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A B S T R A C T

This work performs an in-depth study of the impact of distance functions on K-Nearest Neighbours imputation
of heterogeneous datasets. Missing data is generated at several percentages, on a large benchmark of 150
datasets (50 continuous, 50 categorical and 50 heterogeneous datasets) and data imputation is performed using
different distance functions (HEOM, HEOM-R, HVDM, HVDM-R, HVDM-S, MDE and SIMDIST) and 𝑘 values (1,
3, 5 and 7). The impact of distance functions on kNN imputation is then evaluated in terms of classification
performance, through the analysis of a classifier learned from the imputed data, and in terms of imputation
quality, where the quality of the reconstruction of the original values is assessed. By analysing the properties
of heterogeneous distance functions over continuous and categorical datasets individually, we then study their
behaviour over heterogeneous data. We discuss whether datasets with different natures may benefit from
different distance functions and to what extent the component of a distance function that deals with missing
values influences such choice. Our experiments show that missing data has a significant impact on distance
computation and the obtained results provide guidelines on how to choose appropriate distance functions
depending on data characteristics (continuous, categorical or heterogeneous datasets) and the objective of the
study (classification or imputation tasks).
. Introduction

Real-world domains are often afflicted by Missing Data (MD),
.e., absent information in datasets for which the respective values
re unknown. This severely compromises the performance of most
lassification models, which either (i) cannot internally handle missing
nformation or (ii) result in the definition of misguided decision bound-
ries (Lin and Tsai, 2020). Over the years, several approaches have
een discussed to surpass this issue, among which machine learning-
ased imputation stands out as the most popular (García-Laencina
t al., 2010). It consists of replacing the absent values with plausible
stimates taken from the complete training data portion and, contrarily
o other approaches, does not require the elimination of instances with
issing values, is model-agnostic (i.e., it does not require that data
istributions are modelled by some procedure), and independent of the
inal classification task, i.e., past the imputation stage, the classification
ask can be addressed by any classifier.

Among machine learning-based imputation strategies, k-Nearest
eighbours Imputation (kNNI), since its proposal in the yearly 00’s
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(Troyanskaya et al., 2001), remains one of the most popular and
competitive approaches (Lin and Tsai, 2020), and is a widely-used
solution across several application domains (Tabassian et al., 2016;
Sun et al., 2017; Huang et al., 2017; Abnane et al., 2019; Fu et al.,
2019), especially those that require a strong notion of pattern simi-
larity, such as healthcare domains (Jerez et al., 2010; Santos et al.,
2015; García-Laencina et al., 2015; Huang et al., 2016). Essentially,
kNNI is based on the intuitive principle of associating the distance
between two patterns to the likelihood of their values being simi-
lar. Accordingly, for a given pattern with missing information, the
imputation process involves finding its most similar neighbours and
use their information to produce an estimate for the missing values.
Beyond its simplicity, kNNI possesses other desirable traits: it is a
nonparametric method which does not require any assumptions on
the data (Tutz and Ramzan, 2015), can predict both continuous and
categorical features (Batista and Monard, 2003), has proven to pre-
serve the data distribution (Santos et al., 2017), and allows for a
great interpretability and explainability (Amorim et al., 2018). Also,
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Fig. 1. Distance functions are embedded in several fields of machine learning, enhancing the performance of similarity-based algorithms, either in data classification, data analysis,
ata preprocessing, or data clustering. The scope of this work is concerned with data imputation (kNN imputation in particular), where distance functions are used to evaluate the
imilarity between patterns in order to find suitable donor neighbours to produce plausible estimates for missing values. The distance functions considered in this work incorporate
oth the computation of heterogeneous data (continuous and categorical data), as well as missing data, and can be further examined in any other domains that rely on distance
etric learning.
ontrarily to most machine learning-based imputation strategies, kNNI
s a lazy learner, i.e., it does not require the creation of an explicit
redictive model for each missing feature (Batista and Monard, 2003).
herefore, it can directly handle instances with multiple missing values
nd the adjustment to new training data is performed continuously,
ithout the need to retrain predictive models. Provided with thoughtful
daptations, it even has the potential to accommodate more complex
roblems (e.g., concept drifts Zhang et al. (2010)).

Nevertheless, the efficiency of kNNI is largely conditioned by certain
hallenging factors (Fig. 1). One relies on the definition of suitable
onor neighbours, which in turn implies the choice of both an ap-
ropriate number of neighbours, 𝑘, and a distance function, 𝐷. Other
mpactful decisions concern the definition of the imputation frame-
ork, i.e., kNNI variants (e.g., iterative, sequential, cluster-based,

ncomplete case-based Brás and Menezes (2007), Kim et al. (2004),
ruschka et al. (2004) and Van Hulse and Khoshgoftaar (2014))
nd/or the strategy to weight the contribution of each neighbour to
he final missing value estimate, i.e., kNNI adaptations or weighting
chemes (e.g., mean/mode, distance-weighted, rank-weighted Dudani,
976; Huang et al., 2017). However, note that while kNNI frame-
orks/variants and adaptations/weighting schemes can be thought as
eneral modifications of the traditional kNNI formulation, the defi-
ition of both a donor set and a distance function is a mandatory
equirement. Nonetheless, and although all these aspects contribute
o the successful behaviour of kNNI, they have not received the same
ttention in related research over the past decades. Whereas tuning the
ptimal number of 𝑘 nearest neighbours, or experimenting with several
ossible values for improved results is nowadays a standard practice
cross most imputation papers (García-Laencina et al., 2010, 2015; Pan
t al., 2015), and increasing research has been investigating the effect
f applying different kNNI weighting adaptations and variants (García-
aencina et al., 2009; Luengo et al., 2012; Tutz and Ramzan, 2015;
iang and Yang, 2015; Al-Helali et al., 2021), the search for a suitable
istance function remains often neglected (related work is presented in
ection 2).

This is true both from a imputation as well as classification per-
pective (kNN classification), among other related fields (Fig. 1), and
s perhaps due to the existing lack of insight regarding the behaviour of
ifferent distance functions. Note that the chosen value of 𝑘 is directly
ssociated to a local or global nature of kNN, as it relates to the
ize of the neighbourhood considered for imputation or classification.
aturally, smaller values of 𝑘 define stricter imputation estimates or
lassification rules, focusing on a local perspective of the domain. In
2

turn, weighting functions control the impact that the patterns in the
defined neighbourhood have in determining the final imputed value
or class label. Ultimately, there is also some intuition on appropriate
weighting functions, depending on the characteristics of data. For
instance, overlapped domains or domains presenting certain structural
biases should respond better to weighted imputation approaches: this
is not only intuitive as it is also empirical, since the fact that dis-
tance metric learning is inherent to a broad spectrum of fields in
machine learning (Suárez et al., 2021) (Fig. 1), makes it possible to ex-
change empirical knowledge between different areas and applications
(e.g., overlapped domains should benefit from weighted imputation
approaches in the same way they benefit from weighted resampling
and classification approaches Nekooeimehr and Lai-Yuen (2016) and
Rastin et al. (2021)).

For distance functions, however, it has been difficult to derive some
underlying principles that motivate the choice of one distance function
over another. For the most part, existing approaches – both within the
scope of kNN imputation and classification – often rely on variations
of the Minkowski distance, where the Euclidean distance is the most
frequently used by default (Luengo et al., 2012; Gou et al., 2019a;
Fouad et al., 2021; Al-Helali et al., 2021). However, note that distance
functions are not universally suited to all types of data. Variations
of the Minkowski distance, such as the Manhattan and Euclidean dis-
tances, work under the assumption of continuous data. Other distance
functions are more appropriate to handle categorical data, such as the
Jaccard or the Value Difference Metric (VDM) distances.

Inevitably, heterogeneous data, comprising both continuous and
categorical features, requires special treatment. Essentially, there are
three main solutions for heterogeneous data. A common solution is to
transform features so that they are represented on the same scale (Lumi-
järvi et al., 2004). Accordingly, continuous features may be discretised
to categorical, or categorical features may be transformed to binary,
using a 1/0 encoding (one-hot encoding) for each existing category
(which allows arithmetic operations over values). These solutions are
however suboptimal: on the one hand, determining an adequate num-
ber of categories for the discretisation of continuous features is not
trivial. Besides, if categories are considered nominal, the order infor-
mation is lost. One the other hand, one-hot encoding may significantly
increase data dimensionality which adds time and memory complexity
to kNNI. Another possibility is to combine distance functions in order
to address the continuous and categorical portions separately. This,
however, often results in considering a binary encoding for certain
categorical features (nominal) and the use of matching coefficients
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between the transformed binary vectors (Ali et al., 2019). A more
refined approach is to consider heterogeneous distance functions that
directly handle different types of features, thus avoiding the problems
described above (Wilson and Martinez, 1997).

Yet, there is another factor that needs to be accounted for: the
incorporation of missing data in the distance computation. Traditional
implementations of kNNI require that donor neighbours have observed
values in all features. Other kNNI variants allow the donors to have
some missing information, although they are required to have the same
observed features as the pattern with missing values (plus observed
information in the feature to impute) (Van Hulse and Khoshgoftaar,
2014). In other frameworks, the donors are allowed to have missing
values, although the computation of distances does not use all the
features, but only those for which observations are available in both
instances (Tutz and Ramzan, 2015).

One of the advantages of considering heterogeneous distance func-
tions is that they are flexible in incorporating operations on missing
values as well. Additionally, it is possible to handle absent values
differently, depending on whether they belong to a continuous or cat-
egorical feature. This allows that all existing information is considered
for imputation, without discarding any data patterns or values. Finally,
it allows that the presence of missing data itself is also considered in the
distance computation, i.e., the uncertainty of the missing data can be
accounted for: patterns comprising missing values in the same feature
can either be thought to be closer (more similar) or farther from each
other (less similar), or evaluated according to intermediate strategies.
Popular heterogeneous distance functions, such as the Heterogeneous
Euclidean-Overlap Metric (HEOM) or the Heterogeneous Value Differ-
ence Metric (HVDM) (Wilson and Martinez, 1997), consider that the
distance between two values should be maximal if either of them is
missing, while other definitions are more flexible (details are given
on Section 4). Intuitively, we realise that missing data, their distri-
bution among existing classes, percentage, and the rules that define
their comparison will affect distance computation and consequently,
kNN-based approaches, independently of the end goal (imputation,
classification, clustering, resampling). In this work, we focus on kNN
imputation to address complex scenarios comprising heterogeneous
data – continuous and categorical (nominal and binary) features – and
missing data, where the absent values themselves are incorporated in
distance computation.

1.1. Objectives and contributions

This work follows from our recent research (Santos et al., 2020b),
where we have shown that distance functions affect kNN imputation.
Nevertheless, some topics remained unaddressed from the preliminary
experiments. The study considered 61 datasets, although there was not
a clear division between categorical and heterogeneous datasets, and
continuous datasets comprised the great majority (37 datasets). Finally,
only 𝑘 = 1 was investigated and no analysis regarding imputation
quality was performed.

Herein, we perform a more in-depth study of the impact of different
heterogeneous distance functions on kNN imputation, both in terms
of classification performance and imputation quality. Note that our
objective is not to select an extensive set of possible distance functions
and tune the performance of classifiers with respect to each dataset,
i.e., test all possible distance functions and look for the solution that
maximises classification or imputation results. On the contrary, we aim
to provide a thoughtful selection of distance functions, with distinct
approaches to continuous, categorical and missing data, and study the
properties of each component in order to generate some insight on
their behaviour. Accordingly, rather than searching for optimal results,
i.e., test every approach and select the best, we aim to provide insights,
i.e., some intuition over the imputation process that may ultimately
lead to more informed decisions regarding the choice and application
of distance functions. In sum, the contributions of this work are the
following:
3

• A study of the impact of distance functions of kNNI and its effect
on classification performance, by comparing classification models
trained with datasets imputed with different distance functions;

• A thorough investigation of the behaviour of heterogeneous func-
tions, namely how each component – treatment of continuous,
categorical and missing values – affects the computation of dis-
tances (and consequently the classification results), extrapolating
insights for heterogeneous datasets;

• A comparison between different downstream tasks (classification
versus imputation), studying the impact of distance functions
on the quality of imputation, besides classification performance.
While on the previous cases the imputation task is seen as an
auxiliary task that helps to model the classification task, here we
also focus on the imputation task and evaluate distance functions
regarding their ability to reconstruct the original, true values in
data.

Our experiments show that distance functions play an important
role on the optimisation of both classification and imputation tasks,
missing data has a significant impact on distance computation, and the
obtained results provide some insights on how to choose appropriate
distance functions depending on data characteristics (continuous, cate-
gorical or heterogeneous datasets) and the objective of the study (clas-
sification or imputation). Below we summarise further contributions of
this research work:

• We present a extensive experimental setup, with 150 datasets
(50 continuous, 50 categorical and 50 heterogeneous datasets),
where imputation is performed under several missing rates (5, 10,
20 and 30%), with 7 different heterogeneous distance functions
that incorporate missing values computation — HEOM, HEOM-R,
HVDM, HVDM-R, HVDM-S, MDE and SIMDIST (Section 4), and
several values of 𝑘 (1, 3, 5 and 7). To our knowledge, no study
has performed such a comprehensive data collection and analysis
so far;

• We evaluate distance functions both regarding classification per-
formance and imputation quality, whereas related work is often
focused solely on one perspective, mostly the effect of kNNI on
classification performance (Batista and Monard, 2003; Farhangfar
et al., 2008; Luengo et al., 2012; Hu et al., 2016; Huang et al.,
2016; Tsai and Chang, 2016);

• We analyse whether datasets with different characteristics may
benefit from different distance functions and to what extent the
component of a function definition that handles missing data in-
fluences such choice, by comparing different solutions for missing
value incorporation in distance computation. Such an analysis
derives important insights on the behaviour of distance functions
and has not been previously touched upon in previous research;

• We extend our previous research (Santos et al., 2020b) in what
concerns the number and characteristics of datasets, kNNI
parametrisation, and also including the analysis of imputation
quality. This improved experimental setup allows a more thor-
ough theoretical and empirical analysis of the properties and
behaviour of the considered distance functions.

• In order to foster the study of heterogeneous distance functions
for both data imputation and general purposes in Engineering
Applications, we put forward the MATLAB implementations of
the distance functions studied in this work, publicly available on
GitHub.1

.2. Potential and engineering applications

Given the heterogeneity of data associated to most real-world do-
ains and their susceptibility to missing data, data imputation becomes

1 https://github.com/miriamspsantos/heterogeneous-distance-functions.

https://github.com/miriamspsantos/heterogeneous-distance-functions
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a central issue across several engineering problems and applications,
where kNNI is regarded as the most representative algorithm among
machine learning-based techniques (Lin and Tsai, 2020; Triguero et al.,
2019; Tlamelo et al., 2021).

One of its most common applications is perhaps in the field of
medical informatics and biomedical engineering (Abreu et al., 2016;
García-Laencina et al., 2015; Lin and Tsai, 2020; Santos et al., 2020a),
where erroneous predictions may have serious implications in people’s
lives, and therefore is its crucial to guarantee the quality of data. In
addition, in these contexts it is also fundamental to guarantee data
representativeness, particularly if data suffers from additional compli-
cating factors (e.g., if the data is scarce or imbalanced Santos et al.,
2015). In such scenarios, it is important that expert systems analyse
the similarity between cases (here, patients), so that the estimate
values obtained from the imputation process are not biased towards
the most represented concepts. In other words, it is important that
the imputation process is adjusted to each patient’s characteristics, by
analysing the information available from the most similar clinical cases,
rather than considering the entire dataset. It comes therefore as no
surprise that kNNI has become very popular in healthcare domains.

Nevertheless, healthcare problems (e.g., survival prediction, disease
diagnosis and prognosis) are just one of the many application domains
where similarity learning is crucial to devise optimal solutions. In fact,
beyond the scope of data imputation, kNN has become a core algorithm
across a wide range of fields and applications and is ultimately one of
the most promising techniques to move towards Smart Data (Triguero
et al., 2019). The fundamental basis of kNN is its ability to han-
dle pattern similarity, which primarily results from an appropriate
definition of distance functions. Accordingly, although this study is
concerned with kNNI, the derived insights may be further extrapolated
and explored across other frameworks and applications, not only in
the scope of data imputation, but across a wider panorama of machine
learning fields relying on distance metric learning (Fig. 1).

Fig. 1 presents a plethora of machine learning fields operating
with similarity computation, where the distance functions studied in
this work may be investigated. To further systematise the application
potential of this study, Table 1 provides the reader with an explanation
of how these distance functions may be incorporated both in the scope
of data imputation as well as across the remaining areas, along with
their frequent engineering applications.

Considering data imputation, distance functions can be applied to
measure pattern similarity as an intermediate step to improve kNNI
or other imputation approaches, namely via instance selection (Tsai
and Chang, 2016; Huang et al., 2016; Pereira et al., 2020). Note that
instance selection can also be used outside the scope of data imputation
(e.g., cleaning approaches Smith et al., 2014), yet still recurring to
distance functions (Tsai et al., 2019).

Another straightforward application with respect to data prepro-
cessing is data resampling. Considering the field of Imbalanced Data,
there is a plethora of data resampling algorithms that rely on dis-
tance computation, either undersampling or oversampling algorithms.
Distance computation is fundamental to determine which patterns to
clean/remove from data, or which patterns are suitable candidates
for synthetic data generation, respectively. As an example, the orig-
inal formulation of the well-known Synthetic Minority Oversampling
Technique (SMOTE) considers the Euclidean distance (Chawla et al.,
2002), although HEOM or HVDM are frequently used with heteroge-
neous data (Napierała et al., 2010; Santos et al., 2015; Napierala and
Stefanowski, 2016; Wilk et al., 2016; Borowska and Stepaniuk, 2016).
Using a distance function that is suited to the nature of data allows the
construction of a training set that is more representative of the domain,
consequently improving the performance of classifiers trained over this
set.

Regarding data classification, suitable applications comprise the
modification of algorithms operating with distances among patterns,

such as instance-based learning, radial basis function networks, or s

4

self-organising maps (Weinberger and Saul, 2009; Parameswaran and
Weinberger, 2010; Negri and Belanche, 2001) (which can also be used
for data imputation).

Data clustering is also a standard application domain, where finding
an appropriate way of computing similarity between patterns is key for
the success of methods (Harikumar and Surya, 2015; Kalra et al., 2018).

In the field of Data Analysis and Meta-Learning, distance or simi-
larity computation is also on the basis of several well-known data com-
plexity measures (neighbourhood measures in particular) (Lorena et al.,
2019). Another example is the characterisation of datasets via their
data typology, i.e., the categorisation of examples into several types.
Originally, data typology relies on the HVDM distance (Napierala and
Stefanowski, 2016), although recent research has started investigating
the effect of different distance metrics on the typology results (Mahin
et al., 2018, 2019). This is yet another example where considering the
solutions for heterogeneous data with missing values explored in this
work could potentially improve results.

