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Abstract—When developing a Machine Learning model, the
consideration of explainability as an additional design driver
can improve its deployment into any application context. Given
an audience, an eXplainable Artificial Intelligence system is one
that produces details or reasons to make it’s functioning clear or
easy to understand. Among different paradigms that inherently
support these capabilities, Fuzzy Rule Based Systems are a very
accountable solution. The main issue when dealing with fuzzy
systems is to select an appropriate granularity to represent
(fuzzify) the input data. A low value may cause the generation of
too generalist rules, causing a hinder on predictive performance,
whereas a high value may lead to both overfitting and/or very
complex solutions.

To overcome this situation, we propose a novel hierarchical
fuzzy classification system based on fuzzy exception rules. To do
so, low granularity rules are first generated and their confidence
is examined. For those cases in which the fuzzy confidence is
below a quality threshold, new higher granularity rules are
created to cover the “instances in conflict” for the general rule,
which is still kept in the rule base. Experimental results show
the achievement of a compact and interpretable final rule base
while maintaining or improving the predictive performance in
comparison with the baseline fuzzy rule based classification and
hierarchical systems.

Index Terms—Explainable Artificial Intelligence (XAI), Fuzzy
Rule Based Classification Systems, Hierarchical Models, Excep-
tion Rules

I. INTRODUCTION

Nowadays, Artificial Intelligence (AI) is being the main
piece of Industry 4.0 [1]. Given this increase in the interest of
AI applications in many areas, it must be ensured that this type
of system is applied in terms of what is known as Fairness,
Accountability, Transparency, and Ethics (FATE) [2]. In fact,
there exist many critical problems in which users or experts
must avoid considering automated decision support systems
to be blindly used. For this reason, we are witnessing a clear
tendency towards embracing eXplainable AI (XAI) [3], which
bets for the use of interpretable models that are straightforward
to understand [4].
There are many alternatives to obtain Machine Learning
solutions that can easily both interpretable and explainable.
Among these, rule-based systems are a clear example, as they
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are actually close to a human-like cognition [5]. Fortunately,
we can provide an additional degree of semantic to the use of
rule-based systems by promoting a fuzzy representation in the
rules’ antecedent [6].
When facing any classification problem, Fuzzy Rule Based
Classification Systems (FRBCS) [7] are the term used in this
context. They are composed of a Knowledge Base (KB), that
contains both a Rule Base (RB) and a DataBase (DB), and
an inference engine. For the sake of generating an FRBCS,
different learning algorithms are to be applied, being one of
the widest studied one the grid-based Chi et al. approach [8],
due to its simplicity, yet good performance even for difficult
classification problems [9].
As for many different FRBCS learning algorithms, the Chi
methodology requires the user to a priori select the granularity
for the DB, i.e. the number of fuzzy labels in which every input
attribute will be represented. This has a direct implication
in both the coverage degree and the number of rules to be
generated during the training stage [10]. On the one hand,
setting a low value may cause the RB to be excessively
general, not allowing to discriminate well among different
class examples within a given cluster. On the other hand,
if the user selects a high value, this may lead to a very
complex RB that can degrade both predictive performance and
interpretability. [11].
One straightforward solution to overcome the former issue
is to consider the use of a fuzzy hierarchical approach [12].
Unlike alternative solutions on hierarchical structures for fuzzy
modeling [13], [14], that build a model based on the cascade
aggregation of “fuzzy variables”, the key idea proposed in this
research contribution is to generate an initial low granularity
FRBCS. Then, those areas of the problem that might need a
more specific description are identified, and higher granularity
rules among these data clusters are created. This solution
was initially developed in [15], where authors considered
the computation of the fuzzy confidence of the rules as an
indicator for removing the initial rule and generating new
ones with higher granularity. The hitch with this approach
was that since original low-granularity rules were removed,
an excessive number of rules were created, even for those
examples that were well-covered in the initial stage, thus
leading to a lesser interpretable model.
In this work contribution, we aim to address the problem of
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achieving an FRBCS with a good trade-off between accuracy
and interpretability from a similar yet different perspective.
Specifically, our solution is based on the concept of exception
rules [16], which are known to be specific rules that cover
low dense clusters of a given class. In the case of fuzzy rules,
this can be directly achieved by setting a high granularity
for this type of rules, while maintaining the original low
granularity ones. As such, we have named our novel approach
as Hierarchical Fuzzy Exception Rules (HFER).
We must observe that this methodology implies that there
will be areas of the problem with potential rules in conflict,
which must be solved during the inference stage. To examine
the most adequate solution, we have designed two different
alternatives based on the degree of coverage of the exception
rule, namely using an absolute or relative threshold. In this
sense, we maintain the original hierarchical nature of the ap-
proach first proposed in [15] but providing two novel important
capabilities. On the one hand, better interpretability in terms of
a more compact RB. On the other hand, better explainability
as the exceptional cases are explicitly considered.
We will analyze the good behavior of our novel HFER
approach with respect to the baseline FRBCSs and the Hi-
erarchical FRBCS (HFRBCS) [15] without rule selection. To
do so, we have selected several benchmark datasets with a
different number of instances, attributes, number of classes,
and class distribution. This way, we may have a wider under-
standing of HFER under different case studies. As the metric
of performance, we consider the standard accuracy and also
the macro F1 as it allows us to obtain an average of the result
of the predictive ability regardless of the class distribution.
To accomplish these goals, this work has been structured
as follows. In section II, we introduce some mathematical
fundamentals on FRBCS that will be the basis to define our
proposal. In section III, the novel HFER algorithm is described
in detail. In Section IV, we give the details on the experimental
framework and the results to analyze the behavior of HFER
in contrast to the baseline FRBCSs. Finally, in Section V
some concluding remarks are drawn to conclude this work
contribution.

