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The aim of this paper is to propose a procedure to estimate missing preference values when
dealing with incomplete fuzzy linguistic preference relations assessed using a two-tuple fuzzy
linguistic approach. This procedure attempts to estimate the missing information in an individual
incomplete fuzzy linguistic preference relation using only the preference values provided by the
respective expert. It is guided by the additive consistency property to maintain experts’ consistency
levels. Additionally, we present a selection process of alternatives in group decision making with
incomplete fuzzy linguistic preference relations and analyze the use of our estimation procedure
in the decision process. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

Group decision making (GDM) consists of finding the best alternative(s) from a
feasible set. To do this, experts have to express their preferences by means of a set of
evaluations over a set of alternatives. In this paper we assume that experts use pref-
erence relations.1−3 According to the nature of the information expressed for every
pair of alternatives there exist many different representation formats of preference
relations: fuzzy preference relations,4−7 fuzzy linguistic preference relations,8−14

multiplicative preference relations,2,15−17 intuitionistic preference relations,18 and
interval-valued preference relations.19,20

Since each expert has his/her own experience concerning the problem being
studied they could have some difficulties in giving all their preferences. This may
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be due to an expert not possessing a precise or sufficient level of knowledge of
the problem, or because that expert is unable to discriminate the degree to which
some options are better than others. In such situations, experts are forced to provide
incomplete preference relations.21−23 Therefore, it should be of great importance to
provide the experts with tools that allow them to deal with this lack of knowledge
in their opinions.

To maintain experts’ consistency levels many authors have proposed estimation
procedures of preferences based on consistency criteria.21,23−29 For fuzzy preference
relations, procedures to estimate missing values were proposed in Refs. 21,23–25
based on Tanino’s additive consistency property.28 For ordinal fuzzy linguistic pref-
erence relations, some procedures to estimate missing values were proposed in27,28

based on Saaty’s consistency property.2 However, Saaty’s consistency property is
defined for multiplicative preference relations and therefore it is not applicable
to fuzzy linguistic preference relations. It is well known that the fuzzy transla-
tion of Saaty’s consistency property coincides with Tanino’s additive consistency
property.23,30 Therefore, it would be desirable to design estimation procedures for
fuzzy linguistic preference relations based on the additive consistency property. In,26

a first approach for the case of ordinal fuzzy linguistic preference relations based
on the additive consistency property was proposed. However, it fails to use all the
estimation possibilities that can be derived from the additive consistency property.

The aim of this paper is to present a complete procedure to estimate missing
information in the case of incomplete fuzzy linguistic preference relations. It is
based on the linguistic extension of Tanino’s consistency principle and makes use
of all the estimation possibilities that derive from it. We assume fuzzy linguistic
preference relations assessed on a two-tuple fuzzy linguistic modeling31 because it
provides some advantages with respect to the ordinal fuzzy linguistic modeling.32

We design a selection process for GDM problems with incomplete fuzzy linguistic
preference relations following the choice scheme proposed in,33 that is, aggregation
followed by exploitation. In this selection procedure, we include a new step devoted
to complete the Fuzzy linguistic preference relations. We also analyze and discuss
the use of this estimation procedure of two-tuple linguistic missing values.

To do this, the paper is set out as follows. In Section 2, we present the pre-
liminaries, that is, the concepts of incomplete two-tuple fuzzy linguistic preference
relation and linguistic additive consistency property. Section 3 introduces the com-
plete estimation procedure of missing values for incomplete two-tuple fuzzy lin-
guistic preference relations and an illustrative example. In Section 4, the selection
process with incomplete two-tuple fuzzy linguistic preference relations is designed
and illustrated with an example. In Section 5, we discuss the use of our estimation
procedure in the decision process. Finally, in Section 6 we draw our conclusions.

2. PRELIMINARIES

In this section, we present the concepts of incomplete two-tuple fuzzy linguistic
preference relation and linguistic additive consistency property.
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2.1. Incomplete Two-Tuple Fuzzy Linguistic Preference Relations

There may be situations where it could be very difficult for the experts to
provide precise numerical preferences, and therefore linguistic assessments could
be used instead.9,14,34−36 In this paper, we use the two-tuple fuzzy linguistic model31

to represent experts’ preferences. Many advantages of this representation model to
manage linguistic information models were given in.32

The two-tuple fuzzy linguistic model takes as a basis the symbolic represen-
tation model11,37 and, in addition, it defines the concept of symbolic translation to
represent the linguistic information by means of a pair of values called linguistic
two-tuple, (s,α), where s is a linguistic term and α is a numeric value representing
the symbolic translation.

DEFINITION 1. Let β ∈ [0,g] be the result of an aggregation of the indexes of a set of
labels assessed in a linguistic term set S = {s0, s1, . . . , sg−1, sg}, i.e., the result of a
symbolic aggregation operation. Let i = round (β) and α = β − i be two values,
such that, i ∈ [0, g] and α ∈ [−0.5, 0.5), then α is called a symbolic translation.

This model defines a set of transformation functions to manage the linguistic
information expressed by linguistic two-tuples.

DEFINITION 2. Let S be a linguistic term set and β ∈ [0, g] a value supporting the
result of a symbolic aggregation operation, then the two-tuple that expresses the
equivalent information to β is obtained with the following function:

� : [0, g] −→ S × [−0.5, 0.5)

�(β) = (si, α)

i = round(β)

α = β − i

where “round” is the usual round operation, si has the closest index label to “β,”
and “α” is the value of the symbolic translation.

