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IFC-BD: An Interpretable Fuzzy Classifier for
Boosting Explainable Artificial

Intelligence in Big Data
Fatemeh Aghaeipoor , Mohammad Masoud Javidi , and Alberto Fernández

Abstract—In current Data Science applications, the course of
action has derived to adapt the system behavior for the human
cognition, resulting in the emerging area of explainable artificial
intelligence. Among different classification paradigms, those based
on fuzzy rules are suitable solutions to stress the interpretability of
the global systems. However, in case of addressing Big Data analyt-
ics, they may comprise an excessive number of rules and/or linguis-
tic labels that not only may cause losing the system performance
but also may affect the system semantic as well as the system in-
terpretability. In this article, we propose IFC-BD, an interpretable
fuzzy classifier for Big Data, aiming at boosting the horizons of
explainability by learning a compact yet accurate fuzzy model.
IFC-BD is developed in a cell-based distributed framework through
the three working stages of initial rule learning, rule generalization,
and heuristic rule selection. This whole procedure allows reaching
from a high number of specific rules to less number of more general
and confident rules. Additionally, in order to resolve possible rules
conflict, a new estimated rule weight is proposed specifically for
big data problems. IFC-BD was evaluated in comparison to the
state-of-the-art approaches of the fuzzy classification paradigm,
considering interpretability, accuracy, and running time. The find-
ings of the experiments revealed that the proposed algorithm was
able to improve the explainability of fuzzy rule-based classifiers as
well as their predictive performance.

Index Terms—Apache spark framework, Big Data, explainable
artificial intelligence (XAI), fuzzy rule-based classification systems
(FRBCSs), interpretability, scalability.

I. INTRODUCTION

DATA science and Big Data analytics have become a grow-
ing demand nowadays. These are complementary areas

that aim at extracting knowledge from the vast amount of data,
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generated from a myriad of different sources [1]. In this regard,
some recent innovative frameworks motivate data scientists to
develop new algorithms intentionally for Big Data problems [2].
However, design of new scalable algorithms to handle large
amounts of data is not a straightforward task and may bring
out complex systems that affect understanding of the system
behavior. This issue contradicts the objectives of the new resur-
gence of artificial intelligence known as eXplainable artificial
intelligence (XAI) [3].

In the context of XAI, the focus is on providing more explain-
able, interpretable, and transparent systems. Although there is
a little consensus on these terms in the literature [4], all have
a common sense to clarify the inner functionality of the sys-
tems for direct interaction with the human users. Explainability
mostly refers to understanding the internal functions of a model,
so that we are able to determine why a certain output is given
with relation to its variables or data representation. By contrast,
interpretability is to understand the model itself, to be able to
comprehend its components directly, in a similar way humans
do the cognition process. Finally, transparency is a capability for
models to ensure the former both features. All in all, these char-
acteristics enable users to better understand, trust, modify, and
manage behaviors of intelligent systems. In this regard, the use
of rule-based systems in general [5], and fuzzy rule-based clas-
sification systems (FRBCSs) in particular is advisable [6], [7].

FRBCSs can be considered under two different perspectives
of XAI. On the one hand, the use of linguistic fuzzy labels con-
taining a semantic knowledge inspired by the human language is
a straightforward transition to globally explain the phenomena
to the practitioner [7]. On the other hand, simple linguistic
rules with short antecedents are very manageable for the human
user. More specifically, when the whole amount of rules be
precisely the ones that explain the concept, the model would
be similar to human cognition [8]. Furthermore, the success
of FRBCSs is especially highlighted in those applications in
which the decision-making process should be made clear to
users [9]. Indeed, this classification paradigm allows for a total
transparency when indicating how a given output is inferred from
the input variables, e.g., if the inference is carried out through a
single “winner” rule, the local explanation of the query instance
is made straightforward.

Focusing on Big Data analytics, FRBCSs also show excellent
properties for addressing complex applications [10]–[12]. Most
of the proposed models in the specialized literature tried to
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adapt the sequential learning algorithms such as the Chi et
al. [13] through a Map-Reduce paradigm. Among these, Chi-
BigData [14] was the first attempt, which was also extended in
several different studies [15], [16]. More recently, an associative
fuzzy classifier, named CFM-BD [17], was developed showing
a robust predictive performance with respect to more complex
algorithms such as fuzzy decision trees [18]. Finally, the authors
of this current paper presented a novel scalable fuzzy classifier
for Big Data, known as Chi-BD-DRF, which complements the
Chi-based fuzzy Big Data learning by adding what we noted
as “dynamic rule filtering (DRF)” approach for the sake of
simplification of the rule set [19].

These previously developed Big Data FRBCSs are involving
with some intrinsic challenges. They are mostly computationally
intensive. Even if they can come up with scalable solutions, they
may be complex in terms of their Data Base (DB) or Rule Base
(RB). In the case of DB, employing high number of variables
as well as high number of granularities not only increase the
number of generated rules but also result in longer rules that
are conceptually difficult for human beings to handle. In the
case of a rule set, some designs lead to obtaining an excessive
number of rules, whereas many of which may be so specific
belonging to the nondense areas or outliers. Another challenge is
related to the rules’ weights, where the adaptation of the classical
approaches via several iterations over all data samples is not
practical for the Big Data scenarios. On the other perspective
to obtain a competitive predictive performance, some methods
like CFM-BD [17], apply a preprocessing transformation that
is not straightforwardly interpretable. In order to address these
challenges, the fusion of association rule mining (ARM) con-
cepts and FRBCSs can be taken into account to provide efficient
measures and develop robust yet scalable solutions specifically
for Big Data scenarios.