II. FUNDAMENTALS ON FUZZY RULE BASED
CLASSIFICATION SYSTEMS

As we have already introduced, every FRBCS is composed
of two main parts, namely the KB, which in turn includes a
DB and RB, and the fuzzy reasoning method that performs
the inference procedure to label new examples.

In this section, we will introduce these main components
of FRBCS by considering a grid-based fuzzy rule learning
algorithm [8]. Therefore, we will focus on its two main stages:
(1) first, the DB definition for the fuzzy data representation
(Section II-A); (2) second, the RB construction from the
training input examples and the information of the initial DB
(Section II-B).

A. Definition of the DB

To allow a fuzzy representation of the problem, we start
by the definition of the characteristics of any dataset. To this
end, the number of attributes m, and the number of instances
n, are considered. Consequently, we can denote an instance
as a vector xp = (xp1, ..., xpm), p = 1, 2, ..., n, where xpi is
the attribute value of the i-th attribute in the p-th vector xp.
Besides, we denote the variable yp is the label of an instance
p. Hence, we define the class set C, we denote the number of
classes with the variable h and a class as cg ∈ C; g = 1, ..., h.

The DB consists of a set of K fuzzy variables that al-
lows a smoother representation from the initial crisp-valued
dataset. Having the former information, the standard structure
of membership functions, which represents a fuzzy set, is
calculated. For each fuzzy label of an attribute q we define
a membership function, µAqs ; ∀q = 1, ...,m; s = 1, ...,K.
For this paper, the membership functions we will use are
continuous, triangular, and all the membership functions of
an attribute q are uniformly distributed in the universe of
discourse of q. In addition, these functions verify the following
characteristic:

µAqs
(xpq) ∈ [0, 1]; ∀xpq ∈ xp; ∀p = 1, ..., n

B. Generation of the RB

Rules can be of different types depending on the internal
components. The widest case study is related to Type-I rules.
This type of rules is defined as a vector of length m, where
each value that belongs to the former vector is a fuzzy label.
In addition, every vector has a consequent that includes the
weight of the rule, and the class label that determines the
output.
We assume that for each attribute we are given set fuzzy labels
of cardinality K. In this way, we can denote a fuzzy term
of an attribute q as Aqs where s ∈ {1, ...,K} is the fuzzy
index associated with a fuzzy label. For each instance, we can
generate a fuzzy candidate rule. We can denote a fuzzy label
as apq ∀p = 1, ..., n; q = 1, ...,m and consequently, for every
value in the dataset, xpq we can define its associated fuzzy
label, apq , as:

apq = argmaxs∈{1,...,K}µAqs
(xpq); xpq ∈ xp

p = 1, ..., n, q = 1, ...,m

When we have obtained the associated fuzzy label for each
value of an instance p, we denote the rule associated with each
instance, Rp, as the following vector:

Rp = (apq; q = 1, ...,m); ∀p = 1, ..., n

Applying the previous procedure for each of the previous
instances and using a low number of fuzzy labels, we can
obtain that several instances have the same rule associated.
To unify them, we can define a set, RBK , as the set of
rules, Rp, not repeated whose cardinality of the set is denoted
by r. In order to calculate the weight of a rule, RBK ,
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RWi; ∀i = 1, ..., r, we initially calculated the minimum t-
norm, tp, for each of the instances. We define tp as:

tp = min(µapq ; q = 1, ...,m); ∀p = 1, ..., n

tp is an aggregation function that generates a single fuzzy
membership value. This function is also included in the range
[0, 1]. We use tp to calculate the degree of association, denoted
as Tp,Ri

, of a instance p in a rule Ri; ∀Ri ∈ RBK . So, we
define the weight of a class ck ∈ C; k ∈ {1, ..., h} for a rule
Ri as:

Wi,ck =

n∑
p=1; ck=yp

Tp,Ri

Finally, we can define the class label associated to a rule,
CRWi , as:

CRWi = {ct : Wi,ct = max(Wi,cg ); ct, cg ∈ C}

∀Ri ∈ RBK ∃CRWi ∈ C. The weight of a rule, RWi, is:

RWi =
Wi,CRWi∑h
g=1Wi,cg

; CRWi ∈ C (1)

III. HIERARCHICAL FUZZY EXCEPTION
RULES(HFER(K)χ)

The HFER(K)χ algorithm is an FRBCS that is intrin-
sically designed to set a trade-off between accuracy and
interpretability. The variable K of the proposed algorithm
indicates the number of linguistic labels to be used in the
low granularity algorithm and the variable χ indicates the
condition that an exception rule must have to be generated. For
the sake of providing a clear description of this novel proposal,
we decided to divide the algorithmic procedure into three
parts. First, Section III-A introduces how low-granularity rules
are generated. Next, Section III-B describes how new high-
granularity exception rules are produced. Finally, Section III-C
provides some comments on the new inference mechanism
adapted to take into account the general and exception fuzzy
rules.

A. First stage: baseline learning algorithm and generation of
low-granularity general fuzzy rules

The preliminary phase is aimed to model the input dataset
by using general rules, implying a low granularity represen-
tation for the fuzzy variables included in the DB. In order
to obtain the classification rules, we will make use of the
grid-based Chi algorithm with granularity K that was already
introduced in Section II-B to calculate the RB, RBK with a
cardinality r.

By considering this approach, we will divide the original
input space into several regions as illustrated in Fig. 1.
We must take into account that, by using fuzzy rules, the
borderline between each region is graded by means of the
membership function values. In any case, each square that is
depicted includes those examples whose membership degree
is greater than or equal to 0.5 and therefore those used when
creating the rule antecedent.

Fig. 1. Grid-based rule generation of the Chi algorithm with granularity 3
and an example of distribution of a dataset with 3 classes

B. Second stage: generation of high-granularity fuzzy excep-
tion rules

Exception rules are generated taking into account the con-
fidence of the rules, measured as the rule weight (Eq. 1 in
Section II-B).

Then, we must define a threshold, δ > 0, which determines
which RBK rules should generate the exception rules. There-
fore, we consider the set of rules that must generate exception
rules, RBKe, as:

RBKe = {Ri : RWi < δ; Ri ∈ RBK ; i = 1, ..., r}

The set RBKe has a cardinality equal to b.
In the remainder, we provide a complete description of how

fuzzy exception rules are generated:
1) Definition of the second-level DB: Initially, we calculate

the set of examples that are covered by the exception rule, as
pointed out below:

di = {xp : Tp,Ri ≥ 0.5; p = 1, ..., n;Ri ∈ RBKe};
i = 1, ..., b

(2)

The value 0.5 is given by the minimum t-norm. This value is
the minimum degree of membership that an instance can have
with respect to the maximum degree of membership of a rule.
Consequently, we denote xpi as a instance xp belonging to
the subset di. Besides, ni is the number of instances of each
subset. we denote a value of instance xpi as xpiq .

As an illustrative example, extending the one given in Fig.
1, we show in Fig. 2 that examples are selected as those from
the contrary classes of the general rule obtained in the bottom-
right box (marked as “y”). It must be also remarked that, since
the original general rule will not be removed, examples marked
as “o” will still be covered by it.

