
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010 121

A Survey on the Application of Genetic
Programming to Classification

Pedro G. Espejo, Sebastián Ventura, and Francisco Herrera

Abstract—Classification is one of the most researched questions
in machine learning and data mining. A wide range of real prob-
lems have been stated as classification problems, for example credit
scoring, bankruptcy prediction, medical diagnosis, pattern recog-
nition, text categorization, software quality assessment, and many
more. The use of evolutionary algorithms for training classifiers has
been studied in the past few decades. Genetic programming (GP) is
a flexible and powerful evolutionary technique with some features
that can be very valuable and suitable for the evolution of classi-
fiers. This paper surveys existing literature about the application of
genetic programming to classification, to show the different ways
in which this evolutionary algorithm can help in the construction
of accurate and reliable classifiers.

Index Terms—Classification, decision trees, ensemble classifiers,
feature construction, feature selection, genetic programming (GP),
rule-based systems.

I. INTRODUCTION

TWO main approaches for learning are distinguished in ma-
chine learning: supervised and unsupervised learning. In

supervised learning, attributes of data instances are divided into
two types: inputs or independent variables and outputs or de-
pendent variables. The goal of the learning process consists in
predicting the value of the outputs from the value of the inputs.
In order to accomplish this goal, a training set of data (data in-
stances including the values of booth input and output variables
with known values) is employed to guide the learning process.
Regression and classification are two types of supervised learn-
ing tasks. In regression, there is a continuous-valued output to
be predicted while in classification the output is discrete. In
unsupervised learning, there is no distinction of type between
the variables of the data instances. As a consequence, we can-
not talk about training data since we cannot have a set of data
with a known output. The goal of unsupervised learning is to
find the intrinsic structure, relations, or affinities present in data.
Examples of unsupervised learning tasks are clustering and as-
sociation discovery. In clustering, the goal is to divide data into
different groups, finding groups of data that are very different
from each other, and whose members are very similar to each

Manuscript received July 1, 2008; revised February 10, 2009. First published
November 24, 2009; current version published February 18, 2010. This work
was supported by the Spanish Department of Research of the Ministry of Science
and Technology (Projects TIN2008-06681-C06-01 and TIN2008-06681-C06-
03). This paper was recommended by Associate Editor J. Lazansky.

P. G. Espejo and S. Ventura are with the Department of Computer Science
and Numerical Analysis, University of Cordoba, Cordoba 14071, Spain (e-mail:
pgonzalez@uco.es; sventura@uco.es).

F. Herrera is with the Department of Computer Science and Artificial Intelli-
gence, University of Granada, Granada 18071, Spain (e-mail: herrera@decsai.
ugr.es).

Digital Object Identifier 10.1109/TSMCC.2009.2033566

other. Association discovery consists in finding data values that
appear together frequently.

Classification is one of the most studied problems in machine
learning and data mining [1], [2]. It consists in predicting the
value of a categorical attribute (the class) based on the values
of other attributes (predicting attributes). A search algorithm
is used to induce a classifier from a set of correctly classified
data instances called the training set. Another set of correctly
classified data instances, known as the testing set, is used to
measure the quality of the classifier obtained. Different kinds of
models, such as decision trees or rules, can be used to represent
classifiers.

Genetic programming (GP) [3] is an evolutionary learning
technique that offers a great potential for classification. GP is a
very flexible heuristic technique that allows us to use complex
pattern representations such as trees, for example, any kind of
operation or function can be used inside that representation
and domain knowledge can be used in the learning process, for
example by means of a grammar.

GP and other evolutionary techniques has been successfully
applied to different supervised learning tasks like regression [4]
and unsupervised learning tasks like clustering [5]–[9] and as-
sociation discovery [10]. However, we focus our review on the
application of GP to classification. The distinctive features of
GP make it a very convenient technique with regard to clas-
sification. The application of GP to classification offers some
interesting advantages, the main one being its flexibility, which
allows the technique to be adapted to the needs of each particu-
lar problem. GP can be employed to construct classifiers using
different kinds of representations, e.g., decision trees, classifi-
cation rules, discriminant functions, and many more. GP can be
useful not only for inducing classifiers, but also for other pre-
processing and postprocessing tasks aimed at the enhancement
of classifiers. In fact, GP usually performs an implicit process
of feature selection and extraction. Interpretability can be easily
favored by the use of GP, since it can employ more interpretable
representation formalisms, like rules. The automatic feature se-
lection performed by GP and different mechanisms available for
controlling the size of the resulting classifiers also contribute to
improve interpretability. This paper reviews the works published
in the literature, where GP is applied in some form to address
classification tasks.

The rest of the paper is organized as follows. Section II briefly
presents the GP and classification fields. Section III gives a pre-
liminary overview of the possible ways of applying GP for
classification. Section IV describes studies involving classifi-
cation in which GP is used for feature selection and construc-
tion. Section V reviews the different approaches reported in the

1094-6977/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

122 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

literature to obtain classifiers by means of GP. Section VI looks
at the application of GP in the construction of ensemble clas-
sifiers. The drawbacks and advantages of using GP for classifi-
cation are analyzed in Section VII, together with some guide-
lines on how to apply GP to classification tasks. Section VIII
presents some concluding remarks and suggests topics for fur-
ther research.

II. BACKGROUND

In this section, we give a brief and general description of
the two subjects that are the core of our review: GP and
classification.

A. GP

The evolutionary algorithm (EA) paradigm is based on the
use of probabilistic search algorithms inspired by certain points
in the Darwinian theory of evolution [11]. Several different
techniques are grouped under the generic denomination of EA.
The essential features shared by all EAs are as given in the
following.

1) The use of a population (a group) of individuals (candidate
or partial solutions) instead of just one of them.

2) A generational inheritance method. Genetic operators are
applied to the individuals of a population to give birth to a
new population of individuals (the next generation). The
main genetic operators are crossover (recombination) and
mutation. Crossover swaps a part of the genetic material
of two individuals, whereas mutation randomly changes a
small portion of the genetic material of one individual.

3) A fitness-biased selection method. A fitness function is
used in order to measure the quality of an individual. The
better the fitness of an individual, the higher its probabil-
ity of being selected to take part in the breeding of the
next generation of individuals, thus, increasing the proba-
bility that its genetic material will survive throughout the
evolutionary process.

GP is essentially considered to be a variant of genetic algo-
rithms (GA) [12] that uses a complex representation language
to codify individuals. The most commonly used representation
schema is based on trees, although other options exist [3]. The
original goal of GP, as its name implies, was the evolution of
computer programs. However, nowadays GP is used to evolve
other abstractions of knowledge, like mathematical expressions
or rule-based systems, for example. GP individuals are usually
seen as parse trees, where leaves correspond to terminal sym-
bols (variables and constants) and internal nodes correspond to
nonterminals (operators and functions). The set of all the non-
terminal symbols allowed is called the function set, whereas the
terminal symbols allowed constitute the terminal set. Two condi-
tions must be satisfied to ensure that GP can be successfully ap-
plied to a specific problem: sufficiency and closure. Sufficiency
states that the terminals and nonterminals (in combination) must
be capable of representing a solution to the problem. Closure
requires that each function of the nonterminal set should be able
to handle all values it might receive as input. In practice, we

often need to evolve programs that handle values of different
types, and this makes it difficult to meet the closure requirement.

B. Classification

The goal in classification is to take an input vector x and to as-
sign it to one of K discrete classes Ck where k = 1, . . . , K [13].
Each data instance is defined according to a set of attributes or
variables. In order to solve a classification problem, a classi-
fier needs to be obtained. The classifier is a model encoding a
set of criteria that allows a data instance to be assigned to a
particular class depending on the value of certain variables. A
classification algorithm is a method for constructing a classifier.
Supervised learning is an approach frequently used to obtain
a classifier. It consists in using a set of data instances that are
labeled with their correct classes in order to induce a classi-
fier capable of classifying these data instances and, hopefully,
other new ones. A great variety of algorithms have been pro-
posed for learning classifiers from a set of training data. In many
cases, this task is approached as a search process. The number
of algorithms described in the literature used to carry out this
task can be overwhelming. Three basic components are used to
make a systematic categorization of the existing algorithms for
classification that are based on a search approach [14].

1) The representation formalism. A certain piece of knowl-
edge can be represented in different ways. The most com-
mon forms of representation for a classifier are decision
trees and rules, but other choices have been reported in
this paper, as we will see in Section V.

2) The preference criterion. Some kind of rule is needed in
order to allow the system to make a choice for a partic-
ular model or set of parameters when several alternatives
are available. In classification, the preference criterion is
usually given by the accuracy rate, that is, the ratio of cor-
rectly classified examples. However, other factors can be
considered, e.g., novelty, utility, or interpretability.

3) The search algorithm. The induction of a classifier is con-
sidered as a search process in a space of candidate clas-
sifiers. Once the representation formalism and the prefer-
ence criterion have been specified, the task of obtaining
a classifier becomes an optimization problem, where the
search algorithm is employed to find the parameters opti-
mizing the preference criterion.

Since GP is a search and optimization algorithm, it can be
easily employed as the search algorithm for inducing a classi-
fier. The great expressive capability of GP allows it to adapt
to different representation formalisms. This way, individuals in
the population can represent decision trees, classification rules,
artificial neural networks (ANNs), and many more. Similarly,
any preference criterion can be expressed in terms of the fit-
ness function that guides the search process of GP. Because of
the flexibility of GP, a very diverse range of approaches can be
derived from this basic setting, as we will see in Section V.

While model extraction, that is, the construction of a classifier
from a dataset, is the main task in the classification domain, there
are some other related tasks that usually have to be addressed
as well.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 123

1) Data preprocessing. Model extraction techniques are not
usually applied to the database in its original form. There
are a great variety of preprocessing techniques available in
order to prepare the data to take advantage of its maximum
potential. Some of the issues to consider are the removal of
noise or outliers, strategies for handling missing data, fea-
ture selection and construction, instance selection, data re-
balancing and data projection, and normalization, to name
a few.

2) Model interpretation and enhancement. Sometimes the
classifier obtained is not readily usable, and some kind
of postprocessing is convenient. Some of the questions to
be addressed at this point can be the elimination of redun-
dant knowledge, application of visualization techniques,
evaluation of the model obtained, sorting of classification
patterns according to some measure of interest, translation
to a more interpretable form, combination of models, and
any other way of improving the model obtained.

GP can be employed not only to induce classifiers, but also
for preprocessing and model enhancement, as we will see in
Sections IV and VI, respectively.

III. GP FOR CLASSIFICATION

Flexibility is one of the main advantages of GP, and this fea-
ture allows GP to be applied for classification in many different
ways. As we have seen in Section II-A, individuals are usually
represented as trees, and trees are one of the most general data
structures, therefore, they can be tailored to fit the representation
requirements in a wide range of problems and domains. But GP
is not limited to tree-like individuals, because it also allows the
use of other representations, like linear or graph structures. In
addition, the nature of GP individuals, which include terminals
(variables and constants) and nonterminals (operators and func-
tions), gives them the ability not only to represent knowledge but
also to perform computations, so that GP can be used in almost
any classification-related task, not only in the core task of clas-
sifier induction, but also for preprocessing and postprocessing
purposes.

At the preprocessing stage, data can be transformed in order
to increase the quality of the knowledge obtained, and GP can
be used to perform this transformation. The data transformation
can consist in a selection of the attributes relevant to the classi-
fication problem at hand; a weighting of the attributes, in order
to give each attribute a credit proportional to its importance in
the final prediction; or it can consist in the construction of new
predicting attributes by combining some of the original ones.

GP also offers a wide range of possibilities in the classifier
induction task. As we have seen in Section II-B, GP can be read-
ily fit to the main components of a model extraction algorithm:
GP is a search algorithm, which can be employed to search in
the space of classifiers to find the best one; the fitness function
of GP is used as the preference criterion that drives the search
process; and the flexibility of the GP representation allows it
to employ many different kinds of models, with decision trees,
classification rules, and discriminant functions being the most
common choices. A decision tree [15] is composed of internal

TABLE I
CONFUSION MATRIX

and leaf nodes. Since GP individuals are commonly encoded
in a tree-like fashion, the application of GP to the evolution
of decision trees is obvious. Each individual in the population
can represent a decision tree classifier. A rule has two parts,
the antecedent and the consequent. The antecedent contains a
combination of conditions for the predicting attributes, and the
consequent contains the predicted class. Usually, a condition
is composed of a binary relational operator (=, �=, >, <, ≥,
≤) comparing the value of an attribute with a constant or an-
other attribute, although more complex conditions can easily
be incorporated since GP individuals can employ any kind of
operator. A discriminant function is a mathematical expression
in which different kinds of operators and functions are applied
to the attributes of a data instance that must be classified. The
representation of a mathematical expression as a tree is again
evident.

No matter what representation formalism is used, the quality
of classifiers must be measured by means of the fitness function.
Usually, quality is based on accuracy, and it is often measured
as the ratio between the number of correctly classified examples
and the total number of examples, but other possibilities exist.
Several widely used metrics for measuring accuracy, like pre-
cision, support, confidence, recall, sensitivity, specificity, and
others, are based on the confusion matrix (see Table I). The
true positives (TP) are positive instances that are classified as
positive, the false negatives (FN) are positive instances classi-
fied as negative, the false positives (FP) are negative instances
classified as positive, and the true negatives (TN) are negative
instances classified as negative. Furthermore, other performance
criteria can be taken in consideration in the fitness function, like
novelty, interestingness, utility, or interpretability.

Occam’s razor is a reasoning which is applied very often not
only in classification, but virtually in every area of computer
science. This principle basically states that when choosing be-
tween models with the same accuracy, less complex models
should be preferred. This preference is due to several reasons,
like enhanced interpretability and better generalization ability.

Classification performance can be enhanced employing sev-
eral classifiers instead of just one. This is the basic idea of
ensemble classifiers. Ideally, different base classifiers in an en-
semble capture different patterns or aspects of a pattern embed-
ded in the whole range of data, and then through ensembling,
these different patterns or aspects are incorporated into a final
prediction. Since this technique consists in the combination of
the classification output of several classifiers, it can be regarded
as a form of postprocessing of the models extracted. Two main
issues, which are how to generate diverse base classifiers and
how to combine base classifiers have to be addressed, and GP
can be applied to both issues. The basic approach for using GP to
generate diverse base classifiers consists in dividing the dataset

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

124 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

Fig. 1. Applications of GP in classification tasks.

into several subsets, where each of the subsets is used in an
independent run of GP to construct each of the base classifiers.
The application of GP to the combination of base classifiers is
very similar to the construction of new features: the outputs of
each of the base classifiers are at the leaf nodes of a tree GP
individual, and these predictions are combined by means of the
operations encoded in the nonterminal nodes of the tree.

Fig. 1 shows the classification tasks where GP can be applied.
All these possibilities will be covered in our review.

In many problems, there are several goals which have to be
optimized simultaneously. These goals are often conflicting, so
that the optimization of one of the performance measures im-
plies an unacceptably poor performance for other measures. For
example, when feature selection is performed, we want to mini-
mize the number of attributes employed and maximize the clas-
sification rate, but higher accuracy can usually be achieved when
more features are employed [16]. A similar situation arises with
instance selection, where a subset of the training set is selected
in order to speed up the learning process, without compromising
classification rates [17]. Accuracy and interpretability of clas-
sifiers are also conflicting goals; generally, the most accurate
classifiers are the most complex and difficult for human beings
to understand [18]. In these situations, a tradeoff solution must
be sought, combining suboptimal but acceptable values for all
performance measures. In this kind of problem, known as a mul-
tiobjective optimization (MO) problems, there is usually not a
single solution, but instead a set of equivalent nondominated so-
lutions, known as a Pareto front, composed of all the solutions
where it is not possible to enhance some objectives without
degrading some others. EAs can be applied to MO problems
easily and suitably, since different individuals in the population
can search for different solutions in parallel. When EAs are
applied to this kind of problem, the term employed is multiob-
jective optimization evolutionary algorithm (MOEA) (MOGP
if the EA is GP) [19], [20].

IV. GP FOR FEATURE SELECTION AND CONSTRUCTION

In this section, we review the published works that apply GP to
data preprocessing. All the studies included in this section make
use of GP in order to carry out a particular kind of preprocessing
known as transformation of representation, which, given the
original vector of features F0 and the training set L, consists

in creating a representation F derived from F0 that maximizes
some criterion and is at least as good as F0 with respect to that
criterion [21]. The approaches that follow this scheme can be
roughly divided into three categories.

1) Feature selection methods. Here, the resulting representa-
tion is a subset of the original one, i.e., F ⊆ F0 .

2) Feature weighting methods. In this case, the transforma-
tion method assigns weights to particular attributes. The
weight reflects the relative importance of an attribute and
may be utilized in the process of inductive learning.

3) Feature construction methods. Here, new features are cre-
ated in some form, for instance as functional expressions
that use the values of original features.

Furthermore, two important considerations must be taken into
account. First, we must realize that the application of GP for in-
ducing classifiers usually implies a feature selection process
which is inherent to the evolution of classifiers. In GP, variable-
length individuals are evolved. These individuals are usually
tree-like structures where internal nodes are operators and func-
tions, and leaf nodes are constants and variables, and these vari-
ables correspond to the features of the dataset. Since individuals
have variable lengths, not all features must appear within an in-
dividual; in fact, it is more likely that only some of the features
will be present in each individual. Therefore, implicit feature
selection is performed as part of the evolutionary process. Sec-
ond, in a way similar to the implicit feature selection outlined
above, there is some kind of implicit feature construction behav-
ior inherent to most GP-based classifiers. When the individual
codification employed allows features from the dataset to be
combined by means of the application of arithmetic operations,
there is in some sense an implicit construction of features. Tak-
ing all these considerations into account, we have to make clear
that this section is restricted to studies that use GP specifically
and explicitly for preprocessing purposes.