In this study, we propose an interpretable fuzzy classifier
for Big Data, noted as IFC-BD, a novel fuzzy classifier that is
designed under the umbrella of XAI and ensuring scalability
constrains. IFC-BD aims at learning a compact yet accurate
FRBCS containing less number of short rules. Additionally, it
provides a confident and reliable RB based on a lower granu-
larity, i.e., a fewer number of fuzzy sets per variable that are
more comprehensible and manageable by the practitioner. It is
also remarkable that IFC-BD preserves the original semantics of
the linguistic fuzzy labels. All these objectives assist to provide
explainable fuzzy models easing the translation from machine
learning (ML) models to human cognition and guaranteeing
practical AI systems.

IFC-BD is developed under Apache Spark [20], and it is com-
posed of three stages: initial rule learning, rule generalization,
and rule selection. In the first stage, initial rules are learned by
employing our former Chi-BD-DRF methodology [19]. In the
second stage, the focus is on compacting the RB in terms of rule
length. Finally, in the third stage, the number of final rules is
controlled by a heuristic approach. Along the generalization pro-
cess, a fast and accurate conflict resolution method is presented
using an estimated rule weight. It avoids using crisp measures in
fuzzy environments, capturing all the power of fuzzy modeling

but taking into account the scalability issue that is mandatory
for Big Data applications.

The main novelties of this current approach are listed below.
1) A DRF scheme to focus on the high density areas of the

problem, for the sake of simplifying the baseline fuzzy
classification model.

2) A rule learning enhancement of the fuzzy rule set for
obtaining more general and interpretable rules.

3) A heuristic rule selection mechanism to boost the global
interpretability of the system by keeping the most influ-
ential rules.

The capabilities of the IFC-BD algorithm were validated
using nine big classification datasets with different numbers of
variables and samples. IFC-BD was compared with the current
state-of-the-art fuzzy classifier for Big Data, CFM-BD [17], and
the baseline Chi-BD-DRF [19]. Several statistical tests were
also conducted to provide stronger support for the findings
extracted throughout the analysis. The obtained results revealed
that IFC-BD could efficiently generate more compact RBs and
meaningful DBs, improving the explainability of the FRBCSs
without hindering accuracy or running time.

The rest of this article is organized as follows. Section II
presents the fundamental concepts and frameworks employed
in this study, including some backgrounds of FRBCSs, XAI,
and Big Data environments. Section III introduces the pro-
posed IFC-BD algorithm, detailing the three stages from ini-
tial rule generation to final rule selection. Section IV includes
the experimental analysis, contrasting IFC-BD to the state-
of-the-art Big Data fuzzy classifiers from different aspects of
accuracy and interpretability. Finally, Section V concludes this
article.

II. PRELIMINARIES: FRBCSS FOR EXPLAINABLE ARTIFICIAL

INTELLIGENCE AND BIG DATA

Throughout this section, the fundamental concepts and frame-
works employed in this contribution are described. At first, the
basics of the FRBCSs besides the used symbols and notations
are reviewed (see Section II-A). Then, we discuss some details
of XAI and its importance in nowadays research works (see
Section II-B). Finally, we briefly introduce the characteristics
and technical solutions related to the Big Data environments
(see Section II-C).

A. Components and Structure of FRBCSs

Suppose that we have dataset D with n input variables,
m class labels, and |D| data samples in the form of Xi =
(x1

i , x
2
i , . . ., x

n
i ), where i = 1, . . ., |D|, and Xi belongs to class

ci ∈ C = {c1, . . ., cm}. This dataset can be employed as the
base of different rule learning algorithms to generate fuzzy rules
in the following structure:

Rulej : If x1 is A1
j and . . . and xn is An

j ,

Then class is cj : RWj (1)
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where Ak
j is the linguistic variable corresponding to the dimen-

sion k = 1, 2, . . ., n, and cj and RWj are the class label and
the weight of this rule (RW), respectively. This rule can also be
represented as a fuzzy association rule as follows:

Rj : Aj → cj : RWj ; Aj =
{
A1

j , . . ., A
n
j

}
(2)

where Aj is a set containing all the antecedents and cj is the
consequence part of this rule. In the area of ARM, two criteria
are commonly used to quantify the interestingness of the rules,
namely confidence and support. Whereas the former measures
the frequency of the occurrence of a rule, the latter evaluates the
strength or reliability of the rules [21]. Formally, confidence of
rule Rj is computed as follows:

Conf(Rj) =
σ(Aj , cj)

σ(Aj)
(3)

where σ(Aj , cj) counts the number of rules present in the RB,
having the structure exactly composed of Aj and cj , and σ(Aj)
counts the number of rules whose antecedents are equivalent to
the jth rule. Similarly, support of this rule is defined as follows:

Supp(Rj) =
σ(Aj , cj)

|D| (4)

where σ(Aj , cj) counts how many rules with the structure
equivalent ofRj are present in the RB, and |D| shows the number
of available examples. These measures present crisp support
and confidence that are differentiated from the original fuzzy
values by considering matching degree of 1 for the covering
examples [22]. This consideration results in computationally
efficient measures, well-suited for Big Data applications. For
the sake of simplicity, we look at the support values at the scale
of dataset D, i.e., Supp(Rj) = σ(Aj , cj).

After generating an FRBCS, an inference module is needed
to get new predictions from the learned model. To this end, a
fuzzy reasoning method is applied. Among different alternatives,
the one that provides a higher degree of explainability is the
winning rule scheme [23], for which the rule with the highest
matching degree is the one that sets the final class label, which
is determined as follows:

Ro = arg max
Rj∈RB

{
μAj

(Xi) · RW j

}
(5)

where μAj
(Xi) is the matching degree of the new example (Xi)

with rule Rj , and it is defined as follows:

μAj
(Xi) =

n∏
k=1

μAk
j
(xk

i ) (6)

whereμAk
j
(xk

i ) is the membership degree of the input valuexk
i in

fuzzy setAk
j . As was shown in (6), the product t-norm is selected

as the default aggregation function in all the computations for
the sake of simplicity.