For the sake of computing novel higher granularity ex-
ception rules. We define for each attribute a set of fuzzy
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Fig. 2. Exception rule generation of the

cardinality labels (2 ∗ K − 1). In this way, we can denote
a fuzzy term of an attribute q of a subset di as Âqsi where
s ∈ {1, ..., (2 ∗K − 1)} is the fuzzy index associated with a
fuzzy label. We define for each fuzzy label of an attribute q of
a subset di a membership function. We denote each belonging
function as µÂqsi

; ∀q = 1, ...,m; s = 1, ..., (2 ∗K − 1); i =
1, ..., b. These functions have characteristics similar to the
initial definition, they are continuous and triangular. However,
unlike the initial definition, the membership functions of an
attribute q of a subset di are uniformly distributed in the
universe of speech of q of the subset di.

µÂqsi
(xpiq) ∈ [0, 1] ; ∀xpiq ∈ xpi ; pi = 1, ..., ni; i = 1, ..., b

2) Generation of the exception RB: For each instance, we
generate a candidate rule. Thus, we can define the fuzzy label
of an attribute q of a subset di, âpiq , as:

!‘âpiq = argmaxs∈{1,...,(2∗K−1)}µÂqsi
(xpiq); xpiq ∈ xpi pi = 1, ..., ni, q = 1, ...,m

we denote for each instance a rule, Rpi . Each rule is composed
of the following vector:

Rpi = (âpiq; q = 1, ...,m); ∀pi = 1, ..., ni; i = 1, ..., b

We denote the set of exception rules for each subset di as
RBexpi . Every set of exception rules RBexpi is made up of
the rules Rpi without repetition. Thus, for any RBexpi there
are no two equal rules. We represent the cardinality of each
set of RBexpi rules as ri.
To calculate the degree of association of an instance pi for
a rule Rli , Tpi,Rli

∀li = 1, ..., ri; i = 1, ..., b, we need to
calculate the t-norm. The chosen t-norm is called the minimum
t-norm, tpi , ∀pi = 1, ..., ni; i = 1, ..., b, and is defined for each
instance of di as:

tpi = min(µâpiq ; q = 1, ...,m)

With these definitions we can carry out the process of calcu-
lating a rule Rli , RWli , as follows:
We define the label of an instance pi as ypi and the weight of
a class, ck ∈ C; k ∈ {1, ..., h}, for a rule, Rli ∈ RBexpi as:

Wli,ck =

ni∑
pi=1; ck=ypi

Tpi,Rli

Finally, the label of the associated class, CRWli , is:

CRWli = {co : Wli,co = max(Wli,cg ); cg, co ∈ C}

∀Rli ∈ RBexpi ; ∃C
RWli ∈ C. We explain the weight of the

rule,RWli , as:

RWli =
W
li,C

RWli∑h
g=1Wli,cg

; CRWli ∈ C

C. Novel two-step inference mechanism

Two different schemes are proposed for inference, denoted
as Ω and Λ. Both are included in the well-known FRM of the
winning rule, but each uses the exception rules in a different
way. Initially, Ω uses the generated exception rules that have a
weight greater than or equal to its general rule. However, in the
second version, version Λ, which is proposed, the generated
rules must have a weight greater than a value β.

1) Ω version: We define the set Ω as the set of exception
rules for subsets di, the subset of instances that are covered
by the rule Ri; Ri ∈ BKe (Eq. 2) , that have a different class
label and a weight greater than or equal to its general rule.

Ω = {Rli : RWli ≥ RWi ∧ CRWli 6= CRWi ;

Ri ∈ RBKe; Rli ∈ RBexpi ; li = 1, ..., ri; i = 1, ..., b}

We denote the cardinality of the set Ω as r̂. The inference of
the instance u is done using the winning rule that prioritizes
the exception rules. If the u instance belongs to several
exception rules, then we use the winning rule among those
exception rules:

yu = {cJ : (Tu,RJ
∗RWJ) = max{Tu,Rz

∗RWz};
RJ ∈ Ω; z = 1, ..., r̂}

(3)

If the instance u does not belong to any exception rule, then
we use the winning rule with the base rules:

yu = {cJ : (Tu,RJ
∗RWJ) = max{Tu,Rz ∗RWz};

RJ ∈ RBK ; z = 1, ..., r}
(4)

2) Λ version: For the second version of the inference to
take into account the 2 levels, we replace RW by the value of
a β variable. The value of β chosen must be high because, in
this way, we can guarantee the quality of the exception rules
generated using their weight. We describe the set as:

Λ = {Rli : RWli ≥ β ∧ CRWli 6= CRWi ;

Ri ∈ RBKe; Rli ∈ RBexpi ; li = 1, ..., ri; i = 1, ..., b}

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on October 07,2020 at 13:43:17 UTC from IEEE Xplore.  Restrictions apply. 