There exists a function, �−1, such that given a two-tuple it returns its equivalent
numerical value β ∈ [0, g] ⊂ R:

�−1 : S × [−0.5, 0.5) −→ [0, g]

�−1(si, α) = i + α = β

A linguistic term can be seen as a linguistic two-tuple by adding to it the value 0 as
a symbolic translation, si ∈ S ≡ (si, 0), and therefore, this linguistic model can be
used to represent linguistic preference relations:
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DEFINITION 3. A two-tuple linguistic preference relation P on a set of alternatives
X is a set of two-tuples on the product set X × X, i.e., it is characterized by a
membership function

μP : X × X −→ S × [−0.5, 0.5)

When cardinality of X is small, the preference relation may be conveniently
represented by a n × n matrix P = (pij ), being pij = μP (xi, xj ) ∀i, j ∈ {1, . . . , n},
and pij ∈ S × [−0.5, 0.5).

As aforementioned, missing information is a problem that needs to be addressed
because it is not always possible for the experts to provide all the possible preference
assessments on the set of alternatives. A missing value in a linguistic preference
relation is not equivalent to a lack of preference of one alternative over another. A
missing value can be the result of the incapacity of an expert to quantify the degree
of preference of one alternative over another. It must be clear then that when an
expert is not able to express the particular value pij , because he/she does not have a
clear idea of how better alternative xi is over alternative xj , this does not mean that
he/she prefers both options with the same intensity.

To model these situations, in the following definitions we express the concept
of an incomplete two-tuple fuzzy linguistic preference relation:

DEFINITION 4. A function f : X × Y is partial when not every element in the set X

necessarily maps to an element in the set Y . When every element from the set X

maps to one element of the set Y then we have a total function.

DEFINITION 5. A two-tuple fuzzy linguistic preference relation P on a set of al-
ternatives X with a partial membership function is an incomplete two-tuple fuzzy
linguistic preference relation.

Obviously, a two-tuple fuzzy linguistic preference relation is complete when its
membership function is a total one. Clearly, Definition 3 includes both definitions of
complete and incomplete two-tuple fuzzy linguistic preference relations. However,
as there is no risk of confusion between a complete and incomplete two-tuple fuzzy
linguistic preference relations, in this paper we refer to the first type as simply
two-tuple fuzzy linguistic preference relation.

2.2. Linguistic Additive Consistency

The previous definition of a two-tuple fuzzy linguistic preference relation does
not imply any kind of consistency property. In fact, preference values of a preference
relation can be contradictory. Obviously, an inconsistent source of information is
not as useful as a consistent one, and thus, it would be quite important to be able
to measure the consistency of the information provided by experts for a particular
problem.
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Consistency is usually characterized by transitivity. Transitivity seems like a
reasonable criterion of coherence for an individual’s preferences: if x is preferred
to y and y is preferred to z, common sense suggests that x should be preferred
to z. Many properties have been suggested to model transitivity, among which
we can cite:30 triangle condition, weak transitivity, max–min transitivity, max–max
transitivity, restricted max–min transitivity, restricted max–max transitivity, additive
transitivity.

As shown in,30 additive transitivity for fuzzy preference relations can be seen
as the parallel concept of Saaty’s consistency property for multiplicative preference
relations.2 The mathematical formulation of the additive transitivity was given by
Tanino3:

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5)∀i, j, k ∈ {1, . . . , n} (1)

This kind of transitivity has the following interpretation: suppose we want to es-
tablish a ranking between three alternatives xi , xj , and xk , and that the information
available about these alternatives suggests that we are in an indifference situation,
that is, xi ∼ xj ∼ xk . When giving preferences this situation would be represented
by pij = pjk = pik = 0.5. Suppose now that we have a piece of information that
says xi ≺ xj , that is, pij < 0.5. This means that pjk or pik has to change, other-
wise there would be a contradiction, because we would have xi ≺ xj ∼ xk ∼ xi .
If we suppose that pjk = 0.5 then we have the situation: xj is preferred to xi

and there is no difference in preferring xj to xk . We must then conclude that
xk has to be preferred to xi . Furthermore, as xj ∼ xk then pij = pik , and so
(pij − 0.5) + (pjk − 0.5) = (pij − 0.5) = (pik − 0.5). We have the same conclu-
sion if pik = 0.5. In the case of pjk < 0.5, then we have that xk is preferred to xj

and this to xi , so xk should be preferred to xi . On the other hand, the value pik has to
be equal to or lower than pij , being equal only in the case of pjk = 0.5 as we have
already shown. Interpreting the value pji − 0.5 as the intensity of preference of alter-
native xj over xi , then it seems reasonable to suppose that the intensity of preference
of xi over xk should be equal to the sum of the intensities of preferences when using
an intermediate alternative xj , that is, pik − 0.5 = (pij − 0.5) + (pjk − 0.5). The
same reasoning can be applied in the case of pjk > 0.5. Additive transitivity implies
additive reciprocity. Indeed, because pii = 0.5 ∀i, if we make k = i in Expression 1
then we have: pij + pji = 1 ∀i, j ∈ {1, . . . , n}.

