
Chi-BD-DRF: Design of Scalable Fuzzy Classifiers
for Big Data via A Dynamic Rule Filtering

Approach
Fatemeh Aghaeipoor

Dept. of Mathematics and Computer Science
Shahid Bahonar University of Kerman, Iran

Email:ff.aghaei@eng.uk.ac.ir

Mohammad Masoud Javidi
Dept. of Mathematics and Computer Science
Shahid Bahonar University of Kerman, Iran

Email: javidi@uk.ac.ir

Isaac Triguero
Computational Optimisation and Learning (COL) Lab

School of Computer Science, University of Nottingham, United Kingdom
Email: Isaac.Triguero@nottingham.ac.uk

Alberto Fernández
DaSCI Andalusian Research Institute

University of Granada, Spain
Email: alberto@decsai.ugr.es

Abstract—Big data classification problems are known to be
no longer addressable by sequential algorithms. Therefore, it
is necessary to design and develop novel solutions to provide
accurate yet interpretable models in a tolerable elapsed time.
In this area, Fuzzy Rule-Based Classification Systems are very
advantageous due to their intrinsic interpretable and accurate
capabilities. However, when these systems are applied in Big Data
scenarios, the size of the rule set can become too large to be useful,
whereas many of the generated rules could be associated with
the non-dense areas or outliers. The presence of such rules in the
rule base not only increases the running time and computation
overheads but also affects on the interpretability of the fuzzy
system. In this contribution, we propose a novel approach to
obtain compact and accurate fuzzy models for Big data problems
in a linearly scalable complex time. To do so, a dynamic filtering
approach is applied to remove low supporting rules. Moreover,
an efficient computation of the rules’ weights is presented to
improve the accuracy of the predictions. This model is developed
for Big Data analytics by using Apache Spark framework. This
allows taking advantage of the built-in resources and directives
for a transparent distributed computing, as well as the machine
learning pipeline to ease the complete processing. Experimental
results, using different Big Data problems, confirmed the good-
ness of the proposed algorithm with respect to the baseline fuzzy
classifier.

Index Terms—Fuzzy Rule-Based Classification Systems, Big
Data, Spark, Dynamic Rule Filtering, Rule Weights

I. INTRODUCTION

Nowadays, massive amounts of data are generated around
the world. These data which are huge in the Volume, different
in the Variety, and fast in the Velocity of generation are known
as Big Data [1]. These characteristics cause some difficulties
in the storing, processing, and analyzing Big Data so that the
traditional data mining algorithms can not address these chal-
lenges well [2]. Moreover, given the amount of data, providing
explainable and interpretable models that translates into the
current trend for eXplainable Artificial Intelligence (XAI) [3],

is not a straightforward task in big datasets. Summing up,
these issues motivate the researchers to re-design and develop
novel, scalable, and efficient solutions specifically for Big Data
applications.

Different technologies such as Hadoop Map-Reduce and
Apache Spark framework developed based on distributed
computing to address the requirements of Big Data [4]. Map-
Reduce is a programming paradigm that helps to the paral-
lelization of an algorithm using two simple functions, namely
Map and Reduce. Whereas the former function runs the same
procedure on different partitions of a big dataset, the latter
fused their results to bring about a single output. Although this
data processing technique was originally employed by Apache
Hadoop, it can be extended by different alternatives such as
Apache Spark.

Apache Spark, introduced in 2010, is a large open source
project developed for distributed operations. Even though it
has some in common with Hadoop methodologies, it presents
some specific features intentionally for Big Data analytic; fea-
tures like in-memory computations that avoid cost-extensive
I/O operations, the inherent property of Hadoop ecosystem.
This capability is the most effective reason that makes Spark
a framework faster than that of Hadoop [5].

Owing to the “special” requirements for the Big Data
frameworks, a current target area of interest for both academia
and industry is to design and develop new Machine Learning
(ML) algorithms in this context. In this regard, one of the most
widely used target areas is Big data classification problems.