In sum, given the extent to which distance metric learning is used
across several fields of machine learning and the data heterogeneity
encountered in most real-world domains (comprising different types
of features, missing values, and other difficulty factors), there are a
plenitude of applications and extensions that can be derived from the
solutions studied in this work, despite its focus on data imputation.

The paper is structured as follows. First, Section 2 discusses previous
work regarding the use of distance functions with k-Nearest Neighbours
as an imputation algorithm and as a classifier. Then, Sections 3 and 4
discuss some background on missing data theory and describe the stud-
ied heterogeneous distance functions, respectively. Section 5 describes
the experimental setup in detail, while Sections 6 and 7 focus on the
analysis and discussion of results regarding classification performance
and imputation quality, respectively. Finally, Section 8 elaborates on
the main findings of this work and presents some directions for future
research.

2. Related work on k-nearest neighbours and distance functions

In this section, we discuss some related work on the use of distance
functions coupled with k-Nearest Neighbours algorithm for data impu-
tation (Section 2.1) and data classification (Section 2.2). To provide a
panorama regarding the study of distance functions coupled with the
kNN algorithm, we present an overview of these two major areas where
kNN is deeply investigated. Nevertheless, we focus mostly on related
work concerning data imputation, as is the main focus of this work.
For a deeper analysis on kNN classification, the reader is referred to
the recent work of Abu Alfeilat et al. (2019).

2.1. Related work on kNN imputation

In the field of kNN imputation, there are several different ap-
proaches found among related research.

Some related research considers only continuous or categorical
features. Batista and Monard (2001) discuss kNN algorithm as an
imputation method, considering a case study comprising one contin-
uous dataset (the used distance function is not specified, although it
is assumed the Euclidean default). Farhangfar et al. (2008) consid-
ers only discrete data (continuous features are left out of the analy-
sis), and therefore a simple matching distance (𝑑𝑂, Eq. (2)) is used.
e Andrade Silva and Hruschka (2013) study the influence of different
ariants of kNNI on classification tasks, considering only continuous
eatures and therefore using the Euclidean distance. Similarly, Tutz
nd Ramzan (2015) investigate improved weighting functions for kNNI,
sing variations of the Minkowski distance and considering solely
ontinuous data. Eirola et al. (2013) specifically touch upon the issue
f estimating distances with missing values, although considering only
ontinuous data. Additionally, the framework works under the as-

umption of multivariate normal distributions. Beretta and Santaniello
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Table 1
An overview of machine learning areas relying on distance metric learning. For each of the areas, it is explained how distance functions can be incorporated in the operations of
each of the identified sub-areas, along with some examples of engineering applications and real-world problems where they can be studied.

Machine learning area Sub-area Methodology Engineering applications

Data classification Neural networks Distance functions are embedded in the operation
of algorithms (e.g., radial basis functions networks,
self-organising maps).

Fraud detection (West and Bhattacharya, 2016),
software fault prediction (Malhotra, 2015),
financial crisis prediction (Lin et al., 2011),
engineering risk assessment (Hegde and Rokseth,
2020).

Instance-based learning Some are referred as nearest-neighbour techniques,
memory-based reasoning methods, or case-based
reasoning methods. These systems use a distance
function to determine the similarity between a
new pattern and the training data and use the
nearest instance(s) to predict the target class.

Business failure prediction (Li et al., 2010),
bankruptcy prediction (Cho et al., 2010), text
mining (Gerhana et al., 2017), geoengineering
(Sousa et al., 2017), cybersecurity (Elnaggar and
Chakrabarty, 2018).

Data clustering – Clusters are found by identifying similar patterns.
A suitable cluster solution comprises groups where
its members have small distances among each
other.

Financial distress (Lin et al., 2011), churn
prediction (Mahajan et al., 2015), vehicle routing
problems (Kiriş and Özcan, 2020), cybersecurity
(Elnaggar and Chakrabarty, 2018).

Data resampling Resampling approaches – undersampling and
oversampling – use distance functions to analyse
the neighbourhood of training examples and
determine which patterns to clean or replicate.

Traffic accident’s severity prediction (Zheng et al.,
2019), residential energy modelling (Garbasevschi
et al., 2021), identification of gang-related arson
cases (Wang et al., 2021), solar flares forecasting
(Ribeiro and Gradvohl, 2021), intrusion detection
(Mbow et al., 2021).

Instance selection Prototype selection and instance selection methods
use an instance-based classifier (commonly kNN)
with a distance function, to find obtain a
representative subset of the original training data.

Text categorisation (Barigou, 2018), smart data
(Triguero et al., 2019), intrusion detection systems
(Zhao et al., 2021).

Data preprocessing Dimensionality reduction Distance functions are used as input for
well-known dimensionality reduction algorithms,
such as Multidimensional Scaling (MDS) or
t-distributed Stochastic Neighbour Embedding
(t-SNE).

Classification and visualisation of human genetic
data (Li et al., 2017), Parkinson’s disease (Oliveira
et al., 2018), single-cell transcriptomics (Kobak
and Berens, 2019), scientific visualisation, sports
visualisation, forest fires analysis, virus disease
analysis (Saeed et al., 2018).

Data Imputation Distance functions are used in kNN imputation as
well as other imputation algorithms that operate
with distances among patterns (e.g., NN, SOM,
cluster-based imputation). They can also be as
intermediate steps to improve other imputation
approaches (e.g., via instance selection). Absent
values of a given pattern are estimated using the
available information of its closest neighbours.

Cancer survival prediction (Santos et al., 2015;
García-Laencina et al., 2015), disease diagnosis
and prognosis (Jerez et al., 2010), ubiquitous
computing (Park et al., 2015), software
applications and expert systems (Jäger et al.,
2021), internet-of-things (IoT) smart systems
(Okafor and Delaney, 2021), smart data (Triguero
et al., 2019).

Data analysis and
Meta-learning

Data complexity Distance functions are in the base of several
well-established complexity measures and instance
hardness estimators (e.g., N1, N2, N3, T1 (Lorena
et al., 2019), LSC (Leyva et al., 2014), CM (Anwar
et al., 2014), R-value (Oh, 2011), kDN (Smith
et al., 2014), among others).

Cancer detection (Sarbazi-Azad et al., 2020),
Curriculum learning (Zhou et al., 2020; Nunes
et al., 2021).

Data typology Depending on their local neighbourhoods,
examples may be categorised into safe, borderline,
rare or outlier examples (Napierala and
Stefanowski, 2016). Using distinct distance
functions may result in the different categorisation
of examples (e.g., safe examples become
borderline).

Anomaly detection (Kong et al., 2020), diabetes
prediction (Nnamoko and Korkontzelos, 2020).
(2016) study the impact of kNNI on the data structure and inferen-
tial and predictive statistics. Authors focus on problems comprising
only continuous or binary features (where arithmetic operations over
values may be performed), hence applying kNNI with variations of
the Minkowski distance. Abnane et al. (2019) consider a set of varia-
tions of the Minkowski distance, dealing only with continuous features
(categorical features were discarded from the analysis). Jadhav et al.
(2019) also use only continuous features, and distance computation is
performed using 𝑑𝑁 (Eq. (3)). Cheng et al. (2019) and Fouad et al.
(2021) also consider only continuous features, applying the standard
Euclidean distance.

Some works perform feature transformation in order to handle
categorical features. Poulos and Valle (2018), Pereira et al. (2020),
and Jäger et al. (2021) consider a one-hot encoding of categorical
features before applying the Euclidean distance. Luengo et al. (2012)

transform categorical (nominal) features to a list of numeric values, and

5

then perform similarity computation using also the Euclidean distance.
This approach may however be biased, since the transformation may
distort the true similarity between patterns, as their numeric values not
represent a real relationship or ordering between existing categories.

Some related research handles the imputation of heterogeneous data
directly, either by resorting to heterogeneous distance functions or
through the combination of distance functions adapted to each type
of feature. The former is most often the case of application domains,
where data is heterogeneous and may further incorporate missing data.
To this regard, Jerez et al. (2010), Santos et al. (2015), and García-
Laencina et al. (2015) couple kNNI with HEOM to handle real-world
healthcare domains comprising continuous, categorical and missing
values. Zhang (2011) also highlights the importance of choosing differ-
ent distance measures for features of different types: some possibilities
of distance functions are discussed for each type of attribute, and one

is chosen for each type, without comparing other alternatives. Also,
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the distance between patterns is only determined over observed data,
i.e., missing values are not considered in distance computation. Bert-
simas et al. (2017) consider a combination of the Euclidean distance
with the 𝑑𝑂 (Eq. (2)) when handling heterogeneous data. Woźnica and
Biecek (2020) couple 𝑑𝑂 (Eq. (2)) with 𝑑𝑁 (Eq. (3)) for categorical and
continuous features, respectively.

Related research also resorts to Grey Relational Analysis (GRA)
(Huang and Lee, 2004) as an alternative to Euclidean distance mea-
sure to continuous features (Huang et al., 2017), where some adap-
tations are considered for categorical features, so that the developed
approaches can impute missing data in heterogeneous datasets (Zhang,
2012; Pan et al., 2015). However, these approaches are not compared
with other heterogeneous distances, and also do not incorporate any
strategies to consider missing data during distance computation. In
a more recent work, Choudhury and Kosorok (2020) further modify
GRA to handle missing values in similarity computation by assigning
a minimal similarity value if either of the input values is missing.
Nevertheless, a central issue with GRA, affecting all of the above works
is that it requires the definition of a distinguishing coefficient 𝜌 ∈
[0, 1], for which no convincing method has been suggested so far (it
is assigned to 0.5 by default) (Pan et al., 2015).

Finally, some related research seems to disregard the nature of
data when studying kNNI on heterogeneous datasets. These either
fail to characterise the used distance function (Batista and Monard,
2002, 2003), or refer only to the Euclidean function while no feature
transformation techniques are discussed (Luengo et al., 2010; Huang
et al., 2016; Tsai and Chang, 2016).

To summarise the contributions regarding kNN imputation over the
past years, Table 2 provides an overview of related research. For each
research work, the collected information comprises the objective of
the study (‘‘Behaviour’’, ‘‘Benchmark’’, ‘‘Application’’ or ‘‘Variant’’), the
details concerning the kNNI approach (𝑘 value, considered distance
measures and whether they internally handle the computation of miss-
ing values), the experimental design (number of datasets – continuous,
categorical, and heterogeneous –, missing mechanisms – MCAR, MAR,
and MNAR – and missing rates), and the considered downstream task
(classification performance or imputation performance/quality). Fur-
thermore, we highlight some important considerations regarding each
related work, namely in what concerns the intrinsic characteristics of
kNNI implementation or limitations of the experimental setup.

Note that, as mentioned in the Introduction, some
variants/frameworks for kNNI improvement have been proposed over
the years (e.g., SkNNI Kim et al. (2004), KMI Hruschka et al. (2004),
IkNNI Brás and Menezes (2007), ICkNNI Van Hulse and Khoshgoftaar
(2014), among others). However, these are precursor studies focused
on specific modifications of adaptations to enhance kNNI, without a
particular focus on distance functions, therefore applying the Euclidean
distance by default. Although some more recent representative variants
of kNNI are selected as related work and presented in Table 2, an in-
depth discussion of kNN variants and adaptations is beyond the scope of
this work (please refer to Huang et al. (2017) for a more comprehensive
discussion).

From the assessment of Table 2, several observations should be
highlighted:

• Euclidean distance is by far the most widely used distance func-
tion across all related research. However, in ‘‘Application’’ stud-
ies, where missing values often occur naturally in data, and
domains are most frequently heterogeneous, the HEOM distance
function is normally the go-to approach.

• Most related research focuses on performing ‘‘Benchmark’’ or
‘‘Variant’’ studies. These either involve the comparison of a set
of data imputation techniques, or the comparison of a set of
kNNI variants and frameworks, in order to determine the top
performing approaches. Nevertheless, they often disregard the

nature of data and the choice of appropriate distance functions:

6

whereas finding an optimal value of 𝑘 is commonly a concern, the
chosen distance function generally follows the default applied by
software implementations.

• Several works require that the donor neighbours contain observed
information in all features, or discard features with missing values
when computing distances. Out of 29 research works (excluding
our related research), only 5 (17%) are able to handle missing
values internally during distance computation. However, the com-
putation strategy is unanimous: if either of the input values is
missing in a given feature 𝑗, the distance between patterns in that
feature is 1 (maximal distance).

• The great majority of works evaluates data imputation by de-
termining the improvement over the classification task (13/29),
whereas only 9 works evaluate both tasks (imputation and classi-
fication), and 7 evaluate only the quality of imputation. MCAR is
also the most frequently studied missing mechanism (considered
in 18 works), followed by MAR (14) and MNAR (7).

• Some works either consider only continuous or categorical fea-
tures, or perform feature transformation. The most frequent trans-
formation is to perform one-hot encoding for categorical features.
Other considered transformations are associated to a higher bias
in distance computation: for instance, if nominal values are trans-
formed to a list of numeric values and handled as continuous (Lu-
engo et al., 2012), or if the distance between numeric data is
defined by simple matching (Farhangfar et al., 2008).

• Whereas the information regarding the used value of 𝑘 is available
in nearly all related research, the used distance function or feature
transformation is often not disclosed, even when studies consider
heterogeneous datasets.

• The largest benchmark of datasets is collected by Bertsimas et al.
(2017) (84: 54/12/18) and Jäger et al. (2021) (69: 14/5/50).
Nevertheless, datasets are not analysed individually according to
their nature.

In contrast to related studies, both this work and our previous
research (Santos et al., 2020b,a) introduces the following differences:

• They comprehend the most comprehensive collection and in-
vestigation of heterogeneous distance functions, namely HEOM,
HEOM-R HVDM, HVDM-R, HVDM-S, MDE, and SIMDIST.

• All the distance functions used in this work are able to simul-
taneously handle continuous, categorical, and missing data. Ac-
cordingly, no feature transformation is required, all patterns with
missing data are available to be donors (it is only required that
they have observed information in the feature to impute), and the
uncertainty of missing data can be accounted for.

• Beyond allowing distance computation with missing data, our
studied distance functions further distinguish scenarios where
only on input value is missing from situations where both are
missing. The used strategies to handle each scenario may addi-
tionally depend on the type of feature at hand (continuous or
categorical).

Finally, this current research comprises the largest benchmark of
collected datasets among previous research. It considers 150 datasets
from open source repositories, with an equal distribution of datasets by
nature (50 continuous, 50 categorical, and 50 heterogeneous datasets)
to allow a proper generalisation of results for each individual group of
datasets. Additionally, and contrary to our previous research as well,
this work focuses mostly on behaviour, rather than comparing and
discussing results across distinct scenarios. It is highly motivated by
the preliminary results obtained in Santos et al. (2020b) and Santos
et al. (2020a), although it aims to provide thorough insights regarding
the underlying operations of heterogeneous distance functions. We
evaluate results both regarding classification performance and impu-
tation quality, whereas related work is often focused solely on one
perspective, mostly on the effect of kNNI on classification performance,
as was done in our past research as well.
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Table 2
Summary of existing literature on kNN imputation. For each related work are identified the objectives of the study, the parameters of the imputation approach, details regarding
the experimental setup and the downstream task to be evaluated.

Study kNN imputation approach Experimental data and simulation Evaluation Considerations

Reference Objectivea k Variants orb

Frameworks
Distance
measures

Considersc

MVs
# Datasetsd

(Cont, Cat,
H)

MCAR/MAR
/MNAR

MRse Class.f
Perf.

Imp.g
Perf.

Batista and
Monard
(2001)

Behaviour 3 N.A. Unk. ∙ 1 (1/0/0) �/∙/∙ 10:10:50 � ∙ Although not specifically
stated, distance function is
assumed Euclidean, as is
the default in the
traditional kNNI
formulation.

Batista and
Monard
(2002)

Behaviour 1, 3, 5, 10,
20, 30, 50,
100

N.A. Unk. ∙ 3 (2/0/1) �/∙/∙ 10:10:60 � ∙ Although not specifically
stated, distance function is
assumed Euclidean, as is
the default in the
traditional kNNI
formulation. Not clear how
distance computation was
formulated for nominal
features.

Batista and
Monard
(2003)

Benchmark 1, 3, 5, 10,
20, 30, 50,
100

N.A. Unk. ∙ 4 (3/0/1) �/∙/∙ 10:10:60 � ∙ Although not specifically
stated, distance function is
assumed Euclidean, as is
the default in the
traditional kNNI
formulation. Not clear how
distance computation was
formulated for nominal
features.

Farhangfar
et al. (2008)

Benchmark 1 N.A. 𝑑𝑂 (Eq. (2)) � 15 (0/13/2) �/∙/∙ 5,
10:10:50

� ∙ Considers only discrete
data (i.e., discrete
numerical and categorical
data). Assumes 𝑑𝑗 = 0 if
both patterns have the
same numerical or nominal
values, otherwise 𝑑𝑗 = 1. If
either of the input values
is missing, it also returns
𝑑𝑗 = 1.

Luengo et al.
(2010)

Benchmark 10 N.A. Euclidean ∙ 22 (9/3/10) �/�/∙ MAR:
Natural
MCAR:
10%

� ∙ It is not clear how distance
computation was
formulated for
heterogeneous datasets
(e.g., nominal features).

Jerez et al.
(2010)

Application NNI: 1 kNNI:
k chosen
from CV

N.A. HEOM � 1 (0/0/1) ∙/�/∙ Natural � ∙ If either of the input
values is missing, 𝑑𝑗 = 1.

Zhang (2011) Variant Unk. � Minkowski
Simple Matching
Jaccard, Matches
Information-
theoretic

∙ 9 (6/0/3) ∙/�/∙ 5, 10, 20,
40

� � Distance function is a
combination of several
functions for each feature
type. If either of the input
values is missing in a
given feature, that feature
is ignored in distance
computation.

Zhang (2012) Variant k set
according to
experiments

� Euclidean GRAh ∙ 6 (2/2/2) ∙/�/∙ 10, 20, 40 � � If both input values have
the same values for a
categorical attribute,
𝐺𝑅𝐴𝑗 = 1 (maximal
similarity). Otherwise,
𝐺𝑅𝐴𝑗 = 0 (minimal
similarity). GRA implies
the definition of a
distinguishing coefficient,
for which no convincing
method has been suggested
so far.

Luengo et al.
(2012)

Benchmark 10 N.A. Euclidean ∙ 21 (3/7/11) ∙/�/∙ Natural � � Nominal values are
considered as a list of
integer values, starting
from 1 to the number of
different categories.