Using the transformation functions � and �−1, we define the linguistic additive
transitivity property for two-tuple fuzzy linguistic preference relations as follows:

�[(�−1(pij ) − �−1(sg/2, 0)) + (�−1(pjk) − �−1(sg/2, 0))] = �[(�−1(pik) −

�−1(sg/2, 0)] ∀i, j, k ∈ {1, . . . , n}. (2)

As in the case of additive transitivity, the linguistic additive transitivity im-
plies linguistic additive reciprocity. Indeed, because pii = (sg/2, 0) ∀i, if we make
k = i in Expression two then we have: �(�−1(pij ) + �−1(pji)) = (sg, 0) ∀i, j ∈
{1, . . . , n}.
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Expression 2 can be rewritten as

pik = �(�−1(pij ) + �−1(pjk) − �−1(sg/2, 0)) ∀i, j, k ∈ {1, . . . , n} (3)

A two-tuple fuzzy linguistic preference relation will be considered “additive con-
sistent” when for every three options in the problem xi, xj , xk ∈ X their associated
linguistic preference degrees pij , pjk, pik fulfil (3). An additive consistent two-
tuple fuzzy linguistic preference relation will be referred as consistent throughout
the paper, as this is the only transitivity property we are considering.

3. ESTIMATING MISSING VALUES FOR INCOMPLETE TWO-TUPLE
FUZZY LINGUISTIC PREFERENCE RELATIONS

In this section we present a consistency-based procedure to estimate the missing
values of a two-tuple fuzzy linguistic preference relations.

3.1. Estimating Linguistic Values Based on the Linguistic
Additive Consistency

Expression 3 can be used to obtain an estimated value of a preference degree
using other preference degrees in a fuzzy linguistic preference relation. In Ref. 26 an
equivalent expression was used to estimate missing values in ordinal fuzzy linguistic
preference relations. However, two other possible ways to estimate missing values
can be derived from Expression 2. Thus, a linguistic preference value pik (i �= k)
can be estimated using an intermediate alternative xj in three different ways:

1. From pik = �(�−1(pij ) + �−1(pjk) − �−1(sg/2, 0)) we obtain the estimate

(cpik)j1 = �(�−1(pij ) + �−1(pjk) − �−1(sg/2, 0)) (4)

2. From pjk = �(�−1(pji) + �−1(pik) − �−1(sg/2, 0)) we obtain the estimate

(cpik)j2 = �(�−1(pjk) − �−1(pji) + �−1(sg/2, 0)) (5)

3. From pij = �(�−1(pik) + �−1(pkj ) − �−1(sg/2, 0)) we obtain the estimate

(cpik)j3 = �(�−1(pij ) − �−1(pkj ) + �−1(sg/2, 0)) (6)
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3.2. An Estimation Procedure of Missing Values in Two-Tuple Fuzzy
Linguistic Preference Relations

To manage incomplete two-tuple fuzzy linguistic preference relations, we need
to introduce the following sets23:

A = {(i, j ) | i, j ∈ {1, . . . , n} ∧ i �= j}

MV = {(i, j ) ∈ A | pij is unknown}

EV = A \ MV (7)

MV is the set of pairs of alternatives whose preference degrees are unknown or
missing, EV is the set of pairs of alternatives whose preference degrees are given
by the expert. We do not take into account the preference value of one alternative
over itself as this is always assumed to be equal to (sg/2, 0).

Expressions 4–6 are used to define an iterative estimation procedure of missing
values in an incomplete two-tuple fuzzy linguistic preference relation according to
the following two steps: (A) the elements that can be estimated in each iteration of
the procedure are established and (B) the particular expression that will be used to
estimate a particular missing value is produced.

(A) Elements to be estimated in each iteration of the procedure

The subset of missing values MV that can be estimated in step h of our procedure
is denoted by EMVh (estimated missing values) and defined as follows:

EMVh =
{

(i, k) ∈ MV \
h−1⋃
l=0

EMVl | i �= k ∧ ∃j ∈ {
Hh1

ik ∪ Hh2
ik ∪ Hh3

ik

}}
(8)

with

Hh1
ik =

{
j | (i, j ), (j, k) ∈

{
EV

h−1⋃
l=0

EMVl

}}
(9)

Hh2
ik =

{
j | (j, i), (j, k) ∈

{
EV

h−1⋃
l=0

EMVl

}}
(10)

Hh3
ik =

{
j | (i, j ), (k, j ) ∈

{
EV

h−1⋃
l=0

EMVl

}}
(11)

and EMV0 = ∅ (by definition). When EMVmaxIter = ∅ with maxIter > 0, the pro-
cedure will stop as there will not be any more missing values to be estimated.
Furthermore, if

⋃maxIter
l=0 EMVl = MV then all missing values are estimated, and
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consequently, the procedure is said to be successful in the completion of the incom-
plete two-tuple fuzzy linguistic preference relation.

(B) Expression to estimate a particular missing value

In iteration h, to estimate a particular value pik with (i, k) ∈ EMVh, the appli-
cation of the following function is proposed:

function estimate p(i,k)
1 cp1

ik = (s0, 0), cp2
ik = (s0, 0), cp3

ik = (s0, 0), K = 0

2 cp1
ik = �

⎛
⎜⎜⎜⎝

∑
j∈Hh1

ik

�−1(cpj1
ik )

#Hh1
ik

⎞
⎟⎟⎟⎠ , K + + if Hh1

ik �= 0.

3 cp2
ik = �

⎛
⎜⎜⎜⎝

∑
j∈Hh2

ik

�−1(cpj2
ik )

#Hh2
ik

⎞
⎟⎟⎟⎠ , K + + if Hh2

ik �= 0.