As for standard (small-data) applications, the use of rule-
based systems in general [6], and fuzzy rule-based systems
[7] in particular is advisable from the point of view of XAI
[8]. The reason behind this is the good trade-off of these
solutions in terms of interpretability/accuracy. Furthermore,
the goodness of the fuzzy representation for both the seman-
tics/interpretability and also to cover the clusters in big data

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on October 07,2020 at 13:42:41 UTC from IEEE Xplore. Restrictions apply.

in a more general way [9].
Fuzzy Rule-Based Classification Systems (FRBCSs) are

basically developed to classify input examples using fuzzy
rules. They represent the relationship between variables using
fuzzy sets. The same as a typical fuzzy system, each FRBCS
is composed of a Knowledge Base (KB) and an inference
module. KB includes all defined fuzzy sets in a Data Base
and all generated rules in a Rule Base (RB).

Fuzzy rules can be defined using expert knowledge or
generated using learning algorithms. One of the most well-
known rule learning algorithms is for Chi et al. [10]. Chi
algorithm is a fast and simple method that generates one fuzzy
rule for each data sample. The method of this algorithm is
commonly employed as the base strategy in developing new
algorithms. The reason is that this method does not involve any
kind of feature selection, sample selection, or rule selection
that may bias the functionality of the systems. Moreover, the
simplicity of this model allows evaluating the influence of new
components.

The Chi algorithm has been also adapted for applying in Big
Data applications in several studies. The initial version was
[11] where the authors proposed the Chi-FRBCS-BigData and
used the MapReduce framework to generate the RB. Indeed,
they generated the initial rules through the Map function and
then modified the possible conflicts using the maximum or
average value of the rules’ weight in the Reduce function. This
algorithm improved as the Chi-BD in [12]. This new version
considered all the data samples instead of local partitions to
compute the rules’ weights. In this way, exactly the same
original Chi-FRBCS was obtained. However, computing the
rules’ weights with a whole view of all the samples was still
a problem. It was extremely time-consuming which affected
the scalability of the model.

In the following, Chi-BD-SF [13] proposed to handle the
rules’ weight computation by providing an approximated
metric. Chi-BD-SF applied the standard support of a rule to
modify the rule conflicts. This contribution not only reduced
the time of the rule generation step but also improved the
performance of the FRBCSs rather than the previous versions.

Taking a look at this progress line reveals that some designs
are not linearly scalable, or when they try to overcome
this issue, they missed significant components such as the
rules’ weights. Additionally, we acknowledge that in spite
of the good coverage of fuzzy rules, especially when a low
granularity is applied, there are cases in which an excessive
number of rules can be generated, making difficult the actual
understanding of the phenomena under study. Furthermore, in
some cases, many of the generated rules could be associated
with non-dense areas or outliers [13].

In this study, we propose Chi-BD-DRF, abbreviated of Chi
Big Data Dynamic Rule Filtering, by using the Chi algorithm
as the baseline model. It provides a linear computational
procedure for obtaining fuzzy rules and manages the con-
flict between class consequences by computing the non-fuzzy
confidence of the rules. This measure, came from association
rule mining concepts [14], assists to extract more reliable

rules without computation overheads. Furthermore, a novel
filtering procedure is proposed to discard the aforementioned
non-dense areas within the problem domain and consequently
obtain a more interpretable and compact RB. This filtering
procedure is dynamically adapted to the problem under study
with respect to the characteristics of each dataset as well
as its corresponding RB. Additionally, Chi-BD-DRF takes
advantage of the rules’ confidence to improve the accuracy
of predictions.

Chi-BD-DRF utilizes the capabilities of Apache Spark [15]
and MLlib [16] to develop an efficient distributed method
based on the DataFrame partitions as well as a well-structured
algorithm by using the ML pipeline. The fusion of ML pipeline
and Spark DataFrames is a direct and straightforward strategy
to replicate and distribute the same operations across multiple
executing nodes in the case of Big Data environments.

In order to contrast the good behavior of this procedure, we
used five big datasets with two performance metrics, namely
accuracy and elapsed time. The obtained results revealed the
effectiveness of the Chi-BD-DRF and its components rather
than the previous implementations.

The remainder of this work is structured as follows: In
Section II, the preliminaries of Big Data problems, tools
and frameworks are described. In Section III, the Chi-BD-
DRF model and the proposed filtering approach are discussed.
In the following, Section IV provides the descriptions of
the conducted experiments, evaluations and results. Finally,
Section V concludes this contribution.

