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A B S T R A C T

Interval-valued intuitionistic multiplicative variables (IVIMVs) can conveniently and effectively represent the
uncertain multiplicative preferred and non-preferred judgements of decision makers, this paper studies group
decision making (GDM) with interval-valued intuitionistic multiplicative preference relations (IVIMPRs). To
calculate the interval-valued intuitionistic multiplicative priority weight vector reasonably, a new consistency
concept is introduced that satisfies robustness and upper triangular property. Following this concept, models to
judge the consistency and obtain consistent IVIMPRs from inconsistent ones are constructed, respectively. To
address the problem of incomplete preferences, consistency-based model to determine missing values is built.
Furthermore, we study the consensus for GDM with IVIMPRs and provide a new consensus approach. When
an acceptable consensus level is not achieved, an interactive and automatic adjustment method is applied to
reach a better consensus level. Following discussion about consistency and consensus, an algorithm for GDM
is offered that can address inconsistent and incomplete IVIMPRs. Finally, a practical problem about selecting
the steel supplier is selected to show the application of the new method.

1. Introduction

Because Zadeh’s fuzzy sets can only express the preferences of
the decision makers (DMs), Atanassov (1986) introduced intuitionistic
fuzzy sets (IFSs) defined on [0, 1] to denote the preferred and non-
preferred judgements of the DMs. Following Atanassov’s work, many
researchers studied intuitionistic fuzzy decision making. Taking the
advantages of preference relations and intuitionistic fuzzy variables
(IFVs), Szmidt and Kacprzyk (1988) introduced intuitionistic fuzzy pref-
erence relations (IFPRs). Considering the consistency of IFPRs, decision
making with IFPRs based on additive consistency (AC) is studied in Chu
et al. (2016) and Gong et al. (2011), and decision making with IFPRs
based on multiplicative consistency (MC) is researched in Meng et al.
(2017a) and Wu and Chiclana (2014).

Later, Xia et al. (2013) presented intuitionistic multiplicative sets
(IMSs) that apply real values defined on Saaty’s [1/9, 9] scale to denote
the unbalanced preferred and non-preferred information. Using intu-
itionistic multiplicative variables (IMVs), Xia et al. (2013) introduced
intuitionistic multiplicative preference relations (IMPRs) and defined
two generalized intuitionistic multiplicative aggregation operators to
rank objects. Considering the limitation of the score function on IMVs,
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Garg (2017a) introduced an improved score function to increase the
ranking among IMVs. Considering the interactive characteristics, Xia
and Xu (2013) introduced the extended intuitionistic multiplicative
Choquet ordered averaging (EIMCOA) operator. Garg (2017b) pre-
sented several distance measures between IMPRs and then offered a
GDM method with IMPRs. Garg (2016, 2018b) presented some op-
erations on IFVs, by which several intuitionistic fuzzy multiplicative
interactive aggregation operators are defined. In addition, Garg (2016,
2018b) studied GDM with IMPRs based on the defined aggregation
operators. Meanwhile, Garg (2018a) developed a correlation coefficient
based GDM method with IMPRs. Jiang and Xu (2014) discussed group
decision making (GDM) with IMPRs based on the consensus analysis.
Jiang et al. (2013) discussed the MC of IMPRs similar to Saaty’s con-
cept, and Jiang et al. (2015) offered a convex combination consistency
concept for IMPRs inspired by Liu (2009). Meng et al. (2019) noted
and analyzed the limitations of Jiang et al.’s consistency concept and
defined a new one. Then, the authors presented a new GDM with
incomplete and inconsistent IMPRs. The application of decision mak-
ing with intuitionistic multiplicative information can be seen in the
literature (Luo et al., 2019; Liao et al., 2019).
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However, IFPRs and IMPRs only permit the DMs to use real numbers
to express the preferred and non-preferred recognitions, which may
be still difficult. To address this issue, Xu (2007a) presented interval-
valued intuitionistic fuzzy preference relations (IVIFPRs) whose ele-
ments are interval-valued intuitionistic fuzzy values (IVIFVs). Different
from IFVs and IMVs, IVIFVs apply an interval in [0, 1] to express the un-
certain preferred and non-preferred judgments of the DMs, respectively.
Xu and Cai (2009) discussed the AC of IVIFPRs using the relationship
between IVIFVs. Furthermore, they studied the MC of IVIFPRs using the
multiplication laws defined on IVIFVs (Xu, 2007b). Following Tanino’s
MC (Tanino, 1984), Liao et al. (2014), and Xu and Cai (2009) separately
offered another MC concept (MCC) for IVIFPRs. Wan et al. (2016)
extended MCC for IMPRs and provided a new MCC for IVIFPRs. Wu
and Chiclana (2012) presented intuitionistic quantifier guided non-
dominance degree and gave a method to rank objects from IVIFPRs.
GDM methods with IVIFPRs can be seen in the literature (Meng et al.,
2018; Tang et al., 2018; Wan et al., 2018a,b).