Here, we provide some additional information about the ref-
erences reviewed in this section. This information is focused
on practical issues. On some occasions, the proposed GP-based
system is applied to some specific kind of real problem. On
other occasions, the proposed GP system is not aimed at any
particular kind of problem, but its performance is tested with
respect to a set of benchmark or synthetic datasets. This infor-
mation is summarized in Table II. Similar tables are provided in
Sections V and VI. The goal of these tables is to help researchers
to find the references that are more relevant to their work.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 125

TABLE II
APPLICATIONS OF GP-BASED DATA PREPROCESSING

A. Feature Construction

A basic idea is shared by all the studies included in this
section: the new constructed features are codified by tree-like
individuals, where arithmetic operators and functions appear in
the internal nodes, and the original features and maybe constants
correspond to leaf nodes.

Conceptually, preprocessing is a step previous to the model
extraction task. However, in practice, two alternative approaches
can be followed in the implementation of a preprocessing
method.

1) The filter approach. Here, the preprocessing is performed
before proceeding with the model induction algorithm.
Usually, some kind of statistical, logical or information
content criterion is used as the basis for the preprocessing.

2) The wrapper approach. Preprocessing is carried out while
the model induction algorithm is being applied, that is,
the execution of the preprocessing and the classification
algorithms are interleaved. The quality of the model in-
duced by the classification algorithm is used to bias the
preprocessing.

1) Filter Approach: In [30], four fitness functions designed
to choose the best constructed features are proposed, and four
different classification techniques are subsequently used to build
the classifier. The four fitness measures are information gain, the
gini index, a combination of information gain and the gini in-
dex and chi-square [1]. The four classification algorithms which
are later applied are three decision tree algorithms (C5, CART,
and CHAID) and a multilayer perceptron. In this proposal, each
individual in the population is a tree representing a new con-
structed feature. When the evolutionary process ends, a single
new feature is obtained, which is added to the original data, and
this augmented dataset is used to induce a classifier applying
some of the chosen classification algorithms.

In [24] and [28], the proposed fitness function is designed
to measure the scattering between classes, that is, the degree
of difference between them. The classifiers to be applied later
are a neural network and a support vector machine (SVM).
Each individual in the population is a tree representing a new
constructed feature.

A fitness function based on information entropy is employed
in [31], where a class-wise orthogonal transformation is ap-
plied to the original features previous to GP-feature extraction,
producing a set of transformed features which is added to the

original features in order to make up a variable terminal pool
to be used by the GP algorithm as a basis for constructing new
features. Each individual in the population is a tree represent-
ing a new constructed feature as a combination of the variables
from the pool. The system constructs as many new features as
there are classes in the dataset, and these are the only features
employed for the final classification.

2) Wrapper Approach: In [23], a GP feature constructor is
wrapped around the k-nearest neighbors (kNN) algorithm. Each
individual is a forest composed by n trees, n being the number
of original features. Each tree ti , 1 ≤ i ≤ n represents a trans-
formation of the ith feature. The fitness function is the accuracy
of the kNN classifier in the transformed data.

In [34], the wrapped classification algorithm is a generalized
linear machine (GLIM), whose accuracy is used as the fitness
function. Each individual is a tree that uses arithmetic opera-
tions to encode a combination of the original features. In this
approach, the original features are not used by the classifier; the
evolved feature is the only one taken into account in classifi-
cation. In [35], the same authors extend their previous work as
follows. Three types of classifiers are used: GLIM, kNN, and
the maximum likelihood classifier. Individuals use the same
codification as in the previous reference, but in addition, each
individual is associated with one type of classifier. This way, the
GP does not only choose the best constructed feature, but also
chooses the most suitable type of classifier. Another improve-
ment to the previous approach is the inclusion of a size penalty
in the fitness function, so that fitness is based on accuracy, but
with a preference for smaller individuals.

In [32], GP is wrapped around C4.5, and the accuracy of the
decision tree induction algorithm is used as the fitness measure
as usual. In this approach, each individual is a forest containing a
certain number (chosen by the user) of trees, each one encoding
a new constructed feature. A portion of these trees is used as an
elitist repository, where the best individuals are kept. Individuals
to be preserved in the elitist subforest are chosen on the basis of
a utility measure given by the number of times the constructed
feature is used by the learning algorithm (C4.5). In [25] and [26],
a similar approach is proposed, in which each individual is a
forest composed of a number of trees chosen by the user, and
the fitness measure is given by the accuracy of the classifier.
Here, however, elitism is not used, and the base classifier is a
simple linear perceptron or a centroid-based classifier.

In [27], GP is wrapped around a Bayesian classifier, and the
fitness function is given again by the accuracy of the classifier.
Each individual is a tree representing a constructed feature.

A hybrid GP/GA system is presented in [33], where GP is
used for feature construction and a GA performs a selection
from the constructed features. In this paper, several base clas-
sifiers have been wrapped by the GP feature constructor (in
different runs), namely C4.5, kNN, and a Bayesian classifier.
Each individual is a forest containing n trees, where n is the
number of attributes in the original dataset, and each tree is
able to represent a constructed feature. Classification accuracy
is used as the fitness measure. Once the GP feature construction
is done, a GA is applied, also as a wrapper, to make a selection
from the constructed features.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

126 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

Fig. 2. Model extraction with GP.

The system proposed in [29] employs a coevolutive GP (CGP)
algorithm as a wrapper over a Bayesian base classifier, using
classification accuracy as the fitness function. CGP is an ex-
tension of GP in which several populations are maintained and
employed to evolve solutions cooperatively. A population main-
tained by CGP is called a subpopulation and it is responsible for
evolving a part of a solution. A complete solution is obtained
by combining the partial solutions from all the subpopulations.
In this paper, each individual in each subpopulation is a tree
encoding a constructed feature. When the evolutionary process
ends, the best individual from each subpopulation is selected,
and these best individuals are joined in a new feature vector.

B. Feature Selection

In [22], GP is employed to achieve a selection of features.
Each individual is a tree encoding a classifier represented as a
discriminant function (see Section V-C), and classification ac-
curacy is used as the fitness function. The authors capitalize
on the implicit feature selection ability of GP classifiers (see
Section IV) by applying GP for classification in a two-stage
scheme. First, a certain number of GP runs are carried out,
each one resulting in a best-of-run classifier. Then, in the sec-
ond stage, the GP is run again using only the features most
frequently used in the best classifiers obtained in the previous
stage. However, the goal of the first stage is just to discover the
most interesting features, and the classifiers obtained are dis-
carded. The final classifier is induced in the second stage using
the features selected in the first stage.

V. GP FOR MODEL EXTRACTION IN CLASSIFICATION

The basic idea that lies behind the application of GP for
inducing classifiers consists in making each individual represent
a classifier or a part of a classifier and defining a fitness function
to measure its quality, so that the evolutionary process leads to
a high quality final classifier.

Most of the papers published related to GP and classification
focus on the application of GP to model extraction, that is, the
induction of classifiers. For this reason, a great number of refer-
ences will be reviewed in this section, which is further divided,
first according to the way in which classifiers are represented,
and second according to some other criteria when the number
of references is considerable. Fig. 2 shows the structure of the
points addressed in this section.

Fig. 3. Example of a decision tree.

A. GP for Extracting Decision Trees

Decision trees [15] are one of the most frequently used rep-
resentations for classifiers. A vast amount of literature has been
devoted to this form of classification. However, we must keep in
mind that tree structures are also the preferred encoding scheme
for GP individuals. Thus, the application of GP to evolve de-
cision trees seems to be an obvious approach. Within such a
framework, it is customary to make each individual of the GP
population encode a decision tree, and that is how most of the
works included in this section proceed.

A decision tree contains zero or more internal nodes and one
or more leaf nodes. All internal nodes have two or more child
nodes. All internal nodes contain splits, which test the value
of an expression of the attributes. Arcs from an internal node
t to its children are labeled with distinct outcomes of the test
at t. Each leaf node has a class label associated with it. Fig. 3
represents an example decision tree for the Pima dataset from
the UCI repository (see [36]), a binary classification problem.1

Fig. 4 shows a GP individual corresponding to this decision tree.
There are three main types of decision trees based on how the
feature space is partitioned.

1) Univariate or axis-parallel decision trees. This type of
decision tree carries out tests on a single variable at each
nonleaf node. Their mode of splitting the data is equivalent
to using axis-parallel hyperplanes in the feature space.

2) Linear multivariate or oblique decision trees. A linear
combination of features can be tested at internal nodes.
The tests are geometrically equivalent to hyperplanes at
an oblique orientation to the axis of the feature space.

1NP, PG, BP, and TT are attribute names in this dataset.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 127

Fig. 4. GP individual representing a decision tree.

TABLE III
APPLICATIONS OF GP-INDUCED DECISION TREES

3) Nonlinear multivariate decision trees. Nonlinear combi-
nations of features can appear inside internal nodes. They
perform a nonlinear partitioning of the feature space.

When GP is applied, it is natural to use individuals encod-
ing some kind of structure including arithmetic operations, and
both linear and nonlinear combinations of features can be read-
ily represented. As a result, oblique and nonlinear tests can be
evolved as easily as univariate tests. The relation of this point
with feature construction should be evident; because of the na-
ture of GP, when it is applied in order to induce classifiers, an
implicit feature construction is usually done.2 As we will see in
the following sections, these considerations are relevant not just
to decision trees, but also to other representation formalisms.
Table III lists the applications of the systems here reviewed.

1) Axis-Parallel Decision Trees: In [56], a basic and
straightforward system is described, in which axis-parallel deci-
sion trees are evolved using classification accuracy as the fitness
function. Axis-parallel decision trees are also evolved in [46],
using a fitness function combining accuracy and tree size. The
previous proposal is extended in [47] by means of hybridizing
GP with simulated annealing. This technique is used to avoid
premature convergence of the GP algorithm. A new evolved
individual is kept, if it has better fitness than others in the popu-
lation, otherwise it is accepted with a probability proportional to
a temperature parameter, which decreases as evolution proceeds.

Some works focus on obtaining compact (comprehensible)
axis-parallel decision trees. In [42], tree size is not included in
the fitness function which is given by classification accuracy.
Instead, tree complexity is considered in the selection of indi-
viduals. During evolution, individuals with higher fitness are

2When the function set includes arithmetic operators.

selected, but when several individuals have equal fitness, the
smallest ones are preferred. Another approach to obtain small
accurate decision trees with a simple accuracy-based fitness is
proposed in [43]. The key fact behind this approach lies in the
relation observed between the sizes of the training set and the in-
duced classifiers: usually, the larger the training set, the larger the
decision tree obtained. Therefore, the divide and conquer tech-
nique is applied by splitting the training set into several subsets
and then evolving different subtrees, which will be later com-
bined to make up the final decision tree. In [45], the same idea
of using a subset of the training data in order to obtain smaller
trees is used, but in a different way, employing a C4.5/GP hybrid
system. The fitness function is computed again as classification
accuracy. C4.5 is used to initialize the population. A certain
number of training examples is randomly selected and used to
induce a (small) decision tree with C4.5. This process is re-
peated for each of the individuals in the initial population, and
then the GP algorithm performs the evolutionary process using
the complete training set.

Another work involving the induction of small axis-parallel
decision trees is presented in [37]. The fitness function considers
both classification accuracy and tree size. A similar approach is
followed in [40], where a fitness function combining accuracy
and size is employed. But in this work smaller trees are enforced
not only by the fitness function, but also by the use of two
operators specifically designed to simplify trees: elimination and
merge. Another similar proposal is described in [38], but instead
of using specific genetic operators, small trees are enforced by
means of a tree pruning method.

In [55], we find an analytical study on the influence of the
fitness function and mutation operator on the quality of the
decision trees induced, taking into account both classification
accuracy and tree size. One of the main points of interest when
constructing decision trees with GP is how to obtain accurate
and parsimonious classifiers, since simple classifiers are more
comprehensible to humans. This concern is addressed by many
researchers, not only when evolving decision trees, but also
when other representation formalisms are employed.

Fuzzy (axis-parallel) decision trees are evolved in [49]. Con-
tinuous attributes are fuzzified for convenience. Three fitness
measures are employed in this paper: standard fitness is the
usual classification accuracy fitness measure; precision fitness
is computed from the membership values of training data; size
fitness, given by the number of nodes in the tree. However, only

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

128 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

precision fitness is employed during the evolutionary process.
To select the best individual in an evolutionary run, standard
fitness is considered first, and in the case of a tie, the smaller
individual is chosen.

In [44], MO is applied in order to optimize two goals: classi-
fication accuracy and tree size. Four different MO methods are
proposed by the authors. Smaller trees are further enforced by
the application of an editing (pruning) method aimed at remov-
ing redundant nodes, which can be combined with any of the
MO methods.

In [48], an MOGP system designed to optimize two goals
is described, but these goals are not fixed. The authors make a
general proposal, allowing for any pair of goals to be considered.
In this paper, a cost-sensitive point of view is adopted [57],
and related pairs of goals are suggested, such as false negative
rate/false positive rate, sensitivity/specificity, or recall/precision,
but any other pair of goals could be employed.

In [41], MOGP is applied once again. The system proposed
here has been specifically designed to tackle a particular classi-
fication problem: software quality classification. The purpose of
the system is to discriminate between fault-prone and non fault-
prone software modules. Classification performance is evalu-
ated by a modified expected cost of misclassification (MECM)
measure, but the software quality assurance team has limited re-
sources to inspect suspicious software modules. MO is applied
to accommodate three goals: to minimize the MECM, to obtain
a number of modules predicted as fault-prone, that is, equal to
the number of modules that can be inspected with the available
software quality improvement resources, and to minimize the
size of the decision tree model.

2) Oblique Decision Trees: The potential of GP to include
any kind of operation into individuals is used in [50] in order to
evolve oblique decision trees. A simple accuracy-based fitness
function is employed. Oblique decision trees are also evolved
in [51]. The fitness function takes into account classification
accuracy and applies two size penalty factors, one for the number
of nodes and the other for the depth of the tree.

Oblique decision trees are constructed in [52] with MO con-
sidering two goals: to maximize classification accuracy and to
minimize the number of nodes. Furthermore, some other tech-
niques are employed to improve performance, such as limited
error fitness, employed to reduce running time, and fitness shar-
ing, used to promote diversity in the population.

3) Non-Linear Decision Trees: Quite a different approach is
presented in [53]. Each individual is a tree representing a node,
instead of a decision tree. Each node can encode arbitrarily com-
plex conditions, including linear and nonlinear combinations of
attributes. The decision tree is constructed in a top–down way,
starting by the root and descending through successive levels
while new nodes keep improving the overall fitness or until
a maximum number of levels is reached. The fitness function
combines classification accuracy and generalization ability.

An MOGP system is also employed in [39] in order to evolve
fuzzy nonlinear decision trees. Continuous attributes are fuzzi-
fied, and MO is applied to optimize two goals: accuracy, mea-
sured as the area under the receiver operating characteristic

(ROC) curve [58], and complexity, measured as the size of the
tree.

A population of decision trees is evolved in [54], allowing
trees that are as general as needed to be constructed, so that
even nonlinear multivariate trees could be evolved. Fitness is
based on classification accuracy, with a penalty for size, but in
an unusual way, since smaller individuals are penalized in this
proposal.

B. GP for Learning Rule-Based Systems

Rules are a simple and easily interpretable way to represent
knowledge [1], [59]. A rule has two parts, the antecedent and
the consequent. The rule antecedent contains a combination of
conditions for the predicting attributes. Typically, conditions
form a conjunction by means of the AND logical operators, but
in general any logical operator can be used to connect elemental
conditions, also known as clauses. The rule consequent contains
the value predicted for the class. This way, a rule assigns a data
instance to the class pointed out by the consequent if the values
of the predicting attributes satisfy the conditions expressed in
the antecedent; hence a classifier is represented as a rule set.

Usually, classification rules employ only simple conditions,
where an attribute is compared with a value from the correspond-
ing domain by means of some relational operator, resulting in
univariate linear classifiers. In some occasions, conditions com-
paring the value of one attribute to the value of another attribute
are also allowed, leading to linear multivariate classifiers. More
complex conditions are rarely employed.

Two main approaches exist for individual encoding when
evolving rule-based classifiers.

1) In the individual=rule approach, each individual encodes
a rule, and hence, some method must be used to construct
the classifier from the rules evolved, once the evolutionary
process finishes.

2) In the individual=rule set approach, each individual rep-
resents a complete classifier, that is, a rule set, and so the
classifier will be the best of the individuals evolved.

Another consideration is often taken into account when con-
structing rule-based classifiers. Usually, different approaches
are employed depending on the number of classes to be
distinguished.

1) In binary classification, there are just two classes to be
distinguished. This usually leads to simpler algorithms.

2) Multiclass algorithms are able to distinguish any number
of classes, and are hence, more general, but can also be
more complex.