II. BIG DATA IN MACHINE LEARNING: TOOLS AND
FRAMEWORKS

Analyzing the vast amount of data needs adapting the
standard data mining and ML algorithms and proposing the
scalable tools and frameworks. In this regard, one of the most
efficient strategies is referring to distributed computing where
the data is processed through a cluster of nodes [1]. Indeed, the
data is split into several partitions and spread along different
nodes. Then, each node is responsible to proceed with its
local partitions. In this way, the data would be processed
in parallel using the capabilities of multiple interconnected
machines instead of a single one.

The widespread paradigm for distributed implementations in
Big Data is MapReduce. The basis for it is HDFS, in which
data is stored by chunks along with all nodes of the cluster,
and therefore computation is moved to where data is located,
diminishing the network usage [4]. Among different environ-
ments that make possible MapReduce-like implementations,
Apache Spark due to its exclusive characteristics attracts the
attention between data scientists.

Spark is a framework 10-100X faster than Hadoop MapRe-
duce. This is due to the in-memory computation that Spark
has supplied for the cluster executors. Moreover, Spark has
also other favorable characteristics which make it a powerful
tool in Big Data environment [17]. Along this section, we
will introduce these characteristics of Apache Spark, especially
regarding the data structures and pipelines to manage the

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on October 07,2020 at 13:42:41 UTC from IEEE Xplore. Restrictions apply.

distributed computation transparently in ML implementations
(Section II-A). Then, we will focus on the use of pipelines
for a simpler yet robust design of ML and Big Data solutions
(Section II-B).

A. Spark and MLlib

Apache Spark is a fast and powerful computing engine
for large-scale distributed data processing. It provides high-
level APIs in Java, Scala, Python and R [15]. The main
characteristic of the Spark framework that leads to fast data
processing is in-memory cluster computing that emerged from
Resilient Distributed Datasets (RDDs). The former is the
base data structure of Spark. It is composed of a distributed
collection of objects partitioned for different processing nodes.
In a higher level of abstraction, DataFrame appeared on the
top of RDD in Spark Release 1.3.0. It preserves the features
of RDD besides providing the capability of processing a large
amount of structured data in a more efficient manner [17].

On the top of Spark core APIs, there have been extended
several specific-purpose libraries for SQL (Spark SQL), stream
processing (Spark Streaming), machine learning (MLlib), and
graph processing (GraphX) [16]. Among these, MLlib by
providing several tools such as ML Algorithms, Featurization,
and Pipelines facilitates the implementation of scalable data
mining algorithms. MLlib presents the algorithms through the
RDD-based APIs (spark.mllib package) and the DataFrame-
based (spark.ml package). The former is now in maintenance
mode, the focus is on the DataFrame-based APIs due to more
user-friendly nature, benefiting of SQL queries, providing
uniform APIs across multiple languages, and also Tungsten
and Catalyst optimizations [18]. Another advantage that should
be taken into account, is the capability of DataFrames to assist
to create and tune practical ML pipelines [19].

B. ML Pipelines

In software engineering, a chain of processing units in which
the output of each unit is the input of the next is called
a pipeline. Indeed, a stream of information flows through
multiple consecutive components and while each component
processes the information individually, they all collaborate to
make a comprehensive schema. The same idea can be utilized
in ML.

A typical ML application includes several critical com-
ponents such as pre-processing tasks, model construction,
evaluation, and tuning that all should be run in order. These
components can be organized into a single pipeline and it
helps to provide a uniform framework for training and test
data. Moreover, several advantages like standardization of
components, ease of execution by other users, integration into
standard libraries can be also obtained.

MLlib supports several standard APIs to implement ML
applications in the structure of pipeline easily. In these APIs,
each ML pipeline consists of several stages that each one can
be either a Transformer or an Estimator. The input DataFrame
is processed using the operation of each Transformer or
Estimator as the following description.

1) Transformer: is an abstract concept for the components
who are responsible to make new DataFrame from the avail-
able one. Technically, each transformer has a transform()
method to run a specific algorithm and convert one DataFrame
into another DataFrame. Feature transformers and learned
models are examples of widely-used transformer.

2) Estimator: refers to the components that learn a model
based on the input DataFrames. Technically, each Estimator
includes a fit() method which returns a trained model as
a transformer. Different classification algorithms are examples
of Estimator. It is worth to mention that a pipeline itself is an
Estimator that must be fitted by the input training data.