To express the unbalanced uncertain preferred and non-preferred
judgements of the DMs, Jiang and Xu (2014) generalized the notion
of IMSs and presented interval-valued intuitionistic multiplicative sets
(IVIMSs), whose elements are interval-valued intuitionistic multiplica-
tive variables (IVIMVs). Considering the application of IVIMVs, the
authors introduced several basic operational laws and then researched
decision making with IVIMVs using normalized Minkowski and Man-
hattan distances. Recently, Zhang (2017) introduced IVIMVs for pref-
erence relations and presented interval-valued intuitionistic multiplica-
tive preference relations (IVIMPRs). After that, the author provided
two approaches to GDM with IVIMPRs using the aggregation operators.
Based on some new operational laws on IVIMVs, Liu et al. (2019) re-
searched their properties and presented an aggregation operator based
GDM with IVIMPRs. Following the works of Liu (2009) and Jiang et al.
(2015), Sahu et al. (2018) presented a consistency concept for IVIMPRs
and offered a method for ascertaining missing values in incomplete
IVIMPRs. Based on the acceptable consistency analysis, the authors
offered a GDM with incomplete IVIMPRs. Based on Zhang and Prdrycz’s
consistency concept for IMPRs (Zhang and Prdrycz, 2017, 2019) offered
a consistency concept for IVIMPRs. Using this consistency index for IM-
PRs, the authors discussed the consistency of IVIFMPRs. Furthermore,
Zhang and Prdrycz (2019) built several models for determining the
weights of the DMs and calculating the interval-valued intuitionistic
multiplicative priority weight vector (IVIMPWV). Following the work
of Zhang and Prdrycz (2019) and Zhang and Prdrycz (2019) further
discussed the consensus for GDM with IVIMPRs.

From the above literature review, one can check that studies about
decision making with IVIMPRs are relatively fewer and there are some
drawbacks.

(1) Most of previous studies (Jiang et al., 2014; Zhang, 2017; Liu
et al., 2019) about GDM with IVIMPRs are based on the aggrega-
tion operators which disregard the consistency and/or consensus
analysis. It means that such methods neither can ensure the ra-
tionality of ranking nor make the ranking represent the opinions
of DMs.

(2) As some researchers noted the limitation of Liu’s consistency
concept (Liu, 2009), Sahu et al.’s consistency concept for IVIM-
PRs (Sahu et al., 2018) has several drawbacks including (i) Sahu
et al.’s consistency concept depends on the comparison order of
objects, this concept is meaningless (Krejčí, 2017); (ii) when a
given IVIMPR is inconsistent, different rankings may be obtained
with respect to different comparison orders; (iii) different values
for missing judgments may be obtained for different objects’
compared orders. Meanwhile, different rankings may be derived
too for incomplete IVIMPRs. Furthermore, Sahu et al.’s method
(Sahu et al., 2018) for GDM with IVIMPRs does not make the
consensus analysis and disregards how to determine the weights
of the DMs. Moreover, this method can only address the situation
where each object is compared at least once.

(3) As for methods in the literature (Zhang and Prdrycz, 2019;
Zhang et al., 2019), the main drawbacks comes from the adopted
consistency concept which is in fact based on the score function
on IMVs (Xia et al., 2013): (i) when an IVIMPR is inconsistent,
we cannot judge that it is caused by the lower/upper bound
of interval preferred/non-preferred degree; (ii) following this
concept, there may be infinite values for missing judgments.
Furthermore, when an IVIMPR is completely consistent follow-
ing Zhang and Prdrycz’s consistency concept, there may be no
IVIMPWV. Moreover, Zhang and Prdrycz’s method disregarded
the consistency analysis. Meanwhile, neither of them studied
incomplete IVIMPRs.

To overcome the above mentioned drawbacks of previous research
about GDM with IVIMPRs, this paper introduces a new GDM ap-
proach with IVIMPRs based on the consistency and consensus criteria to
achieve a final ranking of objects/alternatives. In conclusion, the merits
of the new method contain:
(i) The consistency of IVIMPRs is further analyzed, and a new MCC is
offered that avoids the limitations of previous ones (Sahu et al., 2018;
Zhang and Prdrycz, 2019).
(ii) Based on the new consistency concept, models to access the con-
sistency of IVIMPRs from inconsistent ones are built that can achieve
the minimum total adjustment and permitting to only adjust part
judgments.
(iii) When incomplete IVIMPRs are obtained, a model to obtain un-
known values is established that can address the case where ignored
objects exist, that is, all their information is unknown. While all previ-
ous methods cannot cope with this case (Jiang and Xu, 2014; Zhang,
2017; Liu et al., 2019; Sahu et al., 2018; Zhang and Prdrycz, 2019;
Zhang et al., 2019).
(iv) The consensus for GDM with IVIMPRs is studied. A consensus
measure is defined, and a new method to improve the consensus level
is constructed that can guarantee the consistency unchanged.
(v) A new distance measure based model is introduced to determine
the DMS’ weights. Finally, we show an application example of our new
method.

For the aspect (ii), although methods in Sahu et al. (2018) and
Zhang and Prdrycz (2019) also considered it, their rationality is ques-
tionable because of the drawbacks of the adopted consistency concepts.
For aspects (iv) and (v), only Zhang et al.’s method (Zhang et al.,
2019) studied them. However, the used consistency concept and the
procedure for calculating the IVIMPWV have limitations as listed in (3).

The rest is organized as follows: Section 2 recalls basic concepts
and two consistency concepts for IVIMPRs. Section 3 researches the
consistency of IVIMPRs and offers a MCC for IVIMPRs. Section 4 studies
incomplete and inconsistent IVIMPRs. Section 5 studies GDM with
IVIMPRs. Section 6 uses a practical example to show the application.
Conclusion is given in the end.

2. Preliminaries

In this section, there are two subsections. The first subsection intro-
duces some basic concepts to help the readers understand the following
discussion. The second subsection reviews two previous consistency
concepts for IVIMPRs and analyzes their limitations.

2.1. Basic concepts

To denote the uncertain judgements, Saaty and Vargas (1987) uti-
lized intervals defined on Saaty’s [1/9, 9] scale to introduce interval-
valued multiplicative preference relations (IVMPRs). First, we review
the concept of intervals.