B. Capabilities of Fuzzy Modeling for Promoting XAI Systems

AI methods, especially ML models, are increasingly applied
to solve complex and computational problems of human life.
They are establishing intelligent systems perceiving, learning,

deciding, and operating almost without human intervention.
In such a situation where these intelligent systems are highly
employed in critical aspects of our lives like medicine, law,
finances, self-driving cars, robotic assistants, and so on. Un-
derstanding and explaining their internal logic finds a significant
importance [3], as it helps human users to trust sincerely, manage
effectively, avoid biases, evaluate decisions, and provide more
robust ML models. All these objectives are nowadays following
in the context of XAI [4].

Some ML models like deep neural networks are black boxes
in which their inner mechanism is either basically unknown
to the users or it is known but totally difficult to interpret
by human recognition. Although, there are some approaches
to alleviate this crucial weakness [24], [25], the inherently
interpretable models like rule-based systems are more reliable
options that must be considered to replace black box models if
possible [9]. These systems are straightforward ways to fulfill
two important perspectives of ML models, namely accuracy and
interpretability. Specifically, rule-based systems provide a good
representation of the phenomena under study in the form of
simple interpretable rules, leading to a direct understanding of
the prediction process [5].

Semantic knowledge can be boosted in rule-based systems
via linguistic fuzzy systems [7], leading to a more human-
compatible representation style of the model. As pointed out,
the use of linguistic terms is a natural knowledge representation,
facilitating the system interpretability of and human interactions
as well as modeling in the imprecise domains. In this context,
the RB compactness and the semantic comprehensibility of the
DB must be further emphasized. The former can be taken into
account regarding the coverage and the specificity of the rules.
Indeed, high number of rules with a limited coverage are difficult
to be interpreted. Similarly, too specific rules with a high number
of antecedents increase the system complexity and are in direct
contradiction to the interpretability criteria [8]. In the case of
comprehensibility of the DB, a lower number of fuzzy sets and
homogeneous fuzzy sets are desirable. These all make the whole
DB more meaningful and convenient to be understood by the
human cognition [26].

C. Big Data Environments, Tools, and Frameworks

Due to the special characteristics of Big Data environments,
data scientists are nowadays putting their effort into providing
scalable and fault-tolerant algorithms executing in tolerable
times [27]. In this regard, distributed computing frameworks
offer new opportunities. These frameworks are able to split input
data into several partitions and spread them across a cluster of
nodes to be processed in parallel [28].

Map-Reduce execution methodology, mainly provided by
the Hadoop ecosystem, is one of the most commonly used
distributed approaches [2]. A Map-Reduce job is comprised
of two functions, Map and Reduce, applying on a set of
distributed data partitions provided by Hadoop distributed
file system (HDFS). Whereas the Map function is devoted to
execute the working algorithm on local partitions, the Reduce
function is in charge of combining Maps results. These
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Fig. 1. General schema of IFC-BD: An illustration of the RB evolution.

functions are highly iterative and interactive when performing
in a parallel mode, needing lots of data replication, serialization,
and cost-extensive I/O operations. These all cause substantial
running-time overhead. Apache Spark resolves these problems
using memory-based operations, where the computations are
carried out in memory over the local partitions.

Spark has also other favorable features, making it a pop-
ular and powerful framework in Big Data processes. Among
others, Lazy evaluation using immutable resilient distributed
datasets (RDD), multiple programming languages, streaming,
and real-time processing, compatibility with Hadoop can be
remarked [20].

Spark has been also supporting practical ML tasks by pro-
viding MLlib library [29]. Particularly, pipeline API facilitates
implementation of multistage algorithm so that each stage can
be either a Transformer or an Estimator executing on the
structured data asDataFrames. The use of pipeline tools helps
to design complex ML algorithms in a simple and transparent
yet a robust way. It is a direct and straightforward solution
to replicate and distribute the same operations across several
executing nodes in Big Data environments [19].

III. IFC-BD PROPOSAL: INTERPRETABLE FUZZY

CLASSIFIER FOR BIG DATA

This section describes the working procedure of the IFC-BD
algorithm to learn a compact and efficient fuzzy classifier from
big datasets. This algorithm is developed with respect to the
priorities of XAI, especially in terms of interpretability at the
level of DB and RB, as previously discussed in Section II-B.

For the sake of completeness, the workflow of IFC-BD is
illustrated in Fig. 1. As it can be observed, it starts by creating
a baseline RB that is then optimized by considering three key
design elements. These correspond to the three depicted stages
that ensure obtaining both high confidence rules that promote the
predictive performance, and a highly interpretable classification
system, as described below.

1) In the first stage (see Section III-A), all the possible rules
of the input space are generated in a fast procedure.

2) Although these rules are learned from the dense areas,
they are too specific that each covers a limited region.
Hence, these rules are generalized in the second stage (see
Section III-B), leading to shorter antecedent rules that are
easier to be handled by the human user.

3) Finally, in the third stage (see Section III-C), the size of
RB is reduced by selecting the best-performing rules.

A. Stage 1: Generation of Initial Fuzzy Rules

This stage aims at building an initial RB in a simple and
scalable way. To this end, we use the idea of our original
design in the Chi-BD-DRF algorithm [19], in which all possible
rules covering an acceptable number of examples are generated
through the three steps of fuzzy partitioning, initial rule learning,
and dynamic rule filtering. In what follows, all these steps are
described in detail.