4 cp3
ik = �

⎛
⎜⎜⎜⎝

∑
j∈Hh3

ik

�−1(cpj3
ik )

#Hh3
ik

⎞
⎟⎟⎟⎠ , K + + if Hh3

ik �= 0.

5 Calculate cpik = �
(

1
K

(
�−1(cp1

ik) + �−1(cp2
ik) + �−1(cp3

ik)
) )

end function

The function estimate p(i, k) computes the final estimated value of missing
value, cpik , as the average of all estimated values that can be calculated using all
possible intermediate alternatives xj and using the three possible Expressions (4–6).

Summarizing, the estimation procedure pseudo–code of missing values for
incomplete two-tuple fuzzy linguistic preference relations is as follows:

ITERATIVE ESTIMATION PROCEDURE

0. EMV0 = ∅
1. h = 1
2. while EMVh �= ∅ {
3. for every (i, k) ∈ EMVh {
4. estimate p(i,k)
5. }
6. h + +
7. }
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3.3. A Sufficient Condition to Estimate all Missing Values

In the following proposition we provide a sufficient condition that guaran-
tees the success of the above estimation procedure for two-tuple fuzzy linguistic
preference relations.

PROPOSITION 1. An incomplete two-tuple fuzzy linguistic preference relation can be
completed if a set of n − 1 nonleading diagonal preference values, where each one
of the alternatives is compared at least once, is known.

Proof. Proof by induction on the number of alternatives will be used:

1. Basis: For n = 3, we suppose that two linguistic preference degrees involving
the three alternatives are known. These degrees can be provided in three
different ways:

(a) pij and pjk (i �= j �= k) are given.
In this first case, all the possible combinations of the two two-tuple lin-
guistic preference values are {p12, p23}, {p13, p32}, {p21, p13}, {p23, p31},
{p31, p12}, and {p32, p21}. In any of these cases, we can find the remaining
two-tuple linguistic preference degrees of the relation {pik, pkj , pji, pki}
as follows:

pik = �(�−1(pij ) + �−1(pjk) − �−1(sg/2, 0));

pkj = �(�−1(pik) − �−1(pij ) + �−1(sg/2, 0))

pji = �(�−1(pjk) − �−1(pik) + �−1(sg/2, 0));

pki = �(�−1(pkj ) − �−1(pij ) + �−1(sg/2, 0))

(b) pji and pjk (i �= j �= k) are given.
In this second case, all the possible combinations of the two two-tuple
linguistic preference values are {p21, p23}, {p31, p32}, and {p12, p13}. In any
of these cases, we can find the remaining two-tuple linguistic preference
degrees of the relation {pik, pki, pkj , pij } as follows:

pik = �(�−1(pjk) − �−1(pji) + �−1(sg/2, 0));

pki = �(�−1(pji) − �−1(pjk) + �−1(sg/2, 0))

pkj = �(�−1(pki) − �−1(pji) + �−1(sg/2, 0));

pij = �(�−1(pkj ) − �−1(pki) + �−1(sg/2, 0))
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(c) pij and pkj (i �= j �= k) are given.
In this third case, all the possible combinations of the two two-tuple lin-
guistic preference values are {p12, p32}, {p13, p23}, and {p21, p31}. In any
of these cases, we can find the remaining two-tuple linguistic preference
degrees of the relation {pik, pki, pji, pjk} as follows:

pik = �(�−1(pij ) − �−1(pkj ) + �−1(sg/2, 0));

pki = �(�−1(pkj ) − �−1(pij ) + �−1(sg/2, 0))

pji = �(�−1(pki) − �−1(pkj ) + �−1(sg/2, 0));

pjk = �(�−1(pik) − �−1(pij ) + �−1(sg/2, 0))

2. Induction hypothesis: Let us assume that the proposition is true for n =
q − 1.

3. Induction step: Let us suppose that the expert provides only (q − 1) two-
tuple linguistic preference degrees where each one of the q alternatives is
compared at least once.
In this case, we can select a set of (q − 2) two-tuple linguistic preference
degrees where (q − 1) different alternatives are involved. Without loss of
generality, we can assume that these (q − 1) alternatives are x1, x2, . . . , xq−1,
and therefore, the remaining two-tuple linguistic preference degree involving
the alternative xq could be pqi (i ∈ {1, . . . , q − 1}) or piq (i ∈ {1, . . . , q −
1}).
By the induction hypothesis we can estimate all the two-tuple linguistic
preference values of the two-tuple linguistic preference relation of order
(q − 1) × (q − 1) associated with the set of alternatives {x1, x2, . . . , xq−1}.
Therefore, we have estimated for the following set of two-tuple linguistic
preference degrees

{pij , i, j = 1, . . . , q − 1, i �= j}.

If the two-tuple linguistic value we know is pqi, i ∈ {1, . . . , q − 1} then we
can estimate {pqj , j = 1, . . . , q − 1, i �= j} and {pjq, j = 1, . . . , q − 1}
using pqj = �(�−1(pqi) + �−1(pij ) − �−1(sg/2, 0)), ∀j, and pjq = �(�−1

(pji) − �−1(pqi) + �−1(sg/2, 0)), ∀j, respectively.
If the two-tuple linguistic value we know is piq, i ∈ {1, . . . , q − 1} then
{pqj , j = 1, . . . , q − 1} and {pjq, j = 1, . . . , q − 1, i �= j} are estimated
by means of pqj = �(�−1(pij ) − �−1(piq) + �−1(sg/2, 0)), ∀j, and pjq =
�(�−1(pji) + �−1(piq) − �−1(sg/2, 0)), ∀j, respectively.