Definition 1. Let ℜ be the set of all real numbers. 𝑎 = [𝑎−, 𝑎+] is said to
be an interval if 𝑎− ≤ 𝑎+ with 𝑎−, 𝑎+ ∈ ℜ, and 𝑎 is said to be a positive
interval if 𝑎− ≤ 𝑎+ with 𝑎− > 0.
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Definition 2. Let 𝑎 = [𝑎−, 𝑎+] and 𝑏 = [𝑏−, 𝑏+] be any two positive
intervals. Then, several of their operations are defined as follows:
(i) 𝑎 ⊕ 𝑏 = [𝑎− + 𝑏−, 𝑎+ + 𝑏+];
(ii) 𝑎 ⊗ 𝑏 = [𝑎−𝑏−, 𝑎+𝑏+];
(iii) 𝑎∕𝑏 = [𝑎−∕𝑏+, 𝑎+∕𝑏−];
(iv) 𝑎𝜆 = [(𝑎−)𝜆, (𝑎+)𝜆] 𝜆 ≥ 0;
(v) log𝜆 𝑎 = [log𝜆(𝑎−), log𝜆(𝑎+)] 0 < 𝜆 ∧ 𝜆 ≠ 1.

Definition 3 (Saaty and Vargas, 1987).An IVMPR 𝐵 = (𝑏𝑖𝑗 )𝑛×𝑛 on the
object set X = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is defined as:

𝐵 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

[1, 1] [𝑏−12, 𝑏
+
12] … [𝑏−1𝑛, 𝑏

+
1𝑛]

[𝑏−21, 𝑏
+
21] [1, 1] … [𝑏−2𝑛, 𝑏

+
2𝑛]

⋮ ⋮ ⋮ ⋮

[𝑏−𝑛1, 𝑏
+
𝑛1] [𝑏−𝑛2, 𝑏

+
𝑛2] … [1, 1]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(1)

where 𝑏−𝑖𝑗 , 𝑏
+
𝑖𝑗 > 0, 𝑏−𝑖𝑗 ≤ 𝑏+𝑖𝑗 and

{

𝑏−𝑖𝑗 = 1∕𝑏+𝑗𝑖
𝑏+𝑖𝑗 = 1∕𝑏−𝑗𝑖,

𝑏𝑖𝑗 shows that 𝑥𝑖 is

between 𝑏−𝑖𝑗 and 𝑏+𝑖𝑗 times as important as 𝑥𝑗 . When 𝑏−𝑖𝑗 = 𝑏+𝑖𝑗 for all
𝑖, 𝑗 = 1, 2,… , 𝑛, 𝐵 reduces to a multiplicative preference relation (Saaty,
1980).

After reviewing the previous consistency concepts for IVMPRs,
Meng and Tan (2017) introduced the following MCC for IMPRs:

Definition 4 (Meng and Tan, 2017).Let 𝐵 = (𝑏𝑖𝑗 )𝑛×𝑛 be an IVMPR. 𝐵 is
consistent if there is a consistent QIVMPR 𝑄 = (𝑞𝑖𝑗 )𝑛×𝑛, namely,

𝑞𝑖𝑗 = 𝑞𝑖𝑘 ⊗ 𝑞𝑘𝑗 (2)

for all i, k, j = 1, 2, . . . n, where
⎧

⎪

⎨

⎪

⎩

𝑞𝑖𝑗 = (𝑏𝑖𝑗 )
𝜆𝑖𝑗 ⊗ (𝑏

◦
𝑖𝑗 )

1−𝜆𝑖𝑗

𝑞𝑗𝑖 = (𝑏
◦
𝑗𝑖)

𝜆𝑖𝑗 ⊗ (𝑏𝑗𝑖)
1−𝜆𝑖𝑗 ,

i, j =

1, 2, . . . n, 𝜆𝑖𝑗 is a 0–1 indicator variable (0-1-IV) such that 𝜆𝑖𝑗 =
⎧

⎪

⎨

⎪

⎩

1 𝑞𝑖𝑗 = 𝑏𝑖𝑗 ∧ 𝑞𝑗𝑖 = 𝑏
◦
𝑗𝑖

0 𝑞𝑖𝑗 = 𝑏
◦
𝑖𝑗 ∧ 𝑞𝑗𝑖 = 𝑏𝑗𝑖,

and 𝑏
◦
𝑖𝑗 = [𝑏+𝑖𝑗 , 𝑏

−
𝑖𝑗 ] is the quasi interval for 𝑏𝑖𝑗 ,

i, j = 1, 2, . . . n.

For more explanations as well as the principle of Definition 4, please
see Ref. Meng and Tan (2017). To denote the unbalanced uncertain
positive and negative comparisons of one object over another, Jiang
and Xu (2014) introduced the concept of IVIMSs.

Definition 5 (Jiang and Xu, 2014). An IVIMS �̃� on the object set X =
{𝑥1, 𝑥2, . . . , 𝑥𝑛} is defined as:

�̃� = {< 𝑥, 𝜌𝐷(𝑥), 𝜎𝐷(𝑥) > |𝑥 ∈ 𝑋} (3)

which assigns to each element x an interval preferred degree 𝜌𝐷(𝑥) =
[𝜌−𝐷(𝑥), 𝜌

+
𝐷(𝑥)] and an interval non-preferred degree 𝜎𝐷(𝑥) = [𝜎−𝐷(𝑥),

𝜎+𝐷(𝑥)] with the conditions
⎧

⎪

⎨

⎪

⎩

1∕𝑎 ≤ 𝜎−𝐷(𝑥), 𝜎
+
𝐷(𝑥) ≤ 𝑎

1∕𝑎 ≤ 𝜌−𝐷(𝑥), 𝜌
+
𝐷(𝑥) ≤ 𝑎

𝜌+𝐷(𝑥)𝜎
+
𝐷(𝑥) ≤ 1,

where [1/9, 9] is

the given scale.