1) Fuzzy Partitioning: All input values must be converted to
fuzzy values to be usable in the fuzzy frameworks. To this end,
we apply uniform fuzzy partitioning and triangular membership
functions in which a set of homogeneous fuzzy labels is defined
for each variable. By doing so, the input spaces are split into
several cells like a grid environment, and each example falls
into one of the formed cells. Depending on the support of the
training examples within a given cell that cell can be a dense or
a sparse area. Our interest lies in the former because these might
be considered to store the actual knowledge of a Big Data case
study. These cells are the key elements to design the distributed
operations of our method over a large amount of data examples.
That is, each cell operates as an independent data-processing
unit where the learning operations are carried in and aggregated
from.

2) Initial Rule Learning: This step is meant to learn one
single fuzzy rule from every cell containing at least one ex-
ample. In addition, simultaneously to the learning process, three
different measures, namely confidence, support, and prototype,
are computed for each rule. These measures are intended to
aggregate and represent the information captured from all the
examples available in a cell. They are computed in a scalable
and efficient way to be employed in the second and third stages
of IFC-BD.

The whole rule learning process is developed through a Map
and aReduce function. Along with theMapoperation, Chi et al.
rule learning algorithm [13] is employed to generate all the initial
rules. This function generates one rule for each data example,
using the fuzzy labels having maximum membership degrees, in
parallel and without computation overhead. On the other hand,
the Reduce function is meant to aggregate the information,
solve the possible conflicts, and determine the single final rule
of a cell.
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The examples contained in a certain cell may belong to several
classes, creating the same-antecedent different-consequent rules
in that cell. These rules are in a clear conflict that must be
resolved along the Reduce process. For this purpose, we utilize
the confidence metric to evaluate conflicting rules. This is a
straightforward way to quantify the rules’ strength, as it refers
to “how sure” is a rule with respect to its consequent value (class
label). In this way, that rule which has the highest confidence is
considered to be the most reliable one and is chosen as the final
rule of that cell in conflict. Due to the need for scalability in the
Big Data context, the values of rules’ confidence and support
are obtained using the computationally efficient schemes shown
in (3) and (4).

For each generated rule, the values of rule’s weight, as well as
rule’s prototype, are similarly computed to supply the next stages
of IFC-BD. Regarding the RWs, those procedures developed
based on iterative processing of all the data examples will be
completely inefficient in the face of large amounts of data, and
therefore, they should be avoided in the Big Data algorithms. For
this reason, we propose to take advantage of the rule’s confidence
(3) as the RW too, i.e., the RW of the jth rule is computed as
follows:

RWj = Conf(Rj). (7)

This RW is an approximate value showing the reliability of a
certain rule in a rule set. It does not directly deal with the data
samples and consequently reduces the computation time than
the fuzzy confidence or the other RW heuristics [30].

Finally, the prototype of each rule is computed using the
arithmetic mean of its corresponding examples. The idea behind
this is to fuse the supporting examples of each rule and provid-
ing a measure to represent those examples approximately. The
prototype of the jth rule is Prj = (p1j , . . ., p

n
j ), a vector with the

same dimension as the input examples. Each component of this
prototype is calculated as follows [31]:

pfj =

∑|Dj |
k=1 x

f
k

|Dj | : f = 1, . . ., n (8)

where Dj = {X1, . . ., X|Dj |}, and it contains those examples
from dataset D that generate the jth rule. It is clear that these
examples and this rule belong to the same cell.

These measures are computed alongside the Map operation
over the initial RB, where there may be several repetitive and
conflicting rules. Same structure rules might be produced by
different executing nodes (over different chunks of data) and the
values associated with the measures are partial, needing to be
globally aggregated through the Reduce function.

The support and confidence values are globally aggregated
by simple summations over all the same structure rules, where
technically the counts for the number of covered examples and
their class labels can be easily obtained. Referring to this infor-
mation, the values of RWs and prototypes are straightforwardly
computable. The former is directly equal to the confidence of
each rule and the latter is obtained using the actual arithmetic
mean of all the corresponding examples of each rule.

3) DRF: In Big Data scenarios, where the number of cells
may increase exponentially, the aforementioned rule learning
method can lead to obtaining high number of fuzzy rules. As
such, many of these rules are likely to be related to the outliers
or non-dense areas. They may pose several challenges to the
system behavior, e.g. the computation overheads, increasing
running times, loss of the interpretability, or even hindering
the predictive performance, among others. We consider several
special arrangements to overcome these problems in this study.
The first effort is applying a DRF approach [19] to get rid of low
support rules.

DRF evaluates the interestingness of the rules with respect to
the density of their covering examples. In this regard, the cell
density and the measure of support, which calculates the number
of examples leading to the creation of each rule, are focused as
two interrelated concepts. That is, low support rules are related to
the low dense areas and are not truly vital to model the problem
under study. Therefore, by determining the minimum support
requirements, we can discover these rules and remove them from
the RB. To this end, DRF defines the threshold of MinSupp.

MinSupp is indeed the minimum number of required exam-
ples to consider a cell as a dense area. This value is obtained
based on the pigeon hole principle and determines that those
rules supported by less than average of examples must be filtered
and eliminated from the RB. MinSupp is defined for dataset D
as follows:

MinSupp = � |D| − 1

|RB| � (9)

where |D| is the total number of examples, and |RB| is the
size of the RB created through the initial rule learning step (see
Section III-A2). This RB is examined using MinSupp so that
those rules do not satisfy MinSupp are eliminated and RBDRF

is obtained as follows:

RBDRF = {Ri ∈ RB | Supp (Ri) > MinSupp} (10)

where Supp(Ri) is the support of the ith rule as (4). The premise
of this threshold is to ensure that several rules will remain after
applying the DRF procedure, even in the worst scenario where
all the examples have been evenly divided within the cells.
Furthermore, this threshold is a dynamic/adaptive one defined
for each case study, avoiding fixed and user-defined values that
usually are found by trial and error and are not practical and
efficient in the Big Data application.