(continued on next page)
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Table 2 (continued).
Study kNN imputation approach Experimental data and simulation Evaluation Considerations

Reference Objectivea k Variants orb

Frameworks
Distance
measures

Considersc

MVs
# Datasetsd

(Cont, Cat,
H)

MCAR/MAR
/MNAR

MRse Class.f
Perf.

Imp.g
Perf.

de An-
drade Silva
and Hruschka
(2013)

Benchmark 10 � Euclidean ∙ 4 (4/0/0) �/�/∙ 10, 30,
50, 70

� � Only continuous data is
considered in the
experiments.

Eirola et al.
(2013)

Behaviour N.A. N.A. Statistical
techniques are
applied to find
an expression for
the expectation
of the squared
Euclidean
distance between
samples in a
dataset with
missing values.

9 (9/0/0) Unk.
Statistical
techniques
assume
MCAR or
MAR.

5, 15, 30,
60

∙ � The study focuses on
distance estimation for
numerical data with
missing values. The
theoretical framework
operates under the
assumption of a
multivariate normal
distribution, although the
algorithm has shown to be
robust to violations of the
assumptions regarding data
distribution.

Tutz and
Ramzan
(2015)

Variant k set by CV � Euclidean
Manhattan

∙ 4 (2 Cont/2
Unk.)

�/∙/∙ 5 ∙ � The computation of
distances does not use all
the components of the
instances but only those
for which observations in
both instances are
available.

Santos et al.
(2015)

Application 1 N.A. HEOM � 1 (0/0/1) Unk. Natural � ∙ If either of the input
values is missing, 𝑑𝑗 = 1.

García-
Laencina
et al. (2015)

Application 1 to 40 N.A. HEOM � 1 (0/0/1) ∙/�/∙ Natural � ∙ If either of the input
values is missing, 𝑑𝑗 = 1.

Pan et al.
(2015)

Variant 1 to 20 � Euclidean GRA ∙ 5 (2/2/1) �/�/� 5, 10, 20 � � If both input values have
the same values for a
categorical attribute,
𝐺𝑅𝐴𝑗 = 1 (maximal
similarity). Otherwise,
𝐺𝑅𝐴𝑗 = 0 (minimal
similarity). GRA implies
the definition of a
distinguishing coefficient,
for which no convincing
method has been suggested
so far.

Beretta and
Santaniello
(2016)

Variant 2, 3, 10 � Minkowski
Euclidean
Manhattan

∙ 1 (1/0/0) �/∙/∙ 15 ∙ � Experiments focus mostly
on simulated continuous
data and only with 1
real-world continuous
dataset is considered. Only
complete cases with no
missing data are available
as donors.

Huang et al.
(2016)

Variant Unk. � Euclidean ∙ 8 (4/1/3) �/∙/∙ 5:5:50 � ∙ Only the patterns with
complete information in all
attributes will serve as
donors. The features that
have missing values in the
pattern to impute are
ignored in distance
computation.

Tsai and
Chang (2016)

Variant 10 � Euclidean ∙ 29 (11/9/9) �/∙/∙ 10:10:50 � ∙ Only the patterns with
complete information in all
attributes will serve as
donors. The features that
have missing values in the
pattern to impute are
ignored in distance
computation.

Huang et al.
(2017)

Variants 1 to
√

𝑁 in
odd numbers

� Euclidean
Manhattan GRA

∙ 8 (8/0/0) �/�/� 2.5, 5,
10, 20

� � Focuses specifically on
improvements for
estimating continuous
features.

(continued on next page)
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Table 2 (continued).
Study kNN imputation approach Experimental data and simulation Evaluation Considerations

Reference Objectivea k Variants orb

Frameworks
Distance
measures

Considersc

MVs
# Datasetsd

(Cont, Cat,
H)

MCAR/MAR
/MNAR

MRse Class.f
Perf.

Imp.g
Perf.

Bertsimas
et al. (2017)

Variants 1 to 100 � Euclidean
Euclidean + 𝑑𝑂

∙ 84
(54/12/18)

�/∙/� 10:10:50 � � It is not clear how nominal
features are handled in
kNNI variants that use only
the Euclidean distance.

Poulos and
Valle (2018)

Benchmark 3, 5
(source
code)

N.A. Euclidean
(source
code)

∙ 2 (0/1/1) �/∙/∙ 10:10:40 � ∙ Missing values are
introduced only on
categorical features.
Categorical features are
transformed using one-hot
encoding.

Abnane et al.
(2019)

Application 1 to 5 � Minkowski
Euclidean
Manhattan
Chebychev

∙ 6 (6/0/0) �/�/� 10:10:90 ∙ � The study deals only with
continuous features.
Therefore, datasets with
categorical features were
discarded.

Jadhav et al.
(2019)

Benchmark 5 (VIM
package)

N.A. 𝑑𝑁 (Eq. (3))
(VIM package)

∙ 5 (5/0/0) Unk. 10:10:50 ∙ � Only continuous data is
considered. kNNI is done
by using the VIM package
in R, where the distance
between continuous
features is calculated as 𝑑𝑁
(Eq. (3)).

Cheng et al.
(2019)

Variant 3, 5, 7, 9 � Euclidean ∙ 8 (8/0/0) �/�/∙ 5:5:25 � ∙ The used datasets consider
only continuous features.

Pereira et al.
(2020)

Benchmark 5 N.A. Euclidean ∙ 10 (5/0/5) ∙/∙/� 10:10:40 ∙ � Categorical features are
transformed using one-hot
encoding.

Woźnica and
Biecek
(2020)

Benchmark NNI: 1 kNNI:
5 (VIM
package)

N.A. 𝑑𝑁 + 𝑑𝑂 (VIM
package)

∙ 13 (0/1/12) Unk. Natural � ∙ kNNI is done by using the
VIM package in R, where
the distance between
continuous features is
calculated as 𝑑𝑁 (Eq. (3))
and the distance between
categorical features as 𝑑𝑂
(Eq. (2)).

Choudhury
and Kosorok
(2020)

Variant k set by CV � Euclidean GRA Euclidean
(Unk.) GRA
(�)

3 (1/1/1) ∙/�/∙ 5, 10, 20 � � It is not clear how nominal
features are handled in
kNNI variants that use
only the Euclidean
distance. In GRA, if either
of the input values is
missing, 𝐺𝑅𝐴𝑗 = 0.

Jäger et al.
(2021)

Benchmark 1, 3, 5 N.A. Euclidean
(scikit-
learn)

∙ 69 (14/5/50) �/�/� 1, 10, 30,
50

� � Considers one-hot encoding
for categorical features.

Fouad et al.
(2021)

Benchmark 2 to 𝑁 � Euclidean ∙ 15 (15/0/0) �/�/� 1, 5,10,
20

∙ � The proposed imputation
techniques can only handle
continuous features, not
categorical features.

Our related research:

Santos et al.
(2020a)

Application 1, 3, 5, 7 N.A. HEOM, HEOM-R
HVDM, HVDM-R
HVDM-S, MDE
SIMDIST

� 31 (0/0/31) �/∙/∙ 5, 10, 20,
30

� ∙ All distances handle
continuous and categorical
features, as well as missing
data. Some distinguish
situations where only one
value is missing or both
are missing.

Santos et al.
(2020b)

Benchmark 1 N.A. HEOM, HEOM-R
HVDM, HVDM-R
HVDM-S, MDE
SIMDIST

� 61 (37/1/23) �/∙/∙ 5, 10, 20,
30

� ∙ All distances handle
continuous and categorical
features, as well as missing
data. Some distinguish
situations where only one
value is missing or both
are missing.

(continued on next page)
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Table 2 (continued).
Study kNN imputation approach Experimental data and simulation Evaluation Considerations

Reference Objectivea k Variants orb

Frameworks
Distance
measures

Considersc

MVs
# Datasetsd

(Cont, Cat,
H)

MCAR/MAR
/MNAR

MRse Class.f
Perf.

Imp.g
Perf.

This work: Behaviour 1, 3, 5, 7 N.A. HEOM, HEOM-R
HVDM, HVDM-R
HVDM-S, MDE
SIMDIST

� 150
(50/50/50)

�/∙/∙ 5, 10, 20,
30

� � All distances handle
continuous and categorical
features, as well as missing
data. Some distinguish
situations where only one
value is missing or both
are missing.

aObjective of the study: Study of kNNI as an imputation model (‘‘Behaviour’’), Proposal or study of new approaches (modifications, adaptations, frameworks, optimisation
echniques) to improve kNNI (‘‘Variants’’), Application of kNNI to real-world domain (‘‘Application’’), Uses kNNI in a benchmark study of data imputation approaches (‘‘Benchmark’’).
Variants or Frameworks: The study compares some well-established kNNI variants of frameworks (e.g., adaptations of the original kNNI formulation, weighting schemes).

cConsiders MVs: The used distance function incorporates the computation of missing values.
d# Datasets: Number of total datasets (continuous/categorical/heterogeneous).
eMRs: Missing rates used in the experiments. A code of ‘‘10:10:50’’, means that MRs are considered from 10% to 50%, in a step of 10, i.e., {10, 20, 30, 40, 50}%. ‘‘Natural’’
means that missing values occur naturally in the dataset (not artificially generated).
fClass. Perf.: Imputation results are evaluated according to the benefits for classification performance (e.g., Accuracy, AUC, F1).
gImp. Perf.: Imputation results are evaluated according to the quality of reconstructed values, i.e., imputation performance (e.g., MSE, RMSE, MAE).
hGRA: Grey Relational Analysis, which can be used to measure distance, by applying 𝐷 = 1 − 𝐺𝑅𝐴.
i
t
o
t
w
M
e

.2. Related work on kNN classification

In the field of data classification, there is a greater interest in
he search of optimal distance functions, with a larger number of
apers experimenting with several possible choices. This is perhaps
ue to the fact that in classification tasks, kNN is directly used to
he endgame objective, i.e., predicting the final class labels, whereas
n data imputation, it is used as an intermediate process, since the
lassification task may be addressed (and improved) by any other
earning paradigm. Batista and Silva (2009) present a benchmark study
n kNN classification considering the value of 𝑘, different heteroge-
eous distance functions (HEOM, HVDM and HMOM which uses the
anhattan distance rather than Euclidean as in HEOM), and different
eighting functions. Despite some datasets comprised missing values,

here were no experiments with increasing amount of missing data.
o significant differences were found among the three studied distance

unctions, although this may be due to the uneven number of datasets
ith different types (16 continuous, 4 categorical and 10 heterogeneous
atasets). Hu et al. (2016) discuss whether the distance function may
ffect kNN performance over different medical datasets. Authors use
he Euclidean, Minkowski, Cosine, and Chi Square for both continuous,
ategorial and heterogeneous data, neglecting the nature of features.
li et al. (2019) investigate the performance of kNN on heterogeneous
ata, although described as a mixture of continuous and binary features
no nominal features are considered). Different distance measures are
efined and compared, based on the combination of well-known dis-
ance functions for continuous and binary data. Prasatha et al. (2019)
resent a comprehensive review on kNN classification attending to
istinct distance functions and include a through experimental study
ocused on defining the best distance measures to be used with kNN
lassifier. However, experiments consider only continuous and binary
eatures (no heterogeneous data or functions are discussed) and no
issing values are allowed in the training data. Recent kNN classifi-

ation approaches include (Gou et al., 2019a,b; Ertuğrul, 2019; Wang
nd Yang, 2020), although recurring to variations of the Minkowski
istance, most often the Euclidean distance.

Overall, as depicted in the Introduction, related work on kNN im-
utation or classification is more frequently focused on exploring new
ariants or weighting schemes to devise optimal frameworks for kNN
ehaviour. Although searching for suitable distance functions is also a
tep towards the definition of optimal solutions, this remains an over-
ooked topic, especially in complex domains comprising heterogeneous
ata – continuous and categorical (binary and nominal) data – as well
s missing values. To this regard, this study offers a new perspective
n the subject since (i) several heterogeneous distance functions are
10
compared both in terms of impact in classification performance as
well as imputation performance, (ii) the analysis is segregated by
dataset type (continuous, categorical or heterogeneous) so that each
component of the distance functions can be compared, (iii) the chosen
functions directly incorporate missing values in distance computation.

3. Missing data background

According to Rubin (1976), there are three underlying mechanisms
under which data can be missing: Missing Completely At Random
(MCAR), Missing At Random (MAR) and Missing Not At Random
(MNAR). The missing mechanisms describe the relation between the
probability distribution of the missing values and the observed and
unobserved information in data, via conditional probabilities, as we
explain in what follows. Consider 𝐗 as a variable representing a given
dataset, which can be divided into 𝐗𝑜𝑏𝑠 and 𝐗𝑚𝑖𝑠𝑠, i.e., the observed and
missing values in 𝐗, respectively. Consider also a missing data indicator
𝐌 as a 0/1 matrix determining the locations of the missing values in
𝐗 (where ‘‘1’’ denotes a missing value). Rubin’s missing data theory
characterises the missing mechanisms by defining to what extent the
probability distribution of 𝐌 may depend on 𝐗:

• Missing Completely At Random (MCAR): MCAR is formulated as
𝑝(𝐌 = 1 ∣ 𝐗) = 𝑝(𝐌 = 1), demonstrating that 𝐌 is completely
unrelated to the input data 𝐗, either 𝐗𝑜𝑏𝑠 and 𝐗𝑚𝑖𝑠𝑠. Accordingly,
the probability of missing values is completely random;

• Missing At Random (MAR): MAR mechanism characterises a sit-
uation where 𝐌 depends on the observed information in the
dataset, 𝐗𝑜𝑏𝑠, but not on 𝐗𝑚𝑖𝑠𝑠, i.e., 𝑝(𝐌 = 1 ∣ 𝐗) = 𝑝(𝐌 = 1 ∣
𝐗𝑜𝑏𝑠). Hence, the probability of missing values depends solely on
available, observed information in data;

• Missing Not At Random (MNAR): In MNAR, 𝐌 depends both on
𝐗𝑜𝑏𝑠 and 𝐗𝑚𝑖𝑠𝑠, meaning that the probability of missing values
may be related to the both observed and unobserved information
in data. The missing data model is therefore described in its full
extension, 𝑝(𝐌 = 1 ∣ 𝐗) = 𝑝(𝐌 = 1 ∣ 𝐗𝑜𝑏𝑠,𝐗𝑚𝑖𝑠𝑠).

For a more detailed formulation of the missing mechanisms and
llustrative examples, the reader is referred to Santos et al. (2019). In
his work, we will focus on MCAR mechanism for synthetic generation
f missing data (more details will be given in Section 5). MCAR is
he most frequently studied missing mechanism among imputation
orks, especially when coupled with kNN imputation (Batista and
onard, 2003; Farhangfar et al., 2008; Tutz and Ramzan, 2015; Huang

t al., 2016; Tsai and Chang, 2016; Lin and Tsai, 2020). Additionally,
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we chose MCAR for consistency and control across different types of
datasets (continuous, categorical and heterogeneous), namely to avoid
the limitations found for multivariate MAR and MNAR missing data
generation regarding categorical data, as thoroughly described in San-
tos et al. (2019). Finally, focusing solely on MCAR mechanism avoids
the need of additional experiments to choose suitable determining fea-
tures for MAR and MNAR and perform distinct runs depending on the
chosen set of features. Since the evaluation of distance functions under
several missing rates and stochastic runs is inherently computationally
expensive, and the focus of the work relies on the evaluation of their
behaviour rather than finding the best possible solution under defined
conditions (e.g., missing mechanisms and rates), focusing on MCAR
simplifies the experimental design without compromising the study
objectives. Nevertheless, examining MAR and MNAR assumptions are
possible directions for future research.

4. Heterogeneous distance functions for missing data

In this work, distance computation relies on the evaluation of
seven distinct distance functions: HEOM and HVMD (Wilson and Mar-
tinez, 1997), their redefinitions (HEOM-R and HVDM-R (Juhola and
Laurikkala, 2007), and HVDM-S (Santos et al., 2020b)), SIMDIST (Be-
lanche Muñoz and Hernández González, 2012), and MDE (AbdAllah
and Shimshoni, 2016). HEOM and HVDM are commonly used in the
context of heterogeneous data, across different domains (Jerez et al.,
2010; Santos et al., 2015; García-Laencina et al., 2015; Napierala and
Stefanowski, 2016; Borowska and Stepaniuk, 2016). HEOM-R, HVDM-R
and HVDM-S were included as alternatives to their predecessors due to
their considerations regarding the treatment of missing values (Juhola
and Laurikkala, 2007). SIMDIST and MDE, although not originally
designed for data imputation, have provided interesting results in
preliminary research (Santos et al., 2020b,a). The distance functions
described in this section are implemented in a MATLAB library publicly
available on GitHub. 2 Furthermore, distances were chosen based on
three main criteria. First, they were required to handle different na-
tures of data simultaneously (i.e., heterogeneous data) either in their
original formulation or with minimal modifications (which is the case
of MDE, previously extended to handle nominal data in Santos et al.
(2020b)). Secondly, the set of chosen distance functions was required
to incorporate diverse strategies to evaluate different types of features,
as well as missing data. Naturally, HEOM-R, HVDM-R, and HVDM-S, as
redefinitions of HEOM and HVDM, use the same respective strategy to
handle continuous and categorical features, though not missing values.
Otherwise, chosen distance functions follow different mechanisms for
distance computation and treatment of missing values. Some further
distinguish situations where on or both values are missing and/or es-
timate the distance differently, depending on the feature type. Finally,
distance functions should be easy to compute. A well-known drawback
of kNN-related approaches is the need to evaluate the similarity among
all patterns in data, which may be computationally expensive and time-
consuming for larger datasets (Batista and Monard, 2002). Although
some strategies have been explored to surpass such limitations (Deng
et al., 2016; Maillo et al., 2017), this issue falls outside of the scope of
this work.

Herein, we start by briefly providing some essential notation on
distance computation, whereas the mathematical formulation of each
considered distance function is discussed along this section. Given a
dataset 𝐗, represented by a 𝑛 × 𝑝 matrix (where 𝑛 is the number of
patterns and 𝑝 is the number of features), distance functions measure
the distance between two patterns 𝐱𝐴 and 𝐱𝐵 through a sum of their
individual distances in each 𝑗th feature (𝑗 = 1,… , 𝑝), 𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ), as
(𝐱𝐴, 𝐱𝐵) =

√

∑𝑝
𝑗=1 𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 )

2. However, they differ on the compu-
ation of individual 𝑑𝑗 distances and treatment of missing values, as
xplained in what follows.