�
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3.4. Example

For the sake of simplicity we will assume a low number of alternatives. Let
X = {x1, x2, x3, x4} be a set of four alternatives and S = {N, MW, W, E, B, MB, T }
the set of linguistic labels used to provide preferences, with the following meaning:

N = Null MW = Much Worse W = Worse E = Equally Preferred

B = Better MB = Much Better T = Total

Suppose the following incomplete fuzzy linguistic preference relation provided by
an expert:

P =

⎛
⎜⎝

− x W x

x − x MW
B x − E

x MB E −

⎞
⎟⎠

Note that the expert did not provide any α values, which is a common practice when
expressing preferences with linguistic terms. In these cases, we set α = 0.

P =

⎛
⎜⎝

− x (W, 0) x

x − x (MW, 0)
(B, 0) x − (E, 0)
x (MB, 0) (E, 0) −

⎞
⎟⎠

Then, the estimation procedure is applied as follows:

Iteration 1. The set of elements that can be estimated is: EMV1 = {(1,4), (2,3),
(3,2), (4,1)}

• To estimate p14 the procedure is as follows:
H 11

14 = {1} ⇒ cp1
14 = �(�−1(cp31

14)) = �(�−1(�(�−1(p13) + �−1(p34) −
g/2))) = �(�−1(�(2 + 3 − 3))) = �(�−1(�(2))) = (W, 0)
H 12

14 = {1} ⇒ cp2
14 = �(�−1(cp32

14)) = �(�−1(�(�−1(p34) − �−1(p31) +
g/2))) = �(�−1(�(3 − 4 + 3))) = �(�−1(�(2))) = (W, 0)
H 13

14 = {1} ⇒ cp3
14 = �(�−1(cp33

14)) = �(�−1(�(�−1(p13) − �−1(p43) +
g/2))) = �(�−1(�(2 − 3 + 3))) = �(�−1(�(2))) = (W, 0)

K = 3 ⇒ cp14 = �
(

�−1(cp1
14)+�−1(cp2

14)+�−1(cp3
14)

3

)
= �

(
2+2+2

3

) = (W, 0)
• To estimate p23 the procedure is as follows:

H 11
23 = {1} ⇒ cp1

23 = �(�−1(cp41
23)) = �(�−1(�(�−1(p24) + �−1(p43) −

g/2))) = �(�−1(�(1 + 3 − 3))) = �(�−1(�(1))) = (MW, 0)
H 12

23 = {1} ⇒ cp2
23 = �(�−1(cp42

23)) = �(�−1(�(�−1(p43) − �−1(p42) +
g/2))) = �(�−1(�(3 − 5 + 3))) = �(�−1(�(1))) = (MW, 0)
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H 13
23 = {1} ⇒ cp3

23 = �(�−1(cp43
23)) = �(�−1(�(�−1(p24) − �−1(p34) +

g/2))) = �(�−1(�(1 − 3 + 3))) = �(�−1(�(1))) = (MW, 0)

K = 3 ⇒ cp23 = �
(

�−1(cp1
23)+�−1(cp2

23)+�−1(cp3
23)

3

)
= �

(
1+1+1

3

) = (MW, 0)

• To estimate p32 the procedure is as follows:

H 11
32 = {1} ⇒ cp1

32 = �(�−1(cp41
32)) = �(�−1(�(�−1(p34) + �−1(p42) −

g/2))) = �(�−1(�(3 + 5 − 3))) = �(�−1(�(5))) = (MB, 0)
H 12

32 = {1} ⇒ cp2
32 = �(�−1(cp42

32)) = �(�−1(�(�−1(p42) − �−1(p43) +
g/2))) = �(�−1(�(5 − 3 + 3))) = �(�−1(�(5))) = (MB, 0)
H 13

32 = {1} ⇒ cp3
32 = �(�−1(cp43

32)) = �(�−1(�(�−1(p34) − �−1(p24) +
g/2))) = �(�−1(�(3 − 1 + 3))) = �(�−1(�(5))) = (MB, 0)

K = 3 ⇒ cp32 = �
(

�−1(cp1
32)+�−1(cp2

32)+�−1(cp3
32)

3

)
= �

(
5+5+5

3

) = (MB, 0)

• To estimate p41 the procedure is as follows:

H 11
41 = {1} ⇒ cp1

41 = �(�−1(cp31
41)) = �(�−1(�(�−1(p43) + �−1(p31) −

g/2))) = �(�−1(�(3 + 4 − 3))) = �(�−1(�(4))) = (B, 0)
H 12

41 = {1} ⇒ cp2
41 = �(�−1(cp32

41)) = �(�−1(�(�−1(p31) − �−1(p34) +
g/2))) = �(�−1(�(4 − 3 + 3))) = �(�−1(�(4))) = (B, 0)
H 13

41 = {1} ⇒ cp3
41 = �(�−1(cp33

41)) = �(�−1(�(�−1(p43) − �−1(p13) +
g/2))) = �(�−1(�(3 − 2 + 3))) = �(�−1(�(4))) = (B, 0)

K = 3 ⇒ cp41 = �
(

�−1(cp1
14)+�−1(cp2

14)+�−1(cp3
14)