For convenience, �̃� =
(

𝜌, 𝜎
)

is called an IVIMV, where 𝜌 = [𝜌−, 𝜌+]

and 𝜎 = [𝜎−, 𝜎+] such that
⎧

⎪

⎨

⎪

⎩

1∕9 ≤ 𝜎−, 𝜎+ ≤ 9

1∕9 ≤ 𝜌−, 𝜌+ ≤ 9

𝜌+𝜎+ ≤ 1.

Definition 5 shows when
{

𝜌−𝐷(𝑥) = 𝜌+𝐷(𝑥)

𝜎−𝐷(𝑥) = 𝜎+𝐷(𝑥),
then the IVIMS �̃� re-

duces to an IFMS. Furthermore, when
{

𝜎− = 𝜎+

𝜌− = 𝜌+,
then the IVIMV �̃�

becomes the IFMN 𝛼 = (𝜌, 𝜎).

Considering the order relationship between IVIMVs, the score and
accuracy functions are defined as follows:

Definition 6 (Jiang and Xu, 2014). Let �̃� =
(

[𝜌−, 𝜌+], [𝜎−, 𝜎+]
)

be an
IVIMV as defined in Definition 5. The score function is 𝑆(�̃�) =

√

𝜌−𝜌+
𝜎−𝜎+ ,

and the accuracy function is 𝐴(�̃�) =
√

(𝜌+𝜌−) (𝜎+𝜎−).

Let �̃�1 =
(

[𝜌−1 , 𝜌
+
1 ], [𝜎

−
1 , 𝜎

+
1 ]
)

and �̃�2 =
(

[𝜌−2 , 𝜌
+
2 ], [𝜎

−
2 , 𝜎

+
2 ]
)

be any two
IVIMVs. Then, their order relationship is (Jiang and Xu, 2014):

⎧

⎪

⎨

⎪

⎩

�̃�1 > �̃�2 if𝑆(�̃�1) > 𝑆(�̃�2)

�̃�1 > �̃�2 if𝑆(�̃�1) = 𝑆(�̃�2) ∧ 𝐴(�̃�1) > 𝐴(�̃�2)

�̃�1 = �̃�2 if𝑆(�̃�1) = 𝑆(�̃�2) ∧ 𝐴(�̃�1) = 𝐴(�̃�2)

(4)

Using IVIMVs, Zhang (2017) introduced IVIMPRs:

Definition 7 (Zhang, 2017). Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be defined on the object
set X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑟𝑖𝑗 =

(

𝜌𝑖𝑗 , 𝜎𝑖𝑗
)

is an IVIMV between
the objects 𝑥𝑖 and 𝑥𝑗 , and 𝜌𝑖𝑗 = [𝜌−𝑖𝑗 , 𝜌

+
𝑖𝑗 ] and 𝜎𝑖𝑗 = [𝜎−𝑖𝑗 , 𝜎

+
𝑖𝑗 ] are the

interval preferred and non-preferred degrees of the object 𝑥𝑖 over 𝑥𝑗 ,
respectively. If the following is true:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜌−𝑖𝑗 = 𝜎−𝑗𝑖, 𝜌
+
𝑖𝑗 = 𝜎+𝑗𝑖

𝜎−𝑖𝑗 = 𝜌−𝑗𝑖, 𝜎
+
𝑖𝑗 = 𝜌+𝑗𝑖

𝜌−𝑖𝑗 ≤ 𝜌+𝑖𝑗 , 𝜎
−
𝑖𝑗 ≤ 𝜎+𝑖𝑗

1∕9 ≤ 𝜌−𝑖𝑗 , 𝜌
+
𝑖𝑗 , 𝜎

−
𝑖𝑗 , 𝜎

+
𝑖𝑗 ≤ 9

𝜌+𝑖𝑗𝜎
+
𝑖𝑗 ≤ 1

𝜌−𝑖𝑗 = 𝜌+𝑖𝑗 = 𝜎−𝑖𝑗 = 𝜎+𝑖𝑗 = 1

(5)

for all i, 𝑗 = 1, 2, . . . , n, then �̃� is called an IVIMPR.

According to Definition 7, one can easily find that when 𝜌−𝑖𝑗 = 𝜌+𝑖𝑗
and 𝜎−𝑖𝑗 = 𝜎+𝑖𝑗 for all i, 𝑗 = 1, 2, . . . , n, the IVIMPR �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 reduces
to an IMPR (Xia et al., 2013).

For example, let X = {𝑥1, 𝑥2, 𝑥3}. An IVIMPR �̃� on X may be

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

([1, 1], [1, 1]) ([3, 4], [ 1
6
, 1
4
]) ([ 1

2
, 1], [ 1

3
, 1
2
])

([ 1
6
, 1
4
], [3, 4]) ([1, 1], [1, 1]) ([4, 5], [ 1

9
, 1
6
])

([ 1
3
, 1
2
], [ 1

2
, 1]) ([ 1

9
, 1
6
], [4, 5]) ([1, 1], [1, 1])

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

2.2. Two previous consistency concepts

To rank objects from IVIMPRs logically, Zhang and Prdrycz (2019)
discussed the consistency of IVIMPRs.