Binary and multiclass problems are sometimes handled in dif-
ferent ways. Some methods are restricted to binary problems,
while other algorithms can cope in a seamless way with any
number of classes. Since any n-class problem can be reduced to
n − 1 binary classification problems, methods limited to binary
problems can still be applied to multiclass problems. However,
methods able to directly handle any number of classes are gen-
erally more suitable, because they can be applied more easily
and readily. The following review of works is categorized based

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 129

Fig. 5. GP individual representing a classification rule.

TABLE IV
APPLICATIONS OF GP-INDUCED CLASSIFICATION RULES

the type of classification task (binary/multiclass). Fig. 5 repre-
sents a GP individual corresponding to the antecedent of the
rule shown as follows for the Pima dataset

IF ((NP < 3)

OR ((NP ≥ 3) AND (PG ≥ 50) AND (TT < 72)))

THEN Class 1.

Table IV lists the applications of the systems here reviewed.
We can note the substantial number of references dealing with
medical issues. The reason is that in Medicine, it is especially
important to understand the rationale behind the classifica-
tion that the system outputs. Since rules give an easily inter-
pretable representation, they are often preferred in medical appli
cations.

1) Binary Classification: Binary classification is carried out
in the proposal described in [82] and [83], where each indi-
vidual in the population encodes a rule, and a single rule is
obtained as the final result of the evolutionary process. Sim-
ple univariate conditions are employed. Since just two classes
must be distinguished, the instances not covered by that rule
are assigned to the other (default) class. This paper employs a
self-adapting fitness function. Fitness is measured as classifica-
tion accuracy, but in a weighted way. Each instance from the
training set has a weight associated, used to weigh the partial
fitness of each instance. Weights are also evolved, in such a way
that instances which are harder to classify have their weights
increased.

In [75], like in the work described in [82] and [83], a single
rule for one of the classes is evolved, considering the remaining
class as the default class. This system allows the use of condi-
tions comparing the value of two attributes, in addition to the
usual simple univariate conditions which compare the value of
an attribute with a constant. This way, linear multivariate clas-
sifiers can be obtained. The fitness function is based on classifi-
cation accuracy. A similar system is proposed in [72], but only
simple univariate conditions are employed in the antecedents of
the rules.

Fixed-length individuals are evolved in [61] with the purpose
of obtaining simpler and more comprehensible binary classi-
fiers. Each individual encodes a rule. An accuracy-based fitness
function is employed.

In [60], a single rule is evolved in each running, and the system
is run twice, one time for each of the classes. The fitness function
is based on the rms error of prediction, and includes a penalty
factor for size. Arithmetic operations and the comparison of
attributes and their combinations are allowed to appear in the
conditions, leading to nonlinear multivariate classifiers.

An individual=rule approach is also employed in [63], where
both univariate and linear multivariate conditions are allowed.
When the evolution ends, the final classifier is formed by the best
n rules, where n is a value chosen by the user, so that classifiers
with several rules per class can be obtained. The fitness function
is based on ROC/AUC measures.

Fuzzy rules for binary classification are evolved in [73]. A
classifier that can contain several rules is constructed, but all the
rules predict the same class; the other one is the default class.
Each individual encodes a rule, employing univariate condi-
tions. A modal evolutionary process is followed, in which each
run results in a rule. All items correctly classified by this rule
are removed from the training set and the system is restarted.
This process continues until every instance of the objective class
is described by a rule. MO is used in order to simultaneously
optimize four fitness functions, three of them related to the ac-
curacy of the rule and the remaining one measuring its size.
Several parallel runnings of the systems are performed, each
one with different values for the parameters controlling the evo-
lutionary process. Each running produces a complete classifier,
and a committee-based ensemble method is used to obtain a
final classifier from these rule sets.

A comparison of several variant GP-evolved classifiers for
binary classification following the individual=rule set approach
can be found in [70]. Both crisp and fuzzy rules combining
univariate as well as multivariate conditions are evolved.

A two-stage evolutionary approach is proposed in [65]. In
the first stage, a hybrid GP/GA method is employed to evolve
a good pool of rules. Each individual represents a rule, or to be
more precise, a part of a rule, since GP is employed to evolve the
part of the antecedent involving categorical attributes and a GA
is used to evolve the conditions concerning numerical attributes.
A run is performed for each of the classes considered, but a set
of rules (for the same class) is selected in each running. Token
competition is used in order to obtain a proper covering of all
the data instances, and the fitness function measures accuracy.
The second phase of the system uses the pool of rules produced

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

130 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

by the first phase as its basis. A simple evolutionary algorithm
is employed; each individual represents a rule set, and several
subpopulations are formed. If the number of rules in the can-
didate pool is n, then there will be n subpopulations and the
ith subpopulation will be evolved to optimize the rule set con-
taining i rules. At the end of the evolution, each subpopulation
outputs its best candidate rule set, which will compete (based
on classification accuracy) with the best rule sets generated by
other subpopulations to obtain the final optimal rule set.

The system described in [74] is aimed at the problem of
classification with imbalanced data. Data is said to be imbal-
anced when some classes heavily outnumber others. The prob-
lem with imbalanced data arises because learning algorithms
tend to overlook less frequent classes, paying attention just to
the most frequent ones and ignoring the minority classes. Usu-
ally, the minority class is the positive class, that is, the class
that the end-user is interested in, but this is the class most dif-
ficult to characterize, due to its limited number of instances.
The approach followed in this paper consists in generating rules
only for the positive class. Each individual in the population can
represent a set of rules. Since only conjunctive antecedents are
allowed in the rules, when a logical OR is found in a tree, it
separates one antecedent from another; this way, rules are ex-
tracted from all the individuals in the population. A repository
is kept in order to construct the final classifier. Each extracted
rule is added to the repository if its precision is greater than a
given threshold and if it is different than rules already in the
repository. Conditions comparing the value of two attributes are
allowed, so that linear multivariate classifiers can be obtained.

2) Multiclass Classification: Multiclass classification is
addressed in [67]. A single rule is evolved in each run of the
system, and n runs are performed for a n-class classification
problem. This way, the final classifier has a single rule for each
class. The fitness function combines three terms, two of them
(specificity and selectivity) are used to gauge the predictive
ability of the rule, and the third one measures its complexity.
Simple univariate conditions are employed. A similar approach
is followed in [77].

In the same vein as the previous references, the system pre-
sented in [78] tackles multiclass classification performing a
different running for each of the classes to be distinguished.
However, several differences can be noted with respect to the
systems described above. Each individual represents a rule, but a
niching mechanism (namely token competition) and elitism are
employed in such a way that a set of rules, all of them predicting
the same class, are obtained at the end of the evolutionary pro-
cess, so that the final classifier can have several rules for each
of the classes. Simple univariate conditions are also used in this
paper. An accuracy-based fitness function is employed.

Each individual represents a rule in the system described
in [71]. It employs a fitness function based on sensitivity and
specificity and simple univariate conditions in order to construct
classifiers with several rules per class. A similar system aimed
at evolving fuzzy rules is proposed in [64].

In the proposal described in [79], based on the
individual=rule approach, a separate run is performed for each
of the classes to be discriminated. When an evolutionary run

finishes, the individuals with the highest fitness values found in
any generation are saved. Finally, a selection strategy builds the
final classifier from these sets. It begins by forming a set choos-
ing the best rule in each set corresponding to a particular class.
Then, the remaining rules are progressively evaluated in order
to determine whether they will be included in the set, checking
if the predictive quality of the rule set has improved. The fitness
function is a combination of precision and support. The search
is biased toward comprehensible solutions in the selection pro-
cess. Each generation, individuals are ranked probabilistically
according to one of three possible criteria: support, precision or
comprehensibility. A probability is assigned to each criterion.
These probabilities self-adapt as the evolutionary process runs.

In [87], a hybrid GA/GP system in which each individual
represents a rule is described. Classifiers containing several rules
per class can be constructed. The fitness function takes three
terms into consideration: support, confidence, and rule size.
This system allows the use of conditions comparing the value
of two attributes; in this way, linear multivariate classifiers can
be obtained.

Linear multivariate classifiers containing several rules per
class, evolved employing an individual=rule approach with the
aid of the token competition niching method, are used in [80]. A
fitness function based on the concepts of support and confidence
is employed. This approach is also employed in other studies
which extend the previous proposal. In [68], a two-stage process
is followed. In the first phase, evolutionary programming (EP) is
used to evolve a Bayesian network, which represents an overall
structure of the relationships among the attributes. The Bayesian
network provides knowledge in itself, but it is also used as a basis
to define the grammar to be used by the GP algorithm in the
second stage. This system is further extended in [69], where a
GA is added to the EP and the GP. The GA is used to discretize
the continuous attributes. Similar proposals can be found in [76]
and [81].

The system described in [62] employs a fitness function based
on classification accuracy with a penalty for size. Each individ-
ual encodes a rule set. Arithmetic operations and the comparison
of attributes and combinations of attributes are allowed to appear
in the conditions, leading to nonlinear multivariate classifiers.

The hybrid GA-P system [88] is applied for evolving fuzzy
rules in [84]. A coevolutionary approach is employed, where
the GP algorithm evolves a population of rule sets while the
GA evolves the parameters defining the membership functions
of the attributes used in the antecedents of the rules. Each in-
dividual encodes a complete classifier, in which only univariate
conditions are allowed. A classifier can contain several rules per
class.

The system proposed in [85] evolves fuzzy classification rules
for multiclass problems. In this paper, the numeric attributes are
fuzzified, and a coevolutive approach is followed, in which a
GP algorithm and an evolution strategy (ES, another kind of
evolutionary algorithm [89]) are run simultaneously in a coop-
erative way. Each individual of the GP encodes a rule set and
each individual of the ES represents the membership functions
corresponding to the fuzzified continuous attributes. In contin-
uation, we focus on the GP algorithm. Each individual in the

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 131

Fig. 6. GP individual representing a discriminant function.

population represents a rule set, but all the rules of each of the
individuals predict the same class, and hence, the system must
be run once for each of the classes to be distinguished. Simple
univariate conditions are used in the antecedents of the rules.
The fitness function measures accuracy based on sensitivity and
specificity. Size is not included in the fitness function, but it is
considered in the selection of individuals. When individuals are
selected to breed the next generation, individuals with higher
fitness are selected, but when several individuals have equal
fitness, the smallest ones are preferred.

The system proposed in [86] evolves classifiers in which sev-
eral rules per class can exist applying an individual=rule set ap-
proach. Simple univariate conditions are used in the antecedents
of the rules. The fitness function is based on classification ac-
curacy. A similar approach for the evolution of fuzzy rules is
employed in [54].

A hybrid individual=rule/individual=rule set approach for
multiclass classification is followed in [66]. An individual can
contain multiple classification rules, subject to the restriction
that all its rules have the same consequent. The population con-
sists of a set of individuals of this type. When the evolutionary
process finishes the best individual for each class is used to form
the final classifier, thus, several rules can exist for each class.
Simple univariate conditions are allowed. The fitness function
combines three terms, sensitivity and specificity are used to
gauge the accuracy of the rule, and a term based on size mea-
sures its complexity.

C. GP for Learning Discriminant Functions

Discriminant functions are another formalism for represent-
ing classifiers. A function is a mathematical expression in which
different kinds of operators are applied to the attributes of a data
instance that must be classified. This way, a single output value is
computed from the operations performed on the values of the at-
tributes. The value computed by the function indicates the class
predicted. Usually, this is accomplished by means of a threshold
or set of thresholds. For binary classification problems, a single
function is enough; if the output value is greater than a given
threshold, the example is assigned to a certain class, otherwise
it is assigned to the other one. Usually, the threshold is zero, so
that a positive output indicates a particular class, while a non-
positive value corresponds to the other class. Fig. 6 represents

TABLE V
APPLICATIONS OF GP-INDUCED DISCRIMINANT FUNCTIONS

a GP individual corresponding to the following discriminant
function for class 1 of the Pima dataset

0.92∗NP + 0.23∗PG + 1.07∗BP + 19.82∗TT

For multiclass problems, two basic approaches can be fol-
lowed. As we have seen in Section V-B, one possibility is to
consider a n-class classification problem as n − 1 binary prob-
lems, so that n − 1 or n binary threshold functions, like the
ones described above, would be used in order to discriminate
the n classes. The other option is to use just a single function
to distinguish all the classes. Now n − 1 threshold values are
needed. These thresholds will determine n intervals, and each
interval will be assigned to a particular class; this way, the pre-
dicted class will depend on the interval which the output value
belongs to. Though these methods are pervasively followed in
the literature, some other approaches have been devised, as we
will see as we review the published works.

The obvious approach for evolving this kind of classifier with
an evolutionary algorithm like GP is to have a population in
which each individual encodes a discriminant function. The
function set used by the GP algorithm will determine the kind
of operations that the function can perform on the data. In the
following review, works are categorized based on the number
of classes to be distinguished (binary/multiclass).

Table V lists the applications of the systems reviewed in this
section. In this case, we can find a significant number of ref-
erences related to image classification and other related pattern
recognition issues. The reason is that the representation given
by discriminant functions is very akin to the kind of mathemat-
ical operations and transformations usually applied to signal
processing.

1) Binary Classification: The most obvious and simple ap-
proach to tackle binary classification problems is to evolve a
population of threshold functions, using classification accuracy
as the fitness measure, and to choose the most fit of the evolved
individuals as the final classifier. This basic approach can be
found in [91], [92], [95], [103], [114], and [115].

One of the first works on the application of GP for evolving
classification functions is [111], where binary classification is

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

132 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

addressed by means of the evolution of a single zero-threshold
discriminant function. Two different ways of measuring fitness
are proposed. The first one consists in the application of an MO
approach in order to simultaneously optimize two goals: classi-
fication accuracy (correct classification rate) and the a posteriori
entropy of class distributions. The second fitness function is the
false alarm or FP rate. Another work involving MO is [107],
where three objectives are considered: tree complexity, misclas-
sification cost, and an approximation to the Bayes error in the
1-D projected space.

The goal of Cavaretta and Chellapilla [127] is to find out if
the principle of Occam’s razor holds for classifiers. A single-
threshold function is evolved. Two fitness functions are con-
sidered; the first one is computed as the correct classification
rate and the second one is a distance-based fitness, in which
the difference between the real and the predicted output is com-
puted for each instance. Since the goal is to test the suitability
of Occam’s razor, both fitness measures can be penalized with
a parsimony factor, in such a way that fitness decreases with
the number of nodes of the tree which encodes an individ-
ual. Similar works in which binary classification is addressed
by evolving a single-threshold function, with a fitness func-
tion based on accuracy including a size penalty, can be found
in [93], [105], [116], [117], and [126].

Other approaches to binary classification have been proposed,
for example, in [106]. A single-threshold function is evolved
employing a fitness function composed of two terms, the first
one is classification accuracy, and the second one is a measure
of certainty, which refers to the probability of misclassification
in future examples, different from the ones in the training set;
that is, certainty is considered in this paper as a measure of the
generalization ability of the classifier.

The system described in [94] is run several times. In each run-
ning, one best-of-run discriminant function is obtained. A pool
of functions is constructed after several rounds. After training,
data instances are classified by a majority voting on the outputs
of the individual classifiers.

A system in which several validation sets are used to assess the
quality of the induced classifier is described in [110]. The system
works by following three stages: training, multiple dataset vali-
dation and voting. In the training phase, 40 runs are performed,
obtaining 40 models, from which the six best models are kept. In
the validation phase, each of the six selected models is applied
to five different datasets to validate their generalization abilities.
The datasets are different, but all of them are similar and related
to a same domain. After all the validations end, the model with
the best validation performance is selected. The above process
is repeated six times for a chosen test dataset. Each time one
of the remaining six datasets is selected as a fit dataset, while
the other five datasets are used in the validation phase. After six
repetitions, six best models, each generated in one repetition,
can vote the classification for the given test dataset.

Two fitness functions specially tailored for coping with class
imbalance are presented in [124]. Each individual in the popu-
lation is a single-threshold discriminant function.

In [90], each individual is a discriminant function encoded
as a program in a specific programming language that will be

run on a certain virtual machine. The fitness function is based
on the distance between the real and predicted output, but some
penalties are considered. There is a penalty for size, and some
other penalties can be applied when the program performs cer-
tain illegal operations. Machine code individuals are evolved to
carry out binary classification in [101], where a fitness function
combining the mean square error and the correct classification
rate is used, and in [102], where the fitness function is based on
the distance between the real and the predicted class.

Three active learning methods are compared in [125]. The
goal of active learning is to perform dynamic selection of ex-
amples while the evolutionary process is running, in order to
alleviate the computational overhead of GP. The basic idea is to
select the instances that are more difficult to classify for the in-
dividuals that are being evolved. The fitness function employed
in this proposal is based on the distance between the real and
the predicted class.

MO and coevolution are applied in [130] in order to evolve a
set of classifiers (a Pareto front) while achieving an efficient fit-
ness evaluation. Two populations are coevolved, one population
in which each individual represents a threshold discriminant
function and another population in which each individual en-
codes a subset of the training set. When the evolution of the
function population ends, a set of nondominated classifiers is
obtained, rather than a single classifier. Each classifier gives a
classification output for a given example, and a voting system is
applied to obtain the final classification. The purpose of the pop-
ulation of training subsets is to obtain a training subset smaller
than the original training set, since the smaller the training set,
the shorter the time needed to compute fitness. Since the train-
ing subset coevolves with the classifiers, the fitness of a training
subset depends on the performance of the classifiers with that
data. Classification accuracy is used as the fitness measure for
the discriminant functions.

In [113], each individual is a single-threshold discriminant
function. The main contribution of this paper is the inclusion of
restricted loops in the function set. These loops include param-
eters that are also evolved by the system.