III. CHI-BD-DRF: A SCALABLE FUZZY BIG DATA
CLASSIFIER BASED ON A NOVEL DYNAMIC RULE

FILTERING APPROACH

This section describes the details of our new proposed
Chi-BD-DRF. At first, we review the method of the Chi
algorithm as the baseline of this study in Section III-A. Then,
the working procedure of the Chi-BD-DRF including the
adaptation of the rule generation steps will be discussed in
Section III-B. Next, the main contribution of this study, namely
the significance of the dynamic filtering approach is described
in Section III-C. Finally, we will explain how the Chi-BD-DRF
is fitted with an ML pipeline in Section III-D.

A. The basics of Chi-FRBCS

Chi et al’s algorithm [10] is a fast and simple rule learning
method for FRBCSs. It tries to learn the fuzzy rules from input
examples through the following three main steps:
• Step 1: Define fuzzy sets and membership functions for

all the variables and then fuzzify the input values using
them.

• Step 2: Generate one candidate fuzzy rule for each data
sample using labels with maximum membership value.
Suppose that there is a dataset with n input variables and
m class label as C = {c1, ..., cm}. In this way, for data
sample −→xi =

(
x1i , x

2
i , ..., x

n
i : ci

)
, fuzzy rule Ri will be

generated in the following format:

Ri : Ai → ci : RWi ; Ai =
{
A1

i , ..., A
n
i

}
(1)

where Ai is the antecedent part of the rule and ci is its
consequence. Each rule can also have a rule weight as
RWi.

• Step 3: Modify conflicts between rules with the same
antecedent but different consequent.

• Step 4: Apply a fuzzy reasoning method to make predic-
tions.

B. The core procedure of Chi-BD-DRF

In the introduction, we have stressed the need for developing
scalable algorithms to address Big Data problems. Therefore,
any procedure that involves processing all the data samples
several times must be avoided. In the particular context of
FRBCS, this issue is related to the rules’ weight computation.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on October 07,2020 at 13:42:41 UTC from IEEE Xplore. Restrictions apply.

Furthermore, for the sake of obtaining a compact and inter-
pretable system, a limitation in the size of the RB must be
applied.

Following these requirements, a novel procedure for learn-
ing FRBCS, named as Chi-BD-DRF, is proposed in this work.
To do so, we extend the main steps of the Chi algorithm as
follows:

1) Fuzzification: This step builds the DB using triangular
membership functions and uniform fuzzy partitioning. It re-
quires data to be normalized to have the same universe of
discourse. In big datasets, these processes are carried out by
the standard distributed operations via Spark.

2) Rule Learning and Rule Weight Computation: For each
available sample, one candidate rule in the format of Eq. (1)
should be generated. For this purpose, the input DataFrames
are split into several partitions and the standard Chi learning
procedure (Section III-A) is applied to map the data samples
into initial fuzzy rules in each node. Then, an aggregation stage
is devoted to computing the actual consequents of the rules,
i.e., if a generated rule would be unique, it is a member of the
final RB without any change, however, if it conflicts with the
other generated rules, its final consequent is obtained using
the principles of the next step. To supply it, the confidence of
each is also calculated in this step.

The confidence of the i-th rule is calculated as follows [14]:

Conf(Ri) =
σ(Ai, ci)

σ(Ai)
(2)

where σ(Ai, ci) counts the number of occurrence of this
rule (both antecedent and consequence parts) in the RB,
and σ(Ai) counts the number of rules which have exactly
the same antecedent as rule i. Since this measure shows
an approximation of the strength of a certain rule among a
collection of rules, we propose to apply this computation as
the rule weight as follows:

RWi = Conf(Ri) (3)

This rule weight not only reduces the computation time
but also is an approximation of the reliability of each rule.
Indeed, this crisp confidence is not directly involved with the
data samples, while the original fuzzy version must iterate
over all the input samples and it is completely inefficient in a
MapReduce programming framework.

3) Modify Conflict: As the basic procedure when all rules
are individually generated, there may be several rules that
share the fuzzy antecedent but comprises a different class
output. In these situations, that rule which has the highest
confidence is more reliable and would be chosen among them.

4) Prediction: After obtaining the final RB, the fuzzy
reasoning is carried out through the Winning-Rule approach.
It classifies each sample in the class of the most compatible
rule, i.e., the class of sample −→xp =

(
x1p, x

2
p, ..., x

n
p

)
is predicted

through the following computations. At first, the matching
degree of each rule with this sample, hRi

(xp)), is calculated
as follows:

hRi
(xp) =

n∏
k=1

µAk
i
(xkp) (4)

then, the rule with the maximum matching degree is selected
as the winner, Ro, and the prediction is done as Eq. (6).