Definition 8 (Zhang and Prdrycz, 2019). Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be an IVIMPR
defined on the object set X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑟 =

(

𝜌𝑖𝑗 , 𝜎𝑖𝑗
)

=
(

[𝜌−𝑖𝑗 , 𝜌
+
𝑖𝑗 ], [𝜎

−
𝑖𝑗 , 𝜎

+
𝑖𝑗 ]
)

is an IVIMV for all i, 𝑗 = 1, 2, . . . , n. Then,
𝑅− = (𝑟−𝑖𝑗 )𝑛×𝑛 and 𝑅+ = (𝑟+𝑖𝑗 )𝑛×𝑛 are separately called the left and

right matrices of the IVIMPR �̃�, where 𝑟−𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(

𝜌−𝑖𝑗 , 𝜎
+
𝑖𝑗

)

𝑖 < 𝑗
(0.5, 0.5) 𝑖 = 𝑗
(

𝜌+𝑖𝑗 , 𝜎
−
𝑖𝑗

)

𝑖 > 𝑗
and

𝑟+𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(

𝜌+𝑖𝑗 , 𝜎
−
𝑖𝑗

)

𝑖 < 𝑗
(0.5, 0.5) 𝑖 = 𝑗
(

𝜌−𝑖𝑗 , 𝜎
+
𝑖𝑗

)

𝑖 > 𝑗
for all i, 𝑗 = 1, 2, . . . , n.

According to Definition 8, one can find that the left and right
matrices 𝑅− and 𝑅+ are two IMPRs. Based on IMPRs, Zhang and
Prdrycz (2019) gave the following consistency concept for IVIMPRs.

Definition 9 (Zhang and Prdrycz, 2019). Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be an IVIMPR
defined on the object set X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑟 =

(

𝜌𝑖𝑗 , 𝜎𝑖𝑗
)

=
(

[𝜌−𝑖𝑗 , 𝜌
+
𝑖𝑗 ], [𝜎

−
𝑖𝑗 , 𝜎

+
𝑖𝑗 ]
)

is an IVIMV for all i, 𝑗 = 1, 2, . . . , n. It is consistent

3
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if its IMPRs 𝑅− = (𝑟−𝑖𝑗 )𝑛×𝑛 and 𝑅+ = (𝑟+𝑖𝑗 )𝑛×𝑛 are both consistent, namely,

𝜌−𝑖𝑗𝜎
+
𝑖𝑘𝜎

+
𝑘𝑗 = 𝜌−𝑖𝑘𝜌

−
𝑘𝑗𝜎

+
𝑖𝑗 and 𝜌+𝑖𝑗𝜎

−
𝑖𝑘𝜎

−
𝑘𝑗 = 𝜌+𝑖𝑘𝜌

+
𝑘𝑗𝜎

−
𝑖𝑗 (6)

for all i, k, 𝑗 = 1, 2, . . . , n with i < k < j.

According to Eq. (6), we derive that the IMPRs 𝑅− = (𝑟−𝑖𝑗 )𝑛×𝑛 and

𝑅+ = (𝑟+𝑖𝑗 )𝑛×𝑛 are consistent if and only if
𝜌−𝑖𝑗
𝜎+𝑖𝑗

=
𝜌−𝑖𝑘
𝜎+𝑖𝑘

×
𝜌−𝑘𝑗
𝜎+𝑘𝑗

and
𝜌+𝑖𝑗
𝜎−𝑖𝑗

=

𝜌+𝑖𝑘
𝜎−𝑖𝑘

×
𝜌+𝑘𝑗
𝜎−𝑘𝑗

for all i, k, 𝑗 = 1, 2, . . . , n with i < k < j. It should be noted that
this concept is in fact equivalent to Liao and Xu’s multiplicative con-
sistency concept for IFPRs (Liao and Xu, 2014). As Meng et al. (2017a)
noted, there are two main limitations of Definition 9, namely, it is
insufficient to cope with inconsistent and incomplete IVIMPRs which
are usually encountered in decision making. Therefore, the application

of Definition 9 is very limited. For example, if
⎧

⎪

⎨

⎪

⎩

𝜌−𝑖𝑗
𝜎+𝑖𝑗

≠
𝜌−𝑖𝑘
𝜎+𝑖𝑘

×
𝜌−𝑘𝑗
𝜎+𝑘𝑗

𝜌+𝑖𝑗
𝜎−𝑖𝑗

≠
𝜌+𝑖𝑘
𝜎−𝑖𝑘

×
𝜌+𝑘𝑗
𝜎−𝑘𝑗

for some

triple of (i, k, j), we need to adjust
𝜌−𝑖𝑗
𝜎+𝑖𝑗

and
𝜌+𝑖𝑗
𝜎−𝑖𝑗

as
⎧

⎪

⎨

⎪

⎩

𝜌−𝑖𝑗+𝑥
−
𝑖𝑗

𝜎+𝑖𝑗+𝑦
+
𝑖𝑗
= 𝛼𝑖𝑗

𝜌+𝑖𝑗+𝑥
+
𝑖𝑗

𝜎−𝑖𝑗+𝑦
−
𝑖𝑗
= 𝛽𝑖𝑗

under the

conditions of
⎧

⎪

⎨

⎪

⎩

1∕9 ≤ 𝜌−𝑖𝑗 + 𝑥−𝑖𝑗 ≤ 𝜌+𝑖𝑗 + 𝑥+𝑖𝑗 ≤ 9

1∕9 ≤ 𝜎−𝑖𝑗 + 𝑦−𝑖𝑗 ≤ 𝜎+𝑖𝑗 + 𝑦+𝑖𝑗 ≤ 9

(𝜌+𝑖𝑗 + 𝑥+𝑖𝑗 ) × (𝜎+𝑖𝑗 + 𝑦+𝑖𝑗 ) ≤ 1.