2) Multiclass Classification: One of the first works involv-
ing multiclass classification with GP-evolved discriminant func-
tions is [131], where an n-class problem is converted into n
binary problems. The system is run once for each of the classes
to be distinguished. In each running, a single-threshold discrim-
inant function is evolved for a particular class. Classification
accuracy is used as the fitness measure. A similar approach is
described in [100] with a fitness function measuring the over-
lapping between the class outputs given by the classifier.

Multiclass classification is carried out in [118] by means of
a set of single-threshold discriminant functions and a simple
voting scheme. A set of functions is evolved, which can result
in several functions for a given class. Each of these functions
discriminates one class from the rest. When an instance is to
be classified, each of the functions gives its output and the final
prediction is obtained through voting.

The system described in [128] addresses multiclass classi-
fication by constructing n binary classifiers, so that it has to
be run once for each of the classes. This system employs a

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 133

layered multipopulation GP framework. A layer is composed
of a number of populations. The result of evolving each pop-
ulation is a discriminant function. These functions transform
the training set to construct a new training set, performing a
feature generation process, so that new constructed features are
added to the original ones when passing to the next layer. The
last layer has a single population, so that a single classifier is
finally constructed from the best partial solutions given by the
previous layers. To put it another way, each layer evolves a part
of the final discriminant function, which is progressively con-
structed layer-by-layer. The fitness function is based on classi-
fication accuracy. A similar method is presented in [96], but
here the fitness function is based on sensitivity and speci-
ficity, and two feature selection methods are added to the
system.

A GP-based approach to multiclass classification in which an
integrated view of all classes is taken is proposed in [129]. This
system is able to construct a complete classifier in a single run.
Each individual is a multitree structure made up by n trees, n
being the number of classes. Each of these n trees (Ti, 1 ≤ i ≤
n) encodes a threshold function for a particular class. The system
considers that a data instance x belonging to class i is correctly
classified, if Ti(x) ≥ 0 and Tj (x) < 0, for all j �= i. The fitness
function is computed as the classification accuracy. A similar
system evolving a multiple-threshold discriminant function is
described in [97], where a fitness function based on the sum of
squared errors is employed.

In [98] and [122] multiclass classification is addressed by
evolving a multiple threshold discriminant function. This func-
tion distinguishes n classes by means of n − 1 threshold values.
These thresholds determine n intervals, and each interval is as-
signed to a particular class; this way, the class predicted will
depend on the interval that the output value belongs to. Differ-
ent approaches can be devised from this basic idea. The simplest
approach, static class boundary determination, consists in fixing
the boundary values at manually chosen points. In [119], two
methods designed to dynamically determine thresholds during
the evolutionary process are presented. These approaches are
further improved in [120].

In the proposal presented in [121], each individual represents
a multiple-threshold discriminant function, but instead of us-
ing the single best evolved individual in the population, this
approach uses multiple evolved programs to perform classifi-
cation; the best evolved individuals are selected to form the
classifier. It is assumed that the behavior of a program classifier
is modeled using multiple Gaussian distributions each of which
corresponding to a particular class. The distribution of a class is
determined by evaluating the program according to the exam-
ples of that class in the training set. If the curves representing
these distributions are well separated, this means that the classes
are being correctly distinguished, and hence, the degree of over-
lap is used as the fitness measure. The classifier is formed by
several discriminant functions. The probability that an instance
belongs to a certain class is computed based on the values of the
probability density function for a given class according to the
different discriminant functions, and the instance is assigned to
the class with the highest probability.

The two approaches for multiclass classification, constructing
a single classification function or n binary classifiers are com-
pared in [112]. This paper addresses the problem of hand-written
digit recognition. When a single function able to discriminate all
the classes is evolved, this function directly outputs the numeric
value of the predicted class, since each class is an integer digit.
The other option consists in running the system as many times as
there are classes to be distinguished, each run evolving a single-
threshold discriminant function for a particular class. In both
cases, the fitness function is based on classification accuracy.

Two methods for multiclass classification are proposed in
[108]. In the first method, a single function is evolved. When
the evolutionary process ends, the best evolved individual is
chosen as the classifier, and it is applied to each of the instances
in the training set, so that a set of values is obtained for each
class. When a new instance has to be classified, the classifi-
cation function is applied to it and it is assigned to the class
that has the output obtained in its value set. If the output ob-
tained does not appear in any of the value sets, the instance is
assigned to the class which has the value that is nearest to the
output obtained. The second method consists in choosing the p
best evolved individuals (p can be different from the number of
classes). Each function will output a corresponding class with
a confidence factor for each sample. The outputs obtained are
combined to compute the membership factor for each class, and
the instance is assigned to the class with the highest membership
factor. Both methods employ a distance-based fitness function
designed to measure interclass discrimination and separation. A
similar system is described in [123]. Other studies comparing
different approaches to multiclass classification with discrimi-
nant functions can be found in [104] and [132].

A single best-of-run individual is evolved as the final classifier
in [4] and [133]. Each class has an associated numerical value.
A data sample is classified as belonging to the class that is near-
est to the output value computed by the discriminant function
evolved. Fitness is computed as the classification accuracy.

In [134], attributes are fuzzified, and multiclass classification
is achieved by evolving a single-threshold discriminant function
for each class. The fitness function is based on the distance
between the real and predicted output. A similar approach is
proposed in [135], but using rough sets instead of fuzzy sets.
Similar proposals can be found in [136] and [137].

A system for the evolution of discriminant functions is de-
scribed in [99], where each individual in the population is a
string representing a C program, which maintains an output ar-
ray having a position for each of the classes to be predicted. The
program computes n output values, one for each of the classes;
the predicted class is the one with the highest output value. The
fitness function combines the mean square error and the cor-
rect classification rate. A similar system is described in [109],
but here the n-class problem is treated as n binary problems,
running the system n times.

D. GP With Other Representations

In the previous sections, we have reviewed the studies that
employ GP to evolve classifiers in their more common forms

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

134 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

TABLE VI
APPLICATIONS OF OTHER KINDS OF GP-EVOLVED CLASSIFIERS

(decision trees, classification rules, and discriminant functions).
Though less common, there are many other formalisms that
can be used to represent classifiers. In this section, we focus
on publications dealing with GP-evolved classifiers where other
representations are employed. Table VI lists the applications of
the systems reviewed in this section.

A hybrid system in which the classifier is represented using
both classification rules and discriminant functions is described
in [140]. GP is used in a two-stage evolutionary system for
binary classification. In the first stage, rules are evolved individ-
ually. An individual represents a rule, and each rule corresponds
to a particular class. One or several rules can be evolved for each
class. The training set is reduced as rule generation proceeds, so
that the instances covered by existing rules are eliminated from
the training set. Only simple univariate conditions are allowed
to appear in the rules. In the second stage, a single-threshold
discriminant function is evolved from the reduced training set
(the data which do not satisfy any rule or satisfy more than
one rule). The fitness function used in both stages is based on
the distance between the predicted and the real class. Once the
hybrid classifier has been constructed, the procedure followed
to classify a new instance consists in first applying the rule set.
If the instance is covered by some rule, it is classified in the
class predicted by that rule, otherwise, it is classified by the
discriminant function.

ANNs have been extensively used for classification and other
purposes [155]. An ANN consists in a group of processing units
or neurons highly interconnected in a layered system. GP is
employed in [138] to evolve neural networks. Each individual
in the population is a tree representing the architecture (struc-
ture and parameters) of the network. The fitness function is the
classification accuracy of the network throughout the training
data. In a similar way, GP has been applied in [54] and [141] for
the evolution of neural networks, where again each individual
in the population represents a network architecture.

SVMs have emerged in recent years as a popular approach
to classification [156], [157]. SVMs transform the data into a
new space where the data is linearly separable, and then build
a hyperplane which divides examples so that examples of one
class are all on one side of the hyperplane while examples of the
other class are all on the other side. A kernel function is used
to facilitate the construction of such a hyperplane. GP has been
applied to the evolution of kernel functions for SVMs. The basic
idea consists in evolving a population in which individuals are
kernel functions, whose fitness is computed by constructing a
SVM from it and measuring its quality. This setting is followed

in [146] and [147], where GP is used to evolve kernels. In [145],
each individual represents a multiple or hybrid kernel (a combi-
nation of kernels given by a mathematical expression). Multiple
kernels are similarly evolved in [148], but here a generalization
measure called bound of generalization error is used as fitness,
and a hybrid GP/evolution strategy (ES) method is employed.
The GP part is used to optimize the structure of the multiple ker-
nel, while the ES optimizes the parameters of the subkernels.
Another work dealing with the evolution of multiple kernels by
means of GP can be found in [149]. Here, a boosting technique
is applied to concentrate evolution on the most difficult objects
to classify. The hybrid kernels obtained at each boosting round
participate in the training of SVMs, which are combined into a
final classifier, applying a weighted voting approach.

In a similar way to a rule set, a classifier can also be rep-
resented as a set of queries. Queries are usually expressed in
a database management system query language like SQL, but
other options can be taken into consideration. This approach is
followed in [150], where GP is employed to evolve a population
where each individual is a SQL query. The conditions that are
allowed to appear in queries are comparisons of an attribute with
a constant, but also comparisons of one attribute with another
one, and conditions using SQL specific operators, like EXITS
or ALL. Fitness is evaluated with a function which includes a
term for accuracy, another term for complexity and another one
for the shape of the tree, that can be used for encouraging certain
kinds of queries. A population of SQL queries is evolved using
GP in [158]. A set of n − 1 queries is used to distinguish n
classes. All the rules are obtained in a single run using elitism
and some niching method. Simple univariate conditions are em-
ployed in this proposal. The framework proposed in the previous
work is directly applied in [142] to binary classification. Another
SQL-based system for multiclass classification employing GP is
described in [159]. Here, each individual is a complete classifier,
in which several rules per class are allowed. Fitness is computed
as the accuracy rate. A special kind of classification, text clas-
sification, is addressed in [143]. Binary classification is carried
out in this system, where each individual in the population is
a query expressed in Lucene, a text search language. Specific
Lucene operators are used to build the queries, and fitness is
based on precision and recall.

The kNN algorithm is an instance-based learning method in
which a dataset is used as a reference to classify new instances,
with the help of a suitable distance measure. In order to classify
a new data instance, its kNNs are found, the number of instances
in each class is counted for that subset of k, and the example to
be classified is assigned to the class with a higher count. These
class counts can be weighted with the purpose of trying to avoid
the adverse effect caused by outliers. GP is used in [144] to
evolve such kind of weighted counts. Each individual in the
population is a tree encoding a mathematical expression which
provides a weighted count of the kNNs. The system proposed is
aimed at binary classification. The fitness function is based on
the ROC curve.

Several proposals for the application of EAs to optimize the
performance of the kNN method are presented in [154]. First
a GA is used to select the training set. MO is used in order to

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 135

simultaneously minimize the size of the training set and maxi-
mize classification accuracy. Another proposal consists in using
GP to evolve the distance measure used by the kNN algorithm.
MO is applied again in order to maximize the classification rate
while minimizing the complexity of the distance measure. The
next idea consists in combining the previous ones in a cooper-
ative coevolutive setting: fitness evaluation for the training set
selection species is done by computing the accuracy rate for
each individual using the best distance measure of the previ-
ous generation; similarly, the fitness for the proximity measure
species is computed from the accuracy rate for each individual
using the best training set of the previous generation. Finally,
a third species that will compete with the two previous ones is
added. A separate fitness evaluation dataset is used to evaluate
the fitness of individuals. The third species is employed to se-
lect the instances in this fitness evaluation set, and the goal of
its fitness function is to minimize the accuracy rate. The effect
achieved with this third species is to enhance performance, since
fewer instances are used to compute fitness, and to attain a better
generalization capability.

Kernels can be applied not only to SVMs, but also to any
learning method involving a distance measure. The kernel near-
est neighbor method (kernel-NN) [160] is a variation of the kNN
algorithm in which a kernel is applied to the distance function.
GP is employed in [151] in order to evolve kernels for kernel-
NN. The fitness function measures the margin for a correct
classification that the prototype set (the reference data instances
used for classification) provides. The training data is usually
used both as the prototype set and as the dataset to compute the
fitness of an individual. However, when GP is wrapped around a
kernel-NN classifier to search for the most suitable kernel for a
particular dataset, this setting would lead to prohibitive running
times. The method proposed applies coevolution to tackle this
problem by reducing the number of prototypes used for classi-
fication and reducing the fitness case subset considered during
each generation. Three species are employed: the first species
includes the GP kernels; the second species includes the pro-
totype subset subject to a cooperative coevolution with the GP
kernels; the third species includes the fitness case subset subject
to a competitive coevolution with the GP kernels. The prototype
species is evolved to find good prototypes that maximize the
fitness of the GP kernels. The fitness case species is evolved to
find hard and challenging examples that minimize kernel fitness.
Both prototype and fitness cases species are evolved using an
evolution strategy [89].

A novel approach to multiclass classification with GP is de-
scribed in [139]. GP is employed to evolve what is known as
variable predictive models (VPMs). A VPM is a mathematical
model that expresses the value of a variable as a function of
one or a set of the other variables. In this work, each possible
pair of variables {Xi,Xj} is considered, where Xi is the output
(predicted) variable and Xj is the input (predicting) variable.
This way, a GP-evolved VPM is constructed for each Xi as a
function of each of the other variables Xj , performing a separate
GP run for each VPM. The best VPMi from all the VPMij is
kept for each variable Xi . The root mean squared error is used
as the fitness measure. This set of computations is performed

TABLE VII
APPLICATIONS OF GP-BASED ENSEMBLES

separately with the data instances of each class, so that, in the
end, the best VPMs are kept for each variable and each class.
When a new data instance has to be classified, each feature is
predicted with the corresponding VPM for each of the classes,
and the instance at issue is assigned to the class whose VPMs
give a prediction of the values of the features that is closer to
the real value.

Multiclass classification is addressed in a rather unusual way
in [152]. The approach proposed is motivated by the market-
based Hayek model [161], [162], an artificial market model.
The model, based on auctions, returns a set of individuals that
decomposes the problem by way of a bidding process. Each in-
dividual in the population has a certain wealth and an associated
action (a class assignment, in classification problems), and can
bid in an auction for certain data instances. The individual mak-
ing the highest bid wins the instance and has to pay for it, but
will be rewarded if the action is suited to that instance (if the pre-
dicted and the real classes match). The amount bid is determined
by a mathematical expression computed according to the values
of the attributes, evolved by the GP algorithm. The classifier is a
set of individuals that can bid for instances in a particular class,
and fitness is measured on the basis of the wealth of individuals.
A similar system is described in [153], but here coevolution is
applied in order to evolve a training subset along with bidding
classifiers, and the concept of wealth is not employed.

VI. GP FOR LEARNING ENSEMBLE CLASSIFIERS

In this section, we focus on a particular kind of postprocessing
technique aimed at obtaining the maximum from the classifica-
tion models produced by learning algorithms: ensemble or team
methods. The basic idea behind this approach is to improve the
quality of the prediction by means of using not a single classi-
fier, but a group of them, each one providing a possibly different
output. Ideally, different base classifiers in an ensemble capture
different patterns or aspects of a pattern embedded in the whole
range of data, and then through ensembling, these different pat-
terns or aspects are incorporated into a final prediction. For this
reason, diversity is very important for ensembles. Bagging and
boosting are two well-known ensemble methods [163]–[165].

Two main issues have to be addressed when an ensemble
approach is employed, which are how to generate diverse base
classifiers and how to combine base classifiers, and GP has been
applied to both issues, as we will see shortly. Table VII lists the
applications of the systems reviewed here.

The application of GP in order to combine the predictions of
several classifiers is addressed in [172]. First, several partitions

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

136 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

of the original training data are formed and the base classifiers
are obtained from these datasets by means of different learning
algorithms, e.g., linear classifiers, naı̈ve Bayes, C4.5, and ANNs.
Each of the classifiers obtained is translated into a mathematical
expression, that can be used as building blocks for GP. Each GP
individual is a tree in which base classifiers are combined by
means of mathematical and logical operators. Several classifiers
of the same kind or classifiers of different types can be combined
to obtain an ensemble. The fitness function used in these works
is based on the ROC curve.

A parallel implementation of a system for evolving ensembles
is described in [171]. First, the population is subdivided into
demes (subpopulations assigned to different nodes) which, in
turn, are subdivided into teams of individual programs. The
fitness function combines the mean square error and the correct
classification rate. A simpler sequential system is described in
[166], in which an accuracy-based fitness function is used. GP
is employed to evolve diverse base classifiers.

The goal of the system proposed in [168] is to enhance accu-
racy and reduce performance fluctuation of classifiers produced
by GP. A pool of classifiers is independently evolved in parallel.
Each base classifier is a linear genome machine. An ensemble
is randomly formed by selecting individuals from the pool. The
ensemble is accepted if the individuals’ faults occur indepen-
dently of each other. Otherwise the process is repeated until
an acceptable ensemble is obtained. The behavioral diversity of
the classifier is measured by the expected error rate of combined
individuals.

