference or-
derings and utility values into fuzzy preference rela-
tions. In the next subsections we analyse this aspect
and present a generical transformation function which
can be used to deal with preference orderings as well
as with utility values.

3.1. Utility values and preference relations

The relationship between utility values, given on
the basis of a positive ratio scale, and fuzzy prefer-
ence relations will be studied in this subsection. It
is assumed that each expert e, provides his prefer-
ences on X by means of a set of utility values U* =
{u*, i =1,...,n},i.e., each alternative x; is supposed
to have associated a real number ¥ indicating the per-
formance of that alternative according to the expert

e;.. For every set of utility values U*, we will suppose,
without loss of generality, that the higher the evalua-
tion, the better the alternative satisfies the expert.

Any possible transformation function 4 to derive a
fuzzy preference relation from a set of utility values,
must obtain for an expert ¢, his preference value of
the alternative x; over x;, pﬁ.‘j, depending only on the
values of u¥ and u%, i.e. [4],

pl = h(uf,ub).

This transformation function 2 must satisfy that the
more uf the more p¥, and the more u¥ the less p¥;.
Therefore, it must be a non-decreasing function of the
first argument and a non-increasing function of the
second argument [4].

An example of this type of transformation functions,
defined from utility values which are given on the
basis of a positive ratio scale, are those that obtain the
credibility value of preference of any alternative over
any other alternative depending on the value of the
quotient between the respective utility values of the
alternatives, i.e.,

uf-‘
k=14,
J

where / is a non-decreasing function. This type of
transformation functions / have been investigated by
Luce and Suppes [16].

Interpreting uf/u* as a ratio of the preference in-
tensity for x; to that of x;, that is, x; is uf-‘/uf times
as good as x;, and assuming a reciprocal fuzzy pref-
erence relation, a possible transformation function to
obtain the intensity of preference of the alternative x;
over alternative x; for expert ez, pf-‘j, may be defined
as [4]

pk=10 ﬁ —~______u§/u§
v ujf uf»‘/uf + (uf/uf-‘)

by L
W sahy T

Other examples of this type of functions may be found
in [20-22], as the following:

k k
k 12 u; U; . s
7y (uj‘) uf +uk’
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Obviously, these are not the only functions we can
use to transform utility values given on the basis
of a positive ratio scale into fuzzy preference re-
lations. As we will show later, both functions are
particular cases of a general family of transformation
functions.

Without loss of generality, we suppose that utility
values belong to [0, 1]. Then the transformation func-
tion that we look for

h:[0,11 x [0,1] — [0, 1]

has to verify the following properties:
1. A(z, y)+ A(y,z) = 1 Vz,y € [0, 1].
2. h(z,z) = 3 Yz € [0, 1].

3. h(z,0) =1Vz €[0,1].
4. Kz,y) > % ifz>yVz,ye[0,1].

o Property 1 is the reciprocity condition [17, 20, 21].

e Property 2 is a consequence of property 1, and
indicates the indifference of an expert between two
alternatives verifying his criterion with the same
intensity.

¢ Property 3 means that if an expert has certain knowl-
edge that an alternative does not satisfy his criterion,
then any alternative satisfying his criterion with a
positive value should be preferred with the maxi-
mum degree of preference.

e Finally, property 4 indicates that between two al-
ternatives, the expert gives a definite preference
to the alternative with higher evaluation over the
other. This is a consequence of property 2 and the
fact that function, A, has to be non-decreasing in
the first argument and non-increasing in the second

argument.
Without loss of generality, we assume that

1

h(z,y)= m,

where
t:[0,1] x [0,1] — &,

is a non-increasing function of the first argument and
a non-decreasing function of the second argument. To
solve the above equation we assume ¢ is a function
able to be written so that variables are separated muli-
tiplicatively, i.e. that 7 is a separable function. This
assumption is based on the fact that the set of utility

values are given on the basis of a positive ratio scale,
and it is necessary and relevant as we will show later.
We then have

1
L+r(z)-s(y)
where r and s are functions with same domain [0, 1],

same sign, non-increasing the first and non-decreasing
the second, respectively. From property 2 we have

r(z) -s(z) =1,

h(z,y) =

vz € [0, 1].

Therefore, r = 1/s, with s(n) # 0 for any » belonging
to the domain of definition of s. But, from property 3,
we have that s(0) = 0, so that

5:[0,1] = &7,

and for n = 0 r(-) is not defined, therefore, below we
will consider the particular case (0, 0). The expression
of & transforms into

s(z)
s(z)+s(y)

This expression is not defined when (z, y) = (0,0) but
from property 2 we can define it as

h(z,y) =

h(0,0) = 1.