It is difficult to ascertain

that the inconsistency is caused by which endpoint of interval preferred
and/or non-preferred degrees. For incomplete IVIMPRs, one can check
that there may be infinite values for missing judgments satisfying the
consistency requirement.

Furthermore, models for calculating the IVIMPWV adopted by
Zhang and Prdrycz (2019) cannot ensure the existence of the normal-
ized IVIMPWV even for completely consistent IVIMPRs. For example,
let �̃� be an IVIMPR on X = {𝑥1, 𝑥2, 𝑥3}, where

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

([1, 1], [1, 1]) ([2, 2], [ 1
4
, 1
4
]) ([1, 1], [ 1

8
, 1
8
])

([ 1
4
, 1
4
], [2, 2]) ([1, 1], [1, 1]) ([ 1

4
, 1
4
], [ 1

4
, 1
4
])

([ 1
8
, 1
8
], [1, 1]) ([ 1

4
, 1
4
], [ 1

4
, 1
4
]) ([1, 1], [1, 1])

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

One can check that �̃� is completely consistent according to Defini-
tion 9. According to Eqs. (30) and (31) in the literature (Zhang and
Prdrycz, 2019), we obtain

�̃� =

(([

1
𝑤𝜎−

1
, 1
𝑤𝜎−

1

]

,
[

𝑤𝜎−
1 , 𝑤𝜎−

1
]

)

,

([

1
4𝑤𝜎−

1
, 1
4𝑤𝜎−

1

]

,
[

2𝑤𝜎−
1 , 2𝑤𝜎−

1
]

)

,

([

1
8𝑤𝜎−

1
, 1
8𝑤𝜎−

1

]

,
[

𝑤𝜎−
1 , 𝑤𝜎−

1
]

))

,

where 𝑤𝜎−
1 is the lower bound of the interval non-preferred degree of

the object 𝑥1.
According to the definition of the normalized IVIMPWV, we should

have
{

𝑤𝜌−
1 𝑤𝜌−

2 ≤ 𝑤𝜎−
3

𝑤𝜌−
3 ≥ 𝑤𝜎−

1 𝑤𝜎−
2

⇒

⎧

⎪

⎨

⎪

⎩

1
𝑤𝜎−
1

× 1
4𝑤𝜎−

1
≤ 𝑤𝜎−

1

1
8𝑤𝜎−

1
≥ 𝑤𝜎−

1 × 2𝑤𝜎−
1

⇒

⎧

⎪

⎨

⎪

⎩

1
3

√

1
4 ≤ 𝑤𝜎−

1
1
3

√

1
16 ≥ 𝑤𝜎−

1 .

Thus, Definitions 4 and 6 given in the literature (Zhang and Prdrycz,
2019) are not equivalent. The rationality of models (M-9) to (M-11) in
the literature (Zhang and Prdrycz, 2019) for calculating the normalized
IVIMPWV is questionable.

On the other hand, Sahu et al. (2018) extended Liu’s consistency
concept for IVMPRs (Liu, 2009) to offer another consistency concept
for IVIMPRs.

Definition 10 (Sahu et al., 2018). Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be an IVIMPR
defined on the object set X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑟 =

(

𝜌𝑖𝑗 , 𝜎𝑖𝑗
)

=
(

[𝜌−𝑖𝑗 , 𝜌
+
𝑖𝑗 ], [𝜎

−
𝑖𝑗 , 𝜎

+
𝑖𝑗 ]
)

is an IVIMV for all i, 𝑗 = 1, 2, . . . , n. It is consistent
if its associated four multiplicative preference relations (MPRs) 𝐵(𝑞) =
(

𝑏(𝑞)𝑖𝑗

)

𝑛×𝑛
, 𝑞 = 1, 2, 3, 4, are all consistent, namely, 𝑏(𝑞)𝑖𝑗 = 𝑏(𝑞)𝑖𝑘 𝑏

(𝑞)
𝑘𝑗 for all

i, 𝑗 = 1, 2, . . . , n, where

𝑏(1)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜌−𝑖𝑗 𝑖 < 𝑗

1 𝑖 = 𝑗

1∕𝜌−𝑖𝑗 𝑖 > 𝑗

, 𝑏(2)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜌+𝑖𝑗 𝑖 < 𝑗

1 𝑖 = 𝑗

1∕𝜌+𝑖𝑗 𝑖 > 𝑗

, 𝑏(3)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜎−𝑖𝑗 𝑖 < 𝑗

1 𝑖 = 𝑗

1∕𝜎−𝑖𝑗 𝑖 > 𝑗

, and

𝑏(4)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜎+𝑖𝑗 𝑖 < 𝑗

1 𝑖 = 𝑗

1∕𝜎+𝑖𝑗 𝑖 > 𝑗

(7)

Considering the fact that the principle of Definition 10 is similar
to that offered by Liu (2009) and Jiang et al. (2015), one can easily
check that Definition 10 has the limitations listed in (2) in Introduction.
Taking the first issue for example, let �̃� be an IVIMPR on X = {𝑥1, 𝑥2,
𝑥3}, where

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

([1, 1], [1, 1]) ([ 1
2
, 1
4
], [2, 3]) ([ 1

2
, 1
2
], [ 2

3
, 3
4
])

([2, 3], [ 1
2
, 1
4
]) ([1, 1], [1, 1]) ([1, 2], [ 1

3
, 1
4
])

([ 2
3
, 3
4
], [ 1

2
, 1
2
]) ([ 1

3
, 1
4
], [1, 2]) ([1, 1], [1, 1])

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑥1

𝑥2

𝑥3.