2 https://github.com/miriamspsantos/heterogeneous-distance-functions.
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4.1. Heterogeneous Euclidean-overlap metric

The definition of 𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) for Heterogeneous Euclidean-Overlap
Metric (HEOM) distance (Wilson and Martinez, 1997) depends on the
type of feature 𝑗 (Eq. (1)). For categorical/nominal features, 𝑑𝑗 is de-
fined as an overlap metric, 𝑑𝑂 (Eq. (2)); while for continuous features,
the normalised euclidean distance, 𝑑𝑁 (Eq. (3)), is used instead (𝑥𝑗
represents all values of the 𝑗th feature). However, 𝑑𝑂 and 𝑑𝑁 are only
computed if both input values, 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are available; otherwise,
if either of them is missing, 𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) is defined as 1. As shown
n Eq. (1), the individual 𝑑𝑗 distances vary between 0 and 1, and
herefore a missing value in the 𝑗th feature is traduced as a maximum
𝑗 distance between 𝐱𝐴 and 𝐱𝐵 .

𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑗 is missing in 𝑥𝐴𝑗 or 𝑥𝐵𝑗 ,
𝑑𝑂(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ), if 𝑗 is a categorical feature,
𝑑𝑁 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ), if 𝑗 is a continuous feature

(1)

𝑂(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =

{

0, if 𝑥𝐴𝑗 = 𝑥𝐵𝑗
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

𝑁 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =
|

|

|

𝑥𝐴𝑗 − 𝑥𝐵𝑗
|

|

|

𝑚𝑎𝑥(𝑥𝑗 ) − 𝑚𝑖𝑛(𝑥𝑗 )
(3)

4.2. Heterogeneous value difference metric

The Heterogeneous Value Difference Metric (HVDM) (Wilson and
Martinez, 1997), defines the distance between 𝐱𝐴 and 𝐱𝐵 as described
y Eq. (4). Again, if both values 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are observed, the type
f 𝑗 determines the computation of individual 𝑑𝑗 distances: 𝑑𝑣𝑑𝑚 is
sed for categorical/nominal features (Eq. (5)) while 𝑑𝑑𝑖𝑓𝑓 is used for
ontinuous features (Eq. (6)).

𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑗 is missing in 𝑥𝐴𝑗 or 𝑥𝐵𝑗 ,
𝑑𝑣𝑑𝑚(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ), if 𝑗 is a categorical feature,
𝑑𝑑𝑖𝑓𝑓 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ), if 𝑗 is a continuous feature

(4)

The computation of 𝑑𝑣𝑑𝑚, as shown in Eq. (5), requires information
n the class targets of each pattern 𝐱𝑖 (𝑖 = 1,… , 𝑛), herein referred
o as 𝑐𝑖. Thus, 𝑑𝑣𝑑𝑚 is computed as a sum over all classes, where 𝐶 is
he number of classes in the problem domain — as we are focusing on
inary problems, 𝐶 = 2, and therefore 𝑐𝑖 ∈ {1, 2}. 𝑁𝑥𝐴𝑗 ,𝑐 is the number
f patterns in 𝐗 that have value 𝑥𝐴𝑗 in feature 𝑗 and class target 𝑐, while
𝑥𝐴𝑗 is the number of patterns in 𝐗 that have value 𝑥𝐴𝑗 in feature 𝑗 (the

ame for 𝑥𝐵𝑗).

𝑣𝑑𝑚(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =

√

√

√

√

𝐶
∑

𝑐=1

|

|

|

|

|

𝑁𝑥𝐴𝑗 ,𝑐

𝑁𝑥𝐴𝑗
−

𝑁𝑥𝐵𝑗 ,𝑐

𝑁𝑥𝐵𝑗

|

|

|

|

|

2

(5)

Similarly to HEOM, the continuous features are scaled by 𝑑𝑑𝑖𝑓𝑓 ,
considering 4 standard deviations (𝜎) of 𝑥𝑗 .

𝑑𝑑𝑖𝑓𝑓 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =
|

|

|

𝑥𝐴𝑗 − 𝑥𝐵𝑗
|

|

|

4𝜎𝑥𝑗
(6)

4.3. Redefinitions of HEOM and HVDM

Redefinitions of HEOM and HVDM (Juhola and Laurikkala, 2007)
propose that missing values are considered ‘‘special values’’, and that
the distance between two missing values is assumed to be 0 (missing
values are considered equal values). Accordingly, HEOM-R and HVDM-
R are different from their original formulations in what concerns the
treatment of missing values (Eq. (7)):

𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =

{

1, if 𝑗 is missing only in 𝑥𝐴𝑗 or 𝑥𝐵𝑗 ,
0, if 𝑗 is missing in both 𝑥𝐴𝑗 and 𝑥𝐵𝑗

(7)

In addition, we propose another possible redefinition for HVDM: if
missing values are considered an ‘‘special’’ nominal category, 𝑑 may
𝑣𝑑𝑚

https://github.com/miriamspsantos/heterogeneous-distance-functions
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be applied in the case that only 𝑥𝐴𝑗 or only 𝑥𝐵𝑗 are missing, and 𝑗 is
categorical/nominal, referred to as HVDM-S (Eq. (8)).

𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 )

=

⎧

⎪

⎨

⎪

⎩

0, if 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are both missing,
1, if 𝑥𝐴𝑗 or 𝑥𝐵𝑗 are missing and 𝑗 is continuous,
𝑑𝑣𝑑𝑚(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ), if 𝑥𝐴𝑗 or 𝑥𝐵𝑗 are missing and 𝑗 is categorical

(8)

4.4. Similarity for heterogeneous data

SIMDIST defines a similarity measure, where 𝑆𝐴𝐵𝑗 represents the
imilarity between patterns 𝐱𝐴 and 𝐱𝐵 according to feature 𝑗.

𝑆𝐴𝐵𝑗 =

⎧

⎪

⎨

⎪

⎩

1
2 , if either 𝑥𝐴𝑗 or 𝑥𝐵𝑗 are missing,

𝑧
(

𝑠𝐴𝐵𝑗
𝑠𝑗

)

, if both 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are known
(9)

𝑠𝐴𝐵𝑗 is an intermediate similarity distance between 𝑥𝐴𝑗 and 𝑥𝐵𝑗 and
is determined according to the type of 𝑗 (either a categorical/nominal
or continuous feature). In the above equation, 𝑠𝑗 represents the mean
similarity among all patterns according to 𝑗 and 𝑧 is a normalisation
function 𝑧 ∶ (0,+∞) → (0, 1), described as 𝑧(𝑎) = 𝑎

𝑎+1 (Belanche Muñoz
and Hernández González, 2012).

For categorical/nominal features, 𝑠𝐴𝐵𝑗 is defined by Eq. (10), where
𝑃𝑙𝑗 in the fraction of patterns that takes value 𝑥𝑙𝑗 for feature 𝑗. In
practice, 𝑃𝑙𝑘 is the fraction of examples that assume value 𝑥𝐴𝑗 or 𝑥𝐵𝑗
for 𝑗, since for this computation they are equal, as shown in Eq. (10).

𝑠𝐴𝐵𝑗 =

{

0, if 𝑥𝐴𝑗 ≠ 𝑥𝐵𝑗 ,
1 − 𝑃𝑙𝑗 , if 𝑥𝐴𝑗 = 𝑥𝐵𝑗

(10)

For continuous features, 𝑠𝐴𝐵𝑗 is determined by Eq. (11), where
max(𝑥𝑗) and min(𝑥𝑗) are the maximum and minimum values observed
in 𝑗, respectively.

𝑠𝐴𝐵𝑗 = 1 −
∣ 𝑥𝐴𝑗 − 𝑥𝐵𝑗 ∣

𝑚𝑎𝑥(𝑥𝑗 ) − 𝑚𝑖𝑛(𝑥𝑗 )
(11)

In Eq. (9), 𝑆𝐴𝐵𝑗 is assumed to be 1
2 when 𝑥𝐴𝑗 or 𝑥𝐵𝑗 are missing

hich is the equivalent of replacing the missing similarity between
𝐴𝑗 or 𝑥𝐵𝑗 by the mean similarities of all patterns according to 𝑗.
eplacing the missing similarity 𝑠𝐴𝐵𝑗 by the mean of all similarities

n 𝑗, 𝑠𝑗 , we would obtain 𝑧( 𝑠𝑗𝑠𝑗
) = 1

2 . Naturally, this similarity function
𝑆 reveals how ‘‘alike’’ two values are whereas we are interested in
obtaining a value of ‘‘how far apart’’ the values are. Therefore, it
needs to be adjusted to reflect a distance between patterns, rather
than a similarity. As 𝑆𝐴𝐵𝑗 is defined in the domain [0,1], the distance
between 𝑥𝐴 and 𝑥𝐵 in 𝑗 is given by 𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) = 1 − 𝑆𝐴𝐵𝑗 . Thus,
the calculation of this distance, which will be referred to as SIMDIST,
starts by determining the individual similarities 𝑆𝐴𝐵𝑗 , which are then
transformed to individual 𝑑𝑗 distances. Then, since the distance matrix
among all examples is available for all features, the computation of
𝐷(𝐱𝐴, 𝐱𝐵) is the same as for the previous distances.

4.5. Mean Euclidean Distance

Mean Euclidean Distance (𝑀𝐷𝐸) (AbdAllah and Shimshoni, 2014,
2016) defines three possibilities for comparing two values of a given
feature 𝑗:

1. Both values are known: When 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are observed, their
distance is defined as the standard euclidean distance:

𝑀𝐷𝐸 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) = (𝑥𝐴𝑗 − 𝑥𝐵𝑗 )2 (12)

2. One value is missing: When either 𝑥𝐴𝑗 or 𝑥𝐵𝑗 are missing, 𝑀𝐷𝐸
is approximated as the mean distance of each value of 𝑥𝑗 to
the observed value. Considering that 𝑥𝐴𝑗 is missing and 𝑥𝐵𝑗 is

observed, 𝑀𝐷𝐸 is defined by Eq. (13). To ease the interpretation

12
of Eq. (13), we consider an auxiliary variable 𝑥 = 𝑥𝑗 . Thus, 𝜇𝑥
and 𝜎𝑥 are equivalent to 𝜇𝑥𝑗 and 𝜎𝑥𝑗 , and refer to the mean and
standard deviation of all the observed values of 𝑥𝑗 .

𝑀𝐷𝐸 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) = 𝐸
(

(𝑥 − 𝑥𝐵𝑗 )2
)

= ∫ 𝑝(𝑥)(𝑥 − 𝑥𝐵𝑗 )2𝑑𝑥

= (𝑥𝐵𝑗 − 𝜇𝑥)2 + 𝜎2𝑥

(13)

3. Both values are missing: When both 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are missing, the
𝑀𝐷𝐸 is approximated as the mean distance between all values
of 𝑥𝑗 (Eq. (14)). Similarly, we consider the auxiliary variables
𝑥, 𝑦 = 𝑥𝑗 .

𝑀𝐷𝐸 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =
x

𝑝(𝑥)𝑝(𝑦)(𝑥 − 𝑦)2𝑑𝑥𝑑𝑦

=
(

𝐸(𝑥) − 𝐸(𝑦)
)2

+ 𝜎2𝑥 + 𝜎2𝑦
= 2𝜎2𝑥

(14)

To allow a proper weighting of continuous features with different
anges, a min–max normalisation (Eq. (15)) is applied before the eu-
lidean distance is computed. This normalisation scales all continuous
eatures to the same range, avoiding that features with a larger range
ssume a higher weight in the distance computation.

𝑖 =
𝑥𝑖 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
(15)

However, Eqs. (12) to (14) define the 𝑀𝐷𝐸 distance for contin-
ous features. For heterogeneous datasets, these equations need to
e extended for the categorical/nominal case. To extend 𝑀𝐷𝐸 for
ategorical/nominal features, we shall consider the standard overlap
istance, 𝑑𝑂 (Eq. (2)) and define a categorical version of 𝑀𝐷𝐸 , which

we will refer to as 𝑀𝐷𝑂.

1. Both values are known: In this case, 𝑀𝐷𝑂 is the same as 𝑑𝑂.

𝑀𝐷𝑂(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =

{

0, if 𝑥𝐴𝑗 = 𝑥𝐵𝑗
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

2. One value is missing: Supposing 𝑥𝐴𝑗 is missing and 𝑥𝐵𝑗 is ob-
served, 𝑀𝐷𝑂 is computed as the mean distance between all
elements in 𝑥𝑗 and 𝑥𝐵𝑗 . Again, we make use of 𝑥 = 𝑥𝑗 . Given the
definition of 𝑑𝑂, the sum will only be non-zero when 𝑥 ≠ 𝑥𝐵𝑗 ,
hence the simplification.

𝑀𝐷𝑂(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =
∑

𝑥
𝑝(𝑥) 𝑑𝑂(𝑥, 𝑥𝐵𝑗 )

=
∑

𝑥≠𝑥𝐵𝑗

𝑝(𝑥)

= 1 − 𝑝(𝑥𝐵𝑗 )

(17)

3. Both values are missing: When both 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are missing,
𝑀𝐷𝑂 is determined as the mean distance between all elements
in 𝑥𝑗 . Similarly, we consider auxiliary variables 𝑥, 𝑦 = 𝑥𝑗 .

𝑀𝐷𝑂(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) =
∑

𝑥

∑

𝑦
𝑝(𝑥)𝑝(𝑦) 𝑑𝑂(𝑥, 𝑦)

=
∑

𝑥

∑

𝑦≠𝑥
𝑝(𝑥)𝑝(𝑦)

= 1 −
∑

𝑥
𝑝2(𝑥)

(18)

Finally, after the individual distances are computed, their aggre-
ation is performed as for the remaining distances, 𝐷(𝐱𝐴, 𝐱𝐵), as-
uming 𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) as 𝑀𝐷𝐸 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) or 𝑀𝐷𝑂(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ), depending
n the feature type (continuous or categorical/nominal). Note that
𝐷𝐸 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) already corresponds to 𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 )2 (Eqs. (12) to (14)),

herefore, only the 𝑀𝐷𝑂(𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) component should be squared when
erforming the aggregation.
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5. Experimental setup

An overview of the considered experimental setup is presented in
Fig. 2. We started by collecting several datasets from open-source repos-
itories, Dua and Graff (2019), Kaggle (0000), Vanschoren et al. (2013)
and Alcalá-Fdez et al. (2011). All datasets are originally complete
(i.e., without missing data), so that both the missing mechanism and
percentage are controlled parameters of our experiments. Furthermore,
all datasets represent binary-classification problems, to simplify the
classification stage of the experimental setup (since, as previously
detailed, kNN imputation may present an added complexity in terms
of memory and computational time). Thus, rather than the number
of classes, we focus on the heterogeneity among datasets with respect
to their sample sizes, number of features, application domains, and
imbalance ratios (IR). More importantly, to fully understand to what
extent each component of a function definition influences imputation
and classification performance, we focus on dataset diversity in what
concerns their type of features, thus collecting a total of 150 datasets
where 50 are continuous, 50 categorical and 50 are heterogeneous.

For each dataset, a holdout partitioning was performed (Fig. 2) and
missing data was generated in each training set. Then, to determine the
impact of imputation on classification performance, both the training
sets with missing values (BASELINE approach) and the imputed training
sets (kNN imputation) were used to train Classification and Regression
Trees (CART) models, and the classification performance was evaluated
using Sensitivity, F-measure and G-mean (Santos et al., 2018). Addi-
tionally, the quality of imputation was also evaluated, by examining
the differences between the original training sets (ground truth) and
the imputed training sets (Fig. 2). Additional considerations regarding
the proposed setup are as follows:

• Data Partitioning: Each dataset is partitioned following a strat-
ified holdout method (80% of data for training and 20% for
testing) (Farhangfar et al., 2008; Valdiviezo and Van Aelst, 2015),
where each set respects the proportion of class labels (same IR for
training and test sets). Additionally, 30 runs of holdout partition
are performed for each dataset;

• Missing Data Generation: Missing values were generated at 4
different rates (5, 10, 20 and 30%) under a Missing Completely
At Random (MCAR) mechanism. Additionally, we guarantee that
the same missing rate was inserted in both classes according to the
IR of the dataset, i.e., we guarantee that missing data is affecting
both classes proportionally to their distribution. Finally, missing
data is inserted only on training sets since the objective of this
work is to analyse the effect of different distance functions on
kNN as imputation method and the consequent impact on the
classification model’s learning ability (Batista and Monard, 2003).

• Data Imputation: kNN imputation considered 7 distance func-
tions (described in Section 4), and 4 values for 𝑘 (1, 3, 5 and 7
nearest neighbours). Additionally, kNN uses a weighted average
of the neighbours’ feature values to impute continuous features,
whereas categorical features are imputed with the most common
value among the nearest neighbours, i.e., the mode (𝑀𝑜). Con-
sidering an example pattern 𝐱𝑍 for which a value is missing on
its feature 𝑗 and a set of its 𝑘 nearest neighbours 𝐕, the estimated
value of 𝑥𝑍𝑗 , i.e., �̂�𝑍𝑗 is determined as:

�̂�𝑍𝑗 =

⎧

⎪

⎨

⎪

⎩

∑𝑘
𝑖=1 𝑤𝑉 𝑖𝑥𝑉 𝑖𝑗
∑𝑘

𝑖=1 𝑤𝑉 𝑖
, if 𝑗 is continuous,

𝑀𝑜(𝐕𝑗 ), if 𝑗 is categorical
(19)

The weights for continuous features are inversely proportional to
the distance between pattern 𝐱𝑍 and its 𝑖th nearest neighbour,
i.e., 𝑤𝑉 𝑖 =

1
𝐷(𝐱𝑍 ,𝐱𝑉 𝑖)2

;

• Classification: CART models were chosen since they are rel-
atively fast to construct and to provide classification results.
13
Furthermore, these models are able to handle missing data di-
rectly through the use of surrogate splits (without discarding any
patterns or observed values from the dataset), thus allowing to
study the impact of imputation on classification performance by
comparing models constructed from missing data with models
constructed from imputed data (Twala, 2009; Valdiviezo and
Van Aelst, 2015).

• Evaluation: The impact of distance functions on data imputation
is discussed in terms of classification performance and impu-
tation quality. Regarding classification performance, Sensitivity,
F-measure and G-mean are presented due to robustness to the
existing class imbalance of the collected datasets (Santos et al.,
2018). For assessing imputation quality, Normalised Mean Abso-
lute Error (NMAE) and the percentage of matches, Matches (%)
were computed (Pereira et al., 2020).

Overall, the entire experimental setup involved the analysis of 150
datasets × 30 versions × 4 missing rates (BASELINE approach) + 2 × 50
datasets × 30 versions × 4 missing rates × 4 𝑘 values × 7 distance
functions (kNN imputation of categorical and heterogeneous datasets)
+ 50 datasets × 30 versions × 4 missing rates × 4 𝑘 values × 6
distance functions (kNN imputation of continuous datasets) = 498,000
datasets.