GP is used in [173] to evolve a set of diverse base classifiers.
Here, the focus is on the efficient construction of classifiers from
huge volumes of data. When the training data is massive, the
learning process can be too lengthy. An obvious approach in
such a situation is to sample the training data and use just a
subset of it to construct the classifier, but important data can be
missed this way, resulting in poor classification performance.
This drawback can be alleviated using an ensemble. Small sub-
sets from a large dataset are used to build a number of base
classifiers, and then these base classifiers are combined. Binary
classification is addressed in this paper. Each base classifier is
a single-threshold discriminant function, evolved in a GP run
using classification accuracy as the fitness function. The com-
bining mechanism used is simple majority voting, that is, pre-
dictions of the majority of base classifiers is set as the ensemble
prediction.

A system for binary classification is described in [169]. Bag-
ging is used in order to obtain different training sets. A single-
threshold discriminant function is evolved from each of the
training sets, using classification accuracy as the fitness mea-
sure. A subset of diverse classifiers is selected from this pool to
make the final classifier. Diversity is measured by comparing the
structure of the classification rules instead of output-based di-
versity estimating. Nine different fusion methods for combining
the results from the base classifiers are compared.

Binary classification is also addressed in [170]. Each of
the base classifiers is a single-threshold discriminant function,
evolved with a fitness function combining accuracy and size.
Diverse base classifiers are obtained here by first applying the

k-means clustering algorithm [177] to the training data, fol-
lowed by a feature selection algorithm applied to obtain the
most relevant features from each cluster. This way, each of the
base classifiers is evolved throughout the training data but with
different feature subsets.

A boosting-based distributed ensemble system for streaming
data is presented in [176]. There is streaming data when new
data continuously flows into a dataset at high speed; in these
circumstances, a tremendous and rapidly increasing amount of
data has to be processed. An island distributed model is em-
ployed. Each node receives its own flow of data, and evolves
one of the base classifiers, represented as decision trees, using
classification accuracy as the fitness function. Once the ensem-
ble classifier has been built using a subset of the streaming data,
the ensemble is used to classify the new incoming data, and
there is no need to retrain unless a concept drift is detected (a
change in the nature of the data). Concept drift is detected using
a fractal-based self-similarity measure. When the performance
of the ensemble falls behind a certain threshold, retraining is
performed on the next available chunk of streaming data. A
similar boosted distributed system is also employed in [174],
where the k-means clustering algorithm [177] is employed in
order to choose the most diverse and fittest base classifiers. Af-
ter a round of generations, the fittest individual from each of
the clusters formed is selected from each of the subpopulations.
In addition, a diversity-based pruning mechanism is applied to
reduce the number of base classifiers in the ensemble.

A comparison of different methods for evolving ensembles
of GP classifiers is carried out in [175]. There are two com-
mon methods to evolve teams of genetic programs, island and
team approaches. Island approaches produce teams of strong
individuals that cooperate poorly, while team approaches pro-
duce teams of weak individuals that cooperate strongly. A new
approach known as orthogonal evolution of teams (OET) is pro-
posed in this paper. This method overcomes the weaknesses of
island and team approaches by applying evolutionary pressure
at both team and individual levels during selection and replace-
ment. The base classifiers are multiple-threshold discriminant
functions, suitable for multiclass classification. The final clas-
sification is obtained by a weighted voting. Different fitness
measures are used for base classifiers and for teams of classi-
fiers, both based on classification accuracy.

Multiclass classification is tackled in [167] by dividing an n
class problem into n binary problems, and performing n runs,
one for each of the classes. Here, an individual encodes a small-
scale ensemble system containing a set of trees known as a
subensemble (SE). Each of the trees in a SE represents a single-
threshold discriminant function. The output of each SE is com-
puted by means of a weighted voting scheme. The best SE for
a given class is obtained after each running, together with a
weight, which will be employed to obtain the final classification
by combining the output of all the best SEs.

VII. PITFALLS, BENEFITS, AND GUIDELINES

The application of GP to classification tasks has its advan-
tages and drawbacks. In this section, we analyze the problems

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 137

associated with the use of GP for classification, but we will also
see that these problems can be circumvented. Besides, we pin-
point the specific advantages of applying GP for classification
purposes. Finally, we give some guidelines on how to employ
GP for classification.

A. Pitfalls on the Use of GP-Based Classifiers

The main problem of GP is its computational cost, primar-
ily due to the computation of the fitness of individuals, which
has to be repeatedly evaluated through the evolutionary process.
Fitness evaluation is particularly costly when evolving classi-
fiers, since it implies the application of the classifier encoded
by each individual in the population to all the data instances
in the training set. Training times on the order of seconds [79],
[121], [122], [130], [134], minutes [51], [78], [80], [125], [137],
hours [68], [85], [153], or even days [63], [123] have been re-
ported in the literature reviewed in this paper.

Another problem of GP is that caused by introns or junk
code in individuals. Introns are pieces of code in an individual
produced by the evolutionary process that does not affect the
fitness of the individual, so that they can be viewed as junk
or useless code. Introns are problematic because there is usu-
ally an exponential growth of junk code in individuals as the
evolutionary process goes on, causing the situation known as
bloating, which means that GP individuals grow uncontrollably
until they reach their maximum size, filled with useless code.
This situation usually leads to run stagnation and poor results,
and bigger individuals imply even higher training times, wors-
ening computational cost problems of GP. These are problems
caused by introns in GP in general, but another adverse effect
must be pinpointed from the specific point of view of classifi-
cation with GP. Comprehensibility is one of the factors which
determine the quality of the induced models, and it can de-
crease drastically when the classifier is swamped with introns.
But despite the obvious problems caused by introns, there is
some evidence that junk code can also have beneficial effects,
protecting good building blocks in the individuals from the de-
structive effects of crossover. Different mechanisms have been
proposed to palliate the adverse effects of introns, such as us-
ing nondestructive crossover operators, applying a parsimony
pressure to individuals by including a size penalty in the fitness
function or employing fitness functions that change throughout
the evolutionary process.

Finally, another difficulty of GP arises from the great number
of parameters that must be defined in order to have a working
system. Some of these parameters are population size, number
of generations, probabilities of application of different genetic
operators or maximum size of individuals, to name a few. Usu-
ally, a series of preliminary runs are required in order to tune
all these parameters. Nonetheless, this drawback of GP can be
considered only as a secondary one, in comparison with com-
putational cost and bloating.

While these problems, mainly computational cost and introns,
are of great importance in every application of GP, the papers
reviewed here generally do not address these issues; only a few
cases afford them marginal attention. This situation is under-

standable because the authors focus on their main goal: to find
better ways of applying GP in order to obtain better classifiers.
Besides, many solutions have been proposed in GP specific liter-
ature to cope with the well-known problems of this technique,3

and all of these techniques can be applied to any GP-based sys-
tem. Therefore, researchers concerned with GP classification
concentrate on obtaining better classifiers, and consider that the
existing solutions for GP specific problems can be added to the
classification system later on.

Although most of the works reviewed here pay no attention to
specific GP drawbacks, there are some exceptions that we would
like to enumerate here. Parallel and distributed implementations
are probably the most obvious approach to decrease training
time, and are applied in [63], [73], [90], [109], [158], [168],
[171], [174], and [176]. The use of a parallel demetic frame-
work has been found to improve running time even when im-
plemented on a single processor machine, as explained in [99].
Incremental learning is applied in [134] and [137] in order to de-
crease training time. Incremental learning consists of beginning
the evolutionary process using just a small subset of the training
set, and adding training instances as the evolutionary process
goes on, until completing the whole training data. MO and co-
evolution are applied in [130] to evolve a set of good classifiers
while achieving efficient fitness evaluation. Two populations
coevolve, one population in which each individual represents
a discriminant function and another population in which each
individual encodes a subset of the training set. The purpose of
the population of training subsets is to obtain a training sub-
set smaller than the original training set, since the smaller the
training set, the shorter the time needed to compute fitness. A re-
duction in training time is reported in [128] as a consequence of
the use of the multi-population GP framework proposed. Three
different active learning methods are proposed in [125] in order
to improve training time. The basic idea behind active learn-
ing consists in using the fitness of the models induced through
the evolutionary process to guide the selection of samples used
for training. Although the high computational overhead of GP
makes scalability more difficult, scalable GP-based classifica-
tion systems can be constructed, and some papers are specif-
ically devoted to the classification of large-scale datasets with
GP [125], [173]. Scalability is sought in [151] by coevolving
the prototype subset and the fitness case subset together with the
kernel for a kernel-NN classifier. In fact, GP has been applied
even to the classification of streaming data (data continuously
flowing into a dataset at a high speed) [176].

With regard to introns, there are a considerable number of
papers that address bloating as a side effect. As we have seen,
comprehensibility is one of the desired features of classifiers,
and one of the factors related to comprehensibility is the size
of the model; the bigger the classifier, the harder to interpret
for humans. One of the most usual ways of promoting smaller
models is the inclusion of a size penalty in the fitness function,
but this parsimony pressure also prevents the presence of introns.
In this way, the efforts aimed at enhancing comprehensibility

3Proposals for speeding up the evolutionary process and protecting it from
introns can be found in [3].

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

138 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

are also beneficial with respect to bloating. This kind of size
penalty can be found in many of the papers reviewed [37],
[40], [62], [90], [102], [104], [105], [116], [117], [126], [127],
[139], [143]. On some occasions, size penalties are proposed
with the specific purpose of fighting bloat [51], [60], [107]. A
selection mechanism specially designed to tackle bloat, known
as lexicographic tournament selection is employed in [147].
A pruning operator is employed in [85] to diminish bloating
effects. The system proposed in [171] removes introns when
computing the fitness of individuals. The same intron removal
algorithm is applied in [61] with a twofold purpose: to remove
introns and obtain simpler and more comprehensible classifiers.
Nondestructive genetic operators are employed in [104] to avoid
bloating. The main issue addressed by [98] is the proposal of
a new online simplification method to remove redundant code,
based on algebraic equivalences and hashing techniques.

B. Benefits of the Use of GP-Evolved Classifiers

At this point, we have seen that GP has some drawbacks
that can, however, be circumvented in different ways. But, why
should we use GP to solve a classification problem? Classifica-
tion is one of the most researched problems in computer science
and dozens of methods for classifier induction exist. This leads
us to question how well GP compares with other classification
techniques and what the reasons could be for choosing GP.

Regarding classification accuracy, many of the papers that we
review include performance comparisons of classifiers obtained
by means of GP and some other techniques like decision tree
algorithms, neural networks, SVMs, instance-based learning, or
others. A total of 124 papers have been reviewed in Section V.
There are 66 out of these 124 papers in which GP is compared
with some other techniques in terms of accuracy; usually, com-
parisons are carried out over several different datasets. In these
comparisons, there are 174 cases in which GP is the algorithm
obtaining the best accuracy, while in 144 cases, GP is beaten
by some other technique. This means that in a 54.72% of the
comparisons, GP is the best performing method. Summarizing,
it can be said that GP-based classifiers generally compare quite
well with the ones induced by other algorithms. Usually, we
can find that GP-based classifiers reach the highest accuracy for
some datasets, equal the best competitor for some others and in
some cases are inferior to some other ones. This should not be
a surprise if we take into consideration the no free lunch theo-
rem [178], [179]. But even when GP-based classifiers are beaten
by some other algorithm, most of the times the differences are
small, giving a performance near to the best one.

At this point, we have seen that GP can be used to construct
classifiers with competitive accuracy, but its main drawback
is still its computational cost. Although some other methods
like neural networks can have comparable training times, other
techniques like C4.5 will probably always be much faster. So,
it is time to look at the specific advantages of using GP for
classification.

We think that the key feature of GP that makes it so interesting
is its flexibility. This flexibility yields different advantages. As
we have seen, GP individuals can use any representation formal-

ism: decision trees, classification rules, discriminant functions,
etc. But GP can also evolve the setting for a neural network, an
SVM, a kNN classifier or any other conceivable classification
mechanism. It is because of its flexibility that the same tool (GP)
can be applied for different classification tasks, at a preprocess-
ing stage, for classifier induction and also for postprocessing
purposes, therefore, the researcher or practitioner does not need
to be familiar with many different techniques. Flexibility also
means that a GP-based system can be tailored, adapted and
tuned to every possible need; for example, any fitness function,
designed according to the requirements of a given problem,
can be plugged into the system. In a similar way, a great va-
riety of different genetic operators, evolutionary frameworks,
diversity promotion techniques, and many other evolutionary
mechanisms are at our disposal, therefore, we can choose the
ones that best fit our needs.

Another advantage of GP lies in its ability to perform explicit
and automatic feature selection and extraction. This avoids the
need to perform explicit preprocessing and gives additional ben-
efits, as we will see in short order.

Although GP is comparable in accuracy to any other method,
accuracy is not the only factor that determines the quality of a
classifier. There are some other desirable properties for a classi-
fier, and GP offers important advantages here. Interpretability is
one of the factors that affect classification quality. Some classifi-
cation techniques are considered as black box methods because
they focus on accuracy but provide classifiers that are difficult
for people to understand. Neural networks, statistical methods,
SVMs and kNN are some techniques that have been traditionally
considered as black box methods. White box methods comprise
algorithms that produce interpretable and comprehensible clas-
sifiers, like decision trees and classification rules. As we see,
one of the main factors determining interpretability is the repre-
sentation formalism. Most classification algorithms are limited
to one specific type of representation, like decision tree algo-
rithms, rule induction algorithms, neural network algorithms,
etc. However, GP individuals can be adapted to use any of these
representations. This way, a more interpretable formalism, like
rules, can be chosen when necessary. Usually, interpretability
receives less attention than accuracy, and the number of papers
concerned with this issue is reduced. Only 13 out of the 124
papers reviewed in Section V report interpretability compar-
isons between GP and other techniques, with interpretability
measured in terms of classificator size. In 60 cases, GP provides
the more interpretable classifiers, while in 30 occasions GP is
beaten by some other method. This yields a 66.67% of cases in
which GP is the best performing method.

But GP has some other advantages regarding comprehensi-
bility. One of the factors which determines comprehensibility
is complexity, usually measured in terms of size. GP can be
configured to promote the evolution of simple (more compre-
hensible) classifiers, for example by setting a maximum tree
depth or including a size penalty in the fitness function. An-
other factor related to classification quality is interestingness.
Although this factor is very difficult to measure quantitatively,
GP can clearly contribute to it. The analysis of the classifiers
evolved can provide interesting insights which help researchers

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 139

better understand the problem at hand. The automatic feature
selection performed by GP indicates which attributes are more
relevant in a particular domain, and the features constructed
point out interesting relationships between variables. Some of
the papers reviewed stress this kind of added value produced by
GP as a side effect [23], [63], [90], [93], [99], [102], [106].

Finally, we would like to highlight the potential of one of the
GP variants: grammar-based GP (GBGP) [80], [180]. GBGP
was devised as a solution to circumvent the closure problem. It
is based on the utilization of grammars to specify a language,
which individuals must adhere to. GBGP makes use of genetic
operators that take the grammar into account, in such a way
that every individual generated is always guaranteed to be le-
gal with respect to the grammar. The use of a grammar allows
us to declaratively specify many features of the classifiers to
be evolved. This way, we can control different factors related
to comprehensibility, for example specifying the kind of condi-
tions that can appear in rule antecedents, or how these conditions
can be connected (in disjunctive normal form, for example).
But with a grammar, we can also set up an individual=rule
or individual=rule set representation, and thus, many facets of
evolvable classifiers. We feel that the possibility of using gram-
mars is an advantage of GP because it enhances GPs flexibility
and expressive power.

C. Guidelines for GP-Based Classification

GP is a very flexible and powerful technique that can be em-
ployed in different ways to carry out classification tasks. As we
have seen, different GP variants and representation formalisms
can be applied. In this section, we give some advice aimed at
guiding researchers on the best options to use depending on the
characteristics of the classification problem at issue. However,
we have to point out that these hints are general and empirically
derived rules of thumb; these guidelines must not be considered
rigidly or dogmatically.

With regard to preprocessing, GP is better suited for feature
extraction than feature selection, since the capability of GP to
incorporate into individuals mathematical operations that are
applied to data variables fits very naturally with the task of fea-
ture extraction. However, we have seen that an implicit feature
selection process is performed when GP is applied, and feature
extraction is readily carried out with GP in a straightforward and
natural way, there is no need to incorporate a separate specific
feature construction algorithm. This way, when feature selection
and/or extraction is necessary for the classification problem at
hand, GP could be very well suited.

One of the most important decisions to be taken when consid-
ering the application of GP to classification is the representation
formalism to be employed. On some occasions, interpretability
is the main concern, and an easily interpretable classifier can be
preferred even at the expense of a slightly lower accuracy. This
is usually the case in Medicine, where an explanation for the
reasons behind a particular diagnosis is required. In these cir-
cumstances an interpretable representation must be employed.
Rules are usually considered as the most interpretable repre-
sentation. GP-evolved classification rules have been extensively

applied to medical problems, as we have seen in Table IV (see
Section V-B).

Independently of the representation formalism employed, an-
other way to foster interpretable classifiers consists in including
a penalty factor in the fitness function. Smaller models are easier
to understand.

On other occasions, accuracy is the main goal and inter-
pretability is sacrificed. For example, in financial domains, a
slight increase in accuracy can imply a higher income percent-
age. Discriminant functions can be a more suitable represen-
tation in these circumstances. Discriminant functions are often
employed also in applications related to image classification
and other related pattern recognition issues (see Table V in
Section V-C). The reason is that the representation given by
discriminant functions is very akin to the kind of mathematical
operations ad transformations usually applied to signal process-
ing. However, we must take into consideration that, because of
the nature of discriminant functions, this representation is well
suited to numerical data, but not to categorical data.