We denote the cardinality of the set Λ as r̈. The inference of
the u instance belongs to several exception rules so we use
the winning rule among those rules:

yu = {cJ : (Tu,RJ
∗RWJ) = max{Tu,Rz ∗RWz};

RJ ∈ Λ; z = 1, ..., r̈}
(5)

Unfortunately, if the instance u does not belong to any
exception rule, then we use the winning rule with the base
rules (4).

IV. EXPERIMENTAL STUDY

This section includes the experimental framework and the
comparative study for determining the goodness of the pro-
posed HFER(K)χ algorithm. For this purpose, the content is
organized as follows. First, we provide details on the selected
benchmark datasets and the metrics of performance to evaluate
the different versions (IV-A). The second part of this section
includes the experimental results from which we may carry
out our analysis and provide several lessons learned (Section
IV-B).

A. Benchmark data problems and performance metrics

for the sake of using an adequate experimental framework,
15 datasets chosen for the evaluation are considered to follow
different criteria in terms of number of examples, attributes or
class distribution, as reported in Table I.

TABLE I
MAIN CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTAL

STUDY. FROM LEFT TO RIGHT, NAME OF THE DATASET, NUMBER OF
CLASSES, NUMBER OF EXAMPLES, NUMBER AND TYPE OF INPUT

ATTRIBUTES, AND CLASS DISTRIBUTION ARE SHOWN

Name #Class #Examples (R/I/N) Class %
Iris 3 150 (4/0/0) 33.33%,33.33%,33.33%
Tae 3 151 (0/5/0) 32.45%,33.11%,34.44%
Hayes 3 132 (0/4/0) 38.64%,38.64%,22.73%
Seeds 3 210 (7/0/0) 33.33%,33.33%,33.33%
P.Indian 2 768 (2/6/0) 35.03%,64.97%
Newthy. 3 215 (4/1/0) 69.77%,16.28%,13.95%
Append. 2 106 (7/0/0) 80.19%,19.81%
Austral. 2 690 (3/11/0) 55.50%,44.50%
Bupa 2 345 (1/5/0) 42.03%,57.97%

Ecoli 8 336 (7/0/0)
42.56%,22.92%,0.6%,
0.6%,10.47%,5.95%,

1.49%,15.48%

Glass 6 214 (9/0/0)
32.71%,35.51%,

7.94%,6.07%,
4.21%,13.55%

Bank 2 1372 (4/0/0) 55.54%,44.46%
Wiscon. 2 683 (0/9/0) 65.01%,34.99%

Yeast 10 1484 (8/0/0)

16.44%,28.91%,31.20%,
2.96%,3.44%,

10.98%,2.36%,
2.02%,1.34%,0.34%

Wine 3 178 (13/0/0) 33.17%,39.89%,26.97%

In order to provide well-founded conclusions, we carry
out a special validation procedure. In particular, we have
partitioned the dataset using 5-folds distribution optimally
balanced stratified cross-validation (DOB-SCV) [17]. This

provides several advantages. First, partitions are carried out in
a stratified way, which allows having the same amount of data
of a class among the partitions to be created. Second, DOB-
SCV distributes close-by instances among test folds, so that we
avoid a possible dataset shift between training and test. Finally,
the latter condition ensures that the exceptional data clusters
modeled with our methodology will be also represented in test
[18].

To compute the quality of the predictive ability of each
FRBCS, we will use both accuracy and macro F1 metrics. The
first measure is a global measure that we will use to know how
our algorithm works in general. The second measure lets us
know if our algorithm correctly recognizes the class regardless
of the number of data the dataset has. Both metrics are
computed from the standard confusion matrix, which includes
the following values:
• True Positive (TP): number of correct predictions of the

positive class
• True Negative (TN): number of correct predictions of the

negative class
• False Positive (FP): number of incorrect predictions of

the negative class, i.e. wrongly estimated as positives.
• False Negative (FN): number of incorrect predictions of

the positive class, i.e. wrongly estimated as negatives.
Consequently, accuracy is obtained as the fraction between

the sum of TP and TN, and the total number of instances in
the dataset:

Acc =
TP + TN

TP + TN + FP + FN

Macro F1 is the arithmetic mean of the F1 of each class,
being the individual F1 value computed as pointed out below:

f1c
=

2 ∗ TP
2 ∗ TP + FP + FN

; ∀c = 1, ..., h

We remember that the number of different classes in the
dataset is defined by h. This equation applies to each class of
the dataset. Then, the arithmetic mean is applied and macro
F1 is obtained:

macro F1 =

∑h
p=1 f1p

h

B. Experimentation and results

This part of the study is divided into two further parts.
Initially, we will determine the best parameters’ configuration
of HFER(K)χ, specifically regarding the two versions of the
inference mechanism (Section IV-B1). Then, we will carry
out a thorough comparison versus the baseline FRBCS and
HFRBCS (Section IV-B2).

1) Analysis of the inference mechanism of HFER(K)χ:
Our algorithm has three parameters that can be chosen. The
parameters are as follows:
• K: It is a natural number that represents the K parameter

of the low-granularity algorithm Chi.
• χ: This categorical parameter refers to the inference

scheme that can be applied to the problem, Ω and Λ.
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• δ: This parameter is the threshold that the weight of the
rule must exceed to avoid generating exception rules. In
this work contribution, the value assigned to the variable
is δ = 0.8 because we consider that the rules have a
weight less than δ should generate exception rules.

• β: This parameter is the threshold, in version Λ, that must
exceed the weight of an exception rule in order to add
the rule to the set Λ. In this contribution, we have chosen
β = 0.9 because if the rule has a weight greater than or
equal to β we can the quality of the rule.

Specifically, in this part of the study we will evaluate two
different versions of our HFER(K)χ proposal by consider-
ing:
• HFER(3)Ω: This version has the base algorithm has a

granularity equal to 3 and the generated exception rules
must have a greater weight than its general rule.

• HFER(3)Λ: This version, like the Ω version, has the
base algorithm that has a granularity equal to 3. However,
exception rules must have a weight greater than or equal
to the value β

Table II compares the two versions of HFER(3)χ. Subse-
quently, the best-performed version is compared with the other
three algorithms.
The keys of the Table II is as follows:
• ACC: It is the average of the accuracy of all test datasets.
• macro F1: It is the average of the macro F1 of all test

datasets.
• Rules: It is the average of the generated rules of all test

datasets.
• Wins/Ties/Loses (W/T/L): It is the number of datasets

that the version wins, ties, or loses. For Table II, it is
calculated for accuracy and macro F1 because in the
two measures mentioned they obtain the same number
of datasets that win, tie, or lose the algorithms.

TABLE II
COMPARATIVE TABLE OF THE PROPOSED VERSIONS OF THE HFER(K)χ

ALGORITHM. THE VALUES SHOWN ARE AVERAGE VALUES

HFER(3)Λ HFER(3)Ω
ACC 0.7699 0.7662

macro F1 0.7174 0.7163
Rules 142.6 157.5
W/T/L 5/9/1 1/9/5

The comparison between the different versions of
HFER(K)χ indicates that the absolute difference in
predictive performance between the two versions is not
significant. However, in terms of interpretation, there is a
significant difference because HFER(3)Λ generates a fewer
number of exception rules that HFER(3)Ω. Consequently,
HFER(3)Λ is more efficient and more interpretable than the
first version.

2) Comparative study versus baseline FRBCS and HFR-
BCS: In this part, we will compare our HFER(3)Λ version
versus standard fuzzy classifiers. Specifically, we have selected

the original HFRBCS with 3-5 granularity levels without rule
selection, and the original Chi baseline algorithm with both 3
and 5 fuzzy labels per variable.

Experimental results are shown in both Tables III and IV,
for accuracy and macro F1 metrics respectively. In addition
to these performance values, we also show the number of
total rules generated for each model (Rules). In the case of
HFRBCS, we specifically point out the rules considered with
low granularity (G3) and high granularity (G5). Finally, in the
case of HFER(K)χ we show the number of rules that belong
to RBK (B) and also the number of exception rules generated
(E).