According to Eq. (7), we have 𝐵(1) =

⎛

⎜

⎜

⎜

⎝

1 1
2

1
2

2 1 1

2 1 1

⎞

⎟

⎟

⎟

⎠

,

𝐵(2) =

⎛

⎜

⎜

⎜

⎝

1 1
4

1
2

4 1 2

2 1
2 1

⎞

⎟

⎟

⎟

⎠

, 𝐵(3) =

⎛

⎜

⎜

⎜

⎜

⎝

1 2 2
3

1
2 1 1

3
3
2 3 1

⎞

⎟

⎟

⎟

⎟

⎠

, and 𝐵(4) =

⎛

⎜

⎜

⎜

⎜

⎝

1 3 3
4

1
3 1 1

4
4
3 4 1

⎞

⎟

⎟

⎟

⎟

⎠

. Because

all of these MPRs are consistent, �̃� is consistent. In addition, let 𝜎 be a
permutation on X, where 𝑥𝜎(1) = 𝑥3, 𝑥𝜎(2) = 𝑥1, and 𝑥𝜎(3) = 𝑥2. Then,

�̃�𝜎 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

([1, 1], [1, 1]) ([1, 2], [ 1
3
, 1
4
]) ([2, 3], [ 1

2
, 1
4
])

([ 1
3
, 1
4
], [1, 2]) ([1, 1], [1, 1]) ([ 2

3
, 3
4
], [ 1

2
, 1
2
])

([ 1
2
, 1
4
], [2, 3]) ([ 1

2
, 1
2
], [ 2

3
, 3
4
]) ([1, 1], [1, 1])

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑥2

𝑥3

𝑥1.

With respect to �̃�𝜎 , we obtain 𝐵𝜎(1) =

⎛

⎜

⎜

⎜

⎝

1 1 2

1 1 2
3

1
2

3
2 1

⎞

⎟

⎟

⎟

⎠

, 𝐵𝜎(2) =

⎛

⎜

⎜

⎜

⎝

1 2 3
1
2 1 3

4
1
3

4
3 1

⎞

⎟

⎟

⎟

⎠

, 𝐵𝜎(3) =

⎛

⎜

⎜

⎜

⎝

1 1
3

1
2

3 1 1
2

2 2 1

⎞

⎟

⎟

⎟

⎠

, and 𝐵𝜎(4) =

⎛

⎜

⎜

⎜

⎝

1 1
4

1
4

4 1 1
2

4 2 1

⎞

⎟

⎟

⎟

⎠

. One can

check that none of these MPRs 𝐵𝜎(𝑞), 𝑞 = 1, 2, 3, 4, is consistent. Hence,
�̃�𝜎 is inconsistent.

3. A new consistency concept

To obtain the ranking rationally, consistency analysis should be con-
ducted. Considering the limitations of previous consistency concepts for
IVIMPRs, we next study the consistency of IVIMPRs. As analysis in Ref.
Meng et al. (2017b), it is unsuitable to directly apply the consistency
concept for crisp preference relations to define the consistency of IVIM-
PRs. Considering this, we introduce the following concept of preferred
2-dimensional interval fuzzy multiplicative variables (PTDIFMVs):

Definition 11. Let �̃� =
(

[𝜌−, 𝜌+], [𝜎−, 𝜎+]
)

be an IVIMV. Then, �̃� =
(

[𝜌−, 𝜌+], [1∕𝜎+, 1∕𝜎−]
)

is called a PTDIFMV.

4
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Let �̃� =
(

[𝜌−, 𝜌+], [𝜎−, 𝜎+]
)

. Because [𝜎−, 𝜎+] denotes the non-
preferred interval multiplicative membership degree, [1∕𝜎+, 1∕𝜎−] is
the preferred interval multiplicative membership degree for [𝜎−, 𝜎+].

Definition 12. Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be an IVIMPR, where 𝑟𝑖𝑗 =
(

𝜌𝑖𝑗 , 𝜎𝑖𝑗
)

is an IVIMV. Then, 𝑃 = (�̃�𝑖𝑗 )𝑛×𝑛 is called a preferred 2-dimensional
interval fuzzy multiplicative preference relation (PTDIFMPR), where
�̃�𝑖𝑗 =

(

𝜌𝑖𝑗 , 𝜎
−1
𝑖𝑗

)

=
(

[𝜌−𝑖𝑗 , 𝜌
+
𝑖𝑗 ], [1∕𝜎+𝑖𝑗 , 1∕𝜎

−
𝑖𝑗 ]
)

is a PTDIFMV for the IVIMV
𝑟𝑖𝑗 , i, 𝑗 = 1, 2, . . . , n.