B. Stage 2: Rule Generalization

The rules generated in the previous stage compose a valid and
probably accurate FRBCS. However, we must acknowledge that
due to the contribution of all the input dimensions in the structure
of rules, the length of these rules is longer than ideal and they
are quite specific. In other words, the cell corresponding to each
rule is the intersection of all the dimensions, leading to covering
and explaining a very small region of the input space. This
happens while many of the current rules have a lot in common in
their antecedent part. Focusing on such similarities, the specific
rules can be horizontally summarized to provide rules covering
more general (wider) areas of the input space. In this context, a
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generalization process is presented along this section, assisting
in a fewer number of low-length rules and promoting the whole
interpretability of the FRBCS.

The working procedure of the generalization stage is mainly
inspired by the concepts of ARM and presented in the three steps.
First, all the general rules are derived from the available specific
rules through an ARM-learning scheme. Then, the obtained
general rules are aggregated and the possible rules’ conflicts
are modified using a novel estimated fuzzy RW. Finally, some
of the low-confident rules are discarded for the sake of further
interpretability improvement. In the following, these steps are
detailed.

1) ARM-Learning: Every single specific rule can produce
several general rules by mapping to a lower-dimensional
space, i.e., if an n-dimensional rule is transformed into the
l-dimensional space (l <= n), several general rules with the
length of l will be obtained. Formally, given the specific rule Rj

with the structure similar to (2), the general rules are made as
follows:

RBARM = {Ri | ∀Rj ∈ RBDRF , ci = cj ,

Ai ⊆ Aj , |Ai| = l : l = 1, . . .,MaxLen} (11)

where the antecedent set Aj is considered as the itemset and
all of its subsets having cardinality l are extracted to form the
general rules like Ri. These rules are made using the same
class label of Rj , and create the obtained RB of this step as
RBARM. Regarding the priorities of XAI in the fuzzy modeling
(see Section II-B), which we are looking for the shorter rules, a
user-defined threshold as MaxLen <= n is applied in this step.
MaxLen specifies the maximum cardinality of the antecedent
subset and is equivalent to the maximum length of the general
rules. To accommodate some similar studies [17], [22] as well
as the empirical trials, MaxLen has been set to 3 in this work.
This limitation indirectly assists to obtain less number of rules,
as well.

After mapping all the specific rules, the obtained general
rules must be aggregated (Reduced) and their corresponding
measures including support and prototype be updated for the
subsequent refinements and/or improvements, if necessary. In
the actual circumstances, those specific rules that include the
same antecedent labels can produce equivalent general rules.
Indeed, they are the producer origins of a certain general rule.
In these cases, the measures must be updated considering the
values of all the origins, e.g., the support value of an obtained
general rule is recomputed by adding the support values of
its origins. Additionally, since we have the number of corre-
sponding examples of each specific rule (support) as well as
their arithmetic mean [see (8)], the actual prototype of all the
covering examples related to each general rule is calculable.
According to these statements, no approximation is applied
in updating the information of the general rules, helping to
provide accurate measures and consequently the robustness of
the proposed method.

To better understand the abovementioned descriptions, an
illustrative example has been provided in Table I. Suppose that
three specific rules, namely R1, R2, and R3 are available in

TABLE I
SIMPLE EXAMPLE OF THE GENERALIZATION PROCESS AND DIRECT

SUPPORT COMPUTATION

Fig. 2. Rules’ conflict schema.

RBDRF. All these rules have class label c1. An ARM-learning
process withMaxLen = 1 is applied on these three-dimensional
rules. The top rows of Table I describe the specific rules and the
bottom ones indicate the final obtained general rules, each in-
dexed by its origin(s). As can be seen, five new one-dimensional
general rules are extracted from the three, three-dimensional
ones. The support values of these rules are computed using the
summation of the origin values, shown in the last column. Since
the other information of these rules depends on the distribution
of data examples, we have not included them, here. This example
clarifies that the ARM-learning process is indeed a kind of
unification of those cells containing similar information.

2) Rules’ Conflict Modification: Imagine that in the above-
mentioned example, we have another specific rule as R4 :
{A2, A2, A2} → c2. IfMaxLen is considered 2, this rule makes
a general rule as {A2, A2,−} → c2 that conflicts with the rule
obtained by R1. As Fig. 2 shows, both of these rules belong to
the same cell while having different class labels.

Such a situation may occur repeatedly in many cells of the
input space, wherein a conflict resolution strategy must be
applied to find out the best rule. However, since in this step,
rules are so general and cover a very larger amount of examples,
the crisp measures of Section II-A are not profitable here and
the distribution of examples must be taken into account. Indeed,
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with the standard support, the actual power of the “incremen-
tal”/“variable” degree of coverage of fuzzy variables is lost,
and therefore, the intrinsic advantages especially related to the
overlapping among rules are also lost.

In this context, some methods like penalized certainty factor
(PCF) [30] are available in the literature to exploit information
of all the examples and present fuzzy measures such as RW.
However, these methods are so computational to be employed
in all the stages of a Big Data algorithm. As a solution to
these problems, we come up with a procedure that is able to
approximate the values in a very efficient and accurate way, i.e.,
an estimated fuzzy RW based on the idea of PCF is proposed
by following the next formulation. This RW can be employed in
the Big Data analytics frameworks to resolve the rules’ conflict
in a fast and reliable way.