A desirable property to be verified by the defined
fuzzy preference relation should be that if the valua-
tions (u:-‘,uf) of a pair of alternatives (x;,x;) change
slightly, then the preference degree between them
( pf-‘j) should change slightly too, i.e. it would be de-
sirable for 7 to be continuous. This can be achieved
if s is a continuous function.

To support the separable assumption we have made
above, let us consider the following. We were trying
to find functions

h:[0,1] x[0,1] — [0,1],

verifying

h(z,y)+h(y,z)=1, Vz,y €[0,1]
Without loss of generality, we assume that

h(zy) =[P, Vzye[01],
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where ¢'(z, y) € [0,1]. Then, we have
@)+l =1,

We can represent the above equation in the parametric
form:

Vz,y € [0,1].

t'(z,y) =cosy, t(y,z)=siny,

where y € [0, %n] represents the value of the vector
angle of a point with cartesian coordinates (z, y) or,
in general, (g(z),q(y)), where

g:[0,1] — @&

is any non-decreasing and continuous function, veri-
fying ¢{0) = 0. We then have

q(z)
VIg@P + O

and, therefore,

¥ = arccos

q(z) .
[q(2)1* + [g(»)]?
Finally, writing s(z) = [¢(z)]*, equation of # becomes
5(z)
s(@2)+s(y)

Therefore, summarizing, we have the following
results.

(z,y) =

h(z,y)=

Proposition 1. For every set of utility values,
U* = {uf,...,uk}, over a set of alternatives, X =
{x1,..-,X%x}, given on the basis of a positive ratio
scale, the preference of alternative x; over x;, p{‘j,
is obtained from the ratio u{‘/uj-‘ by the following
transformation function h:

pl=h'(uf uj

s(uzk) . k k
—{s@h+seh Ve 700
1

3 lf(uxk’ujk)=(010)

where s:[0,1]— & is any non-decreasing and con-
tinuous function, verifying s(0) = 0.

G #J)

Corollary 1.1. When s(u¥)=u¥ the transformation
function, h', reduces to the transformation function

12, proposed in [20, 21]. On the other hand, when
s(uF)y=(uk), then it reduces to the transformation
Sfunction I', proposed in [4].

The relationship between utility values, given on
the basis of a difference scale, and fuzzy preference
relations is studied in the following subsection.

3.2. Preference orderings and preference relations

In this case, let us assume that each expert e; pro-
vides his preferences on X by means of a preference
ordering O%s = {0*(1),...,0%(n)}. For every prefer-
ence ordering O, we will suppose, without loss of
generality, that the lower the position of an alternative
in a preference ordering, implies the better the alterna-
tive satisfies the expert, and vice versa. For example,
suppose that an expert e; supplies his preferences
about a set of four alternatives X = {x),xp,%3,%4}
by means of the following ordering preference O* =
{3,1,4,2}. This means that alternative x, is the best
for that expert, while alternative x3 is the worst.

We proposed in [3] a first approach to derive a
fuzzy preference relation from a preference ordering.
Clearly, an alternative satisfies an expert more or less
depending on its position in his preference ordering.
Therefore, in our approach, we considered that for an
expert ¢, his preference value of the alternative x; over
x;, p¥, depends only on the values of o* (i) and o*(;),
i.e., we assert that there exists a transformation func-
tion f that assigns a credibility value of preference of
any alternative over any other alternative, from any
preference ordering,

Pk = f0*(i),0*(j)).

This transformation function f must satisfy that the
more of(i) the less p¥, and the more o*(;) the more
p,’j Therefore, it must be a non-increasing function
of the first argument and a non-decreasing function of
the second argument [4].