In the following sections, we focus on the analysis of the obtained
experimental results, regarding two aspects: the impact on classifica-
tion performance (Section 6) and the impact on imputation quality
(Section 7).

Regarding classification performance (Section 6), we are interested
in comparing the classification results obtained with CART models
trained with different imputed training sets (on the same test set). As an
example, consider two training sets imputed with and HEOM and MDE
(𝑘 = 1, for instance), �̂�𝐇𝐄𝐎𝐌 and �̂�𝐌𝐃𝐄. For each imputed training set,
the same CART model (with the same initial conditions/parameters) is
trained. After the training stage, there are two distinct CART models,
that will be used predict new cases on the same test set. The top
performing imputation approach (distance function) is the one that
originates the CART model with the highest classification results. In
such a way, we determine which distance function benefits the most the
classification task, i.e., produces estimates for missing values that ease
the classification task and improve the classification results. Within
this analysis, we also consider CART models built with training sets
with missing values (BASELINE approach), for which the comparison
of classification results is the same as explained.

Regarding imputation quality (Section 7), we evaluate the imputa-
tion task directly by comparing the original training set values with the
estimates produced by each distance function. Following the previous
example, consider that 𝐗𝐨 represents the original training set and 𝐗𝐦
the training dataset with missing values. Then, we compare �̂�𝐇𝐄𝐎𝐌
and �̂�𝐌𝐃𝐄 with 𝐗𝐨 in the positions where 𝐗𝐦 is missing and evaluate
each distance function in what concerns the recovery/reconstruction of
missing data. The best imputation approach (distance function) is the
one that produces estimates (imputed values) that are closest to the
original values.

6. Impact on classification performance

In this section we analyse the impact of distance functions on kNN
imputation regarding classification performance. Distance functions
are compared in terms of the classification performance achieved by
CART models built on datasets imputed with different distances. In this
case, we consider that the main objective is to solve a classification
task, i.e., imputation methods are evaluated in what concerns their
ability to produce more accurate and efficient classification models.
The imputation task is considered an auxiliary task whose purpose is

to obtain imputed values that help to model the classification task.
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o

Fig. 2. An overview of the experimental setup. Each complete dataset is first divided into a training and test partitions, and the training set is subjected to loss in some features
(missing values are synthetically introduced). Then, using kNNI with distinct distance functions, the training set containing missing values is imputed and becomes complete. The
evaluation of classification performance is performed by comparing the predictions of a decision tree model built with an incomplete training set with one built using the imputed
training set, over the same test data. In turn, the quality of imputation in evaluated by analysing the difference between the true values in data (original training set) with those
generated by the kNNI approach (imputed training set).
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6.1. Overall effect on kNN imputation

Tables 3, 4, 5 and 6 report on the overall performance results of
CART classification for 𝑘 = 1, 3, 5 and 7, respectively, considering 8
approaches: training sets with missing values (BASELINE) and train-
ing sets imputed with 7 different distances: HEOM, HEOM-R, HVDM,
HVDM-R, HVDM-S, MDE and SIMDIST. The results consider the average
Sensitivity (Sens), F-measure (F1) and G-mean obtained for missing
rates (MRs) of 5, 10, 20 and 30% on all datasets. The top performing
approach for each performance metric is marked in bold.

The first observation is that, overall, for all 𝑘 values, MRs, and
performance metrics, classifiers constructed from imputed data obtain
higher classification results than those learned from data with missing
values, i.e., datasets imputed with kNN (for any distance function)
outperform the BASELINE results. An exception occurs for 𝑘 = 1, where,
for a MR of 30%, CART models trained with missing values obtain
higher Sensitivity and F1 results than all distance functions, except the
top 2 performing distances, HVDM-S and MDE (Table 3).

Additionally, as the missing rate increases, so does the difference
between the BASELINE and the top kNN imputation approach, for all
𝑘 values. The difference between the results obtained by the consid-
ered distance functions also becomes more noticeable with increasing
amounts of missing data, especially for 𝑘 = 1 and 3 (Tables 3 and 4).
For a MR of 5%, the classification results obtained with each distance
function are close, with a difference from the best to worst distance
function of 0.001 (𝑘 = 1) and 0.002–0.003 (𝑘 = 3), whereas for a MR
of 30%, differences increase to 0.015–0.022 (𝑘 = 1) and 0.009–0.013
(𝑘 = 3).3 For higher values of 𝑘, although differences between distance

3 These values concern the difference between the best and worst results
btained by distance functions, considering all classification metrics.
14
functions increase with the missing rate, differences are more subtle
(Tables 5 and 6).

Another important observation is that, whereas for MRs of 5 and
10% distances behave similarly, with SIMDIST, HVDM-R, HVDM-S and
MDE among the top performing approaches (𝑘 = 1 and 3), for MRs of
20 and 30%, HVDM-S and MDE present superior performance results
(for 𝑘 = 1 and 3, HVDM-S is the top performing approach for a MR
f 20%, whereas MDE seems superior for 30%). As expected, for 𝑘 =
and 7, the best results become more scattered across other distance

unctions. Nevertheless, for these values of 𝑘, HVDM-S is consistently
he best approach for MRs of 20% and 30% (SIMDIST also appears as
top performer for a MR of 5% in both scenarios).

These results suggest that for a dataset with given, invariable,
haracteristics (imbalance ratio, number of categorical and continuous
eatures, number of samples), the choice of the best distance function is
ften dependent on the missing rate. Given these findings, we proceed
o analyse the datasets by category (continuous, categorical and het-
rogeneous datasets) in order to assess the behaviour of each distance
unction in different contexts. To that end, a ranking strategy is used.

As previously explained, the majority of the considered datasets
re imbalanced, which is a frequent problem in several domains (Das
t al., 2018). Therefore, we focus on sensitivity results for the following
nalysis, where a particular importance is given to correct predictions
f the minority class, which is considered to be the concept of interest
positive class).

Firstly, datasets were divided into three groups (Continuous Datasets,
ategorical Datasets and Heterogeneous Datasets) and for each missing
ate (5, 10, 20 and 30%) and 𝑘 value (1, 3, 5 and 7), all approaches
re ranked for each dataset based on the obtained sensitivity results.
hen, the average rank of each approach is determined and a statistical
nalysis is conducted.
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Table 3
CART performance results without imputation (BASELINE) and with kNN imputation (𝑘 = 1) using several distance functions. Best results are marked in bold.
Distance MR Sens F1 G-mean MR Sens F1 G-mean

BASELINE 0.524 ± 0.326 0.527 ± 0.323 0.583 ± 0.313 0.520 ± 0.328 0.522 ± 0.325 0.577 ± 0.316
HEOM 0.530 ± 0.327 0.532 ± 0.324 0.588 ± 0.313 0.524 ± 0.328 0.526 ± 0.325 0.580 ± 0.314
HEOM-REDEF 0.530 ± 0.326 0.532 ± 0.324 0.588 ± 0.312 0.522 ± 0.327 0.525 ± 0.324 0.580 ± 0.313
HVDM 0.530 ± 0.326 0.532 ± 0.324 0.588 ± 0.312 0.523 ± 0.325 0.526 ± 0.322 0.581 ± 0.310
HVDM-REDEF 0.530 ± 0.327 0.533 ± 0.323 0.589 ± 0.312 0.521 ± 0.326 0.524 ± 0.323 0.579 ± 0.312
HVDM-S 0.530 ± 0.326 0.533 ± 0.322 0.589 ± 0.311 0.527 ± 0.324 0.529 ± 0.320 0.585 ± 0.308
MDE 0.530 ± 0.326 0.532 ± 0.322 0.588 ± 0.311 0.527 ± 0.322 0.530 ± 0.320 0.585 ± 0.308
SIMDIST

5%

0.531 ± 0.327 0.532 ± 0.324 0.588 ± 0.313

10%

0.525 ± 0.327 0.528 ± 0.323 0.583 ± 0.311

BASELINE 0.504 ± 0.328 0.505 ± 0.326 0.558 ± 0.320 0.490 ± 0.328 0.491 ± 0.326 0.542 ± 0.322
HEOM 0.508 ± 0.321 0.511 ± 0.318 0.568 ± 0.308 0.484 ± 0.319 0.485 ± 0.315 0.544 ± 0.307
HEOM-REDEF 0.505 ± 0.323 0.508 ± 0.318 0.565 ± 0.310 0.483 ± 0.319 0.485 ± 0.315 0.542 ± 0.308
HVDM 0.509 ± 0.321 0.510 ± 0.318 0.568 ± 0.308 0.486 ± 0.319 0.486 ± 0.314 0.543 ± 0.308
HVDM-REDEF 0.503 ± 0.321 0.507 ± 0.317 0.563 ± 0.309 0.485 ± 0.319 0.487 ± 0.314 0.544 ± 0.308
HVDM-S 0.515 ± 0.317 0.517 ± 0.314 0.576 ± 0.303 0.497 ± 0.318 0.496 ± 0.311 0.556 ± 0.303
MDE 0.513 ± 0.323 0.514 ± 0.318 0.572 ± 0.308 0.505 ± 0.321 0.500 ± 0.316 0.560 ± 0.308
SIMDIST

20%

0.508 ± 0.323 0.511 ± 0.318 0.567 ± 0.309

30%

0.484 ± 0.318 0.487 ± 0.315 0.543 ± 0.307
Table 4
CART performance results without imputation (BASELINE) and with kNN imputation (𝑘 = 3) using several distance functions.
Distance MR Sens F1 G-mean MR Sens F1 G-mean

BASELINE 0.524 ± 0.326 0.527 ± 0.323 0.583 ± 0.313 0.520 ± 0.328 0.522 ± 0.325 0.577 ± 0.316
HEOM 0.533 ± 0.326 0.534 ± 0.322 0.590 ± 0.311 0.530 ± 0.325 0.530 ± 0.322 0.586 ± 0.310
HEOM-REDEF 0.531 ± 0.328 0.533 ± 0.324 0.589 ± 0.312 0.526 ± 0.326 0.527 ± 0.322 0.583 ± 0.311
HVDM 0.532 ± 0.326 0.534 ± 0.323 0.591 ± 0.310 0.530 ± 0.326 0.531 ± 0.322 0.587 ± 0.310
HVDM-REDEF 0.534 ± 0.327 0.535 ± 0.324 0.592 ± 0.311 0.527 ± 0.327 0.528 ± 0.323 0.583 ± 0.312
HVDM-S 0.533 ± 0.327 0.534 ± 0.324 0.590 ± 0.311 0.530 ± 0.325 0.531 ± 0.320 0.587 ± 0.308
MDE 0.532 ± 0.325 0.533 ± 0.321 0.591 ± 0.308 0.532 ± 0.324 0.532 ± 0.321 0.589 ± 0.309
SIMDIST

5%

0.534 ± 0.326 0.535 ± 0.322 0.592 ± 0.310

10%

0.532 ± 0.326 0.532 ± 0.323 0.590 ± 0.309

BASELINE 0.504 ± 0.328 0.505 ± 0.326 0.558 ± 0.320 0.490 ± 0.328 0.491 ± 0.326 0.542 ± 0.322
HEOM 0.516 ± 0.320 0.515 ± 0.316 0.574 ± 0.306 0.504 ± 0.321 0.498 ± 0.315 0.559 ± 0.306
HEOM-REDEF 0.513 ± 0.321 0.513 ± 0.317 0.572 ± 0.307 0.499 ± 0.321 0.495 ± 0.314 0.555 ± 0.305
HVDM 0.516 ± 0.325 0.515 ± 0.319 0.573 ± 0.309 0.501 ± 0.319 0.496 ± 0.312 0.557 ± 0.303
HVDM-REDEF 0.514 ± 0.320 0.513 ± 0.316 0.572 ± 0.305 0.498 ± 0.321 0.493 ± 0.315 0.553 ± 0.307
HVDM-S 0.522 ± 0.319 0.520 ± 0.314 0.581 ± 0.301 0.510 ± 0.317 0.504 ± 0.310 0.566 ± 0.301
MDE 0.519 ± 0.321 0.517 ± 0.317 0.577 ± 0.306 0.511 ± 0.321 0.504 ± 0.314 0.565 ± 0.306
SIMDIST

20%

0.519 ± 0.323 0.519 ± 0.318 0.577 ± 0.307

30%

0.504 ± 0.318 0.499 ± 0.312 0.559 ± 0.303
Table 5
CART performance results without imputation (BASELINE) and with kNN imputation (𝑘 = 5) using several distance functions.
Distance MR Sens F1 G-mean MR Sens F1 G-mean

BASELINE 0.524 ± 0.326 0.527 ± 0.323 0.583 ± 0.313 0.520 ± 0.328 0.522 ± 0.325 0.577 ± 0.316
HEOM 0.533 ± 0.327 0.534 ± 0.324 0.590 ± 0.312 0.532 ± 0.326 0.532 ± 0.322 0.588 ± 0.310
HEOM-REDEF 0.532 ± 0.326 0.534 ± 0.323 0.590 ± 0.312 0.530 ± 0.328 0.531 ± 0.323 0.587 ± 0.311
HVDM 0.533 ± 0.325 0.535 ± 0.322 0.592 ± 0.309 0.531 ± 0.328 0.531 ± 0.323 0.587 ± 0.312
HVDM-REDEF 0.533 ± 0.326 0.535 ± 0.322 0.592 ± 0.309 0.529 ± 0.329 0.529 ± 0.324 0.585 ± 0.313
HVDM-S 0.532 ± 0.327 0.535 ± 0.323 0.591 ± 0.310 0.529 ± 0.325 0.530 ± 0.321 0.587 ± 0.308
MDE 0.532 ± 0.324 0.534 ± 0.321 0.591 ± 0.309 0.529 ± 0.326 0.530 ± 0.323 0.586 ± 0.312
SIMDIST

5%

0.535 ± 0.326 0.536 ± 0.322 0.593 ± 0.310

10%

0.530 ± 0.328 0.530 ± 0.323 0.587 ± 0.311

BASELINE 0.504 ± 0.328 0.505 ± 0.326 0.558 ± 0.320 0.490 ± 0.328 0.491 ± 0.326 0.542 ± 0.322
HEOM 0.522 ± 0.323 0.521 ± 0.318 0.579 ± 0.307 0.503 ± 0.321 0.497 ± 0.314 0.557 ± 0.305
HEOM-REDEF 0.513 ± 0.321 0.511 ± 0.317 0.571 ± 0.306 0.507 ± 0.323 0.501 ± 0.314 0.562 ± 0.306
HVDM 0.522 ± 0.323 0.520 ± 0.317 0.579 ± 0.306 0.506 ± 0.323 0.499 ± 0.316 0.560 ± 0.308
HVDM-REDEF 0.518 ± 0.325 0.515 ± 0.319 0.574 ± 0.309 0.503 ± 0.324 0.498 ± 0.316 0.558 ± 0.308
HVDM-S 0.525 ± 0.321 0.521 ± 0.315 0.582 ± 0.303 0.512 ± 0.323 0.504 ± 0.314 0.566 ± 0.305
MDE 0.521 ± 0.321 0.518 ± 0.317 0.578 ± 0.307 0.506 ± 0.323 0.501 ± 0.316 0.561 ± 0.308
SIMDIST

20%

0.519 ± 0.322 0.519 ± 0.317 0.576 ± 0.307

30%

0.506 ± 0.320 0.500 ± 0.314 0.561 ± 0.304
c
To determine whether there is a statistically significant difference
mong approaches (for each group, missing rate and 𝑘 value), the
riedman test was run under the null-hypothesis that the performance
f all approaches is equivalent (Demšar, 2006). For each group of
atasets, missing percentage and 𝑘 value, the 𝐹𝐹 statistic is computed
nd compared with the established critical value for the F-distribution
t a 5% significance level, 𝐹𝑐 (Table 7).

Considering all groups and 𝑘 values, the Friedman test did not
etect any statistically significant differences between the approaches
or missing rates of 5% and 10% (for these MRs, the calculated 𝐹𝐹
tatistic is not superior to the established critical value 𝐹𝑐 and therefore
he null hypothesis could not be rejected). This is also true for some
15
ombinations of groups, MR and 𝑘, as established from Table 7. Apart
from these exceptions, as the missing rate increases (20 and 30%), the
null hypothesis of equivalence between approaches is rejected, even for
increasing values of 𝑘. This indicates that although 𝑘-parametrisation
plays an important role on the optimisation of kNN imputation results,
it is important not to overlook the distance function hyperparameter,
as it seems to play an important role on determining the best approach,
especially for higher missing rates.

Since the null-hypothesis was often rejected for higher missing rates
20 and 30%, the Nemenyi test was applied to post-hoc testing (at
a 5% significance level), to compare all methods against each other.
Tables 8, 9, 10 and 11 show the average sensitivity ranks of each
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Table 6
CART performance results without imputation (BASELINE) and with kNN imputation (𝑘 = 7) using several distance functions.
Distance MR Sens F1 G-mean MR Sens F1 G-mean

BASELINE 0.524 ± 0.326 0.527 ± 0.323 0.583 ± 0.313 0.520 ± 0.328 0.522 ± 0.325 0.577 ± 0.316
HEOM 0.534 ± 0.326 0.535 ± 0.322 0.593 ± 0.310 0.531 ± 0.326 0.532 ± 0.322 0.588 ± 0.310
HEOM-REDEF 0.534 ± 0.326 0.535 ± 0.322 0.593 ± 0.309 0.530 ± 0.326 0.530 ± 0.321 0.587 ± 0.310
HVDM 0.533 ± 0.326 0.535 ± 0.323 0.592 ± 0.310 0.532 ± 0.328 0.532 ± 0.324 0.588 ± 0.313
HVDM-REDEF 0.533 ± 0.326 0.535 ± 0.322 0.592 ± 0.309 0.528 ± 0.328 0.529 ± 0.324 0.585 ± 0.312
HVDM-S 0.534 ± 0.326 0.536 ± 0.322 0.593 ± 0.309 0.531 ± 0.325 0.531 ± 0.321 0.588 ± 0.308
MDE 0.533 ± 0.327 0.534 ± 0.323 0.591 ± 0.311 0.530 ± 0.326 0.531 ± 0.323 0.587 ± 0.312
SIMDIST

5%

0.535 ± 0.325 0.536 ± 0.322 0.594 ± 0.309

10%

0.531 ± 0.328 0.531 ± 0.324 0.588 ± 0.312

BASELINE 0.504 ± 0.328 0.505 ± 0.326 0.558 ± 0.320 0.490 ± 0.328 0.491 ± 0.326 0.542 ± 0.322
HEOM 0.521 ± 0.321 0.518 ± 0.316 0.579 ± 0.304 0.506 ± 0.319 0.500 ± 0.312 0.562 ± 0.303
HEOM-REDEF 0.518 ± 0.324 0.516 ± 0.317 0.575 ± 0.306 0.505 ± 0.322 0.499 ± 0.315 0.561 ± 0.307
HVDM 0.523 ± 0.322 0.522 ± 0.317 0.581 ± 0.305 0.508 ± 0.321 0.501 ± 0.313 0.562 ± 0.305
HVDM-REDEF 0.518 ± 0.325 0.515 ± 0.318 0.575 ± 0.306 0.503 ± 0.323 0.497 ± 0.315 0.557 ± 0.307
HVDM-S 0.527 ± 0.322 0.523 ± 0.315 0.583 ± 0.302 0.509 ± 0.320 0.502 ± 0.312 0.564 ± 0.303
MDE 0.523 ± 0.320 0.520 ± 0.316 0.581 ± 0.304 0.509 ± 0.322 0.502 ± 0.316 0.562 ± 0.306
SIMDIST

20%

0.520 ± 0.323 0.518 ± 0.317 0.578 ± 0.305

30%

0.508 ± 0.324 0.500 ± 0.317 0.561 ± 0.308
Table 7
𝐹𝐹 statistic calculated for each group of datasets, divided by missing rates and 𝑘 values.
Highlighted values (shaded in grey) indicate statistically significant differences between
the approaches (Baseline and kNN imputation with different distance functions).

k 5% 10% 20% 30%

1 1.28 1.34 1.24 3.72
Continuous 3 1.31 1.46 3.16 0.84
Datasets 5 0.76 1.53 3.53 1.74
(𝐹𝑐 = 2.14) 7 1.82 0.92 3.90 0.40

1 0.78 1.51 2.02 5.17
Categorical 3 0.68 0.61 2.12 4.20
Datasets 5 0.78 0.21 2.42 2.29
(𝐹𝑐 = 2.06) 7 0.63 1.23 3.96 2.18

1 0.41 1.17 2.19 3.86
Heterogeneous 3 0.98 0.73 1.40 3.07
Datasets 5 0.58 0.59 1.86 4.23
(𝐹𝑐 = 2.06) 7 1.04 0.82 3.97 3.12
Table 8
Average sensitivity ranks per missing rate, divided by groups (𝑘 = 1). Critical differences for Nemenyi test (𝐶𝐷𝑛) are shown
for each group of datasets. Lowest ranks (best results) are marked in bold. Significant differences in comparison to the best
approach are shaded in grey.