Ro = arg maxRi∈RBfinal
{hRi

(xp) . RWi} (5)

class (xp) = co (6)

C. DRF: Dynamic Rule Filtering Method

This section focuses on the main contribution of this study,
namely the Dynamic Rule Filtering (DRF) approach. Given
that each data sample generates one candidate rule in the Chi-
based algorithm, the number of final rules would be numerous
in the scenario of Big Data, especially when higher levels
of granularity are applied. On the other hand, as previously
discussed, excessive number of rules affect on the inter-
pretability of the systems so that the actual understanding of
the phenomena under study would not be possible. Moreover,
a large RB may include irrelevant or ineffective rules which
might affect the generalization ability of the classifier, leading
to a sub-optimal predictive performance. Therefore, a large
RB is undesirable not only in terms of interpretability but
also from the accuracy perspective. To address this problem,
a novel dynamic filtering approach is integrated into the Chi-
BD-DRF.

The premise of this novel approach is to find and discard
areas of low influence within the problem for the sake of
obtaining a compact yet accurate RB. Therefore, we must
design a metric that establishes the interestingness of each
rule, and to define a threshold to maintain those rules that are
truly necessary to describe the problem under study. Among
different alternatives, support is selected for being informative
and straightforward to compute. Indeed, low-support rules are
not frequent and are usually related to low-dense areas. These
rules can be recognized using a minimum support threshold.

DRF method proposes filtering infrequent rules by setting a
dynamic minimum threshold for the rule’ support. In a certain
RB, the support of the i-th rule (1) is defined as follows [14]:

Supp(Ri) =
σ(Ai, ci)

|RB|
(7)

where σ(Ai, ci) is the number of occurrences of this rule in
the RB, and |RB| is the size of the RB which is equal to
the number of all available rules. For the sake of simplicity,
we consider support of the rules in the scale of the RB,
i.e., Supp(Ri) = σ(Ai, ci). DRF considers low-support rules
as the infrequent ones targeted to be filtered. Indeed, those
rules whose support are less than average of samples will be
removed from the RB. For this purpose, a threshold MinSupp
is defined for the support values as follows:

MinSupp = b#Samples− 1

#Rules
c (8)

where #Samples is the number of available samples and
#Rules is the number of all generated rules in the initial RB.
After determination of MinSupp, the RB is scanned and those

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on October 07,2020 at 13:42:41 UTC from IEEE Xplore. Restrictions apply.

rules that do not satisfy MinSupp are removed, following as
stated in Eq. (9):

RBfinal = {Ri ∈ RBinitial |Supp (Ri) > MinSupp} (9)

By these considerations, based on the pigeon hole principle,
there will be always remained some rules after DRF, even in
the worst case scenario where all samples are equally divided.
The goodness of the DRF approach, as its name implies, is
setting the filtering threshold dynamically with respect to the
characteristics of each dataset as well as its corresponding RB.
It avoids considering a fixed value for all the cases or finding
a user-defined one by trial and error, both being non-suitable
procedures.

D. Pipeline Stages

To implement the Chi-BD-DRF algorithm introduced in
Section II-B through an ML pipeline, five stages, includ-
ing three Estimators and two Transformers, are developed.
The first four stages, namely Categorical-Indexer, Vector-
Assembler, Min-Max-Scalar, and Fuzzifier focus on doing
pre-processing tasks. These components prepare the input
DataFrames to train the classifier.

In the last stage of the Chi-BD-DRF pipeline, there is a
Chi-Classifier Estimator that is the main processing core of the
model and will be run on the top of a DataFrame containing
rows of samples and a column of features. Features are
initially individual columns, either numerical or categorical.
They are transformed into a vector of normalized values to
fit the pipeline. Fig. 1 shows the workflow of the Chi-BD-
DRF pipeline. In the following, the processing stages of this
pipeline are respectively described.

C

a
te

g
o
r
ic

a
l-

In
d

ex
e
r

V
ec

to
r-

A
ss

em
b

le
r

Chi-BD-DRF_ Pipeline

M
in

-M
a
x
-S

ca
le

r

F
u

zz
if

ie
r

C
h

i-
C

la
ss

if
ie

r

 Chi-BD-DRF_ Pipeline.fit (Training _ Dataframe) Chi-BD-DRF_Model

 Chi-BD-DRF_ Model.transform (Test _ Dataframe) Prediction

Fig. 1. The workflow of the Chi-BD-DRF pipeline.