An example of this type of transformation functions
are those that obtain the credibility value of preference
of any alternative over any other alternative depending
on the value of the difference between the alternatives’
positions, i.e.,

(" (1), 0*())) = g(o*(j) — o* (1)),
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where g is a non-decreasing function. For example, in
[3] we use the following transformation function:

pE=9"(0"(j) — o*(i))
1 if o*(j) > o*(i)
0 if of(i) > o*(j)

(i # J)-

This transformation function g' derives non-fuzzy
preference relations, where p ,’; reflects the degree in
{0, 1} to which x; is declared not worse than x; for
the expert, e;. In our example, the alternative x; is
not worse than alternatives x4, x, x3; the alternative x4
is not worse than alternatives xj,x3, and, finally, the
alternative x; is not worse than alternative x3. There-
fore, we obtain the following non-fuzzy preference
relation:

-0 1 0
pe_ |1 - 11
0 0 - 0
1 0 1 —

The simplicity and easy use are the only virtues of
this particular transformation function, g'. However,
this preference relation does not reflect the case when
an expert is not able to distinguish between two alter-
natives, that is when there is an indifference between
two alternatives, although this can be achieved with
an extension of this function g' as follows:

pl=4"*(j) — o*(i))
if o%(j) — 0* (i) >0

if of(j) — ¥ i) =0 (G #)).
if o¥(j) — o* (i) < 0

(=

In any case, both functions g' and g* do not reflect any
kind of intensity of preference between alternatives
when we compare pairs of alternatives, that is, for ex-
ample, they do not distinguish between the preference
of alternative x; over x4 and the preference of alterna-
tive x; over x3. Therefore, to deal with these situations
we need to use another type of function which reflects
appropriately the different positions between alterna-
tives, and for example, if p%, = % then p% and pf;
should be equal to %, but p%, should be greater than
or equal 2 and less than or equal p%;.

This new type of function can be achieved, for
example, by giving a value of importance or utility to
each alternative, in such a way that the lower the po-
sition of an alternative, the higher the value of utility.
We can assume that the preference of the best al-
ternative over the worst alternative is the maximum
allowed, that is 1. So if, for example, 0*(i) = 1 and
0*(j) = n, then we assume that p¥ = 1. In this case,
the utility value u¥ associated to alternative x; depends
on the value of its position 0*(i), in such a way that
the bigger the value of n — 0%(i), the bigger the value
of u¥, that is

ub=v(n — o*®i)),

where v is a non-decreasing function. As an example,
we can assign the value

ke:

ut = vn — oty = =2,
n—1

as a degree of importance or utility of the alternative
x; according to the preference ordering O¥, provided
by an expert e;. It is clear that the maximum utility
value corresponds to the first alternative and the min-
imum utility value to the last alternative in the prefer-
ence ordering. In this context, we have a normalised
set of n utility values, that is,

MAX {uf} — MIN {u*} < 1.

Therefore, we have utility values given on the basis
of a difference scale. For this type of utility values,
Tanino proposed in [20, 21] a transformation func-
tion to obtain preferences between the alternatives p{‘j
which is defined from the difference (uf — u f ), as
follows:

ph=gwf —up) =31 +uf —uj).

This transformation function ¢g> has been investigated
by Dombi [5]. Dombi defined g> as an universal
preference function and showed that the utility based
decision making gives the same result as the prefer-
ence based using the universal preference function.

In our case, the transformation function of utility
values (based on difference scale) given by Tanino
[20, 21], becomes the following transformation func-
tion of preference orderings:

1 KG) oG
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and therefore, the preference value p{j- is given de-
pending on the difference o*(j) — o*(i).

These two transformation functions of preference
ordering g% and g* allow preference values, pé» to
verify the following four relationships:

» 0<pk<i, Vi)

o phi+ph=1,Vij

e When there is an indifference between two alter-
natives, that is, when 0*(i) = o*( ), then pf =1,

Vi, j.

o pk> 1 if of(i) < o*(j), Vij.

Obviously, these are not the only functions that can
be used to transform preference orderings into fuzzy
preference relations. As we will show later, g° and g*
are particular cases of a general family of functions
that can be used to transform preference orderings into
fuzzy preference relations.

We are looking for a general expression of the trans-
formation function of preference orderings into fuzzy
preference relations f in such a way, that given a pair
of alternatives (x;,x;) of which we only know their po-
sition numbers in a preference ordering (0% (i), 0*(/)),
then it gives us the preference of x; over x; according to
expert e, p,’j This transformation function f as was
aforementioned, must be a non-increasing function of
the first argument and a non-decreasing function in the
second argument, and furthermore, has to verify the
following properties:

1. f(0*(i),0*(j)) €[0,1], Vi, j.

2. f(0* (i), 0* (1)) + f(O* (). 0" (D)) = 1, Vi, j.

3. f(o*(@),0*())) = 3 if oF(i) = 0*()), Vi, /.