Suppose two obtained general rules as follows:{
Ri : Ai → ci : Pri,RW

e
i

Rj : Aj → cj : Prj ,RW
e
j

(12)

in which Ai = Aj and ci �= cj , indicating these rules are in
conflict. According to these information, the weight of rule i
is estimated as follows:

RWe
i =

matchClassei −matchNotClassei
matchClassei +matchNotClassei

(13)

where matchClassei is the estimated degree of matching be-
tween rule i and all the examples whose class labels are consis-
tent with this particular rule. Due to the fact that the prototypes
of the conflicting rules represent the examples of the conflicting
classes, they are utilized to avoid iterating over all the examples
and costly computations. That is, the prototype of rule i (Pri)
is employed as the representative of the consistent examples to
compute matchClassei as follows:

matchClassei = μAi
(Pri) . (14)

Similarly, matchNotClassei is the same measure but for in-
consistent examples, namely those examples that are not in the
class of rule i. This measure is estimated with the prototype
of the other class1 (Prj) as the representative of inconsistent
examples as follows:

matchNotClassei = μAi
(Prj) . (15)

We must recall that the matching degree of an exam-
ple/prototype with a typical rule is computed using (6). In the
case of general rules, those antecedents that are not present
in the rule’s structure, are marked as do not care, having the
membership value of 1.

Finally, the estimated RWs of the conflicting rules are consid-
ered to assign the class consequent to the one with the highest
value. In the case of a tie, the rule related to the majority class
is chosen.

1In the case of multiclass problems, this value is estimated using a summation
over the prototypes of all the remaining classes.

3) Rule Base Reduction: Up to this step, the obtained RB
contains many general rules, which much probably overlap
among each other. This implies the existence of redundant
and/or ineffective rules, especially due to the smooth coverage
of the fuzzy representation. Therefore, we must focus on the
most reliable rules to be promoted in the RB, guaranteeing
the predictive ability of the fuzzy classifier, while boosting the
interpretability properties. For this matter and also following the
efforts toward the RB refinement, a filtering process is carried
out in this step, aiming at discarding less confident rules.

To do so, all the rules are first categorized with respect to their
class labels. They are then sorted in the descending order of their
confidence values, and finally, the top α% of each class are only
kept in the RB and the others are discarded.

C. Stage 3: Heuristic Rule Selection

As the last stage of IFC-BD, a rule selection process is carried
out to improve the compactness of the RB from the vertical
view. This process is heuristically developed using a novel
performance measure introducing for every single rule.

A given rule is considered P% well-performing if it can
properly classify P% of its own covering examples. P is indeed
a criterion measuring the rules’ performance with respect to the
available training examples. It is defined for rule i as follows:

P (Ri) =
σwell−classified(i)

σcovered(i)
× 100 (16)

where σwell−classified(i) is the number of examples that are well
classified by rule i [see (5)], and σcovered(i) is the number of
examples that are generally covered by this rule. The latter
includes both well-classified and miss-classified examples [see
(6)].

When the RB of the previous stage (RBGeneral) obtained, the
rules are examined in a classwise way and those satisfying a
minimum performance threshold are selected to be in the final
RB (RBIFC):

RBIFC = {Ri ∈ RBGeneral |P (Ri) > β

∀ck ∈ C, ci = ck}
(17)

in which β is a user-defined threshold to provide different trade-
offs between model performance and system interpretability. In
the beginning, it sets equally for all the classes. However, if it
would be too high for a certain class so that all the rules of that
class are removed, it is automatically decreased by the rate of
0.1, until the matter is resolved. In this way, it is ensured that the
final RB is constructed with the top well-performing rules from
every single class present in the initial dataset.

IV. EXPERIMENTAL STUDY

Along this section, the empirical experiments conducted to
assess the performance of IFC-BD are detailed. At first, the ex-
perimental framework including the datasets used, the evaluation
criteria, the cluster-server configuration, and the methods and
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TABLE II
PROPERTIES OF THE USED DATASETS

parameter setup are described in Section IV-A. Next, the perfor-
mance of IFC-BD is compared with several state-of-the-art Big
Data fuzzy classifiers from different perspectives of accuracy
and complexity in Section IV-B. Finally, the running times of the
algorithms are provided in Section IV-C. We have also provided
some additional evaluations with respect to the scalability issues
in the supplementary material accompanying this article.

A. Experimental Framework

In this study, we employed nine Big Data classification
problems with different numbers of examples and input vari-
ables as indicated in Table II. All the datasets were selected
from the UCI2 [32] and OpenML3 [33] dataset repositories.
Although these datasets are for binary classification problems,
the proposed algorithm is a general solution and can be easily
adapted to be applied in multiclass problems. The training and
test data of the experiments were generated using the fivefold
cross-validation mechanism, and therefore, final results of each
method were computed using the average of five trails perform-
ing on the five obtained folds.

The proposed method was developed using Spark framework
and its ML APIs (MLlib), written in Scala language. Technically,
the working procedure of IFC-BD was implemented as an ML
pipeline so that different stages of the algorithm were matched
to the pipeline stages either a Transformer or an Estimator [19],
[29]. Furthermore, the training and test data were structured
as the Spark DataFrames and fed into the pipeline to learn
or classify data examples distributively. On the other hand, in
order to obtain a straightforward distributed system, IFC-BD
considered the entire input space as a cell-based area and devel-
oped the working procedures around those cells. The cell-based
operations were a direct and straightforward way to replicate and
distribute the same functions across several executing nodes to
be performed over the DataFrame’s partitions. In this way, it was
also linear to aggregate the partial results of each cell. For the
sake of having an efficient learning algorithm and reducing the
network communication costs, the RBs were broadcasted in the
intermediate steps to be shared across the executing nodes, if
necessary.