1) Categorical-Indexer: encodes all the categorical
columns of a DataFrame into the numerical columns. Indeed,
this Estimator takes the categorical columns of a training
DataFrame and maps the values of each column into indices
in the range [0, numCati), where numCati is the number
of categories in column i.

2) Vector-Assembler: is a Transformer that builds a sin-
gle feature vector by concatenating multiple individual input
columns, either the raw numerical columns or the columns
generated by the previous stage.

3) Min-Max-Scalar: is an Estimator that gives a numerical
feature vector and re-scales its values to the range [0, 1].

4) Fuzzifier: is a Transformer to fuzzify the values of
the input columns using their corresponding fuzzy sets. This
component follows exactly the same fuzzification procedure
of the Chi-BD-DRF. At the end of this stage, feature vectors
are ready to train each kind of learning algorithm.

5) Chi-Classifier: is the main processing stage of the Chi-
BD-DRF pipeline. This Estimator generates the final RB and
produces a classification model following the principles of
steps 2 and 3 of Section III-B as well as the DRF approach
of Section III-C. The obtained model is a Transformer that is
applied to make predictions as the last step of the Chi-BD-
DRF procedure.

These stages are run respectively, and the input DataFrames
are converted to the output ones by moving from the first stage
toward the last one.

IV. EXPERIMENTAL STUDY

In this section, the experiments conducted to evaluate the
performance of Chi-BD-DRF from different perspectives are
detailed. To do so, the experimental framework is first included
(Section IV-A) where we introduce the selected datasets and
the evaluation metrics. Then, the proposed filtering method,
namely DRF is evaluated (Section IV-B). Finally, the influence
of integrating the new confidence-based rule weights into the
Chi-BD-DRF is investigated (Section IV-C).

A. Experimental Set-Up

In this study, 5 big classification datasets, obtained from
UCI and OpenML data repository, were employed to execute
the experiments. These datasets have different numbers of
features and samples summarized in Table I. Moreover, the
mechanism of 5-fold cross-validation was applied to generate
training and test data and the average result of five runs
was reported as the final output of each model. All the

TABLE I
PROPERTIES OF THE USED DATASETS

Datasets Abbr. #Samples #Features #Classes

susy susy 5,000,000 18 2
covtype1 cov 581,012 54 2
BNG-heart BNG-h 1,000,000 13 2
BNG-Australian BNG-Au 1,000,000 14 2
poker0-vs-2 poker 562,529 10 2

experiments were developed using the Spark framework and
Scala language. These experiments run on a cluster including
15 nodes, one master and 14 executor, with the following
configuration:
• Processor: Intel Xeon CPU E5645 @ (2.40GHz) x2.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on October 07,2020 at 13:42:41 UTC from IEEE Xplore. Restrictions apply.

• Cores: 12 threads (6 cores).
• Main memory: 96GB.
• Cache: 12 MB.
• Network: 40 Gb/s Infiniband.
• Operative System: CentOS 6.9.
• HDFS: Version 2.6.0-CDH5.8.0.

the total time needed by a given method to produce the
results, including all the MapReduce/Spark stages (reading,
writing,network communications, etc.) In the following tables,
four measures including the test accuracy (Acc), the number of
generated rules (#Rule), the running time (hh:mm:ss), and the
rule filtering threshold (MinSupp) have been indicated. Run-
ning times are obtained considering the whole procedure of
the FRBCS algorithms, including reading Spark DataFrames,
learning, classifying, and network communications. Addi-
tionally, the accuracy of prediction is calculated using the
confusion matrix as follows:

Acc =
TP + TN

TP + FP + TN + FN
(10)

B. Evaluating the Influence of DRF Method

Owing to the high number of generated rules in big datasets,
DRF is the most essential component of Chi-BD-DRF to
obtain an efficient and scalable FRBCS. Hence, to provide
a comprehensive evaluation firstly, the influence of DRF in
the performance of Chi-BD-DRF is individually investigated.

For this purpose, the Chi-BD-DRF algorithm run in two
modes, one without integrating the DRF into the Chi-classifier
stage of Section III-D and another mode using it. These modes
have been called “Before Filtering” and “After Filtering” in
Table II.