3

)
= �

(
4+4+4

3

) = (B, 0)

After these elements have been estimated, we have

P =

⎛
⎜⎝

− x (W, 0) (W, 0)
x − (MW, 0) (MW, 0)
(B, 0) (MB, 0) − (E, 0)
(B, 0) (MB, 0) (E, 0) −

⎞
⎟⎠

Iteration 2. The set of elements that can be estimated is EMV2 = {(1, 2), (2, 1)}

• To estimate p12 the procedure is as follows:

H 21
12 = {2} ⇒ cp1

12 = �
(
�−1

(
cp31

12+cp41
12

2

))
= (B, 0)

H 22
12 = {2} ⇒ cp2

12 = �
(
�−1

(
cp32

12+cp42
12

2

))
= (B, 0)

H 23
12 = {2} ⇒ cp3

12 = �
(
�−1

(
cp33

12+cp43
12

2

))
= (B, 0)

K = 3 ⇒ cp12 = �
(

�−1(cp1
12)+�−1(cp2

12)+�−1(cp3
12)

3

)
= �

(
4+4+4

3

) = (B, 0)
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• To estimate p21 the procedure is as follows:

H 21
21 = {2} ⇒ cp1

21 = �
(
�−1

(
cp31

21+cp41
21

2

))
= (W, 0)

H 22
21 = {2} ⇒ cp2

21 = �
(
�−1

(
cp32

21+cp42
21

2

))
= (W, 0)

H 23
21 = {2} ⇒ cp3

21 = �
(
�−1

(
cp33

21+cp43
21

2

))
= (W, 0)

K = 3 ⇒ cp21 = �
(

�−1(cp1
21)+�−1(cp2

21)+�−1(cp3
21)

3

)
= �

(
2+2+2

3

) = (W, 0)

After these elements have been estimated, we have the following complete two-tuple
fuzzy linguistic preference relation:

P =

⎛
⎜⎝

− (B, 0) (W, 0) (W, 0)
(W, 0) − (MW, 0) (MW, 0)
(B, 0) (MB, 0) − (E, 0)
(B, 0) (MB, 0) (E, 0) −

⎞
⎟⎠

4. A SELECTION PROCESS FOR GDM WITH INCOMPLETE
TWO-TUPLE FUZZY LINGUISTIC PREFERENCE RELATIONS

The aim of the selection process in GDM is to choose the best alternatives ac-
cording to the opinions given by the experts. A classical selection process consists
of two different phases: aggregation and exploitation (Figure 1). Assuming pref-
erence relations to represent the experts’ opinions, the former defines a collective
preference relation indicating the global preference between every ordered pair of
alternatives, whereas the latter transforms the global information about the alterna-
tives into a global ranking of them to identity the best alternatives or the solution set
of alternatives.

When we deal with GDM situations with incomplete preference relations,
there exist cases in which the above classical selection procedure could not be
applied satisfactorily. For example, we could find that some preference degrees
of the collective preference relation cannot be computed in the aggregation phase
and consequently, the ordering of some alternatives cannot be computed in the
exploitation phase. To overcome this problem, we present a selection process for
GDM with incomplete two-tuple fuzzy linguistic preference relations that requires
three phases (see Figure 2): (1) estimation phase of missing values, (2) aggregation
phase, and (3) exploitation phase.

(1) Estimation of missing information

In this phase, each incomplete two-tuple fuzzy linguistic preference relation
is completed following the estimation procedure of missing values previously pre-
sented in Section 3.
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Figure 1. Classical selection process.

Figure 2. Presented selection process.

(2) Aggregation phase: The collective two-tuple linguistic preference relation

Once all the missing values in every incomplete two-tuple fuzzy linguistic
preference relation have been estimated, we have a set of m individual two-tuple
fuzzy linguistic preference relations {P 1, . . . , P m}. From this set a collective two-
tuple fuzzy linguistic preference relation P c = (pc

ik) must be obtained by means of an
aggregation procedure. In this case, each value pc

ik ∈ S × [−0.5, 0.5) will represent
the preference of alternative xi over alternative xk according to the majority of the
most consistent experts’ opinions. To obtain P c we define the following two-tuple
linguistic OWA operator:
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DEFINITION 6. A two-tuple linguistic OWA operator of dimension n is a function φ :
(S × [−0.5, 0.5))n −→ S × [−0.5, 0.5) that has a weighting vector associated with
it, W = (w1, . . . , wn), with wi ∈ [0, 1],

∑n
i=1 wi = 1, and it is defined according to

the following expression:

φW (p1, . . . , pn) = �

(
n∑

i=1

wi · �−1(pσ (i))

)
, pi ∈ S × [−0.5, 0.5), (12)

being σ : {1, . . . , n} −→ {1, . . . , n} a permutation defined on two-tuple linguistic
values, such that pσ (i) ≥ pσ (i+1), ∀i = 1, . . . , n − 1, that is, pσ (i) is the i-highest
two-tuple linguistic value in the set {p1, . . . , pn}; and being the comparison of two
2 tuple linguistic values (sk, α1) and (sl, α2) defined as.31

• if k < l then (sk, α1) is smaller than (sl, α2)
• if k = l then

1. if α1 = α2 then (sk, α1), (sl, α2) represent the same information
2. if α1 < α2 then (sk, α1) is smaller than (sl, α2)
3. if α1 > α2 then (sk, α1) is bigger than (sl, α2)

A natural question in the definition of OWA operators is how to obtain W . In
Ref. 38 it was defined an expression to obtain W that allows to represent the concept
of fuzzy majority5 by means of a fuzzy linguistic nondecreasing quantifier Q39:

wi = Q(i/n) − Q((i − 1)/n), i = 1, . . . , n. (13)

Therefore, the collective two-tuple fuzzy linguistic preference relation could be
obtained as follows:

pc
ik = φQ

(
p1

ik, . . . , p
m
ik

)
(14)

where Q is the fuzzy quantifier used to implement the fuzzy majority concept.