MR B HEOM HEOM-R HVDM HVDM-R aHVDM-S MDE SIMDIST

5% 4.31 4.18 4.39 3.79 3.95 – 3.38 4.00
Continuous 10% 4.09 3.72 4.37 4.05 4.37 – 3.38 4.02
Datasets 20% 4.49 4.10 4.08 4.15 4.05 – 3.44 3.69
(𝐶𝐷𝑛 = 1.27) 30% 3.67 3.90 4.63 4.19 4.25 – 2.92 4.44

5% 5.06 4.25 4.46 4.45 4.61 4.18 4.78 4.21
Categorical 10% 4.25 4.77 4.77 4.90 4.77 3.61 4.37 4.56
Datasets 20% 4.51 4.39 4.88 4.61 5.24 3.63 4.09 4.65
(𝐶𝐷𝑛 = 1.48) 30% 4.58 5.04 4.57 5.11 4.84 3.09 3.61 5.16

5% 4.79 4.69 4.21 4.59 4.55 4.44 4.15 4.58
Heterogeneous 10% 4.56 4.40 4.91 4.29 5.17 4.01 4.37 4.29
Datasets 20% 4.27 4.63 4.86 4.03 5.34 3.84 4.17 4.86
(𝐶𝐷𝑛 = 1.48) 30% 5.12 5.14 4.95 4.45 4.83 3.61 3.42 4.48

B: BASELINE.
aFor continuous datasets, HVDM-S is equivalent to HVDM-R.
H
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pproach, considering each group and missing rate, for 𝑘 = 1, 3, 5
nd 7, respectively. The winning method (with the lowest rank) is
arked in bold and statistically significant differences between the best

pproach and the remaining are shaded in grey.
Regarding 𝑘 = 1, the best method is consistent over all MRs for

ontinuous and categorical datasets (Table 8). For continuous datasets,
DE stands out as the winning approach, whereas for categorical

atasets, HVDM-S is the best performing approach. For heterogeneous
atasets, MDE and HVDM-S are the top performing approaches, with
VDM-S obtaining higher performance results for intermediate MRs

10 and 20%), whereas MDE obtains the lowest ranks for MRs of 5 and
0%.
 i

16
Results obtained for 𝑘 = 3 are similar (Table 9), where MDE and
VDM-S figure consistently among the best approaches. On contrary,

he best results for 𝑘 = 5 and 7 (Tables 10 and 11), are more scattered
cross other approaches. Nevertheless, HVDM-S remains among the
op approaches for categorical and heterogeneous data: for 𝑘 = 5,
VDM-S is considered the best approach on MRs of 20 and 30% for
oth categorical and heterogeneous datasets, and for 𝑘 = 7, it remains
he best approach for categorical data (all MRs), and heterogeneous
ata (10 and 20%). This confirms the rational that 𝑘 is not the sole
arameter that should generally be tuned when developing kNN impu-
ation approaches, since the distance function has shown to affect data
mputation, particularly for categorical and heterogeneous datasets.
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Table 9
Average sensitivity ranks per missing rate, divided by groups (𝑘 = 3). Critical differences for Nemenyi test (𝐶𝐷𝑛) are shown
for each group of datasets. Lowest ranks (best results) are marked in bold. Significant differences in comparison to the best
approach are shaded in grey.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 4.71 3.84 4.04 4.11 3.64 – 3.84 3.82
Continuous 10% 4.36 3.73 4.39 3.76 4.22 – 3.42 4.12
Datasets 20% 5.08 3.99 3.94 3.71 4.10 – 3.37 3.81
(𝐶𝐷𝑛 = 1.27) 30% 4.35 4.00 4.07 3.84 4.04 – 3.48 4.22

5% 5.05 4.34 4.64 4.60 4.39 4.12 4.59 4.27
Categorical 10% 4.53 4.56 4.73 4.59 4.89 4.00 4.40 4.30
Datasets 20% 4.73 4.35 4.85 4.65 5.24 3.55 4.31 4.32
(𝐶𝐷𝑛 = 1.48) 30% 5.01 4.37 4.48 5.32 4.85 3.22 3.84 4.91

5% 4.83 4.75 4.86 3.97 4.75 4.38 4.14 4.32
Heterogeneous 10% 4.84 4.34 4.83 4.46 4.70 4.03 4.60 4.20
Datasets 20% 4.45 4.93 4.90 4.80 4.51 3.84 3.97 4.60
(𝐶𝐷𝑛 = 1.48) 30% 5.59 4.52 4.62 4.69 4.86 3.94 3.73 4.05
Table 10
Average sensitivity ranks per missing rate, divided by groups (𝑘 = 5). Critical differences for Nemenyi test (𝐶𝐷𝑛) are shown
for each group of datasets. Lowest ranks (best results) are marked in bold. Significant differences in comparison to the best
approach are shaded in grey.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 4.47 3.96 3.96 3.70 4.00 – 4.19 3.72
Continuous 10% 4.67 4.15 3.50 3.89 3.69 – 4.13 3.97
Datasets 20% 5.14 3.53 4.26 3.56 3.72 – 3.92 3.87
(𝐶𝐷𝑛 = 1.27) 30% 4.69 4.26 4.20 3.61 3.86 – 3.61 3.77

5% 5.05 4.53 4.54 4.57 4.72 4.15 4.11 4.33
Categorical 10% 4.59 4.37 4.60 4.51 4.76 4.41 4.52 4.24
Datasets 20% 4.88 4.47 5.03 4.80 4.66 3.33 4.26 4.57
(𝐶𝐷𝑛 = 1.48) 30% 4.94 4.62 4.70 4.76 4.99 3.43 4.08 4.48

5% 5.10 4.44 4.60 4.54 4.35 4.37 4.32 4.28
Heterogeneous 10% 4.90 4.20 4.81 4.28 4.36 4.25 4.61 4.59
Datasets 20% 4.80 4.38 5.42 4.08 4.33 3.97 4.29 4.73
(𝐶𝐷𝑛 = 1.48) 30% 5.67 5.29 4.04 4.48 4.40 3.47 4.36 4.29
Table 11
Average sensitivity ranks per missing rate, divided by groups (𝑘 = 7). Critical differences for Nemenyi test
(𝐶𝐷𝑛) are shown for each group of datasets. Lowest ranks (best results) are marked in bold. Significant
differences in comparison to the best approach are shaded in grey.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 4.71 3.41 3.94 3.71 3.91 – 4.19 4.13
Continuous 10% 4.55 3.84 4.05 3.88 3.92 – 3.62 4.14
Datasets 20% 5.27 3.97 3.63 3.67 3.94 – 3.97 3.55
(𝐶𝐷𝑛 = 1.27) 30% 4.40 3.92 3.92 3.86 4.10 – 3.94 3.86

5% 4.96 4.61 4.77 4.34 4.58 4.18 4.32 4.24
Categorical 10% 4.49 4.43 4.66 4.43 5.20 3.97 4.73 4.09
Datasets 20% 5.05 4.92 5.23 4.66 4.64 3.14 4.30 4.06
(𝐶𝐷𝑛 = 1.48) 30% 4.93 4.80 4.98 4.46 4.82 3.47 4.18 4.36

5% 5.09 4.55 4.08 4.95 4.30 4.40 4.43 4.20
Heterogeneous 10% 4.80 4.49 4.83 4.50 4.50 3.98 4.78 4.12
Datasets 20% 5.20 4.44 4.88 4.27 4.81 3.41 3.73 5.26
(𝐶𝐷𝑛 = 1.48) 30% 5.88 4.66 4.10 4.06 4.59 4.27 4.14 4.30
Considering the obtained experimental results, we establish that
istance functions significantly affect kNN imputation and their per-
ormance is related to the amount of missing data. However, besides
he presence of missing data, the performance of distance functions
iffers according to the nature of datasets, showing that it is important
o isolate each component of the distance functions definition to fully
haracterise their behaviour.

In what follows, we analyse the behaviour of distance functions
y isolating certain components of the distance computation between
atterns. In particular, we start by studying continuous and categorical
atasets individually and assess the impact of increasing MRs on the
erformance of distance functions. Then, the insights extracted from
his analysis are cross-correlated with the results obtained for the
eterogeneous datasets.

We focus on a more local behaviour of kNN, by analysing the results
btained with 𝑘 = 1. As 𝑘 increases, the neighbourhood of a given
17
pattern becomes larger, and it is expected that differences between
distance functions become more smoothed, as previously discussed
and confirmed by the overall performance results (Tables 3, 4, 5 and
6). Therefore, to allow a more thorough analysis on the behaviour
of distance functions regarding the definition of each component, we
consider the smallest neighbourhood: for 𝑘 = 1, differences between
distance functions will mainly rely on their definition, whereas for
higher values of 𝑘, it becomes more difficult to distinguish the effects
associated with the definition of distance functions from the increase of
the 𝑘-neighbourhood. Despite the focus on 𝑘 = 1, results obtained for
additional values of 𝑘 (3, 5 and 7) are also discussed throughout this
section.

6.2. Effect of function definition on distance computation

Throughout this section, we discuss how each component of the
definition of functions affects the computation of distances, focusing
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mostly on imputation results for 𝑘 = 1 for a more local analysis. We
tart by cross-referencing the results presented in Tables 8 and 12.

Table 12 considers the pairwise differences between all distances:
he values correspond to the difference between the ranks of the
pproaches in the corresponding rows and columns. Thus, positive
ifferences indicate that the approach in the columns is better than
he one in the rows, whereas negative differences indicate that the
pproach in the rows is better (significant differences are marked in
old). Furthermore, differences for 5 and 20% are shown in the upper
art of the tables, whereas differences for 10 and 30% are presented in
he lower part of the tables (and also shaded in grey).

We now tailor our analysis to the individual categories of datasets,
y cross-referencing the information of Tables 8 and 12.

.2.1. Continuous datasets
For continuous datasets, MDE outperforms the remaining

pproaches for all missing rates, although for MRs of 5, 10 and 20% no
ignificant differences were found (Table 8). However, for a MR of 30%,
DE achieves an average rank of 2.92, and the post-hoc concluded on

ts superiority over HEOM-R, HVDM, HVDM-R and SIMDIST (Tables 8
nd 12). The difference for HEOM was reasonable (0.98) but not higher
han the critical value (1.27).

An insightful observation is on the comparison of HEOM and HVDM
ith their redefinitions: HEOM-R and HVDM-R perform worse than

heir original formulations, suggesting that considering two missing
alues as being equal seems rigid and may be prejudicial for imputation
Table 12).

Regarding the remaining distances, HEOM, HVDM and SIMDIST
ehave somewhat similarly, except for a MR of 30%, where HEOM
resents a considerably lower rank (3.90 versus 4.19/4.44). Table 12
ndicates that HEOM overall performs slightly better than HVDM,
hich should be due to normalisation differences (Eqs. (3) and (6)).
hus, differences between HEOM, HVDM and MDE rely mostly on the
reatment of missing data: we may infer that considering a distance of

if either 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are missing also seems inadequate given the
uperiority of MDE over these distance functions.

Furthermore, despite some similarities in working principles of MDE
nd SIMDIST (considering the average distance between patterns to
mpute missing values), there seems to be an advantage in distinguish
ituations where one or both values are missing, causing MDE to be
op performing approach, as no other distance distinguishes between
uch scenarios. An additional advantage of MDE over the remaining
istances could be related to the fact that MDE takes the probability
istribution of each feature into account while computing distances.

For 𝑘 = 3, results are similar, with MDE being the top performing
istance (Table 9). However, for 𝑘 values of 5 and 7, differences
n classification performance become negligible (Tables 10 and 11).
verall, significant differences between approaches also cease to exist,
ue to loss of locality in kNN parametrisation.

.2.2. Categorical datasets
For categorical datasets, HVDM-S stands out as the best approach

or all missing rates (Table 8).
An interesting topic for discussion is the comparison between

VDM-S, MDE and HVDM. As shown in Table 8, despite HVDM-S
chieves lower ranks than MDE, the equivalence between the two
istance functions is never rejected, not even for the highest missing
ate. In turn, HVDM-S is significantly better than the remaining ap-
roaches for a MR of 30%. Then, a comparison of MDE with HVDM
ecomes insightful. Although the computation of categorical distances
s different in this case (MDE uses the overlap metric while HVDM uses
𝑣𝑑𝑚 when both values are observed) the performance of both distances
s not significantly different (Table 12). For 5%, HVDM is slightly better
han MDE (perhaps due to the computation of 𝑑𝑣𝑑𝑚) but rapidly looses
ts advantage as the missing rate increases: for a MR of 30%, MDE is

ven significantly better than HVDM (Table 8). In turn, HVDM-S, whose

18
efinition is very close to HVDM, always surpasses MDE (Table 8). This
ndicates that it is the treatment of missing data (the only aspect that
hanges between HVDM-S and HVDM) that is responsible for the good
esults achieved.

Contrarily to continuous datasets, using the average distance to
ompute the distance between missing patterns is not the best overall
pproach: in this case, the ability of HVDM-S to consider the distri-
ution of missing values in each class could be one of its greatest
dvantages.

Another interesting point is that, for categorical datasets, HVDM-S
emains the top performing approach for larger values of 𝑘. For 𝑘 =

5, MDE and SIMDIST achieve the top positions for MRs 5 and 10%,
respectively (Table 10), but for 𝑘 = 3 and 7, HVDM-S assumes the
leading position for all MRs (Tables 9 and 11). Significant differences
are found for some distances, where the most clear improvement is on
𝑘 = 7 for a MR of 20%, where HVDM-S is significantly superior to all
distances except MDE and SIMDIST (Table 11).

6.2.3. Heterogeneous datasets
For heterogeneous datasets, MDE or HVDM-S appear as the winning

approaches for all missing rates (Table 8). For a MR of 5%, MDE is the
top performing approach, whereas for 10 and 20%, HVDM-S becomes
superior. For a MR of 30%, both approaches behave similarly (3.61
versus 3.42 obtained by HVDM-S and MDE, respectively).

A similar trend is observed for higher values of 𝑘, in what concerns
HVDM-S: for 𝑘 = 3 and 7, it achieves the top results for intermediate
MRs of 10 and 20% (Tables 9 and 11), whereas for 𝑘 = 5 it is the
top performer for 20 and 30% (Table 10). In turn, MDE, although
presenting good results for more local neighbourhoods (𝑘 = 3), is not
the best approach for higher 𝑘 values. In fact, for extreme levels of MR
(5 or 30%), there is not a consensus on the best approach for higher
values of 𝑘.

Given the results obtained for continuous and categorical datasets
(𝑘 = 1), where MDE is the top performing approach for continuous
datasets for all rates and HVDM-S is the best for categorical datasets,
these results on heterogeneous datasets are somewhat expected. It
would be important, however, to determine the components of each
distance that affect the most the results in the case of heterogeneous
data.

For a lower MR of 5%, where most values are expected to be ob-
served, the results obtained by the two approaches do not considerably
differ. When both 𝑥𝐴𝑗 and 𝑥𝐵𝑗 values are observed, differences among
the two distance functions rely on the normalisation of continuous
features (MDE seems to perform better according to the results obtained
for continuous features) and on the treatment of categorical features
(using 𝑑𝑣𝑑𝑚 or 𝑑𝑂 for HVDM-S and MDE, respectively), where in turn,
HVDM-S seems superior. For higher missing rates (10, 20 and 30%), it
becomes more difficult to determine which component is influencing
the results the most. On one hand, MDE and HVDM-S are the top
performing approaches for continuous and categorical datasets, respec-
tively. On the other hand, they handle missing values in rather different
ways.