Turning our attention to efficiency issues, an ensemble ap-
proach can be useful when learning from large datasets, since
each base classifier can be induced from different disjoint data-
subsets. A parallel implementation of GP can also obviously be
beneficial when dealing with large datasets.

To sum up, why to use GP for evolving a classifier? We
cannot give a precise and absolute answer to this question. The
interested researcher should take into consideration the different
drawbacks and advantages of GP, together with the guidelines
that we have compiled, and ponder whether the GP technique
could be suitable or not for the problem at hand. When the
researcher feels that some of the advantages of GP can provide
a valuable benefit or fits naturally to the particular needs and
characteristics of the problem at issue, then GP should probably
be given a try.

VIII. CONCLUDING REMARKS

This paper presents a survey of GP for classification. We be-
gin by providing a brief analysis of the cardinal points in the
two areas concerned: GP and classification. This provides us
with the background context needed to understand the works
reviewed, and serves as a guideline to categorize and sort rele-
vant literature.

A considerable number of papers have been published on the
application of GP for classification. Most of these papers focus
on the core step of classifier induction, a task that can be ac-
complished by evolution using GP. But the great flexibility of
GP allows it to be applied not only to the construction of clas-
sifiers; some preprocessing and postprocessing tasks aimed at
enhancing the quality of classification have also been addressed
employing GP.

We would like to end up by pointing out some of the research
lines that could merit further attention in the future.

One of the main drawbacks of GP is its high training time,
which worsens when compounded with the need for dealing with
the huge amounts of data often found in classification problems.
It is necessary to delve into the possibilities available to make

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

140 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

GP training as efficient as possible, like parallel and distributed
GP, for example.

In classification, the quality of induced models is determined
by several features. Literature has been basically focused on
accuracy, while interpretability has attracted only marginal at-
tention. GP can be of great value at this point. Grammars, for
instance, could be readily employed to shape interpretable clas-
sifiers.

In relation with the previous point, a way of taking into con-
sideration several factors affecting classification quality is the
application of multiobjective optimization. A deeper research
on the opportunities of applying MO techniques to classifica-
tion with GP can be beneficial.

The combination of different techniques allows us to make
the most of several methods, leveraging on their strengths and
avoiding their drawbacks. The flexibility of GP makes it possible
to combine it with very diverse methods. But the combination of
GP with some other technique is not the only option; GP can be
employed as a mechanism to combine different algorithms. A
structure indicating how different base classifiers are combined
can be optimized by evolution with GP.

Although classification is one of the most researched tasks in
computer science, some new issues still arise, like the problem
of learning from imbalanced data [181], [182]. Data is said
to be imbalanced when some classes differ significantly from
others with respect to the number of instances available. The
problem appears because learning algorithms tend to overlook
less frequent classes, leading to poor classification rates in the
less frequent classes. It is necessary to explore the opportunities
that GP can offer to deal with imbalanced data.

Classification is a basic task which can serve many different
purposes, like credit scoring, bankruptcy prediction, medical
diagnosis, and so many more. Many of these applications have
been extensively addressed in the existing literature, but new
areas of application are arising, like streaming data or web min-
ing, and the application of GP can be of great value in these new
contexts.

REFERENCES

[1] J. Han and M. Kamber, Data Mining—Concepts and Technique (The
Morgan Kaufmann Series in Data Management Systems), 2nd ed. San
Mateo, CA: Morgan Kaufmann, 2006.

[2] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Reading, MA: Addison-Wesley, 2005.

[3] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic
Programming—An Introduction; On the Automatic Evolution of Com-
puter Programs and its Applications. San Mateo, CA/Heidelberg,
Germany: Morgan Kaufmann/dpunkt.verlag, 1998.

[4] M. Oltean and L. Diosan, “An autonomous GP-based system for regres-
sion and classification problems,” Appl. Soft Comput., vol. 9, no. 1,
pp. 49–60, Jan. 2009.

[5] J. C. Bezdek, S. Boggavarapu, L. O. Hall, and A. Bensaid, “Genetic
algorithm guided clustering,” in Proc. 1st IEEE Conf. Evol. Comput.,
Orlando, FL, Jun.1994, pp. 34–39.

[6] L. Jie, G. Xinbo, and J. Li-cheng, “A GA-based clustering algorithm for
large data sets with mixed numeric and categorical values,” in Proc. 5th
Int. Conf. Comput. Intell. Multimedia Appl., Xi’an, China: IEEE, Sep.
2003, pp. 102–107.

[7] I. D. Falco, E. Tarantino, A. D. Cioppa, and F. Fontanella, “An innovative
approach to genetic programming-based clustering,” in Proc. 9th Online
World Conf. Soft Comput. Ind. Appl. (Advances in Soft Computing Series,
34)., Berlin, Germany: Springer-Verlag, Sep./Oct. 2004, pp. 55–64.

[8] Y. Liu, T. Özyer, R. Alhajj, and K. Barker, “Cluster validity analysis of
alternative results from multi-objective optimization,” in Proc. 5th SIAM
Int. Conf. Data Mining, Newport Beach, CA, 2005, pp. 496–500.

[9] R. Alhajj and M. Kaya, “Multi-objective genetic algorithms based auto-
mated clustering for fuzzy association rules mining,” J. Intell. Inf. Syst.,
vol. 31, no. 3, pp. 243–264, Dec. 2008.

[10] M. Lyman and G. Lewandowski, “Genetic programming for associa-
tion rules on card sorting data,” in Proc. Genet. Evol. Comput. Conf.,
Washington, DC: ACM, Jun. 2005, pp. 1551–1552.

[11] W. M. Spears, K. A. De Jong, T. Bäck, D. B. Fogel, and H. de Garis,
“An overview of evolutionary computation,” in Proc. Eur. Conf. Mach.
Learning (Lecture Notes in Computer Science, 667). Berlin, Germany:
Springer-Verlag, Apr. 1993, pp. 442–459.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Ar-
bor, MI: Univ. of Michigan Press, 1975.

[13] C. M. Bishop, Pattern Recognition and Machine Learnin (Informa-
tion Science and Statistics Series). Berlin, Germany: Springer-Verlag,
2006.

[14] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD process for
extracting useful knowledge from volumes of data,” Commun. ACM,
vol. 39, no. 11, pp. 27–34, Nov. 1996.

[15] S. K. Murthy, “Automatic construction of decision trees from data: A
multi-disciplinary survey,” Data Mining Knowl. Discov., vol. 2, no. 4,
pp. 345–389, 1998.

[16] G. L. Pappa, A. A. Freitas, and C. A. A. Kaestner, “Attribute selection
with a multi-objective genetic algorithm,” in Proc. 16th Brazilian Symp.
Artif. Intell. - Adv. Artif. Intell. (Lecture Notes in Computer Science
Series, 2507). Porto de Galinhas/Recife, Brazil: Springer-Verlag, Nov.
2002, pp. 280–290.

[17] J. R. Cano, F. Herrera, and M. Lozano, “Evolutionary stratified training
set selection for extracting classification rules with trade off precision-
interpretability,” Data Knowl. Eng., vol. 60, no. 1, pp. 90–108, Jan.
2007.

[18] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Mach. Learning, vol. 11, pp. 63–91,
1993.

[19] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
New York: Wiley, Jun. 2001.

[20] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary Al-
gorithms for Solving Multi-Objective Problem (Genetic and Evolutionary
Computation Series), 2nd ed. Berlin, Germany: Springer-Verlag, 2007.

[21] H. Liu and H. Motoda, Feature Extraction, Construction and Selec-
tion: A Data Mining Perspectiv (The Springer International Series in
Engineering and Computer Science Series, 453).. Berlin, Germany:
Springer-Verlag, 1998.

[22] R. A. Davis, A. J. Charlton, S. Oehlschlager, and J. C. Wilson, “Novel
feature selection method for genetic programming using metabolomic
1 H NMR data,” Chemometrics Intell. Lab. Syst., vol. 81, no. 1, pp. 50–
59, Mar. 2006.

[23] M. L. Raymer, W. F. Punch, E. D. Goodman, and L. A. Kuhn, “Genetic
programming for improved data mining—Application to the biochem-
istry of protein interactions,” in Proc. 1st Annu. Conf. Genetic Program.
1996, Cambridge, MA: MIT Press, Jul., pp. 375–380.

[24] H. Guo and A. K. Nandi, “Breast cancer diagnosis using genetic program-
ming generated feature,” Pattern Recog., vol. 39, no. 5, pp. 980–987,
May 2006.

[25] C. Estébanez, J. M. Valls, R. Aler, and I. M. Galván, “A first attempt at
constructing genetic programming expressions for EEG classification,”
in Proc. 15th Int. Conf. Artif. Neural Netw.: Biol. Inspirations (Lecture
Notes in Computer Science Series, 3696). Warsaw, Poland: Springer-
Verlag, Sep. 2005, pp. 665–670.

[26] C. Estébanez, J. M. Valls, and R. Aler, “GPPE: A method to generate ad-
hoc feature extractors for prediction in financial domains,” Appl. Intell.,
vol. 29, no. 3, pp. 174–185, Dec. 2008.

[27] X. Tan, B. Bhanu, and Y. Lin, “Fingerprint classification based on learned
features,” IEEE Trans. Syst., Man, Cybern. C, vol. 35, no. 3, pp. 287–300,
Aug. 2005.

[28] H. Guo, L. B. Jack, and A. K. Nandi, “Feature generation using genetic
programming with application to fault classification,” IEEE Trans. Syst.,
Man, Cybern. B, vol. 35, no. 1, pp. 89–99, Feb. 2005.

[29] Y. Lin and B. Bhanu, “Evolutionary feature synthesis for object recogni-
tion,” IEEE Trans. Syst., Man, Cybern. C, vol. 35, no. 2, pp. 156–171,
May 2005.

[30] M. Muharram and G. D. Smith, “Evolutionary constructive induction,”
IEEE Trans. Knowl. Data Eng., vol. 17, no. 11, pp. 1518–1528, Nov.
2005.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 141

[31] K. Neshatian and M. Zhang, “Genetic programming and class-wise or-
thogonal transformation for dimension reduction in classification prob-
lems,” in Proc. 11th Eur. Conf. Genet. Program. (Lecture Notes in Com-
puter Science Series, 4971), Naples, Italy: Springer-Verlag, Mar. 2008,
pp. 242–253.

[32] K. Krawiec, “Genetic programming-based construction of features for
machine learning and knowledge discovery tasks,” Genet. Program.
Evol. Mach., vol. 3, no. 4, pp. 329–343, Dec. 2002.

[33] M. G. Smith and L. Bull, “Genetic programming with a genetic algorithm
for feature construction and selection,” Genet. Program. Evol. Mach.,
vol. 6, no. 3, pp. 265–281, Sep. 2005.

[34] J. Sherrah, R. E. Bogner, and A. Bouzerdoum, “Automatic selection of
features for classification using genetic programming,” in Proc. Aus-
tralian New Zealand Conf. Intell. Inf. Syst., Piscataway, NJ: IEEE,
Nov.1996, pp. 284–287.

[35] J. R. Sherrah, R. E. Bogner, and A. Bouzerdoum, “The evolutionary
pre-processor: Automatic feature extraction for supervised classification
using genetic programming,” in Proc. 2nd Annu. Conf. Genet. Program.,
San Mateo, CA: Morgan Kaufmann, Jul.1997, pp. 304–312.

[36] P. Murphy and D. Aha. (1994), “UCI repository of machine learning
databases,” Dept. Inf. Comput. Sci., Univ. California, Irvine, CA [On-
line]. Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html

[37] J. K. Estrada Gil, J. C. Fernández-López, E. Hernández-Lemus, I. Silva-
Zolezzi, A. Hidalgo-Miranda, G. Jiménez-Sánchez, and E. E. Vallejo-
Clemente, “GPDTI: A genetic programming decision tree induction
method to find epistatic effects in common complex diseases,” in Proc.
15th Int. Conf. Intell. Syst. Molecular Biol., 6th Eur. Conf. Comput. Biol.
(Suppl. Bioinf.), Vienna, Austria, Jul. 2007, pp. 167–174.

[38] C.-S. Kuo, T.-P. Hong, and C.-L. Chen, “An improved knowledge-
acquisition strategy based on genetic programming,” Cybern. Syst.,
vol. 39, no. 7, pp. 672–685, Oct. 2008.

[39] E. M. Mugambi, A. Hunter, G. Oatley, and R. L. Kennedy, “Polynomial-
fuzzy decision tree structures for classifying medical data,” Knowl.
Based Syst., vol. 17, no. 2–4, pp. 81–87, May 2004.

[40] C.-S. Kuo, T.-P. Hong, and C.-L. Chen, “Applying genetic programming
technique in classification trees,” Soft Comput., vol. 11, no. 12, pp. 1165–
1172, 2007.

[41] T. M. Khoshgoftaar and Y. Liu, “A multi-objective software quality
classification model using genetic programming,” IEEE Trans. Rel.,
vol. 56, no. 2, pp. 237–245, Jun. 2007.

[42] M. Shirasaka, Q. Zhao, O. Hammani, K. Kuroda, and K. Saito, “Auto-
matic design of binary decision trees based on genetic programming,”
presented at the 2nd Asia-Pacific Conf. Simul. Evol. Learning, Canberra,
Australia, Nov. 1998.

[43] T. Tanigawa and Q. Zhao, “A study on efficient generation of decision
trees using genetic programming,” in Proc. Genet. Evol. Comput. Conf.,
San Mateo, CA: Morgan Kaufmann, Jul. 2000, pp. 1047–1052.

[44] S. Haruyama and Q. Zhao, “Designing smaller decision trees using mul-
tiple objective optimization based GPs,” in Proc. IEEE Int. Conf. Syst.,
Man Cybern., vol. 6, Piscataway, NJ: IEEE, Oct. 2002, p. 5.

[45] S. Oka and Q. Zhao, “Design of decision trees through integration of
C4.5 and GP,” in Proc. 4th Jpn.-Australia Joint Workshop Intell. Evol.
Syst., 2000, pp. 128–135.

[46] G. Folino, C. Pizzuti, and G. Spezzano, “A cellular genetic programming
approach to classification,” in Proc. Genet. Evol. Comput. Conf., San
Mateo, CA: Morgan Kaufmann, Jul. 1999, pp. 1015–1020.

[47] G. Folino, C. Pizzuti, and G. Spezzano, “Genetic programming and
simulated annealing: A hybrid method to evolve decission trees,” in Proc.
Genet. Program. (EuroGP 2000) (Lecture Notes in Computer Science
Series, 1802). Berlin, Germany: Springer-Verlag, Apr., pp. 294–303.

[48] H. Zhao, “A multi-objective genetic programming approach to develop-
ing pareto optimal decision trees,” Decis. Support Syst., vol. 43, no. 3,
pp. 809–826, Apr. 2007.

[49] J. Eggermont, “Evolving fuzzy decision trees with genetic programming
and clustering,” in Proc. 5th Eur. Conf. Genet. Program. (EuroGP 2002)
(Lecture Notes in Computer Science, 2278), Berlin, Germany: Springer-
Verlag, Apr., pp. 71–82.

[50] S. Rouwhorst and A. Engelbrecht, “Searching the forest: Using deci-
sion trees as building blocks for evolutionary search in classification
databases,” in Proc. 2000 Congr. Evol. Comput., vol. 1, La Jolla, CA:
IEEE, Jul., pp. 633–638.

[51] M. C. J. Bot and W. B. Langdon, “Application of genetic programming
to induction of linear classification trees,” in Proc. Genet. Program.
(EuroGP) (Lecture Notes in Computer Science Series), vol. 1802, Berlin,
Germany: Springer-Verlag, Apr. 2000, pp. 247–258.

[52] M. C. J. Bot, “Improving induction of linear classification trees with
genetic programming,” in Proc. Genet. Evol. Comput. Conf., San Mateo,
CA: Morgan Kaufmann, 2000, pp. 403–410.

[53] R. E. Marmelstein and G. B. Lamont, “Pattern classification using a
hybrid genetic program - decision tree approach,” in Proc. 3rd Annu.
Conf. Genet. Program., San Mateo, CA: Morgan Kaufmann, Jul. 1998,
pp. 223–231.

[54] A. Tsakonas, “A comparison of classification accuracy of four genetic
programming-evolved intelligent structures,” Inf. Sci., vol. 176, no. 6,
pp. 691–724, Mar. 2006.

[55] V. Slavov and N. I. Nokolaev, “Fitness landscapes and inductive ge-
netic programming,” in Proc. 3rd Int. Conf. Artif. Neural Nets Genet.
Algorithms, Berlin, Germany: Springer-Verlag, 1997, pp. 414–418.

[56] J. R. Koza, “Concept formation and decision tree induction using the
genetic programming paradigm,” in Proc. 1st Workshop Parallel Probl.
Solving Nat. (Lecture Notes in Computer Science Series, 496). Berlin,
Germany: Springer-Verlag, Oct. 1990, pp. 124–128.

[57] C. Elkan, “The foundations of cost-sensitive learning,” in Proc. 17th Int.
Joint Conf. Artif. Intell. (IJCAI 2001), vol. 2, San Mateo, CA: Morgan
Kaufmann, pp. 973–978.

[58] T. Fawcett, “ROC graphs: Notes and practical considerations for data
mining researchers,” HP, Tech. Rep. HPL-2003-4, 2003.

[59] A. A. Freitas, Data Mining and Knowledge Discovery With Evolutionary
Algorithms. Berlin, Germany: Springer-Verlag, 2002.