TABLE II
RESULTS OF DYNAMIC RULE FILTERING METHOD

Before Filtering After Filtering

Datasets Acc #Rule Time Acc #Rule Time MinSupp

susy 0.6553 10852.2 00:12:32 0.6515 1002.6 00:01:37 369.2
cov 0.7880 8152.2 00:13:28 0.7687 1408.4 00:02:40 56.6
BNG-h 0.8638 29570.8 00:47:24 0.8589 3230.8 00:04:03 26.4
BNG-Au 0.8490 9773.8 00:12:10 0.8441 910.8 00:01:29 82.2
poker 0.9081 51132.4 01:49:25 0.9122 15815.0 00:28:36 8.0

Avg. 0.8129 21896.28 00:34:59 0.8071 4473.52 00:07:41 108.48

Comparing the results of Table II shows that the number
of rules and consequently the execution times considerably
reduced After Filtering. Indeed, we obtained an average of
79.5% reduction in the number of rules by an approximately
5x faster model. However, removing this quantity of rules from
the RB did not affect severely the accuracy of the models. i.e.,
it decreased by around 1% in average.

These findings signify the effectiveness of the proposed
dynamic filtering threshold in providing a fast and scalable
model. Moreover, due to the significant reduction in the num-
ber of generated rules, DRF could improve the interpretability

of the model in the level of RB [20] and it can be successfully
integrated into the Chi-BD-DRF besides the other components.

It is worth to mention that since the last version of Chi-
FRBCS for Big Data, namely Chi-BD-SF [13], is the same
Chi-BD-DRF without rule weight and filtering, namely “Be-
fore Filtering” mode in Table II, and given that the Chi-BD-SF
outperformed the previous versions [11], [12], we discarded
comparisons to the former two approaches.

C. Evaluating the Influence of Rule Weight

In this section, we aim to evaluate the influence of the
proposed rule weight (Section III-B) to improve the accuracy
of the Chi-BD-DRF. Hence, a Chi-BD-DRF model was run
using two configurations, namely “without RW” and “with
RW” in Table III. In the former, RWi = 1 in all the cases of
Eq. (5), while in the latter, the rules’ weights have been set
as Eq. (3).

Comparing the results of these two runs reveals that em-
ploying rule weight affects positively the accuracy of all the
problems. In addition, since these weights were calculated
simultaneously to the rule generation, they did not affect the
computation time of the algorithm. Therefore, applying such
as these weights instead of the traditional high-cost ones is
suggested, especially in the accuracy-oriented tasks.

TABLE III
RESULTS OF APPLYING RULE WEIGHT

without RW with RW

Datasets Acc Time Acc Time

susy 0.6515 00:01:37 0.6604 00:01:34
cov 0.7687 00:02:40 0.7735 00:02:40
BNG-h 0.8589 00:04:03 0.8641 00:04:09
BNG-Au 0.8441 00:01:29 0.8453 00:01:28
poker 0.9122 00:28:36 0.9147 00:30:22

Avg. 0.8071 00:07:41 0.8116 00:08:02

V. CONCLUSION

In this study, a fuzzy rule-based classification system based
on a new dynamic rule filtering method was proposed for
big data applications. This system employed the concepts of
support and confidence to develop a scalable yet accurate
and interpretable model using the well-known Chi et al’s
rule learning idea. Indeed, the non-fuzzy confidence of the
rules was employed to modify the conflicting rules who had
the same antecedents and different consequences. Given that
this measure has a lower computational effort than its fuzzy
version, it was also applied as an alternative rules’ weight in
Big Data applications where the traditional rules’ weights are
not practical. Additionally, the most critical component of this
study, namely Dynamic Rule Filtering was developed using
the rule’s support and the infrequent rules were removed from
the rule set to provide a compact collection.

This study took advantage of ML pipeline to implement
the algorithm in a straightforward distributed schema. This

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on October 07,2020 at 13:42:41 UTC from IEEE Xplore. Restrictions apply.

structure helped to ensure that the training and test data go
through the identical pre-processing and core processing stages
for all partitions of all executors.