One hypothesis is that the type of features comprised in the dataset
(continuous or categorical) somewhat conditions the behaviour of dis-
tance functions. To analyse that relationship, heterogeneous datasets
were divided into 3 groups: comprising mostly continuous features
(CONT), comprising mostly categorical features (CAT) and comprising
the same number of continuous and categorical features (EQUAL).
Then, the performance of HVDM-S and MDE was compared in terms
of percentage of wins and ties. Here, ‘‘wins’’ refer to the percentage of
datasets where one distance function outperforms the other (HVDM-
S outperforms MDE or vice-versa), whereas ‘‘ties’’ refer to situations
where both distance functions achieve the same performance results.
Table 13 presents the described analysis, showing the percentage of
datasets for which each distance function outperforms the other and

the percentage of ties, for each group.
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Table 12
Differences between ranks for each comparison of distance functions for 5, 10, 20 and 30% and 𝑘 = 1 (10
and 30% are shaded in grey). Significant differences are marked in bold.
Continuous Datasets: 5 and 10%

BASELINE HEOM HEOM-R HVDM HVDM-R aHVDM-S MDE SIMDIST

BASELINE – 0.13 −0.08 0.52 0.36 – 0.93 0.31
HEOM −0.37 – −0.21 0.39 0.23 – 0.80 0.18
HEOM-R 0.28 0.65 – 0.60 0.44 – 1.01 0.39
HVDM −0.04 0.33 −0.32 – −0.16 – 0.41 −0.21
HVDM-R 0.28 0.65 0.00 0.32 – – 0.57 −0.05
HVDM-S – – – – – – – –
MDE −0.71 −0.34 −0.99 −0.67 −0.99 – – −0.62
SIMDIST −0.07 0.30 −0.35 −0.03 −0.35 – 0.64 –

Continuous Datasets: 20 and 30%
BASELINE HEOM HEOM-R HVDM HVDM-R aHVDM-S MDE SIMDIST

BASELINE – 0.39 0.41 0.34 0.44 – 1.05 0.80
HEOM 0.23 – 0.02 −0.05 0.05 – 0.66 0.41
HEOM-R 0.96 0.73 – −0.07 0.03 – 0.64 0.39
HVDM 0.52 0.29 −0.44 – 0.10 – 0.71 0.46
HVDM-R 0.58 0.35 −0.38 0.06 – – 0.61 0.36
HVDM-S – – – – – – – –
MDE −0.75 −0.98 −1.71 −1.27 −1.33 – – −0.25
SIMDIST 0.77 0.54 −0.19 0.25 0.19 – 1.52 –

Categorical Datasets: 5 and 10%
BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – 0.81 0.60 0.61 0.45 0.88 0.28 0.85
HEOM 0.52 – −0.21 −0.20 −0.36 0.07 −0.53 0.04
HEOM-R 0.52 0.00 – 0.01 −0.15 0.28 −0.32 0.25
HVDM 0.65 0.13 0.13 – −0.16 0.27 −0.33 0.24
HVDM-R 0.52 0.00 0.00 −0.13 – 0.43 −0.17 0.40
HVDM-S −0.64 −1.16 −1.16 −1.29 −1.16 – −0.60 −0.03
MDE 0.12 −0.40 −0.40 −0.53 −0.40 0.76 – 0.57
SIMDIST 0.31 −0.21 −0.21 −0.34 −0.21 0.95 0.19 –

Categorical Datasets: 20 and 30%
BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – 0.12 −0.37 −0.10 −0.73 0.88 0.42 −0.14
HEOM 0.46 – −0.49 −0.22 −0.85 0.76 0.30 −0.26
HEOM-R −0.01 −0.47 – 0.27 −0.36 1.25 0.79 0.23
HVDM 0.53 0.07 0.54 – −0.63 0.98 0.52 −0.04
HVDM-R 0.26 −0.20 0.27 −0.27 – 1.61 1.15 0.59
HVDM-S −1.49 −1.95 −1.48 −2.02 −1.75 – −0.46 −1.02
MDE −0.97 −1.43 −0.96 −1.50 −1.23 0.52 – −0.56
SIMDIST 0.58 0.12 0.59 0.05 0.32 2.07 1.55 –

Heterogeneous Datasets: 5 and 10%
BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – 0.10 0.58 0.20 0.24 0.35 0.64 0.21
HEOM −0.16 – 0.48 0.10 0.14 0.25 0.54 0.11
HEOM-R 0.35 0.51 – −0.38 −0.34 −0.23 0.06 −0.37
HVDM −0.27 −0.11 −0.62 – 0.04 0.15 0.44 0.01
HVDM-R 0.61 0.77 0.26 0.88 – 0.11 0.40 −0.03
HVDM-S −0.55 −0.39 −0.90 −0.28 −1.16 – 0.29 −0.14
MDE −0.19 −0.03 −0.54 0.08 −0.80 0.36 – −0.43
SIMDIST −0.27 −0.11 −0.62 0.00 −0.88 0.28 −0.08 –

Heterogeneous Datasets: 20 and 30%
BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – −0.36 −0.59 0.24 −1.07 0.43 0.10 −0.59
HEOM 0.02 – −0.23 0.60 −0.71 0.79 0.46 −0.23
HEOM-R −0.17 −0.19 – 0.83 −0.48 1.02 0.69 0.00
HVDM −0.67 −0.69 −0.50 – −1.31 0.19 −0.14 −0.83
HVDM-R −0.29 −0.31 −0.12 0.38 – 1.50 1.17 0.48
HVDM-S −1.51 −1.53 −1.34 −0.84 −1.22 – −0.33 −1.02
MDE −1.70 −1.72 −1.53 −1.03 −1.41 −0.19 – −0.69
SIMDIST −0.64 −0.66 −0.47 0.03 −0.35 0.87 1.06 –

aFor continuous datasets, HVDM-S is equivalent to HVDM-R.
From the analysis of Table 13, several observations stand out. First,
he percentage of ties when datasets are mostly continuous (CONT) is
ver the double than when datasets are mostly categorical (CAT), for
Rs of 5 and 10%, indicating that one important difference between

he two distance functions relies on the treatment of categorical values.
or higher missing rates (20 and 30%), the difference between ties
ecomes less noticeable, suggesting that other factors may be at play,
uch as the treatment of missing data.
19
For intermediate missing rates (10 and 20%), the results obtained
by HVDM-S and MDE follow the overall results shown in Table 8,
with HVDM-S and MDE being superior for CAT and CONT datasets
respectively. For 30%, CAT groups suffers an inversion of results (MDE
becomes the best approach), whereas for CONT group results remain
the same. This suggests that the major advantage of HVDM-S is on
treatment of missing values in categorical features, when one value
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Table 13
Performance comparison between HVDM-S and MDE, regarding the percentage of wins and ties (𝑘 = 1), for each scenario
(CAT, CONT and EQUAL).
MR CONT CAT EQUAL

HVDM-S MDE TIE HVDM-S MDE TIE HVDM-S MDE TIE

5% 46.7 33.3 20 42.9 47.6 9.5 7.1 71.4 21.4
10% 33.3 53.3 13.3 57.1 38.1 4.8 64.3 35.7 0
20% 33.3 53.3 13.3 47.6 42.9 9.5 50 50 0
30% 33.3 53.3 13.3 42.9 47.6 9.5 35.7 64.3 0
might be missing. When the MR is high, and it is more likely that both
𝑥𝐴𝑗 and 𝑥𝐵𝑗 values are missing, MDE seems to be superior.

The behaviour observed for the EQUAL group is consistent with
this observation. For a MR of 5%, MDE performs exceptionally well,
being superior to HVDM-S for 71.4% of datasets, but both distances
perform equally well for 21.4% of datasets. As the MR increases, there
are no more ties between methods. For a MR of 10%, there is a
64.3/35.7 difference between HVDM-S and MDE which may be due to
the superiority of HVDM-S over categorical features. Nevertheless, for
a MR of 20, differences decrease to 50/50 and lastly, MDE becomes the
best approach for 30%.

Overall, HVDM-S shows a good behaviour for intermediate MRs
(10 and 20%), whereas MDE performs well on extremes, especially for
30%. Aligned with the hypotheses that HVDM-S might not adequately
address situations where both values are missing is the degradation
in performance observed for heterogeneous datasets when compar-
ing the results obtained by HVDM and HVDM-R (Table 8). For MRs
greater than 5%, HVDM-R presents a degradation in performance when
compared to HVDM. Note that the only difference between these
approaches is that for HVDM-R, two missing values are considered
equal, i.e., 𝑑𝑗 (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ) = 0. This effect was not so strongly observed
for continuous or categorical data individually, but it seems to consid-
erably affect the results on heterogeneous data. Such assignment seems
to be impairing the classification performance and, given that HVDM-
S follows the same procedure, this indicates that HVDM-S could be
improved regarding this aspect.

Finally, another interesting observation regarding heterogeneous
data is that HEOM, a popular solution for several heterogeneous do-
mains, has not stood-out as the best approach for any missing rate.
When compared to all the remaining distance functions, HEOM was
only superior to HEOM-R and HVDM-R (10 and 20%) and SIMDIST
(20%), lagging behind in all remaining scenarios (Table 12), which
suggests that, although simple, it may not be the go-to approach, as
suggested in several application papers (please refer to Table 2).

To ease the interpretation of results, Table 18 summarises the main
conclusions derived for each group of datasets in what concerns the
discussion on classification performance.

7. Impact on imputation quality

In this section, we analyse the imputation task directly and discuss
the impact of the considered distance functions on the quality of
imputation, focusing on their Predictive Accuracy (PAC), i.e., on their
ability to reconstruct the original values in data (García-Laencina et al.,
2010; Santos et al., 2017). PAC was assessed through the computation
of the Normalised Mean Absolute Error (NMAE) and the percent-
age of matches, Matches (%), for continuous and categorical features,
respectively.

Traditionally, the Mean Absolute Error (MAE) is computed as shown
in Eq. (20), where 𝑦𝑖 and �̂�𝑖 represent the original value (ground
ruth) and imputed value and 𝑛 is the number of values that were

missing in feature 𝑥𝑗 . The MAE of a feature 𝑥𝑗 therefore represents an
average of the deviation between the original and the imputed values.
Naturally, the MAE is measured on the same scale as 𝑥𝑗 , and since
that dataset features may consider different scales, a normalisation
(NMAE) is required to produce a final MAE measure for the entire
20
dataset. In this work we considered a normalisation over 𝑥𝑗 values,
i.e., 𝑁𝑀𝐴𝐸 = 𝑀𝐴𝐸

𝑚𝑎𝑥(𝑥𝑗 )−𝑚𝑖𝑛(𝑥𝑗 )
. Accordingly, the final NMAE of a dataset

is the average NMAE of all its features, where values closer to 0 indicate
more accurate imputations.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
∣ 𝑦𝑖 − �̂�𝑖 ∣ (20)

The percentage of matches is given by Eq. (21), and indicates the
proportion of categorical values that were exactly recreated (i.e., the
imputed categorical value matches the original). In this case, accurate
imputations should return a value closer to 100%.

𝑀𝑎𝑡𝑐ℎ𝑒𝑠 (%) =
100 ×

∑

𝑦𝑖=�̂�𝑖 1

𝑛
(21)

Tables 14, 15, 16 and 17 show the NMAE and Matches (%) results
obtained with all distance functions, for 𝑘 values of 1, 3, 5 and 7,
respectively. For all values of 𝑘, both NMAE and Matches (%) results
are similar: for continuous datasets, SIMDIST is the top performing
approach for all 𝑘, whereas for categorical and heterogeneous datasets,
MDE is overall the best approach, with little exceptions where HVDM
or SIMDIST outperform the remaining.

For continuous datasets, the NMAE is generally low, with a mini-
mum value of 0.09 (𝑘 = 5 and 7) and maximum of 0.156 (𝑘 = 1), and
there are no substantial differences between distance functions, even
among different 𝑘 values.

For categorical datasets, however, MDE stands out when compared
to the remaining approaches, achieving a percentage of exact matches
around 60%, versus the 50%–56% obtained by the remaining (𝑘 =
1). As the 𝑘 value increases, this difference becomes less noticeable,
although MDE remains the top approach. An important note, how-
ever, is the lower imputation quality of HVDM-S on categorical data,
when compared to the remaining distance functions: for all 𝑘 val-
ues, it obtains the lowest percentage of exact matches on categorical
features. This observation confirms that classification and imputation
are different tasks and therefore their evaluation should be carefully
performed.

Nevertheless, the imputation quality results obtained by HVDM-
S agree with its definition as described in Section 4 and discussed
throughout the paper. On the one hand, since 𝑑𝑣𝑑𝑚 considers class
targets when computing distances, HVDM-S (and generally all HVDM-
like functions) considers some information regarding the classification
task while computing distances, which grant it a major advantage for
classification purposes. On the other hand, two values 𝑥𝐴𝑗 and 𝑥𝐵𝑗 are
considered similar if their class distribution is similar which, while for
classification purposes it may be beneficial, it may have undesirable
consequences in terms of imputation quality. As an example, consider
a dataset where 𝑗 represents a categorical feature, ‘‘Chest Pain’’, with
possible values of ‘‘low’’, ‘‘moderate’’, ‘‘high’’ and ‘‘very high’’. If ‘‘high’’
and ‘‘very high’’ are often both associated with class ‘‘heart attack’’,
imputing a missing value (whose original category is ‘‘high’’) as ‘‘high’’
or ‘‘very high’’ will not have consequences in terms of classification,
but will not be translated into an exact match. This affects all HVDM-
like functions (HVDM, HVDM-R, HVDM-S), which perform worse than
the remaining approaches. For the particular case of HVDM-S, results
are especially worse since missing values, considered as an extra cate-
gory, are simply additional confounding factors in terms of imputation
quality.
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Table 14
NMAE and Matches (%) divided by groups and missing rates for 𝑘 = 1 (best results are marked in bold).

MR HEOM HEOM-R HVDM HVDM-R aHVDM-S MDE SIMDIST

5% 0.107 ± 0.061 0.119 ± 0.058 0.107 ± 0.061 0.117 ± 0.058 – 0.110 ± 0.047 0.102 ± 0.061
Continuous 10% 0.115 ± 0.060 0.131 ± 0.056 0.114 ± 0.060 0.129 ± 0.058 – 0.112 ± 0.047 0.106 ± 0.061
Datasets 20% 0.128 ± 0.057 0.145 ± 0.054 0.127 ± 0.058 0.143 ± 0.056 – 0.118 ± 0.046 0.113 ± 0.060
NMAE 30% 0.139 ± 0.056 0.156 ± 0.054 0.138 ± 0.057 0.154 ± 0.056 – 0.123 ± 0.045 0.120 ± 0.059

5% 55.4 ± 17.4 55.5 ± 17.4 54.6 ± 17.1 54.0 ± 16.7 50.0 ± 14.7 59.8 ± 16.0 55.7 ± 17.6
Categorical 10% 55.3 ± 17.0 55.3 ± 16.9 54.3 ± 16.7 53.6 ± 16.4 50.9 ± 15.5 59.8 ± 15.5 55.6 ± 17.2
Datasets 20% 54.5 ± 16.5 54.4 ± 16.3 53.4 ± 16.2 52.8 ± 16.0 51.5 ± 15.6 59.6 ± 15.2 54.7 ± 16.5
Matches (%) 30% 53.6 ± 15.9 53.4 ± 15.5 52.4 ± 15.7 51.9 ± 15.3 51.5 ± 15.8 59.2 ± 14.8 53.9 ± 16.0

5% 0.202 ± 0.064 0.206 ± 0.065 0.190 ± 0.059 0.200 ± 0.059 0.194 ± 0.060 0.187 ± 0.060 0.201 ± 0.065
56.1 ± 16.4 55.9 ± 16.4 55.9 ± 14.9 55.0 ± 14.6 54.4 ± 14.8 58.7 ± 15.9 56.3 ± 16.4

Heterogeneous 10% 0.205 ± 0.062 0.211 ± 0.062 0.198 ± 0.060 0.210 ± 0.059 0.201 ± 0.059 0.190 ± 0.060 0.204 ± 0.063
Datasets 55.9 ± 16.0 55.2 ± 15.7 55.5 ± 14.7 53.9 ± 14.5 54.5 ± 15.0 58.9 ± 15.2 56.3 ± 16.0
NMAE 20% 0.209 ± 0.060 0.218 ± 0.061 0.208 ± 0.060 0.222 ± 0.061 0.210 ± 0.059 0.193 ± 0.059 0.208 ± 0.062
Matches (%) 55.3 ± 15.0 54.5 ± 14.8 54.1 ± 14.1 52.7 ± 14.2 53.8 ± 15.0 58.7 ± 14.8 56.1 ± 14.8

30% 0.215 ± 0.059 0.224 ± 0.062 0.216 ± 0.060 0.228 ± 0.061 0.217 ± 0.060 0.196 ± 0.059 0.212 ± 0.061
54.7 ± 14.4 53.6 ± 14.3 53.2 ± 14.0 52.0 ± 14.1 52.9 ± 14.9 58.5 ± 14.5 55.4 ± 14.3

aFor continuous datasets, HVDM-S is equivalent to HVDM-R.
Table 15
NMAE and Matches (%) divided by groups and missing rates (𝑘 = 3).

MR HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 0.096 ± 0.050 0.105 ± 0.047 0.095 ± 0.050 0.103 ± 0.049 – 0.104 ± 0.046 0.091 ± 0.051
Continuous 10% 0.102 ± 0.050 0.114 ± 0.047 0.102 ± 0.050 0.112 ± 0.048 – 0.106 ± 0.045 0.094 ± 0.051
Datasets 20% 0.113 ± 0.048 0.127 ± 0.045 0.112 ± 0.049 0.125 ± 0.048 – 0.111 ± 0.045 0.100 ± 0.050
NMAE 30% 0.123 ± 0.047 0.136 ± 0.045 0.121 ± 0.049 0.134 ± 0.048 – 0.116 ± 0.044 0.106 ± 0.049

5% 57.1 ± 17.9 57.2 ± 17.8 56.2 ± 17.5 55.6 ± 17.1 51.2 ± 15.3 60.4 ± 16.0 57.5 ± 18.0
Categorical 10% 57.2 ± 17.2 57.2 ± 17.1 56.2 ± 17.0 55.4 ± 16.5 52.1 ± 16.0 60.3 ± 15.6 57.5 ± 17.4
Datasets 20% 56.4 ± 16.8 56.3 ± 16.4 55.2 ± 16.5 54.6 ± 15.9 52.6 ± 16.0 60.0 ± 15.3 56.8 ± 16.8
Matches (%) 30% 55.7 ± 16.1 55.7 ± 15.7 54.3 ± 15.9 54.0 ± 15.3 52.6 ± 16.2 59.7 ± 14.9 55.9 ± 16.3

5% 0.177 ± 0.056 0.179 ± 0.056 0.172 ± 0.055 0.178 ± 0.055 0.173 ± 0.054 0.175 ± 0.058 0.177 ± 0.057
58.3 ± 16.0 58.0 ± 15.9 57.4 ± 15.0 56.6 ± 14.9 55.8 ± 15.0 59.3 ± 15.4 58.4 ± 15.8

Heterogeneous 10% 0.179 ± 0.055 0.183 ± 0.054 0.176 ± 0.055 0.184 ± 0.054 0.178 ± 0.054 0.177 ± 0.058 0.179 ± 0.055
Datasets 57.8 ± 15.7 57.2 ± 15.6 56.9 ± 14.7 55.6 ± 14.7 55.9 ± 14.9 59.6 ± 14.8 58.4 ± 15.7
NMAE 20% 0.184 ± 0.053 0.189 ± 0.054 0.184 ± 0.054 0.192 ± 0.054 0.183 ± 0.053 0.180 ± 0.057 0.182 ± 0.055
Matches (%) 57.0 ± 15.2 56.4 ± 15.0 55.8 ± 14.5 54.8 ± 14.5 55.1 ± 15.1 59.2 ± 14.6 57.8 ± 14.9

30% 0.188 ± 0.054 0.194 ± 0.054 0.190 ± 0.055 0.198 ± 0.054 0.189 ± 0.054 0.182 ± 0.057 0.186 ± 0.056
56.4 ± 14.8 55.5 ± 14.6 55.1 ± 14.4 54.0 ± 14.3 54.5 ± 14.9 59.0 ± 14.4 57.2 ± 14.7
Table 16
NMAE and Matches (%) divided by groups and missing rates (𝑘 = 5).