[60] H. E. Johnson, R. J. Gilbert, M. K. Winson, R. Goodacre, A. R. Smith,
J. J. Rowland, M. A. Hall, and D. B. Kell, “Explanatory analysis of the
metabalone using genetic programming of simple, interpretable rules,”
Genet. Program. Evol. Mach., vol. 1, no. 3, pp. 243–258, Jul. 2000.

[61] S. X. Wang and P. Lichodzijewski, “Boolean genetic programming for
promoter recognition in eukaryotes,” in Proc. IEEE Congr. Evol. Com-
put., Edimburgh, UK: IEEE, Sep. 2005, pp. 683–690.

[62] R. J. Gilbert, J. J. Rowland, and D. B. Kell, “Genomic computing: Ex-
planatory modelling for functional genomics,” in Proc. Genet. Evol.
Comput. Conf., San Mateo, CA: Morgan Kaufmann, Jul. 2000, pp. 551–
557.

[63] J. Yu, J. Yu, A. A. Almal, S. M. Dhanasekaran, D. Ghosh, W. P. Worzel,
and A. M. Chinnaiyan, “Feature selection and molecular classification of
cancer using genetic programming,” Neoplasia, vol. 9, no. 4, pp. 292–
303, Apr. 2007.

[64] S. Shen, W. Sandham, M. H. Granat, M. F. Dempsey, and J. Patterson, “A
new approach to brain tumour diagnosis using fuzzy logic based genetic
programming,” in Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
vol. 1, Piscataway, NJ: IEEE, Sep. 2003, pp. 870–873.

[65] K. C. Tan, Q. Yu, C. M. Heng, and T. H. Lee, “Evolutionary computing for
knowledge discovery in medical diagnosis,” Artif. Intell. Med., vol. 27,
no. 2, pp. 129–154, 2003.

[66] C. C. Bojarczuk, H. S. Lopes, A. A. Freitas, and E. L. Michalkiewicz, “A
constrained-syntax genetic programming system for discovering classi-
fication rules: Application to medical data sets,” in Artif. Intell. Med.,
vol. 30, no. 1, pp. 27–48, 2004, ISSN 0933-3657.

[67] C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas, “Genetic programming
for knowledge discovery in chest pain diagnosis,” IEEE Eng. Med. Biol.
Mag., vol. 19, no. 4, pp. 38–44, Jul./Aug. 2000.

[68] P. S. Ngan, M. L. Wong, W. Lam, K. S. Leung, and J. C. Y. Cheng,
“Medical data mining using evolutionary computation,” Artif. Intell.
Med., vol. 16, no. 1, pp. 73–96, May 1999.

[69] M. L. Wong, W. Lam, K. S. Leung, P. S. Ngan, and J. C. Y. Cheng, “Dis-
covering knowledge from medical databases using evolutionary algo-
rithms,” IEEE Eng. Med. Biol. Mag., vol. 19, no. 4, pp. 45–55, Jul./Aug.
2000.

[70] A. Tsakonas, G. Dounias, J. Jantzen, H. Axer, B. Bjerregaard, and D. G.
v. Keyserlingk, “Evolving rule-based systems in two medical domains
using genetic programming,” Artif. Intell. Med., vol. 32, no. 3, pp. 195–
216, Nov. 2004.

[71] C. Qing-Shan, Z. De Fu, W. Li-Jun, and C. Huo-Wang, “A modified ge-
netic programming for behavior scoring problem,” in Proc. IEEE Symp.
Comput. Intell. Data Mining. Honolulu, Hawaii: IEEE, Apr. 2007,
pp. 535–539.

[72] S. Sakprasat and M. C. Sinclair, “Classification rule mining for automatic
credit approval using genetic programming,” in Proc. IEEE Congr. Evol.
Comput., Singapore: IEEE, Sep. 2007, pp. 548–555.

[73] P. J. Bentley, “‘Evolutionary, my dear Watson’: Investigating committee-
based evolution of fuzzy rules for the detection of suspicious insurance
claims,” in Proc. Genet. Evol. Comput. Conf., San Mateo, CA: Morgan
Kaufmann, Jul. 2000, pp. 702–709.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

142 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

[74] A. L. Garcia-Almanza and E. P. K. Tsang, “Evolving decision rules to
predict investment opportunities,” Int. J. Autom. Comput., vol. 5, no. 1,
pp. 22–31, Jan. 2008.

[75] S. A. Stanhope and J. M. Daida, “Genetic programming for automatic
target classification and recognition in synthetic aperture radar imagery,”
in Proc. 7th Annu. Conf. Evol. Program. VII (Lecture Notes in Com-
puter Science Series, 1447). Mission Valley Marriott, San Diego, CA:
Springer-Verlag, 25–27, 1998, pp. 735–744.

[76] C. D. Stefano, A. D. Cioppa, and A. Marcelli, “Character preclassification
based on genetic programming,” Pattern Recogn. Lett., vol. 23, no. 12,
pp. 1439–1448, Oct. 2002.

[77] I. De Falco, A. Della Cioppa, and E. Tarantino, “Discovering interesting
classification rules with genetic programming,” Appl. Soft Comput. J.,
vol. 1, no. 4, pp. 257–269, 2002.

[78] K. C. Tan, A. Tay, T. H. Lee, and C. M. Heng, “Mining multiple compre-
hensible classification rules using genetic programming,” in Proc. 2002
Congr. Evol. Comput., vol. 2, Piscataway, NJ: IEEE, May, pp. 1302–
1307.

[79] E. C. no, G. Leguizamón, and N. Wagner, “Evolution of classification
rules for comprehensible knowledge discovery,” in Proc. IEEE Congr.
Evol. Comput., Singapore: IEEE, Sep. 2007, pp. 1261–1268.

[80] M. L. Wong and K. S. Leung, Data Mining using Grammar-Based Ge-
netic Programming and Applications. Norwell, MA: Kluwer, 2000.

[81] F. J. Berlanga, M. J. del Jesus, and F. Herrera, “A novel genetic
cooperative-competitive fuzzy rule based learning method using genetic
programming for high dimensional problems,” in Proc. 3rd Int. Work-
shop Genet. Evol. Fuzzy Syst.. Witten-Bommerholz, Germany: IEEE,
Mar. 2008, pp. 101–106.

[82] J. Eggermont, A. E. Eiben, and J. I. van Hemert, “Adapting the fitness
function in GP for data mining,” in Proc. 2nd Eur. Workshop, Genet.
Program. (EuroGP) (ser. Lecture Notes in Computer Science, 1598).
Berlin, Germany: Springer-Verlag, May 1999, pp. 193–202.

[83] J. Eggermont, A. E. Eiben, and J. I. van Hemert, “A comparison of
genetic programming variants for data classification,” in Proc. 3rd Int.
Symp. Adv. Intell. Data Anal. (IDA) (Lecture Notes in Computer Sci-
ence, 1642). Berlin, Germany: Springer-Verlag, Aug. 1999, pp. 281–
290.

[84] S. Garcı́a, F. González, and L. Sánchez, “Evolving fuzzy rule based clas-
sifiers with GA-P: A grammatical approach,” in Proc. 2nd Eur. Workshop,
Genet. Program. (EuroGP) (Lecture Notes in Computer Science Series,
1598). Berlin, Germany: Springer-Verlag, May 1999, pp. 203–210.

[85] R. R. F. Mendes, F. de B. Voznika, J. C. Nievola, and A. A. Freitas,
“Discovering fuzzy classification rules with genetic programming and
co-evolution,” in Proc. Genet. Evol. Comput. Conf., San Mateo, CA:
Morgan Kaufmann, Jul. 2001, p. 183.

[86] P. G. Espejo, C. Romero, S. Ventura, and C. Hervás, “Induction of clas-
sification rules with grammar-based genetic programming,” in Proc. 2nd
Int. Conf. Mach. Intell. (ACIDCA ICMI), Tozeur, Tunisia, Nov. 2005,
pp. 596–601.

[87] R. Cattral, F. Oppacher, and D. Deugo, “Supervised and unsupervised
data mining with an evolutionary algorithm,” in Proc. 2001 Congr. Evol.
Comput., vol. 2, Piscataway, NJ: IEEE, May, pp. 767–774.

[88] L. M. Howard and D. J. D’Angelo, “The GA-P: A genetic algorithm and
genetic programming hybrid,” IEEE Exp., vol. 10, no. 3, pp. 11–15, Jun.
1995.

[89] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies - A comprehensive
introduction,” Nat. Comput., vol. 1, no. 1, pp. 3–52, Mar. 2002.

[90] D. Lennartsson and P. Nordin, “A genetic programming method for the
identification of signal peptides and prediction of their cleavage sites,”
EURASIP J. Appl. Signal Process., vol. 2004, no. 1, pp. 138–145, Jan.
2004.

[91] H. F. Gray, R. J. Maxwell, I. Martı́nez-Pérez, C. Arús, and S. Cerdán,
“Genetic programming for classification of brain tumours from nuclear
magnetic resonance biopsy spectra,” in Proc. 1st Annu. Conf. Genet.
Program., Stanford, CA: MIT Press, Jul. 1996, p. 424..

[92] D. Hope, E. Munday, and S. Smith, “Evolutionary algorithms in the
classification of mammograms,” in Proc. IEEE Symp. Comput. Intell.
Image Signal Process., Piscataway, NJ: IEEE, Apr. 2007, pp. 258–265.

[93] W. Wongseree, N. Chaiyaratana, K. Vichittumaros, P. Winichagoon, and
S. Fucharoen, “Thalassaemia classification by neural networks and ge-
netic programming,” Inf. Sci., vol. 177, no. 3, pp. 771–786, Feb. 2007.

[94] T. K. Paul and H. Iba, “Classification of scleroderma and normal biopsy
data and identification of possible biomarkers of the disease,” in Proc.
IEEE Symp. Comput. Intell. Bioinf. Comput. Biol., Toronto, ON: IEEE,
Sep. 2006, pp. 306–311.

[95] G. C. Wilson and M. I. Heywood, “Introducing probabilistic adap-
tive mapping developmental genetic programming with redundant map-
pings,” Genet. Program. Evol. Mach., vol. 8, no. 2, pp. 187–220, Jun.
2007.

[96] J.-Y. Lin, H.-R. Ke, B.-C. Chien, and W.-P. Yang, “Classifier design with
feature selection and feature extraction using layered genetic program-
ming,” Exp. Syst. Appl., vol. 34, no. 2, pp. 1384–1393, Feb. 2008.

[97] S. Winkler, M. Affenzeller, and S. Wagner, “Advanced genetic program-
ming based machine learning,” J. Math. Model. Algorithms, vol. 6, no. 3,
pp. 455–480, 2007.

[98] M. Zhang and P. Wong, “Genetic programming for medical classification:
A program simplification approach,” Genet. Program. Evol. Mach.,
vol. 9, pp. 229–255, 2008.

[99] M. Brameier and W. Banzhaf, “A comparison of linear genetic program-
ming and neural networks in medical data mining,” IEEE Trans. Evol.
Comput., vol. 5, no. 1, pp. 17–26, Feb. 2001.

[100] S. Silva and Y.-T. Tseng, “Classification of seafloor habitats using genetic
programming,” in Proc. Appl. Evol. Comput. (EvoWorkshops). (Lec-
ture Notes in Computer Science, 4974). Naples, Italy: Springer-Verlag,
Mar. 2008, pp. 315–324.

[101] A. Vieira, B. Ribeiro, S. Mukkamala, J. C. Neves, and A. H. Sung,
“On the performance of learning machines for bankruptcy detection,”
in Proc. 2nd IEEE Int. Conf. Comput. Cybern., Piscataway, NJ: IEEE,
2004, pp. 323–327.

[102] T. Lensberg, A. Eilifsen, and T. E. McKee, “Bankruptcy theory devel-
opment and classification via genetic programming,” Eur. J. Oper. Res.,
vol. 169, no. 2, pp. 677–697, Mar. 2006.

[103] S. Sette, B. Wyns, and L. Boullart, “Comparing learning classifier sys-
tems and genetic programming: A case study,” Eng. Appl. Artif. Intell.,
vol. 17, no. 2, pp. 199–204, Mar. 2004.

[104] L. Zhang and A. K. Nandi, “Fault classification using genetic program-
ming,” Mech. Syst. Signal Process., vol. 21, no. 3, pp. 1273–1284, Apr.
2007.

[105] L. Zhang, L. B. Jack, and A. K. Nandi, “Fault detection using genetic
programming,” Mech. Syst. Signal Process., vol. 19, no. 2, pp. 271–289,
Mar. 2005.

[106] K. Hennessy, M. G. Madden, J. Conroy, and A. G. Ryder, “An improved
genetic programming technique for the classification of Raman spectra,”
Knowl. Based Syst., vol. 18, no. 4–5, pp. 217–224, Aug. 2005.

[107] Y. Zhang, H. Li, M. Niranjan, and P. Rockett, “Applying cost-sensitive
multiobjective genetic programming to feature extraction for spam e-
mail filtering,” in Proc. 11th Eur. Conf. Genet. Program. (Lecture Notes
in Computer Science Series, 4971). Naples, Italy: Springer-Verlag,
Mar. 2008, pp. 325–336.

[108] K. Faraoun and A. Boukelif, “Genetic programming approach for multi-
category pattern classification applied to network intrusions detection,”
Int. Arab J. Inf. Technol., vol. 4, no. 3, pp. 237–246, Jul. 2007.

[109] S. Mukkamala, A. H. Sung, and A. Abraham, “Modeling intrusion
detection systems using linear genetic programming approach,” in Proc.
17th Int. Conf. Ind. Eng. Appl. Artif. Intell. Exp. Syst. - Innovations
Appl. Artif. Intell. (Lecture Notes in Computer Science Series, 3029).
Ottawa, Canada: Springer-Verlag, May 2004, pp. 633–642.

[110] Y. Liu, T. Khoshgoftaar, and J.-F. Yao, “Building a novel GP-based
software quality classifier using multiple validation datasets,” in Proc.
IEEE Int. Conf. Inf. Reuse Integr., Las Vegas, NV: IEEE, Aug. 2007,
pp. 644–650.

[111] W. A. Tackett, “Genetic programming for feature discovery and image
discrimination,” in Proc. 5th Int. Conf. Genet. Algorithms, San Mateo,
CA: Morgan Kaufmann, Jul. 1993, pp. 303–309.

[112] A. M. Teredesai and V. Govindaraju, “Issues in evolving GP based classi-
fiers for a pattern recognition task,” in Proc. IEEE Congr. Evol. Comput.,
vol. 1, Portland, Oregon: IEEE, Jun. 2004, pp. 509–515.

[113] G. Wijesinghe and V. Ciesielski, “Using restricted loops in genetic pro-
gramming for image classification,” in Proc. IEEE Congr. Evol. Comput.,
Singapore: IEEE, Sep. 2007, pp. 4569–4576.

[114] P. J. Rauss, J. M. Daida, and S. A. Chaudhary, “Classification of spectral
image using genetic programming,” in Proc. Genet. Evol. Comput. Conf.,
Las Vegas, Nevada: Morgan Kaufmann, Jul. 2000, pp. 726–733.

[115] N. Petrović and V. S. Crnojević, “Impulse noise detection based on
robust statistics and genetic programming,” in Proc. 7th Int. Conf. Adv.
Concepts Intell. Vis. Syst. (Lecture Notes in Computer Science Series,
3708), Antwerp, Belgium: Springer-Verlag, Sep. 2005, pp. 643–649.

[116] D. Agnelli, A. Bollini, and L. Lombardi, “Image classification: An evolu-
tionary approach,” Pattern Recogn. Lett., vol. 23, no. 1–3, pp. 303–309,
Jan. 2002.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

ESPEJO et al.: SURVEY ON THE APPLICATION OF GENETIC PROGRAMMING TO CLASSIFICATION 143

[117] A. Song and V. Ciesielski, “Texture analysis by genetic programming,”
in Proc. IEEE Congr. Evol. Comput., vol. 2, Portland, OR: IEEE, Jun.
2004, pp. 2092–2099.

[118] Z. Chen and S. Lu, “A genetic programming approach for classification
of textures based on wavelet analysis,” in Proc. Int. Symp. Intell. Signal
Process., Piscataway, NJ: IEEE, Oct. 2007, pp. 1–6.

[119] M. Zhang and W. D. Smart, “Multiclass object classification using ge-
netic programming,” in Proc. Appl. Evol. Comput. EvoWorkshops 2004,
(Lecture Notes in Computer Science Series, 3005). Coimbra, Portugal:
Springer-Verlag, Apr., pp. 369–378.

[120] Y.-M. Li, M. Wang, L.-J. Cui, and D.-M. Huang, “A new classification
arithmetic for multi-image classification in genetic programming,” in
Proc. 6th Int. Conf. Mach. Learning Cybern., vol. 3, Hong Kong: IEEE,
Aug. 2007, pp. 1683–1687.

[121] M. Zhang and W. D. Smart, “Using Gaussian distribution to construct
fitness functions in genetic programming for multiclass object classifi-
cation,” Pattern Recogn. Lett., vol. 27, no. 11, pp. 1266–1274, Aug.
2006.

[122] M. Zhang, X. Gao, and W. Lou, “A new crossover operator in genetic
programming for object classification,” IEEE Trans. Syst., Man, Cybern.
B, vol. 37, no. 5, pp. 1332–1343, Oct. 2007.

[123] A. Teller and M. Veloso, “Program evolution for data mining,” Int. J.
Exp. Syst., vol. 8, no. 3, pp. 213–236, 1995.