4. f(ok(i),0*(j)) > 1 if o*(i) < 0% ()), Vi, j.
These properties are equivalent to the above four
relationships verified by the transformation functions
g* and g*.

As was aforementioned, there exists a function g
such that, the credibility value of preference of any
alternative over any other alternative p,-"j is obtained
depending on the value of the difference between the
alternatives’ positions, i.e.,

Pl = f(0*(1),0°())) = g(o*(j) - * (i),
where g is a non-decreasing function. Furthermore, g
must verify

1. g(z)€[0,1].

2. g(z)+g(-2)=1.

3. 9g(z)> % ifz>0.

Without loss of generality, it can be assumed that g
presents the following:

g9(z) = 3 +d(2),

where d is a non-decreasing function verifying
1. d(z)e[-1,1].
2. d(z)+d(—z)=0.
3.d(z)>0ifz>0.

We then have

Pl = 3 +d(o"(j) ~ o* (D).
Property 2 implies
—d(z) = d(-z),

that is, d is an odd function. On the other hand, the

following result is well known:
“A function d: D — R with a symmetric domain

is an odd function if and only if there exisis a
function F:D — R verifying

F(z)~-F(-z) »
-

Applying this result to our situation, we have the fol-
lowing consequences:

d(z) =

Proposition 2. Suppose we have a set of alternatives
X ={x1,...,xx}, and associated with it a preference
ordering of any expert 0% = {o*(1),...,0%(n)}. Then,
the preference degree of alternative x; over x;, p }‘j, is
given by the following transformation function f:

Pt = 10" (),0*(j))
= 1[1 + F(o*(j) — o*(i)) — F(o*(i) — 0¥ (/))],

where F is any non-decreasing function.

Corollary 2.1. Suppose that the preference degree of
the best alternative over the worst alternative in a
preference ordering is the maximum allowed, that is
1, then:

1. When the function F is presented in the follow-
ing way:

% if z>0,
Fz)=¢0 ifz=0,
—% ifz<0

Sfunction f! reduces to expression of function g*.
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2. When the function F is presented in the follow-
ing way:
a-z
F(Z) - —_2—9
where a € R, if a = 1/(n — 1) then ' reduces to
expression of function g*.

Suppose 0*(i) and of() are the position numbers
of alternatives x; and x; according to the preference
ordering O*, provided by an expert ¢;, respectively. In
what follows, both 0% (i) and 0*( /) can be replaced by
uf=v(n—ok(i)) and u¥ = v(n—0*(j)), respectively,
or in general by two real numbers u ¥ and uj’-‘ given on
the basis of a difference scale.

Proposition 3. Suppose we have a set of alternatives,
X ={x1,...,x:}, and a set of n utility values, U* =
{u {‘, ...,uX} associated to X, given on the basis of a
difference scale, then the preference value p{‘j is given
by the following transformation function f*:

ph= 2l uf) =411+ Fuf —uf) = F(u} —uf)),
where F is any non-decreasing function.

Corollary 3.1. Expression of function f* reduces to
Tanino’s transformation function g°, when

F(z)=

NN

Corollary 3.2. Suppose we have a set of alternatives,
X, and associated with it any preference ordering O*.
Then, taking

uf =v(n—ok()) =a-[n— o),

with a = 1/(n— 1) (so _function v is non-decreasing),
then

K n—ok(i)

i >

n—1
and if, as above we did,

z
F (Z ) = 5!

then function f?* reduces to transformation func-
tion g*.

3.3. Preference orderings, utility values
and preference relations

This section summarises everything we have seen
in the previous subsections. The result we present
includes all the results we have obtained, and in
that sense can be considered as a general theorem
to be used when we wish to make the information
uniform.

Proposition 4. Suppose we have a set of alternatives,
X = {x1,...,xp}. Suppose that 1}; represents an
evaluation of alternative x;, that is a function that
associates each alternative, x;, with a real number
indicating the performance of that alternative, x;
according to a point of view (expert or criterion),
er. Then, the intensity of preference of alterna-
tive x; over alternative x;, p{‘j for that point of
view is given by the following transformation
Junction

where  is a _function verifying

1.y (z,2) = %, VzER.

2. ¥ is non-decreasing of the first argument and
non-increasing of the second argument.