(3) Exploitation: Choosing the solution set

To select the solution set of alternatives from the collective two-tuple fuzzy
linguistic preference relation, we define two quantifier guided choice degrees of
alternatives,9 a dominance and a nondominance degree.

1. QGDDi : The quantifier guided dominance degree quantifies the dominance
that one alternative has over all the others in a fuzzy majority sense and is
defined as follows:

QGDDi = φQ

(
pc

i1, p
c
i2, . . . , p

c
i(i−1), p

c
i(i+1), . . . , p

c
in

)
(15)
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This measure allows us to define the set of nondominated alternatives with
maximum linguistic dominance degree:

XQGDD = {xi ∈ X | QGDDi = supxj ∈XQGDDj } (16)

To calculate supxj ∈XQGDDj the above two-tuple linguistic comparison op-
erator is used.

2. QGNDDi : The quantifier guided nondominance degree gives the degree in
which each alternative is not dominated by a fuzzy majority of the remaining
alternatives. Its expression being

QGNDDi = φQ(Neg
(
ps

1i

)
, Neg

(
ps

2i

)
, . . . ,

Neg
(
ps

(i−1)i

)
, Neg

(
ps

(i+1)i

)
, . . . , Neg

(
ps

ni

))
(17)

where

ps
ij =

{
(s0, 0) if pij < pji

�(�−1(pij ) − �−1(pji)) if pij ≥ pji

represents the degree in which xi is strictly dominated by xj , and Neg
is the negation operator for two-tuple linguistic information defined as31

Neg(ps
ki) = �(g − �−1(ps

ki)). The set of nondominated alternatives with
maximum linguistic nondominance degree is

XQGNDD = {xi ∈ X | QGNDDi = supxj ∈XQGNDDj } (18)

As aforementioned, to calculate supxj ∈XQGNDDj the above two-tuple com-
parison operator is used.

4.1. Example of Application

Let X = {x1, x2, x3, x4} be a set of four alternatives and S = {N, MW, W, E, B,

MB, T } the same set of linguistic labels used in the previous example. Suppose
three experts {e1, e2, e3} provide the following incomplete two-tuple fuzzy linguistic
preference relations:

P1 =

⎛
⎜⎝

− x (W, 0) x

x − x (MW, 0)
(B, 0) x − (E, 0)
x (MB, 0) (E, 0) −

⎞
⎟⎠ ;

P2 =

⎛
⎜⎝

− (MW, 0) (W, 0) (W, 0)
(MB, 0) − (MB, 0) (MB, 0)
(E, 0) (MW, 0) − (W, 0)
(E, 0) (MW, 0) (E, 0) −

⎞
⎟⎠
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P3 =

⎛
⎜⎝

− (MW, 0) x x

(B, 0) − (MB, 0) (MB, 0)
(W, 0) x − (W, 0)
(W, 0) (MW, 0) (B, 0) −

⎞
⎟⎠

(1) Estimation of missing information

First, we use the estimation procedure presented in Section 3 to obtain the
following complete two-tuple fuzzy linguistic preference relations

P ′
1 =

⎛
⎜⎝

− (B, 0) (W, 0) (W, 0)
(W, 0) − (MW, 0) (MW, 0)
(B, 0) (MB, 0) − (E, 0)
(B, 0) (MB, 0) (E, 0) −

⎞
⎟⎠ ;

P ′
2 =

⎛
⎜⎝

− (MW, 0) (W, 0) (W, 0)
(MB, 0) − (MB, 0) (MB, 0)
(E, 0) (MW, 0) − (W, 0)
(E, 0) (MW, 0) (E, 0) −

⎞
⎟⎠

P ′
3 =

⎛
⎜⎝

− (MW, 0) (B, 0) (E, 0)
(B, 0) − (MB, 0) (MB, 0)
(W, 0) (N, 0) − (W, 0)
(W, 0) (MW, 0) (B, 0) −

⎞
⎟⎠

(2) Aggregation phase

Once the two-tuple fuzzy linguistic preference relations are completed we
aggregate them by means of the two-tuple linguistic OWA operator. We make use
of the linguistic quantifier most of defined as Q(r) = r1/2, which applying (13),
generates a weighting vector of three values to obtain each collective two-tuple
linguistic preference value pc

ik . As an example, the collective two-tuple linguistic
preference value pc

12 is obtained as follows

• p1
12 = (B, 0), p2

12 = (MW, 0), p3
12 = (MW, 0) ⇒ σ (1) = 1, σ (2) = 2,

σ (3) = 3
• Q(0) = 0, Q(1/3) = 0.58, Q(2/3) = 0.82, Q(1) = 1 ⇒ (w1, w2, w3) =

(0.58, 0.24, 0.18)
• pc

12 = �(w1�
−1(p1

12) + w2�
−1(p2

12) + w3�
−1(p3

12)) = �(0.58 × 4 +
0.24 × 1 + 0.18 × 1) = �(2.74) = (E, −0.26)