The experimental results confirmed the effectiveness of the
prospered Filtering method as well as the rules’ weights.
It was revealed that employing filtering methods based on
low-computational measures, such as rule’s support, could
significantly reduce the running time without losing a great
deal of accuracy. However, since the number of rules may still
be high in some cases, this fast standard grid-based approach
can be improved to obtain a reduced yet accurate RB, mainly
by considering shorter antecedent rules with higher supports.
This will be intended in our future works.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish
Ministry of Science and Technology under project TIN2017-
89517-P, including European Regional Development Funds,
and the Andalusian regional project P18-TP-5035.

REFERENCES

[1] M. A. Wani and S. Jabin, “Big data: issues, challenges, and techniques
in business intelligence,” in Big data analytics. Springer, 2018, pp.
613–628.

[2] A. Fernández, S. del Rı́o, V. López, A. Bawakid, M. J. del Jesus, J. M.
Benı́tez, and F. Herrera, “Big data with cloud computing: an insight
on the computing environment, mapreduce, and programming frame-
works,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 4, no. 5, pp. 380–409, 2014.

[3] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. D. Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82 – 115, 2020.

[4] S. Ramı́rez-Gallego, A. Fernández, S. Garcı́a, M. Chen, and F. Herrera,
“Big data: Tutorial and guidelines on information and process fusion for
analytics algorithms with mapreduce,” Information Fusion, vol. 42, pp.
51–61, 2018.

[5] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning spark:
lightning-fast big data analysis. ” O’Reilly Media, Inc.”, 2015.

[6] H. Liu, A. Gegov, and M. Cocea, “Rule-based systems: a granular
computing perspective,” Granular Computing, vol. 1, no. 4, pp. 259–
274, 2016.

[7] A. Fernández, S. del Rı́o, A. Bawakid, and F. Herrera, “Fuzzy rule
based classification systems for big data with mapreduce: granularity
analysis,” Advances in Data Analysis and Classification, vol. 11, no. 4,
pp. 711–730, 2017.

[8] A. Fernandez, F. Herrera, O. Cordon, M. J. del Jesus, and F. Marcelloni,
“Evolutionary fuzzy systems for explainable artificial intelligence: Why,
when, what for, and where to?” IEEE Computational Intelligence
Magazine, vol. 14, no. 1, pp. 69–81, 2019.

[9] P. Ducange, M. Fazzolari, and F. Marcelloni, “An overview of recent dis-
tributed algorithms for learning fuzzy models in big data classification,”
Journal of Big Data, vol. 7, no. 1, pp. 1–29, 2020.

[10] Z. Chi, H. Yan, and T. Pham, Fuzzy algorithms: with applications to
image processing and pattern recognition. World Scientific, 1996,
vol. 10.

[11] S. del Rio, V. Lopez, J. M. Benı́tez, and F. Herrera, “A mapreduce
approach to address big data classification problems based on the
fusion of linguistic fuzzy rules,” International Journal of Computational
Intelligence Systems, vol. 8, no. 3, pp. 422–437, 2015.

[12] M. Elkano, M. Galar, J. Sanz, and H. Bustince, “CHI-BD: a fuzzy rule-
based classification system for big data classification problems,” Fuzzy
Sets and Systems, vol. 348, pp. 75–101, 2018.

[13] L. Íñiguez, M. Galar, and A. Fernández, “Improving fuzzy rule based
classification systems in big data via support-based filtering,” in 2018
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE,
2018, pp. 1–8.

[14] N. Bhargava and M. Shukla, “Survey of interestingness measures
for association rules mining: data mining, data science for business
perspective,” IRACST-International Journal of Computer Science and
Information Technology & Security (IJCSITS), vol. 6, no. 2, 2016.

[15] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[16] S. C. Pandey, “Recent developments in big data analysis tools and apache
spark,” in Big Data Processing Using Spark in Cloud. Springer, 2019,
pp. 217–236.

[17] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data
analytics on apache spark,” International Journal of Data Science and
Analytics, vol. 1, no. 3-4, pp. 145–164, 2016.

[18] K. Ishizaki, “Analyzing and optimizing java code generation for apache
spark query plan,” in Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering, 2019, pp. 91–102.

[19] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[20] M. J. Gacto, R. Alcalá, and F. Herrera, “Interpretability of linguistic
fuzzy rule-based systems: An overview of interpretability measures,”
Inf. Sci., vol. 181, no. 20, pp. 4340–4360, 2011.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on October 07,2020 at 13:42:41 UTC from IEEE Xplore. Restrictions apply.