Proof. Without loss of generality, we can assume that
the higher the evaluation, the better the alternative
satisfies the expert. The intensity of preference p{‘j is
given by

Pl =¥ 1),

where ¥/ is a non-decreasing function of the first argu-
ment and a non-increasing function of the second ar-
gument. We are assuming a fuzzy preference relation
being reciprocal, i.e.,

(A Aj) + (A, 4) = 1.
We then have
Y(zz)=1, VzeX,
and

V(i a;) = 1= (4, 4).
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Consequently,
PE=Vnd) =5 20 ( 4))
=10 (A, 4) + ¥ (A, 4))]
=3 (And) + 1 = ¥ (4, ).

Corollary 4.1 (Proposition 2). Suppose we have a
set of alternatives X, and associated with it any pref-
erence ordering O*. Then, the preference degree of
alternative x; over x;, p {‘j, is given by the transfor-
mation function @, where Y(z, y) = F(y — z), being
F any non-decreasing function.

Proof. In this case 4; = 0*(i), and then
¥ (A dj) = F(hi — &) = F(*(j) — 0*(1)),

where F is a non-decreasing function. Therefore, ¢
reduces to the transformation function f!.

Corollary 4.2 (Proposition 3). Suppose we have a
set of n utility values U* associated to X, given on
the basis of a difference scale, then the preference of
x; over Xj, p ,kj, is given by the transformation func-
tion @, where \y(z,y) = F(z — y), where F is any
non-decreasing function.

Proof. In this case 4; = n — of = u¥, and then

Y(hi,Ay) = F(A; — 4) = F(uf —u}),

and therefore, ¢ reduces to the transformation func-
tion f2.

Corollary 4.3 (Proposition 1). Suppose we have a
set of n utility values U* associated to X, given on
the basis of a positive ratio scale, then the prefer-
ence p ,’; is given by the transformation function @,
where

s(z) .
@ +s0) if (z,y) # (0,0),

! if (z, ) = (0,0),

Y(z,y)=

where s: [0,1] :— R" is any non-decreasing and
continuous function, verifying s(0) = 0.

Proof. Indeed, expression of Proposition 1 can be
rewritten in the following way:

s@h 1 2-suh)
s +s@h) T 2 5@h +s@h)

pi=
1 2-s(u{‘)+s(u;‘) —s(uj’-‘)
T2 s(u{‘)—{—s(uj’?)

s(ub) = s(u)
@b+ s@h)

s@f) )
s(u{‘)—i—s(u}‘) s(uf‘)-%—s(ujk) ’

RS ECHEXICH
T2 s(u{‘)+s(uJ’F)

1
== |1
3|+

and therefore, ¢ reduces to transformation function 4.

4, The decision process

In this section we will deal with choosing the alter-
native(s) which is (are) considered to be desirable for
the group as a whole. For that reason, and afier the
information is uniformed into fuzzy preference rela-
tions, we have a set of m individual fuzzy preference
relations. The selection processes we present here,
as said at the beginning, has two steps: aggregation
and exploitation. The aggregation phase defines a col-
lective fuzzy preference relation, which indicates the
global preference between every ordered pair of alter-
natives. The exploitation phase transforms the global
information about the alternatives into a global rank-
ing of them, supplying a selection set of alternatives.

4.1. Aggregation: The collective fuzzy preference
relation

Once we have made the information uniform, we
have a set of m individual fuzzy preference relations
{P,...,P™}. From this set of relations we derive the
collective fuzzy preference relation P°. Each value
P§; €10, 1] represents the preference of alternative x;
over alternative x; according to the majority experts’
opinions. Traditionally, the majority is defined as a
threshold number of individuals. Fuzzy majority is a
soft majority concept expressed by a fuzzy quantifier,
which is manipulated via a fuzzy-logic-based calcu-
lus of linguistically quantified propositions [25]. Then,
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we will compute each pf; using an OWA operator
[23], as the aggregation operator of information. The
OWA operator reflects the fuzzy majority calculating
its weighting vector by means of a fuzzy quantifier.
Therefore, the collective fuzzy preference relation is
obtained as follows:

Py = do(pijs-.-, PH),

where Q is the fuzzy quantifier used to compute the
weighting vector of the OWA operator ¢.

4.2. Exploitation: Choosing the alternative(s)

At this point, in order to select the alternative(s)
“best” acceptable to the group of individuals as a
whole, we will use two quantifier guided choice
degrees of alternatives, based on the concept of fuzzy
majority: a dominance degree and a non-dominance
degree. Both are based on the use of the OWA oper-
ator. The application of these two choice degrees of
alternatives can be carried out according to two dif-
ferent selection policies: a sequential selection policy
and a conjunction selection policy [3].