The collective two-tuple fuzzy linguistic preference relation obtained is

P c =

⎛
⎜⎝

− (E, −0.26) (E, 0.16) (E, −0.42)
(B, 0.22) − (B, 0.28) (B, 0.28)
(E, 0.40) (E, 0.14) − (E, −0.42)
(E, 0.40) (E, 0.32) (B, −0.42) −

⎞
⎟⎠
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(3) Exploitation phase

Using again the same fuzzy quantifier most of and the corresponding weighting
vector W = (0.58, 0.24, 0.18), the following quantifier guided dominance degree is
obtained

(QGDD1, QGDD2, QGDD3, QGDD4) =

{(E, −0.05), (B, 0.27), (E, 0.19), (E, 0.49)}

To calculate the quantifier guided nondominance degree we first obtain the matrix
P s :

P s =

⎛
⎜⎝

− (N, 0) (N, 0) (N, 0)
(W, 0.48) − (W, 0.14) (W, −0.04)
(N, 0.24) (N, 0) − (N, 0)
(N, 0.82) (N, 0) (W, 0) −

⎞
⎟⎠

Then, the following quantifier guided nondominance degree is obtained

(QGNDD1, QGNDD2, QGNDD3, QGNDD4)

= {(MB, 0.4), (T , 0), (T , −0.45), (T , −0.18)}

In both cases the maximal sets are XQGDD = {x2} and XQGNDD = {x2} and the
solution is the alternative {x2}.

5. DISCUSSION

In this section, some important aspects of the use of the estimation procedure
within the decision process presented in this paper are analyzed. To do so, we
compare our model with other models and show the advantages of its use in decision-
making processes.

1. Comparison with Xu’s model.26 Proposition 1 establishes the minimum con-
dition of our estimation procedure to solve all possibilities of incomplete in-
formation when dealing with individual linguistic preference relations. How-
ever, Xu’s model26 does not satisfy that proposition. Then it could not solve
all possibilities of incomplete information, because it does not use all esti-
mation possibilities that can be derived from Tanino’s consistency property.
It makes use only of the Expression 4 and do not take into account the other
two Expressions 5, 6. Thus, if we have the following incomplete two-tuple
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fuzzy linguistic preference relation,

P =

⎛
⎜⎝

− x (W, 0) x

x − (E, 0) x

x x − x

x x (MB, 0) −

⎞
⎟⎠

our procedure obtains the following two-tuple fuzzy linguistic preference
relation,

P ′ =

⎛
⎜⎝

− (W, 0) (W, 0) (N, 0)
(B, 0) − (E, 0) (MW, 0)
(B, 0) (E, 0) − (MW, 0)
(T , 0) (MB, 0) (MB, 0) −

⎞
⎟⎠

while Xu’s model would not be able to obtain any missing value, because
there is not any intermediate alternative xj for which Expression 4 can be
applied, therefore, the complete two-tuple fuzzy linguistic preference relation
could not be calculated.

2. On the choice degrees in the selection process. Given an incomplete fuzzy
linguistic preference relation, the selection process could not be carried out,
because the choice degrees could not be obtained. For example, in the fol-
lowing incomplete fuzzy linguistic preference relation

P =

⎛
⎜⎝

− W x x

x − x x

x MW − x

E MW x −

⎞
⎟⎠

we can obtain neither QGDD nor QGNDD for all alternatives. On the one
hand, the quantifier guided dominance degree cannot be obtained, because
there are no values in the second row. On the other hand, matrix P s is not
possible to be calculated, because there are missing values on the linguistic
preference, and therefore neither the quantifier guided nondominance degree
can be calculated. However, if our procedure is used, we are able to obtain
both QGDD and QGNDD.

3. In the selection process. In many cases of incomplete information situations if
our procedure is not used, a classical selection process could not successfully
applied. Indeed, if experts provided incomplete fuzzy linguistic preference
relations, the aggregation phase might not be possible to be carried out to
obtain an incomplete collective two-tuple linguistic preference and therefore,
as we have aforementioned, the choice degrees could not be applied. For
example, if four experts provide the following incomplete fuzzy linguistic
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preference relations

P 1 =

⎛
⎜⎝

− x (W, 0) x

x − (E, 0) x

x x − x

x x (MB, 0) −

⎞
⎟⎠ ; P 2 =

⎛
⎜⎝

− x (B, 0) x

x − (B, 0) x

x x − x

x x (MW, 0) −

⎞
⎟⎠

P 3 =

⎛
⎜⎝

− x (MW, 0) x

x − (T , 0) x

x x − x

x x (B, 0) −

⎞
⎟⎠ ; P 4 =

⎛
⎜⎝

− x (E, 0) x

x − (E, 0) x

x x − x

x x (N, 0) −

⎞
⎟⎠

then only the collective values pc
13, pc

23, and pc
43 could be obtained and

therefore, the selection process could not be applied satisfactorily.

6. CONCLUSIONS

In this paper we have proposed a complete procedure to estimate missing values
in incomplete two-tuple fuzzy linguistic preference relations, which is based on the
additive consistency property. This procedure is able to be applied in situations in
which other consistency-based linguistic approaches are not. Additionally, we have
shown its application in a selection procedure of alternatives based on different
linguistic choice degrees and have analyzed some of its advantages with regards to
previous procedures.
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