2[Online]. Available: http://archive.ics.uci.edu/ml
3[Online]. Available: https://www.openml.org/search?type=data

Regarding the execution platform, the models were run on a
cluster of nodes, comprising 14 slaves and one master all having
the following configuration:
� Processor: Intel Xeon CPU E5645 @ (2.40 GHz) x2;
� Cores: 12 threads (6 cores);
� Main memory: 96 GB;
� Cache: 12 MB;
� Network: 40 Gb/s Infiniband;
� Operative System: CentOS 6.9;
� HDFS: Version 2.6.0-CDH5.8.0.
In the case of evaluation criteria, two perspectives of inter-

pretability and accuracy are considered in the following tables.
The three measures of#Rules,RL, andTRL are used to analyze
the interpretability of the fuzzy systems. In a final generated
RB, #Rules shows the number of available rules and RL is the
average length of these rules. Moreover, TRL is the total length
of all the rules that is calculated by multiplication of #Rules,
RL, and FS, where FS is the average number of fuzzy sets
per variable. Regarding the accuracy perspective, the measure
of ACC is calculated to assess the performance of different
classifiers as follows:

ACC =
TP + TN

TP + FP + TN + FN
(18)

where TP,TN,FP, and FN are the values of true positive, true
negative, false positive, and false negative present in the confu-
sion matrix, respectively, [34].

Throughout the experiments of IFC-BD, we considered three
fuzzy labels per variable to ensure generating as few as possible
rules in the initial stage as well as preserving the semantic
comprehensibility at the level of DB. Furthermore, the values
of confidence threshold α (see Section III-B3) and performance
threshold β [see (17)] were set at 25% and 70%, respectively.
However, for the sake of completeness, we have provided some
additional evaluations by varying these two parameters in the
supplementary material.

In the case of comparing methods, Chi-BD-DRF [19] and
CFM-BD [17] were employed in the experiments. Chi-BD-DRF
is the baseline contribution of this study, focusing on generating
a fast yet accurate FRBCS, as described in Section III-A. On
the other hand, CFM-BD is the current state-of-the-art fuzzy
classifier recently proposed for Big Data problems. Because of
the training times and avoiding the CHC evolutionary algorithm
that is computationally highly expensive in the case of big
datasets, we considered the lightweight version of this algorithm
to benefit the models in tolerable execution times and performing
the comparisons of this section.

In all the versions of CFM-BD, while γ was kept at two,4

the other parameters were assigned as suggested in the original
paper [17]. Regarding the number of fuzzy sets used per variable,
it was set at 3 and 5, in which their corresponding models
were denoted as CFM-BD3 and CFM-BD5, respectively. While
the former was determined similar to the proposed method
with the aim of providing a fairer framework (especially for

4It provides the best configuration of CFM-BD with respect to the inter-
pretability perspective, although, low values of γ might result in a decrease of
the classification performance.
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TABLE III
RESULTS OF BOTH PERSPECTIVES

the complexity comparisons), the latter was set following the
original method.

In order to provide more comprehensive comparisons, several
statistical tests including Friedman’s and Wilcoxon’s have been
utilized in this study [35]. Friedman’s test is employed to rank
the algorithms considering a certain criterion and all the datasets.
This test first evaluates the equality hypothesis (H0) of all the
algorithms, which can be accepted or rejected. On the other
hand, Wilcoxon’s test compares two specific algorithms versus
each other. It calculates the measures of p-value, R+, and R−

and decides about the acceptance/rejection of the hypothesis
as well as the differences between the intended algorithms.
These assessments are performed using the significance level
parameter (α) that set at 0.1 in all the following tests of this
study.

B. Evaluations: Interpretability-Accuracy Tradeoffs

Throughout this section, the capabilities of different models in
terms of system interpretability and discrimination performance
are analyzed. To this end, the measures of the number of rules
(#Rules), the average rule length (RL), and the total rule length
(TRL) are considered from the interpretability perspective.
Whereas the former is meant to evaluate the RB compactness, the
latter assesses the overall complexity considering both RB and
DB. On the other perspective, the performance of each model
is estimated using ACC as (18). The values of these measures
have been presented in Table III, where one column has been
allocated to each algorithm and the best value of each measure
has been highlighted in bold for every single dataset.

Starting from the complexity evaluation, it can be observed
that the values of #Rules and TRL in Chi-BD-DRF are consid-
erably higher than the other methods. Indeed, this method sac-
rifices the system interpretability by using a very large number
of long rules, leading to a complex system cognitively arduous
to be interpreted. Thus, the main comparison of this perspective
is between IFC-BD and CFM-BD.

According to Table III, IFC-BD achieved the lowest #Rules
values in the majority of the datasets, namely 7 out of 9, and there
are only two datasets (BNG-h and higgs) in which CFM-BD3

obtained slightly better values, but apparently with no significant

TABLE IV
RESULTS OF RANKING BY FRIEDMAN’S TEST FOR THE COMPLEXITY MEASURES

TABLE V
RESULTS OF WILCOXON’S TEST FOR THE COMPLEXITY MEASURES

differences. The success of IFC-BD is highlighted when a
similar functionality is observed for the measure of TRL, as
well. Given these results as well as the overall averages indicated
in the last row, it is argued that IFC-BD most likely fulfills the
terms of interpretability better than the other models. To pursue
this finding, we performed Friedman’s test for #Rules and TRL.