[124] G. Patterson and M. Zhang, “Fitness functions in genetic programming
for classification with unbalanced data,” in Proc. 20th Australian Joint
Conf. Artif. Intell. - Adv. Artif. Intell. (Lecture Notes in Computer Science
Series), vol. 4830. Gold Coast, Australia: Springer-Verlag, Dec. 2007,
pp. 769–775.

[125] R. Curry, P. Lichodzijewski, and M. I. Heywood, “Scaling genetic pro-
gramming to large datasets using hierarchical dynamic subset selection,”
IEEE Trans. Syst., Man, Cybern. B, vol. 37, no. 4, pp. 1065–1073, Aug.
2007.

[126] G. Li, J. F. Wang, K. H. Lee, and K.-S. Leung, “Instruction-matrix-based
genetic programming,” IEEE Trans. Syst., Man, Cybern. B, vol. 38,
no. 4, pp. 1036–1049, Aug. 2008.

[127] M. J. Cavaretta and K. Chellapilla, “Data mining using genetic pro-
gramming - the implications of parsimony on generalization error,” in
Proc. Congr. Evol. Comput., vol. 2, Piscataway, NJ: IEEE, Jul. 1999,
pp. 1330–1337.

[128] J.-Y. Lin, H.-R. Ke, B.-C. Chien, and W.-P. Yang, “Designing a classifier
by a layered multi-population genetic programming approach,” Pattern
Recogn., vol. 40, no. 8, pp. 2211–2225, Aug. 2007.

[129] D. P. Muni, N. R. Pal, and J. Das, “A novel approach to design classifiers
using genetic programming,” IEEE Trans. Evol. Comput., vol. 8, no. 2,
pp. 183–196, Apr. 2004.

[130] M. Lemczyk and M. I. Heywood, “Training binary GP classifiers ef-
ficiently: A pareto-coevolutionary approach,” in Proc. 10th Eur. Conf.
Genet. Program. (Lecture Notes in Computer Science Series, 4445),
Berlin, Germany: Springer-Verlag, Apr. 2007, pp. 229–240.

[131] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal, “Application
of genetic programming for multicategory pattern classification,” IEEE
Trans. Evol. Comput., vol. 4, no. 3, pp. 242–258, Sep. 2000.

[132] T. Loveard and V. Ciesielski, “Representing classification problems in
genetic programming,” in Proc. IEEE Congr. Evol. Comput.. vol. 2,
Seoul, South Korea: IEEE, May 2001, pp. 1070–1077.

[133] M. Oltean and C. G. san, “Solving classification problems using infix
form genetic programming,” in Proc. 5th Int. Symp. Intell. Data Anal. -
Adv. Intell. Data Anal. V, (ser. Lecture Notes in Computer Science), vol.
2810. Berlin, Germany: Springer-Verlag, Aug. 2003, pp. 242–253.

[134] B.-C. Chien, J. Y. Lin, and T.-P. Hong, “Learning discriminant functions
with fuzzy attributes for classification using genetic programming,” Exp.
Syst. Appl., vol. 23, no. 1, pp. 31–37, Jul. 2002.

[135] B.-C. Chien and J.-H. Yang, “Features selection based on rough mem-
bership and genetic programming,” in Proc. IEEE Int. Conf. Syst., Man
Cybern., 2006, vol. 5, pp. 4124–4129.

[136] B.-C. Chien, J.-H. Yang, and W.-Y. Lin, “Generating effective classifiers
with supervised learning of genetic programming,” in Proc. 5th Int.
Conf. Data Warehousing Knowl. Discov., (Lecture Notes in Computer
Science Series, 2737). Prague, Czech Republic: Springer-Verlag, Sep.
2003, pp. 192–201.

[137] B.-C. Chien, J.-Y. Lin, and W.-P. Yang, “Learning effective classifiers
with Z-value measure based on genetic programming,” Pattern Recogn.,
vol. 37, no. 10, pp. 1957–1972, Oct. 2004.

[138] M. D. Ritchie, A. A. Motsinger, W. S. Bush, C. S. Coffey, and J. H. Moore,
“Genetic programming neural networks: A powerful bioinformatics tool

for human genetics,” Appl. Soft Comput., vol. 7, no. 1, pp. 471–479, Jan.
2007.

[139] R. K. Rao, S. Lakshminarayanan, and K. Tun, “Genetic programming
models for classification of data from biological systems,” in Proc. IEEE
Congr. Evol. Comput., Singapore: IEEE, Sep. 2007, pp. 4154–4161.

[140] J.-J. Huang, G.-H. Tzeng, and C.-S. Ong, “Two-stage genetic program-
ming (2SGP) for the credit scoring model,” Appl. Math. Comput.,
vol. 174, no. 2, pp. 1039–1053, Mar. 2006.

[141] A. Tsakonas, G. Dounias, M. Doumpos, and C. Zopounidis, “Bankruptcy
prediction with neural logic networks by means of grammar-guided ge-
netic programming,” Exp. Syst. Appl., vol. 30, no. 3, pp. 449–461, Apr.
2006.

[142] C. G. Doherty, “Fundamental analysis using genetic program-
ming for classification rule induction,” in Proc. Genet. Al-
gorithms Genet. Program. Stanford 2003, Stanford, CA: Stan-
ford Bookstore, pp. 45–51, [Online]. Available: http://www.genetic-
programming.org/sp2003/Doherty.pdf

[143] L. Hirsch, R. Hirsch, and M. Saeedi, “Evolving Lucene search queries for
text classification,” in Proc. 2007 Genet. Evol. Comput. Conf., London,
England: ACM, Jul., pp. 1604–1611.

[144] A. Majid, A. Khan, and A. M. Mirza, “Improving performance of nearest
neighborhood classifier using genetic programming,” in Proc. IEEE Int.
Conf. Mach. Learning Appl., Louisville, Kentucky: IEEE, Dec. 2004,
pp. 469–476.

[145] L. Diosan, A. Rogozan, and J.-P. Pécuchet, “Optimising multiple kernels
for SVM by genetic programming,” in Proc. 8th Eur. Conf. Evol. Comput.
Comb. Optim., (Lecture Notes in Computer Science Series 4972). Naples,
Italy: Springer-Verlag, Mar. 2008, pp. 230–241.

[146] T. Howley and M. G. Madden, “The genetic kernel support vector ma-
chine: Description and evaluation,” Artif. Intell. Rev., vol. 24, no. 3–4,
pp. 379–395, Nov. 2005.

[147] K. Sullivan and S. Luke, “Evolving kernels for support vector machine
classification,” in Proc. 2007 Genet. Evol. Comput. Conf., London, Eng-
land: ACM, Jul., pp. 1702–1707.

[148] T. Phienthrakul and B. Kijsirikul, “GPES: An algorithm for evolving
hybrid kernel functions of support vector machines,” in Proc. IEEE
Congr. Evol. Comput., Singapore: IEEE, Sep. 2007, pp. 2636–2643.

[149] M. Gı̂rdea and L. Ciortuz, “A hybrid genetic programming and boosting
technique for learning kernel functions from training data,” in Proc.
9th Int. Symp. Symbolic Numeric Algorithms Sci. Comput., Timisoara,
Romania: IEEE, Sep. 2007, pp. 395–402.

[150] T. Watson and T. Rakowski, “Data mining with an evolving population
of database queries,” in Proc. MENDEL 1995, pp. 169–174.

[151] C. Gagné, M. Schoenauer, M. Sebag, and M. Tomassini, “Genetic pro-
gramming for kernel-based learning with co-evolving subsets selection,”
in Proc. 9th Int. Conf. Parallel Probl. Solving Nat. (Lecture Notes in Com-
puter Science, 4193), Reykjavik, Iceland: Springer-Verlag, Sep. 2006,
pp. 1008–1017.

[152] P. Lichodzijewski and M. I. Heywood, “GP classifier problem decompo-
sition using first-price and second-price auctions,” in Proc. 10th Eur.
Conf. Genet. Program. (Lecture Notes in Computer Science Series,
4445), Valencia, Spain: Springer-Verlag, Apr. 2007, pp. 137–147.

[153] P. Lichodzijewski and M. I. Heywood, “Coevolutionary bid-based ge-
netic programming for problem decomposition in classification,” Genet.
Program. Evol. Mach., vol. 9, no. 4, pp. 331–365, Dec. 2008.

[154] C. Gagné and M. Parizeau, “Coevolution of nearest neighbor classifiers,”
Int. J. Pattern Recogn. Artif. Intell., vol. 21, no. 5, pp. 921–946, 2007.

[155] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, Jul. 1998.

[156] V. N. Vapnik, The Nature of Statistical Learning, 2nd ed. Berlin, Ger-
many: Springer-Verlag, 2000.

[157] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge,
U.K.: Cambridge Univ. Press, 2000.

[158] A. A. Freitas, “A genetic programming framework for two data mining
tasks: Classification and generalized rule induction,” in Proc. 2nd Annu.
Conf. Genet. Program., San Mateo, CA: Morgan Kaufmann, 1997,
pp. 96–101.

[159] C. Y. Ishida and A. T. R. Pozo, “GPSQL Miner: SQL-grammar genetic
programming in data mining,” in Proc. Congr. Evol. Comput., vol. 2,
Piscataway, NJ: IEEE, May 2002, pp. 1226–1231.

[160] K. Yu, L. Ji, and X. Zhang, “Kernel nearest neighbor algorithm,” Neural
Process. Lett., vol. 15, no. 2, pp. 147–156, 2002.

[161] E. B. Baum and I. Durdanovic, “An artificial economy of post pro-
duction systems,” in Proc. 3rd Int. Workshop Adv. Learning Classifier

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

144 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 2, MARCH 2010

Syst., (Lecture Notes in Computer Science Series, 1996). Paris, France:
Springer-Verlag, Sep. 2000, pp. 3–20.

[162] E. Baum and I. Durdanovic, “Toward code evolution by artificial
economies,” in Evolution as Computation, L. F. Landweber and E. Win-
free, Eds. Berlin, Germany: Springer-Verlag, 2002, pp. 314–332.

[163] L. Breiman, “Bagging predictors,” Mach. Learning, vol. 24, no. 2,
pp. 123–140, Aug. 1996.

[164] E. Bauer and R. Kohavi, “An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants,” Mach. Learning,
vol. 36, no. 1–2, pp. 105–139, Jul. 1999.

[165] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting, and ran-
domization,” Mach. Learning, vol. 40, no. 2, pp. 139–157, Aug. 2000.

[166] M. Brameier and C. Wiuf, “Ab initio identification of human microRNAs
based on structure motifs,” BMC Bioinf., vol. 8, p. 478, Dec. 2007.

[167] C.-G. Xu and K.-H. Liu, “A GP based approach to the classification of
multiclass microarray datasets,” in Proc. 4th Int. Conf. Intell. Comput.,
(Lecture Notes in Computer Science Series, 5227). Shanghai, China:
Springer-Verlag, Sep. 2008, pp. 340–346.

[168] K. Imamura, T. Soule, R. B. Heckendorn, and J. A. Foster, “Behavioral
diversity and a probabilistically optimal GP ensemble,” Genet. Program.
Evol. Mach., vol. 4, no. 3, pp. 235–253, Sep. 2003.

[169] J.-H. Hong and S.-B. Cho, “The classification of cancer based on DNA
microarray data that uses diverse ensemble genetic programming,” Artif.
Intell. Med., vol. 36, no. 1, pp. 43–58, Jan. 2006.

[170] S. Hengpraprohm and P. Chongstitvatana, “A genetic programming en-
semble approach to cancer microarray data classification,” in Proc. 3rd
Int. Conf. Innovative Comput. Inf. Control, Piscataway, NJ: IEEE, Jun.
2008, pp. 340–340.

[171] M. Brameier and W. Banzhaf, “Evolving teams of predictors with linear
genetic programming,” Genet. Program. Evol. Mach., vol. 2, no. 4,
pp. 381–407, Dec. 2001.

[172] W. B. Langdon, S. J. Barret, and B. F. Buxton, “Combining deci-
sion trees and neural networks for drug discovery,” in Proc. 5th Eur.
Conf., Genet. Program. (EuroGP). (Lecture Notes in Computer Sci-
ence, 2278). Berlin, Germany: Springer-Verlag, Apr. 2002, pp. 60–70.

[173] Y. Zhang and S. Bhattacharyya, “Genetic programming in classifying
large-scale data: An ensemble method,” Inf. Sci., vol. 163, no. 1–3,
pp. 85–101, Jun. 2004.

[174] G. Folino, C. Pizzuti, and G. Spezzano, “Training distributed GP ensem-
ble with a selective algorithm based on clustering and pruning for pattern
classification,” IEEE Trans. Evol. Comput., vol. 12, no. 4, pp. 458–468,
Aug. 2008.

[175] R. Thomason and T. Soule, “Novel ways of improving cooperation and
performance in ensemble classifiers,” in Proc. Genet. Evol. Comput.
Conf., London, England: ACM, Jul. 2007, pp. 1708–1715.

[176] G. Folino, C. Pizzuti, and G. Spezzano, “Mining distributed evolving
data streams using fractal GP ensembles,” in Proc. 10th Eur. Conf. Genet.
Program., (Lecture Notes in Computer Science Series, 4445). Valencia,
Spain: Springer-Verlag, Apr. 2007, pp. 160–169.

[177] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Engle-
wood Cliffs, NJ: Prentice-Hall, 1988.

[178] D. H. Wolpert, “The lack of a priori distinctions between learning algo-
rithms,” Neural Comput., vol. 8, no. 7, pp. 1341–1390, Oct. 1996.

[179] D. H. Wolpert and W. G. Macready, “No free lunch theorems for opti-
mization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr.
1997.

[180] P. Whigham, “Gramatical bias for evolutionary learning,” Ph.D. disserta-
tion, School of Comput. Sci.; Univ. College; Univ. of New South Wales;
Australian Defence Force Academy, 1996.

[181] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special issue
on learning from imbalanced data sets,” SIGKDD Explorations, vol. 6,
no. 1, pp. 1–6, Jun. 2004.

[182] G. M. Weiss, “Mining with rarity: A unifying framework,” SIGKDD
Explorations, vol. 6, no. 1, pp. 7–19, Jun. 2004.

Pedro G. Espejo was born in Cordoba, Spain, in
1973. He received the B.Sc. degree from the Univer-
sity of Cordoba, Cordoba, in 1994, and the M.Sc. de-
gree from the University of Granada, Granada, Spain,
in 1996, both in computer science.

He was an Assistant Teacher with the Comput-
ing Languages and Systems Department, University
of Cadiz, Cadiz, Spain, from 1997 to 2003, and a
Counselor Teacher with the National University of
Distance Education, Jerez de la Frontera, Cadiz, from
2000 to 2003. Since 2003, he has been an Assistant

Teacher with the Department of Computer Science and Numerical Analysis,
University of Cordoba. His research interests include machine learning, data
mining, genetic programming, and learning from unbalanced data.

Sebastián Ventura was born in Cordoba, Spain, in
1966. He received the B.Sc. and Ph.D. degrees in sci-
ences from the University of Cordoba, Cordoba, in
1989 and 1996, respectively.

He is currently an Associate Professor with the De-
partment of Computer Science and Numerical Anal-
ysis, University of Cordoba, where he heads the
Knowledge Discovery and Intelligent Systems Re-
search Laboratory. He is the author or coauthor of
more than 60 international publications, 20 of them
published in international journals. He has also been

engaged on 11 research projects (being the coordinator of two of them) sup-
ported by the Spanish and Andalusian governments and the European Union,
concerning several aspects in the area of evolutionary computation, machine
learning, data mining, and their applications. His current main research inter-
ests are in the fields of soft-computing, machine learning, data mining and its
applications.

Dr. Ventura is Member or the IEEE Computer, Computational Intelligence
and Systems, Man and Cybernetics societies and the Association of Computing
Machinery.

Francisco Herrera received the M.Sc. and Ph.D. de-
grees in mathematics from the University of Granada,
Granada, Spain, in 1988 and 1991, respectively.

He is currently a Professor with the Department
of Computer Science and Artificial Intelligence, Uni-
versity of Granada. He is the author or coauthor of
more than 150 papers in international journals. He is
coauthor of the book Genetic Fuzzy Systems: Evo-
lutionary Tuning and Learning of Fuzzy Knowledge
Bases (Singapore: World Scientific, 2001). He has
coedited five international books and coedited twenty

special issues in international journals on different soft computing topics. His
current research interests include computing with words and decision making,
data mining, data preparation, instance selection, fuzzy rule based systems, ge-
netic fuzzy systems, knowledge extraction based on evolutionary algorithms,
memetic algorithms, and genetic algorithms.

Dr. Herrera is an Associated Editor of the following journals: IEEE Trans-
actions on Fuzzy Systems, Mathware and Soft Computing, Advances in Fuzzy
Systems, Advances in Computational Sciences and Technology, and Interna-
tional Journal of Applied Metaheuristics Computing. He currently serves as
Area Editor of the Journal Soft Computing (area of genetic algorithms and
genetic fuzzy systems), and also serves as a Member of Editorial Boards of
several journals, which includes: Fuzzy Sets and Systems, Applied Intelli-
gence, Knowledge and Information Systems, Information Fusion, Evolution-
ary Intelligence, International Journal of Hybrid Intelligent Systems, Memetic
Computation.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 15,2010 at 05:28:22 EDT from IEEE Xplore. Restrictions apply.