MR HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 0.094 ± 0.048 0.102 ± 0.045 0.094 ± 0.048 0.100 ± 0.046 – 0.103 ± 0.045 0.090 ± 0.048
Continuous 10% 0.101 ± 0.047 0.111 ± 0.044 0.100 ± 0.048 0.109 ± 0.046 – 0.105 ± 0.045 0.092 ± 0.048
Datasets 20% 0.111 ± 0.046 0.123 ± 0.043 0.110 ± 0.047 0.122 ± 0.046 – 0.110 ± 0.044 0.098 ± 0.048
NMAE 30% 0.121 ± 0.045 0.132 ± 0.043 0.119 ± 0.047 0.131 ± 0.046 – 0.115 ± 0.043 0.104 ± 0.047

5% 58.9 ± 17.5 58.9 ± 17.3 57.6 ± 17.2 57.1 ± 16.6 52.0 ± 15.8 60.7 ± 16.5 59.1 ± 17.7
Categorical 10% 58.5 ± 17.1 58.5 ± 17.0 57.4 ± 16.9 56.6 ± 16.2 52.8 ± 16.3 60.7 ± 15.9 58.8 ± 17.2
Datasets 20% 57.8 ± 16.5 57.5 ± 16.3 56.4 ± 16.2 55.6 ± 15.6 53.3 ± 16.2 60.5 ± 15.3 58.1 ± 16.7
Matches (%) 30% 57.0 ± 15.7 56.9 ± 15.3 55.6 ± 15.4 55.1 ± 14.8 53.2 ± 16.2 59.9 ± 15.0 57.3 ± 15.8

5% 0.171 ± 0.054 0.173 ± 0.054 0.167 ± 0.054 0.172 ± 0.053 0.168 ± 0.053 0.171 ± 0.057 0.172 ± 0.055
59.1 ± 16.1 59.1 ± 16.0 58.4 ± 15.0 57.7 ± 14.9 56.8 ± 15.0 59.5 ± 15.5 59.8 ± 15.9

Heterogeneous 10% 0.174 ± 0.052 0.176 ± 0.052 0.171 ± 0.054 0.178 ± 0.052 0.172 ± 0.052 0.174 ± 0.056 0.174 ± 0.054
Datasets 58.7 ± 15.6 58.3 ± 15.5 57.7 ± 14.6 56.7 ± 14.5 56.8 ± 14.7 59.8 ± 14.9 59.1 ± 15.5
NMAE 20% 0.179 ± 0.052 0.182 ± 0.051 0.179 ± 0.053 0.186 ± 0.052 0.178 ± 0.052 0.177 ± 0.056 0.177 ± 0.053
Matches (%) 58.0 ± 15.2 57.6 ± 14.9 56.6 ± 14.5 55.9 ± 14.5 56.1 ± 14.9 59.5 ± 14.7 58.7 ± 15.0

30% 0.182 ± 0.052 0.187 ± 0.052 0.184 ± 0.053 0.191 ± 0.052 0.183 ± 0.052 0.179 ± 0.056 0.180 ± 0.054
57.4 ± 14.7 56.6 ± 14.6 56.1 ± 14.4 55.2 ± 14.4 55.4 ± 14.7 59.2 ± 14.4 58.0 ± 14.8
For heterogeneous datasets, MDE remains the overall performing
pproach for all 𝑘, being the top performer for MRs of 20 and 30%,
hereas for lower missing rates, HVDM and SIMDIST perform slightly
etter. However, NMAE values obtained with MDE are higher than the
nes obtained for exclusively continuous data, whereas the percent-
ge of matches remains consistently around 60%, as for categorical
atasets. On the other hand, HVDM-S, although with slightly lower
alues of Matches (%) than the remaining distances, performs similarly
o the remaining (especially as 𝑘 increases) contrary to what was
bserved for exclusively categorical datasets. Regarding NMAE values,
21
HVDM-S also performs similarly to the remaining distance functions,
often with slightly better results and improving as 𝑘 increases.

Overall, the experimental results suggest that, in terms of imputa-
tion quality, and considering all 𝑘 values, SIMDIST is the top perform-
ing approach for continuous data whereas MDE is the best approach for
categorical and heterogeneous data. Nevertheless, it should be stated
that, as previously discussed, imputation and classification are differ-
ent tasks and both perspectives may be considered while evaluating
imputation approaches. The disagreement on HVDM-S (for categorical

datasets, HVDM-S performs the best in terms of classification results
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Table 17
NMAE and Matches (%) divided by groups and missing rates (𝑘 = 7).

MR HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 0.095 ± 0.047 0.102 ± 0.044 0.094 ± 0.047 0.100 ± 0.045 – 0.103 ± 0.044 0.090 ± 0.047
Continuous 10% 0.101 ± 0.046 0.111 ± 0.043 0.100 ± 0.047 0.109 ± 0.045 – 0.105 ± 0.044 0.093 ± 0.047
Datasets 20% 0.112 ± 0.045 0.122 ± 0.043 0.111 ± 0.046 0.121 ± 0.045 – 0.110 ± 0.043 0.098 ± 0.047
NMAE 30% 0.120 ± 0.044 0.131 ± 0.042 0.119 ± 0.046 0.130 ± 0.045 – 0.115 ± 0.043 0.103 ± 0.046

5% 59.5 ± 17.0 59.5 ± 16.8 58.4 ± 16.7 58.1 ± 16.1 52.5 ± 15.9 61.0 ± 16.4 59.8 ± 17.2
Categorical 10% 59.4 ± 16.8 59.2 ± 16.7 58.2 ± 16.5 57.3 ± 15.9 53.3 ± 16.5 60.9 ± 15.9 59.6 ± 16.9
Datasets 20% 58.7 ± 16.1 58.5 ± 15.9 57.2 ± 15.8 56.5 ± 15.1 53.7 ± 16.4 60.6 ± 15.3 59.0 ± 16.3
Matches (%) 30% 57.7 ± 15.5 57.6 ± 15.1 56.2 ± 15.1 55.7 ± 14.5 53.7 ± 16.2 60.1 ± 14.9 58.1 ± 15.7

5% 0.169 ± 0.052 0.170 ± 0.052 0.164 ± 0.053 0.169 ± 0.052 0.165 ± 0.052 0.170 ± 0.056 0.170 ± 0.053
59.4 ± 15.9 59.4 ± 15.9 58.7 ± 14.7 58.3 ± 14.7 57.3 ± 14.8 59.9 ± 15.4 60.0 ± 15.7

Heterogeneous 10% 0.172 ± 0.051 0.174 ± 0.051 0.169 ± 0.053 0.175 ± 0.051 0.170 ± 0.051 0.172 ± 0.056 0.172 ± 0.053
Datasets 59.2 ± 15.3 59.0 ± 15.2 58.1 ± 14.3 57.4 ± 14.4 57.2 ± 14.6 60.1 ± 14.8 59.9 ± 15.2
NMAE 20% 0.176 ± 0.051 0.179 ± 0.050 0.177 ± 0.052 0.183 ± 0.052 0.176 ± 0.051 0.175 ± 0.055 0.175 ± 0.053
Matches (%) 58.4 ± 15.1 58.1 ± 14.8 57.3 ± 14.3 56.7 ± 14.2 56.7 ± 14.6 59.6 ± 14.7 59.2 ± 15.0

30% 0.180 ± 0.051 0.184 ± 0.051 0.182 ± 0.052 0.188 ± 0.052 0.181 ± 0.051 0.178 ± 0.055 0.178 ± 0.053
58.1 ± 14.5 57.2 ± 14.6 56.7 ± 14.3 55.8 ± 14.3 56.0 ± 14.4 59.3 ± 14.4 58.6 ± 14.7
Table 18
Summary of conclusions on continuous, categorical and heterogeneous datasets regarding both classification and imputation quality.

Classification performance Imputation quality

Continuous
Datasets

∙ Overall, MDE outperforms the remaining distance functions for all
MRs (𝑘 = 1 and 3).
∙ For higher values of 𝑘 differences become negligible.
∙ Considering two values as being equal or a maximal distance if
one value is missing seems prejudicial.
∙ Distinguishing situations where only one or both values are
missing seems beneficial.

∙ Considering all 𝑘 values and MRs, SIMDIST is the top performing
approach.

Categorical
Datasets

∙ For all 𝑘, HVDM-S is the overall top performing approach across
all MRs.
∙ Considering the distribution of missing data in each class seems
beneficial.

∙ Considering all 𝑘 values and MRs, MDE is the top performing approach.
∙ For all 𝑘 values and MRs, HVDM-S performs worse than the remaining
distance functions.

Heteroge-
neous
Datasets

∙ For 𝑘 = 1, MDE and HVDM-S are the top performing approaches.
∙ HVDM-S handles missing data in categorical features better when
one value is missing. For higher MRs, MDE is superior.
∙ For higher 𝑘 values, HVDM-S remains the top performer, for
intermediate MRs. For 5% or 30% MRs, there is no consensus.

∙ For 𝑘 = 1, MDE is the best approach.
∙ For higher values of 𝑘, MDE is the best approach for MRs of 20 and 30%,
although HVDM and SIMDIST perform slightly better in some scenarios.
∙ Regarding Matches (%), HVDM-S performs similarly to the remaining
distance functions, especially as 𝑘 increases.
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Fig. 3. kNN imputation schema for a 𝑘 = 3 neighbourhood: patterns with missing
values in the feature of interest (such as 𝐱𝐵) will be disregarded for imputation.

while being the worst approach in terms of imputation quality) suggests
that different metrics assess different aspects (in this case, the perfor-
mance on different tasks) and that evaluation should be conducted on
the most relevant aspects for the domain, while considering appropri-
ate measures. The top imputation approach in terms of classification
performance is not necessarily the top approach in terms of imputation
quality, and it is important to determine which is more critical for the
problem at hand.

Finally, the NMAE and Matches (%) results obtained for different
values of 𝑘, allow us to draw some conclusions regarding the weighting
strategy used for data imputation. As explained in Section 5, the
imputation is weighted according to the distance of each neighbour
on continuous features whereas for categorical the mode is used in-
stead. In terms of Matches (%), it seems that an increase of 𝑘 slightly
improves the results (the mode is computed considering a higher
number of neighbours). In terms of NMAE, although results do not
 s

22
considerably change for continuous datasets, they increasingly improve
for heterogeneous datasets, as 𝑘 increases, meaning that although the
neighbourhood is increasing, which may typically lead to a distortion
on the imputed values as more neighbours are being considered, the
weighting strategy presented in Eq. (19) is able to take advantage of
a broader concept surrounding the missing pattern, while also min-
imising such distortion, by given a higher weight to closer neighbours.
This is especially relevant for missing data imputation, as the neigh-
bours that can act as ‘‘donors’’ for imputation are dependent on the
availability of values on a given feature. To illustrate this idea, please
refer to Fig. 3. In a multivariate MCAR scenario, all values from all
features (and patterns) are equally likely to be missing. Thus, consider
pattern 𝐱𝐴, whose value for a given feature 𝑗 = 1 (𝑓1) for instance, is

issing (denoted by ‘‘?’’). If we considered a 𝑘 = 3 neighbourhood, then
atterns 𝐱𝐵 , 𝐱𝐶 and 𝐱𝐷 should be considered for imputation. However,
t happens that pattern 𝐱𝐵 is also missing a value on 𝑓1. Considering
istances that handle missing data allows to consider 𝐱𝐵 , 𝐱𝐶 and 𝐱𝐷
s donors even if they have some missing values, i.e, they could serve
s donors for 𝐱𝐴 for 𝑓2, for instance. However, donors must have
bserved values on the feature considered for imputation. In this case,
s 𝐱𝐵 is also missing a value in 𝑓1, the next closest neighbour needs
o be considered, 𝐱𝐸 , although it may be farther than the remaining
eighbours. This may not have a great impact in terms of classification
erformance (ultimately, all points could belong to the same class),
ut it may be provoke a distortion in terms of imputation quality
especially NMAE). However, weighting donors based on their distance
o 𝐱𝐴 would make the contribution of 𝐱𝐸 mainly negligible.

Taken together, these differences found between both tasks (clas-
ification and imputation) also suggest something important: that for



M.S. Santos, P.H. Abreu, A. Fernández et al. Engineering Applications of Artificial Intelligence 111 (2022) 104791

a

c
i
a
s
i

T

8

d
1
h
a
t
w
T
o
w
p

s
i
s
t
d
a
i
a
T

f
r

Fig. 4. Summary of best practices for researchers regarding kNNI imputation (𝑘 = 3, 5), considering datasets with different characteristics (nature of features and missing rates),
s well as distinct downstream tasks (classification and imputation).
lassification purposes, the chosen distance function may significantly
mpact the obtained results, whereas regarding imputation purposes,
lthough the distance function plays an important role, the 𝑘 parametri-
ation and weighting scheme used for imputation are also potentially
mpactful for superior results.

The main conclusions on imputation quality are also depicted on
able 18 considering each group of datasets individually.

. Conclusions and future work

In this work, we performed a comparison of several heterogeneous
istance functions that handle missing values across a benchmark of
50 datasets with different characteristics (continuous, categorical and
eterogeneous datasets). Whereas Sections 6 and 7 provide a detailed
nalysis on classification performance and imputation quality, respec-
ively, herein we focus on summarising the main conclusion of the
ork, while also elaborating on possible future research directions.
o that end, Table 18 presents a summary of the main conclusions
btained for both classification performance and imputation quality,
hile particularly focusing on the reflections discussed throughout the
aper regarding continuous, categorical, and heterogeneous datasets.

In turn, Fig. 4 summarises the main recommendations for re-
earchers approaching domain affected by missing data, where kNNI
s a sensible solution of choice. Recommendations regarding the most
uitable distance functions for kNNI attend to the desired downstream
ask (classification or imputation) and to the characteristics of the
ataset (nature of features and missing rate). Values of 𝑘 = 3, 5
re chosen as the most representative of a local approximation of
mputation. Lower values maintain the variability of data in the domain
nd are common in real-world application domains (please refer to
able 2).

We conclude the paper by describing the main lessons learned
rom the experimental data, and presenting promising lines for future
esearch:

∙ For all 𝑘 values and missing rates, learning classifiers from
imputed data is preferred to classification with missing data,
as kNN imputation generally outperforms the BASELINE
results. For some scenarios (𝑘 = 1 and MR of 30%) building
23
CART models with missing data might be preferred to im-
puting with some distance functions, though not preferred
over MDE or HVDM-S;

∙ As the missing rates increases, differences in classification
performance between distance functions become more sig-
nificant, especially for 𝑘 = 1 and 3, showing that missing
data has a considerable impact on classification perfor-
mance. For higher values of 𝑘, differences are more subtle;

∙ In terms of classification performance, MDE and HVDM-S
are the top two performing approaches: MDE stands out
as the best approach for continuous datasets (𝑘 = 1 and
3), while for categorical datasets, HVDM-S frequently out-
performs all others (for all 𝑘). For heterogeneous datasets,
both MDE and HVDM-S figure consistently among the best
approaches, for all 𝑘;

∙ For continuous datasets, the major difference between dis-
tance functions consists in the treatment of missing data.
Rather than defining similarities according to the availabil-
ity of 𝑥𝐴𝑗 or 𝑥𝐵𝑗 directly, the best approach considers the
average similarities among observed values in data. Also,
distinguishing situations where one value is missing or two
values are missing seems a suitable approach;

∙ For categorical datasets, the ability of HVDM-S to use infor-
mation on the distribution of missing values by class seems
to be the key to the good performance results achieved;

∙ For heterogeneous datasets, an improved distance function
could combine the properties of MDE and HVDM-S. MDE
provides a better treatment for continuous features, whereas
HVDM-S is superior for categorical features. Regarding cat-
egorical features, when one value is missing, the computa-
tion used by HVDM-S on categorical features seems to be
the most suitable, whereas when both values are missing,
MDE seems to perform better (although HVDM-S could be
improved by readjusting this comparison);

∙ Also regarding classification performance, we argue that
HEOM, although widely used across several heterogeneous
domains may not be the go-to approach, as others have

shown to be more beneficial;
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∙ Regarding imputation quality and considering all 𝑘 val-
ues, SIMDIST is the top performing approach for contin-
uous data, whereas MDE seems better for categorical and
heterogeneous data;

∙ Of note are also the results obtained by HVDM-S for categor-
ical data. While it obtains the highest classification results,
it performs poorly in terms of imputation quality. This
suggested that considering the class of patterns while per-
forming imputation helps to model the classification task,
although it does not benefit the imputation task per se;

∙ Differences found among the analysis of classification versus
imputation quality suggest that, for classification perfor-
mance, the choice of distance function is the most deter-
mining aspect to obtain superior results (especially for cat-
egorical and heterogeneous datasets). For imputation qual-
ity, the 𝑘-parametrisation and weighting scheme seem also
important to obtain improved results;

∙ Classification and imputation are different tasks and their
evaluation should be performed accordingly, using adequate
metrics. It is not guaranteed that the top approach in terms
of classification performs the best in terms of imputation
quality. A suitable imputation approach should consider
both (to this regard, MDE obtains robust results); however,
both the objective and conditions of the study (missing
rate, characteristics of data) should be taken into account
to perform an informed decision on the best imputation
approach.

Future work is focused on further studying heterogeneous datasets
nder extended experimental conditions, e.g., generating missing val-
es only on categorical or continuous features. Preliminary results have
hown that HVDM-S remains a suitable approach for most scenarios and
hows a particularly good behaviour for more complex datasets (Santos
t al., 2020a). A more in-depth analysis of categorical features (and
atio of categorical to continuous features) is also an interesting topic
or further research: we expect to find different results depending on
he number of multi-valued nominal attributes and number of cate-
orical/continuous features. Other promising directions would be the
evelopment of a novel distance function based on the advantages
f the distances studied in this work and finally, the investigation of
ther missing data mechanisms (e.g., MAR), missing rates (>30%) and

strategies of weighting features differently (e.g., based on their mutual
information or discriminative power).
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