4.2.1. Choice degrees of alternatives

Concretely, we use the two following quantifier
guided choice degrees:

1. Quantifier guided dominance degree. For the
alternative, x;, we compute the quantifier-guided dom-
inance degree QGDD; used to quantify the dominance
that one alternative has over all the others in a fuzzy
majority sense as follows:

OGDD,=$o(pS, j=1,...,n, j#i).

2. Quantifier guided non-dominance degree. We
also compute the quantifier guided non-dominance de-
gree OGNDD; according to the following expression:

QGNDD; =¢o(1 ~ pj;, j=1,...,n, j#i),

where

Pi= maX{P;i—P?j,O},

represents the degree to which x; is strictly domi-
nated by x;. In our context, QGNDD; gives the de-
gree in which each alternative is not dominated by a
fuzzy majority of the remaining alternatives. We note
that when the fuzzy quantifier represents the statement

“all ”, whose algebraic aggregation corresponds to the
conjunction operator Min, then this non-dominance
degree coincides with Orlovski’s non-dominated al-
ternative concept [17], i.e., it generalises Orlovski’s
concept.

4.2.2. Selection policies

The application of the above choice degrees of al-
ternatives over X may be carried out according to two
different policies.

1. Sequential policy: Selecting and applying one
of them according to the preference of the experts,
and thus obtaining a selection set of alternatives. If
there is more than one alternative in that selection
set, then the other choice degree may be applied to
select the alternative of the above set with the best
second choice degree. This policy defines a sequential
selection process.

2. Conjunctive policy: Applying the two choice
degrees to X, obtaining the final selection set of
alternatives as the intersection of the two previous
selection sets of alternatives. This policy defines a
conjunction selection process.

We note that the latter conjunction selection process
is more restrictive than the former sequential selection
process because it is possible to obtain an empty se-
lection set. Therefore, in a complete selection process
the choice degrees can be applied in three steps [3]:

Step 1: The application of each choice degree of
alternatives over X to obtain the following sets of
alternatives:

x0GDD _ {xl_ x;€X, OGDD; = sup QGDDJ} )
xEX
Y OGNDD _ {xi x;€X, OGNDD;= sup QGNDD]}
xE€EX

whose elements are called maximum dominance ele-
ments of the fuzzy majority of X quantified by O and
maximal non-dominated elements by the fuzzy major-
ity of X quantified by Q, respectively.

Step 2: The application of the conjunction selection
policy, obtaining the following set of alternatives:

X QGCP _ y OGDD - x QGNDD

If X 90CP =£ (), then End.
Otherwise continue.
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Step 3: The application of the one of the two se-
quential selection policies, according to either a dom-
inance or non-dominance criterion, i.e.,

— Dominance based sequential selection process
QG-DD-NDD. To apply the quantifier guided
dominance degree over X, and obtain X 960D If
#(X99PPY=1 then End, and this is the solution
set. Otherwise, continue obtaining

x QG—DD—NDD

_ {

This is the selection set of alternatives.

— Non-dominance based sequential selection pro-
cess QG-NDD-DD. To apply the quantifier
guided non-dominance degree over X, and obtain
XQONDD 1f 4( X 2ONDDy— | then End, and this is
the solution set. Otherwise, continue obtaining

x €X9PP OGNDD; = sup QGNDD; 3.
p i

X, € X 96D

x 9G—NDD—DD

_ {

This is the selection set of alternatives.

x;€X9D GGDD, = sup QGDD j} .

x;€ X QGNPD

5. Example

Consider the following illustrative example of the
classification method of alternatives studied in this
paper. Suppose that we have a set of six experts,
E={ej,ez,e3,e4,e5,e6}, and a set of four alternatives,
X ={x1,x2,%3,x4}. Suppose that experts e;, e, sup-
ply their opinions in terms of preference orderings,
experts e;, e4 in terms of utility values, and experts
es, e in terms of fuzzy preference relations. Suppose
the information is the following:

e;: 0'={3,1,4,2},

ey 0°={3,2,1,4},

ey: U*={05,0.7,1,0.1},
eq: U*={0.7,09,0.6,0.3},

— 01 06 07
s 109 — 08 04

e P'=104 02 - 09
03 06 01 -—

~ 05 07 1
6 |05 — 08 06
e P'=103 02 - o8
0 04 02 -—

Using transformation functions /' and g* to make
the information uniform, we have