The proposed model, HFER(3)Λ, obtains the best average
value in both the macro F1 and accuracy measures. Focusing
on the individual performance, we observe that our new
proposed algorithm outperforms the baseline FRBCS in more
than half of the datasets, and it is equally good in 5 problems.
The comparison between the proposed algorithm and HFR-
BCS (Table V) it can be seen how the proposed algorithm
generates fewer total rules and improves, on average, the
precision and the F1 macro of the data set. Consequently,
the proposed algorithm could be considered more interpretable
than HFRBCS.

Focusing on the main lessons learned achieved from this
study, we must focus on the following ones:
• Number of attributes: In the case of datasets with a

larger number of attributes, the baseline grid-based learn-
ing algorithm causes an increase in the number of rules.
Nevertheless, the recognition ability of HFER(K)χ is
maintained.

• Class imbalance: The difference between the amount of
data of the classes in some of the datasets, together with
the generality of the Chi algorithm with granularity 3,
may cause that rules that represent minority classes have a
low weight below than the threshold δ. This issue implies
that, when generating the exception rules, we should
focus on a higher granularity for adequate coverage with
high confidence.

• Rule weights from base algorithm: If the base algorithm
has a large number of rules whose weight (confidence)
is less than δ then the number of exception rules will be
higher. This is directly related to the intrinsic complexity
of the problem, and therefore has a clear implication to
the fairness of the model to be extracted from the raw
data.

V. CONCLUSION

In this work contribution, we have proposed HFER(K)χ,
a novel hierarchical FRBCS by promoting both the predictive
ability and the interpretability and explainability of the system.
To do so, we have made use of a hierarchical approach made
of general (low granularity) fuzzy rules for a wide coverage
of the input space, but also considering exception rules (high
granularity) to allow representing rare cases of the problem.
An experimental study, using datasets with different charac-
teristics, has shown the goodness of HFER(K)χ in contrast
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TABLE III
RESULTS FOR ACCURACY OF THE CHI ALGORITHM WITH GRANULARITY 3, CHI ALGORITHM WITH GRANULARITY 5, HFRBCS, AND HFER(3)Λ IN
THE TEST PARTITIONS. HIGHLIGHTED VALUES CORRESPOND TO THE BEST CASE FOR EACH DATASET. ACCURACY IS GIVEN IN RATIO INSTEAD OF THE

PERCENTAGE.

Dataset Name CHI 3 CHI 5 HFRBCS HFER(3.5)Λ
Acc RULES Acc RULES Acc RULES G3 G5 Acc RULES B E

Iris 0.9133 15.4 0.94 39.2 0.8867 56.8 10.8 46 0.9133 21.8 15.4 6.4
Tae 0.518 31.4 0.537 61.4 0.6265 89.0 7.8 81.2 0.6099 59.4 31.4 28
Hayes 0.6435 44.6 0.6071 73.4 0.6632 63.2 13.8 49.4 0.7003 54.4 44.6 9.8
Newthyroid 0.8329 21.2 0.9023 45.2 0.8651 38.2 15.8 22.4 0.8465 37.4 21.2 16.2
Pima Indians 0.7344 115 0.7316 403 0.7083 384.8 30.6 354.2 0.7344 240.8 115 125.8
Seeds 0.8322 53.4 0.8905 107.4 0.881 95.0 36.4 58.6 0.8429 61.4 53.4 8
Appendiciti 0.8589 30.8 0.8679 59 0.8584 35.4 24.4 11 0.8589 35 30.8 4.2
Australian 0.8247 312.6 0.713 460.6 0.7798 356.4 266.2 90.2 0.8247 345.8 312.6 33.2
Bupa 0.5913 47.2 0.6174 119.8 0.5014 286 .0 8.6 277.2 0.6087 142.6 47.2 95.4
Ecoli 0.736 70.0 0.8098 160.4 0.6729 217.6 32.4 185.2 0.7298 114.8 70.0 44.8
Glass 0.604 42.4 0.5851 79.4 0.4771 161.6 15.6 146 0.6275 94.4 42.4 52.0
Bank 0.9288 30.8 0.9592 75.4 0.9832 379.4 17.2 362.2 0.9526 101.8 30.8 71.0
Wisconsin 0.9224 208.8 0.69 267 0.921 209.2 198 11.2 0.9224 212.8 208.8 4.0
Yeast 0.4919 105 0.556 228.6 0.4368 1097.0 10.2 1086.8 0.5277 495.2 105 390.2
Wine 0.8485 118.8 0.7023 141.8 0.8485 121.4 108.6 12.8 0.8485 121.4 118.8 2.6
Avg. 0.7521 83.16 0.7406 154.77 0.7407 239.4 53.09 186.3 0.7699 142.6 83.16 59.44

TABLE IV
RESULTS FOR MACRO F1 OF THE CHI ALGORITHM WITH GRANULARITY 3. CHI WITH GRANULARITY 5. HFRBCS. AND HFER(3)Λ IN THE TEST

PARTITIONS. HIGHLIGHTED VALUES CORRESPOND TO THE BEST CASE FOR EACH DATASET. METRICS ARE GIVEN IN RATIO INSTEAD OF THE
PERCENTAGE.