Table IV provides the results of this test, thereby IFC-BD
attained the top-ranking in both complexity criteria, followed by
the CFM-BD3, CFM-BD5, and Chi-BD-DRF. The rank values
of this table imply that the differences between IFC-BD and the
third- and the fourth-ranked methods are truly high. But, the level
of difference between IFC-BD and the second method (CFM-
BD3) should be investigated. For this purpose, we performed
Wilcoxon’s test that compared IFC-BD against CFM-BD3 on
#Rules and TRL. Results of these tests, provided in Table V,
reveal that both null hypotheses are rejected in favor of IFC-BD,
meaning that this method is considerably superior to CFM-BD3

in both complexity criteria. According to all these results, IFC-
BD could significantly improve the RB compactness and the
DB comprehensibility, leading to more simple and explainable
systems, among all.
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TABLE VI
RESULTS OF RANKING BY FRIEDMAN’S TEST FOR ACCURACY

In the case of accuracy, Table III indicates that the values
are close to each other in the majority of the datasets, i.e., in
some cases like BNG-Au and hyp, the ACC differences are
less than 2%. However, the best values are mostly related to
Chi-BD-DRF and the highest average belongs to CFM-BD5,
although with a very low variant diversity, around 1% in the
worst case. Therefore, it seems that all the methods perform
similarly well but Chi-BD-DRF and CFM-BD5 operate slightly
better than the others. To substantiate this finding, we carried
out a Friedman’s test as Table VI. Given the results of this
test, the null hypothesis related to the equality of all the models
is not rejected, implying that these models are not statistically
different in the accuracy perspective. The rank values of Table VI
implicitly confirm this issue, where the values are in close
proximity to each other.5 Nevertheless, we have to take this
into account Chi-BD-DRF applies many numbers of long rules
to yield the best ACC ranking and CFM-BD5 requires a more
complex system composed of more fuzzy sets to achieve this
classification performance.

Despite the abovementioned results, it is noteworthy that
CFM-BD has an accuracy-oriented preprocessing stage which
transforms the input values and changes the shape of fuzzy
sets. These transformations are not in the direction of XAI
and influence the semantic of linguistic fuzzy labels and conse-
quently linguistic fuzzy rules. On the other hand, as its authors
stated [17], this stage has an important role in the efficiency
and robustness of the model so that by omitting this stage, the
accuracy values would probably decrease.

To summarize, Fig. 3 illustrates the interpretability-accuracy
tradeoff provided by the average results of the main comparing
methods, in which we have shown TRL, as a sign of overall
complexity, versus ACC. As depicted, IFC-BD stands out from
the rest, obtaining by far the highest interpretability level with a
very similar accuracy performance. Summing up, practitioners
must generally regard to the models’ tradeoffs, and due to the
competitive predictive performances of these models and the
actual differences in the interpretability issues, they must base
the selection of the final solutions on how easily understandable
they are, as evaluated at the beginning of this section, allowing
to provide a proper explanation for the phenomena under study.

5The system performance has also been evaluated using the geometric mean
(GM) criterion in the supplementary material, which confirms the results are
comparable and good enough considering all the class labels as well.

Fig. 3. Models’ tradeoff: TRL versus ACC.

TABLE VII
RESULTS OF RUNNING TIME (HH:MM:SS)

C. Running Times

Table VII presents the execution times of all the algorithms.
These times are related to the whole learning and classifying
procedures. In the case of IFC-BD, the maximum times are
consumed by the covtype problems, where the number of fea-
tures is considerably high, and both more initial specific rules
and general rules are generated. In general, the IFC-BD running
times are highly dependent on the number of general rules that
are passed to the rule selection stage. Indeed, by setting an
appropriate α threshold and removing most of the less confident
rules in advance (see Section III-B3), the running times would be
perfectly tolerable, e.g., for higgs, a truly big dataset, the results
were obtained in less than 10 min, in contrast to the remaining
methods that need up to four times additional time.

The analysis of computational complexity includes two main
calculation procedures, namely initial rule learning and RW
computation. The time complexity associated with the former
is O(n/N.d), where n is the number of data samples, d is
the number of input dimensions, and N is the number of data
partitions. For the RW computation, it is O(m/N.c.p.l), where
l is the maximum length of the general rules, m is the number of
cells for a given dimension l (See 11), c is the number of class
labels, and p is the number of prototypes within a cell (refer to
Fig. 4 in the supplementary material of this article).
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V. CONCLUSION

This study proposed, IFC-BD, an interpretable FRBCS for
boosting the tenets of XAI in the Big Data scenarios. Basically,
IFC-BD generated an initial RB over a cell-based area and
attempted to compact it through the three working stages, not
only by a vertical viewpoint to achieve a limited number of rules
but also by a horizontal one to reduce the rules’ length. For the
sake of scalability, IFC-BD took advantage of an approximate
fuzzy rule weight and a heuristic rule selection method.

The effectiveness of IFC-BD was evaluated using nine differ-
ent classification datasets in terms of classification performance
and complexity measures. The experimental results and the
conducted statistical tests revealed that IFC-BD could achieve
a straightforward yet accurate fuzzy classifier composed of a
compact RB and DB. In the case of RB, obtaining less number
of short antecedent rules makes it more manageable and un-
derstandable. About DB, using less number of linguistic labels
with a straightforward transition helps to provide a semantic
knowledge similar to the human cognition. These characteristics
allow for having explainable models, which can be conveniently
interpreted by the nonexpert human users.

As future work, we intend to further investigate the internal
information provided by the fuzzy rules being discovered by
IFC-BD. Among others, the focus should be on the data den-
sity, prototypes, and other additional complexity characteristics,
which allows linking fuzzy rules with Smart Data [36], leading
to a better understanding for each case study, and promoting the
transformation of raw information into high quality knowledge.
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