.1 2 1 1 1 2
6 3 2 3 6 3
5 .1 2 2 11
1_ | 6 3 2 3 i 6
Pl= L g - L I~ = 502 1
3 6 6 3
L - 135 —
2 3 & 3 5 0
F_ 2 25
74 02 5
49 49
pi_| 7 1o 098
0og 00 100 }°
49 101
1 1
| 3 002 & -
F . 4 49 9
10 3 38
8 81
PA 130 11 0.9
Tl 36
85 117 0.8
9
| 5 01 02 -—

Using the fuzzy majority criterion with the fuzzy
quantifier “at least half™, with the pair (0,0.5), and
the corresponding OWA operator with the weighting
vector, W = [%, %, %,0, 0, 0], the collective fuzzy pref-
erence relation is

- 0.40492 0.65556 0.93546
pe— 0.8 — 0.86667 (.84889

0.68562 0.5485 — 0.96337

037778 0.61111 041111 -

We apply the exploitation process with the fuzzy
quantifier “most” with the pair (0.3,0.8), i.e., the cor-
responding OWA operator with the weighting vector
W =[5, %, 5] The quantifier guided choice degrees
of alternatives acting over the collective fuzzy prefer-
ence relation supply the following values:

Xi X2 X3 X4
QGDD;  0.60738 0.83703 0.66757 041556
QGNDD; 0.87461 1 091515 0.46726
These values represent the dominance that one alter-

native has over the “most” alternatives according to
“at least half ” of the experts, and the non-dominance
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degree to which the alternative is not dominated by
“most” alternatives according to “at least half ” of the
experts, respectively.

Clearly, the maximal sets are

X9PD = {x,} and X9ONPP—{x,},

therefore, the selection set of alternatives for all se-
lection procedures is the singleton {x,}.

If we use the linguistic quantifier “as many as
possible” instead of “at least half”, with the pair
(0.5,1), and the corresponding OWA operator with
the weighting vector W =[0,0, 0,%,%,%], then the
collective relation is

- 0.2 031438 0.62222
Pe— 0.59508 — 0.4515  0.38889
1034444 0.13333 - 0.58889

0.06454 0.15111 0.03663 -—

Applying the selection process with fuzzy quantifier
“most”, then, in this case, the quantifier guided choice
degrees of alternatives acting over the collective fuzzy
preference relation supply the following values:

X1 X2 X3 X4
QGDD; 0.3044  0.44437 0.30444 0.06288

QOGNDD; 0.87461 1 091515 0.46726

The maximal sets are the above same ones, and there-
fore the selection set of alternatives for all selection
procedures is the singleton {x,}. The solution to our
example is the same using different linguistic quanti-
fiers in the aggregation of the individual fuzzy prefer-
ence relations.

6. Conclusions

In this paper we have presented a general model for
a MPDM problem, where the information supplied
by the group of experts can be of a diverse nature,
based on the concept of fuzzy majority for the aggre-
gation and exploitation of the information in decision
making.

It was necessary to make the information uniform,
for which we used fuzzy preference relations accord-
ing to their apparent merits. We have presented a
general method to relate preference orderings, utility

values and fuzzy preference relations. As we have
seen, this general method generalises the procedures
normally used, in particular those suggested in [4, 5,
20, 21].

We have used two quantifier-guided choice degrees
of alternatives; a quantifier guided dominance degree
used to quantify the dominance that one alternative
has over all the others in a fuzzy majority sense, and
a quantifier guided non-dominance degree that gener-
alises Orlovski’s non-dominated alternative concept.
We have shown that the above choice degrees can
be carried out according to two proposed selection
policies.

Appendix A. Fuzzy majority

As we said before, the majority is tradition-
ally defined as a threshold number of individuals.
Fuzzy majority is a soft majority concept expressed
by a fuzzy quantifier, which is manipulated via a
fuzzy-logic-based calculus of linguistically quantified
propositions.

In this appendix we present the fuzzy quantifiers,
used for representing the fuzzy majority, and the
OWA operators, used for aggregating information.
The OWA operator reflects the fuzzy majority calcu-
lating its weights by means of the fuzzy quantifiers.

Quantifiers can be used to represent the amount of
items satisfying a given predicate. Classic logic is re-
stricted to the use of the two quantifiers, there ex-
ists and for all, that are closely related respectively to
the or and and connectives. Human discourse is much
richer and more diverse in its quantifiers, e.g. about 5,
almost all, a few, many, most, as many as possible,
nearly half, at least half. In an attempt to bridge the
gap between formal systems and natural discourse and,
in turn, to provide a more flexible knowledge repre-
sentation tool, Zadeh introduced the concept of fuzzy
quantifiers [25].