Dataset Name CHI 3 CHI 5 HFRBCS HFER(3.5)Λ
F1 RULES F1 RULES F1 RULES G3 G5 F1 RULES B E

Iris 0.9113 15.4 0.9393 39.2 0.8854 56.8 10.8 46 0.9113 21.8 15.4 6.4
Tae 0.5108 31.4 0.5312 61.4 0.6204 89 7.8 81.2 0.6063 59.4 31.4 28
Hayes 0.5736 44.6 0.4512 73.4 0.5623 63.2 13.8 49.4 0.6237 54.4 44.6 9.8
Newthyroid 0.709 21.2 0.8357 45.2 0.7713 38.2 15.8 22.4 0.7299 37.4 21.2 16.2
Pima Indians 0.6417 115 0.6787 403 0.5942 384.8 30.6 354.2 0.6417 240.8 115 125.8
Seeds 0.8337 53.4 0.8918 107.4 0.8825 95 36.4 58.6 0.8435 61.4 53.4 8
Appendiciti 0.7238 30.8 0.7305 59 0.7237 35.4 24.4 11 0.7238 35 30.8 4.2
Australian 0.8217 312.6 0.6926 460.6 0.837 356.4 266.2 90.2 0.8217 345.8 312.6 33.2
Bupa 0.4691 47.2 0.5985 119.8 0.4755 286 8.6 277.2 0.5347 142.6 47.2 95.4
Ecoli 0.6368 70 0.7205 160.4 0.519 217.6 32.4 185.2 0.6321 114.8 70 44.8
Glass 0.4588 42.4 0.4714 79.4 0.3433 161.6 15.6 146 0.5041 94.4 42.4 52
Bank 0.9263 30.8 0.9588 75.4 0.9831 379.4 17.2 362.2 0.952 101.8 30.8 71
wisconsin 0.9118 208.8 0.5319 267 0.9097 209.2 198 11.2 0.9118 212.8 208.8 4
Yeast 0.4239 105 0.5158 228.6 0.3542 1097 10.2 1086.8 0.4698 495.2 105 390.2
Wine 0.8539 118.8 0.7101 141.8 0.8539 121.4 108.6 12.8 0.8539 121.4 118.8 2.6
Avg. 0.6937 83.16 0.6839 154.77 0.6877 239.4 53.09 186.3 0.7174 142.6 83.16 59.44

TABLE V
COMPARATIVE TABLE BETWEEN HFER(K)χ ALGORITHM AND

HFRBCS ALGORITHM WITHOUT RULE SELECTION. THE VALUES SHOWN
ARE AVERAGE VALUES

HFER(3)Λ HFRBCS
ACC 0.7699 0.7407

macro F1 0.7174 0.6877
B or G3 83.16 53.16
E or G5 59.44 186.3

Total rules 142.6 239.4

to a standard FRBCS and an HFRBCS. It has to be noted that
the improvement in the recognition of the different classes of
the problem, measured by means of the F1 metric, has been
achieved using a compact rule system. Specifically, the RB

size of HFER(K)χ is lower than using a higher granularity
by default or applying a hierarchical approach. To sum up,
we have taken a step forward in the construction of an
interpretable model that prioritizes the exception rules before
the base rules, allowing the recognition of minority cases and
thus avoiding bias during the learning stage. This way, we
stress the need for achieving accountable models for nowadays
society. As future work, we must focus on two issues. First,
to keep on minimizing the size of the RB to further boost the
interpretability and usability of the FRBCS. To achieve this
proposal, we will use the evolutionary algorithms to modify
the parameters of the partitions, adjust the limitations, and
also, to have a selection of rules in problems where the number
increases. Second, examine in detail the areas that may require
a higher level of granularity to accurately represent them.
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