Zadeh suggested that the semantic of a fuzzy
quantifier can be captured by using fuzzy subsets
for its representation. He distinguished between two
types of fuzzy quantifiers, absolute and propor-
tional or relative. Absolute quantifiers are used to
represent amounts that are absolute in nature such
as about 2 or more than 5. These absolute linguis-
tic quantifiers are closely related to the concept of
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“Most™ “At least balf”

x 0 0.5 1 x

"As many as possible”

Fig. 2. Proportional fuzzy quantifiers.

the count or number of elements. He defined these
quantifiers as fuzzy subsets of the non-negative real
numbers, #*. In this approach, an absolute quan-
tifier can be represented by a fuzzy subset O, such
that for any r € #* the membership degree of » in
0, Q(r), indicates the degree to which the amount
r is compatible with the quantifier represented by
Q. Proportional quantifiers, such as most, at least
half, can be represented by fuzzy subsets of the unit
interval, [0,1]. For any r € [0,1], Q(r) indicates
the degree to which the proportion » is compatible
with the meaning of the quantifier it represents. Any
quantifier of natural language can be represented as
a proportional quantifier or given the cardinality of
the elements considered, as an absolute quantifier.
Functionally, fuzzy quantifiers are usually of one of
three types, increasing, decreasing, and unimodal.
An increasing type quantifier is characterised by the
relationship

Q(r)=0(r) ifrn>r.
These quantifiers are characterised by values such as

most, at least half. A decreasing type quantifier is
characterised by the relationship

Q(r))<Q(r2) ifr<r.

An absolute quantifier Q: #% — [0, 1] satisfies
Q(0)=0 and 3% such that Q(k)=1.

A relative quantifier Q: [0, 1] — [0, 1] satisfies

0(0)=0 and 3r €0, 1] such that Q(r)=1.

A non-decreasing quantifier satisfies
Va,b if a > b then Q(a)=Q(d).

The membership function of a non-decreasing relative
quantifier can be represented as

0 ifr <a,
on=4 =2 ifa<r<b,

b—a

1 ifr > b

with a,b,7€[0,1].

Some examples of proportional quantifiers are
shown in Fig. 2, where the parameters, (a,b) are
(0.3,0.8), (0,0.5) and (0.5, 1), respectively.

Appendix B. The ordered weighted averaging
operator

The OWA operator was proposed by Yager in [23]
and more recently characterised in [24], and provide a
family of aggregation operators which have the “and
operator at one extreme and the “or” operator at the
other extreme.

An OWA operator of dimension # is a function ¢,

¢:[0.1]" —[0,1],

that has associated with a set of weights. Let
{ai,...,an} be a list of values to aggregate, then the
OWA operator ¢ is defined as

¢(a19--~yam):W 'BT:Zwi 'bi

i=1
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where W=[w,...,w,] is a weighting vector, such
that, w; €[0,1] and >, w;=1, and B is the associated
ordered value vector. Each element b; € B is the ith
largest value in the collection ay, ..., a,.

The OWA operators fill the gap between the op-
erators Min and Max. It can be inmediately verified
that OWA operators are commutative, increasing
monotonous and idempotent, but in general not
associative.

A natural question in the definition of the OWA
operator is how to obtain the associated weighting
vector. In [23, 24], Yager proposed two ways to
obtain it. The first approach is to use some kind of
learning mechanism using some sample data; and
the second approach is to try to give some seman-
tics or meaning to the weights. The final possibil-
ity has allowed multiple applications on areas of
fuzzy and multi-valued logics, evidence theory, de-
sign of fuzzy controllers, and the quantifier guided
aggregations.

We are interested in the area of quantifier guided
aggregations. Our idea is to calculate weights for
the aggregation operations (made by means of the
OWA operator) using linguistic quantifiers that rep-
resent the concept of fuzzy majority. In [23, 24],
Yager suggested an interesting way to compute
the weights of the OWA aggregation operator us-
ing fuzzy quantifiers, which, in the case of a non-
decreasing proportional quantifier (, it is given by the
expression:

wi=Q(/n)— Qi —1)/n), i=1,...,n

When a fuzzy quantifier Q is used to compute the
weights of the OWA operator ¢, it is symbolized
by ¢y
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