Definition 12 shows that a PTDIFMPR 𝑃 = (�̃�𝑖𝑗 )𝑛×𝑛 corresponds to
two IVMPRs 𝐵1 = (𝑏1,𝑖𝑗 )𝑛×𝑛 and 𝐵2 = (𝑏2,𝑖𝑗 )𝑛×𝑛, where

𝑏1,𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

[𝜌−𝑖𝑗 , 𝜌
+
𝑖𝑗 ] 𝑖 < 𝑗

[1, 1] 𝑖 = 𝑗

[1∕𝜌+𝑖𝑗 , 1∕𝜌
−
𝑖𝑗 ] 𝑖 > 𝑗

and 𝑏2,𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

[1∕𝜎+𝑖𝑗 , 1∕𝜎
−
𝑖𝑗 ] 𝑖 < 𝑗

[1, 1] 𝑖 = 𝑗

[𝜎−𝑖𝑗 , 𝜎
+
𝑖𝑗 ] 𝑖 > 𝑗

(8)

Definition 13. Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be an IVIMPR, and let 𝑃 = (�̃�𝑖𝑗 )𝑛×𝑛 be its
associated PTDIFMPR. 𝑃 is consistent if and only if the corresponding
two IVMPRs 𝐵1 = (𝑏1,𝑖𝑗 )𝑛×𝑛 and 𝐵2 = (𝑏2,𝑖𝑗 )𝑛×𝑛 defined in Eq. (8) are
both consistent based on Definition 4.

Definition 12 shows that elements in PTDIFMPRs are derived from
associated IVIMPRs. Thus, we can apply consistent PTDIFMPRs to
define the consistency of IVIMPRs.

Definition 14. Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be an IVIMPR. It is consistent if one
of its associated PTDIFMPRs shown in Definition 12 is consistent based
on Definition 13.

Following discussion about the properties of Definition 4 (Meng and
Tan, 2017), one can check that Definition 14 satisfies two important
properties for consistency concepts: robustness and upper triangular
property.

As Meng and Tan (2017) noted, it is infeasible to directly apply
Definition 14 to judge the consistency of IVIMPRs because there are
too many QIVMPRs. Considering this situation, we build the following
model to judge the consistency of IVIMPRs.

Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be an IVIMPR. If it is consistent, then the IVMPRs
𝐵1 = (𝑏1,𝑖𝑗 )𝑛×𝑛 and 𝐵2 = (𝑏2,𝑖𝑗 )𝑛×𝑛 obtained from the PTDIFMPR
𝑃 = (�̃�𝑖𝑗 )𝑛×𝑛 are consistent simultaneously. Following Definition 4,
consistent QIVMPRs exist for the IVMPRs 𝐵1 = (𝑏1,𝑖𝑗 )𝑛×𝑛 and 𝐵2 =
(𝑏2,𝑖𝑗 )𝑛×𝑛. Without loss of generality, suppose that 𝑄1 = (𝑞1,𝑖𝑗 )𝑛×𝑛 and
𝑄2 = (𝑞2,𝑖𝑗 )𝑛×𝑛 are their corresponding consistent QIVMPRs, where

⎧

⎪

⎨

⎪

⎩

𝑞1,𝑖𝑗 = (𝑏1,𝑖𝑗 )
𝜃𝑖𝑗 ⊗ (𝑏

◦
1,𝑖𝑗 )

1−𝜃𝑖𝑗

𝑞1,𝑗𝑖 = (𝑏
◦
1,𝑗𝑖)

𝜃𝑗𝑖 ⊗ (𝑏1,𝑗𝑖)
1−𝜃𝑗𝑖

and
⎧

⎪

⎨

⎪

⎩

𝑞2,𝑖𝑗 = (𝑏2,𝑖𝑗 )
𝜗𝑖𝑗 ⊗ (𝑏

◦
2,𝑖𝑗 )

1−𝜗𝑖𝑗

𝑞2,𝑗𝑖 = (𝑏
◦
2,𝑗𝑖)

𝜗𝑗𝑖 ⊗ (𝑏2,𝑗𝑖)
1−𝜗𝑗𝑖 ,

(9)

𝜃𝑖𝑗 and 𝜗𝑖𝑗 are the 0-1-IVs such that
{

𝜃𝑖𝑗 + 𝜃𝑗𝑖 = 1

𝜗𝑖𝑗 + 𝜗𝑗𝑖 = 1
defined as: 𝜃𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑞1,𝑖𝑗 = 𝑏1,𝑖𝑗 and 𝑞1,𝑗𝑖 = 𝑏
◦
1,𝑗𝑖

0 if 𝑞1,𝑖𝑗 = 𝑏
◦
1,𝑖𝑗 and 𝑞1,𝑗𝑖 = 𝑏1,𝑗𝑖

and 𝜗𝑖𝑗 =

{

1 if 𝑞2,𝑖𝑗 = 𝑏2,𝑖𝑗 and 𝑞2,𝑗𝑖 = 𝑏
◦
2,𝑗𝑖

0 if 𝑞2,𝑖𝑗 = 𝑏
◦
2,𝑖𝑗 and 𝑞2,𝑗𝑖 = 𝑏2,𝑗𝑖

for all i, 𝑗 = 1, 2, . . . , n.

Then, Definition 4 shows that the following is true:
{

𝑞1,𝑖𝑗 = 𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑗
𝑞2,𝑖𝑗 = 𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑗

(10)

where i, k, 𝑗 = 1, 2,… , 𝑛.
From Eqs. (9) and (10), we obtain

⎧

⎪

⎨

⎪

⎩

(

(𝑏1,𝑖𝑗 )𝜃𝑖𝑗 ⊗ (𝑏
◦

1,𝑖𝑗 )
1−𝜃𝑖𝑗

)

=
(

(𝑏1,𝑖𝑘)𝜃𝑖𝑘 ⊗ (𝑏
◦

1,𝑖𝑘)
1−𝜃𝑖𝑘

)

⊗
(

(𝑏1,𝑘𝑗 )𝜃𝑘𝑗 ⊗ (𝑏
◦

1,𝑘𝑗 )
1−𝜃𝑘𝑗

)

(

(𝑏2,𝑖𝑗 )𝜗𝑖𝑗 ⊗ (𝑏
◦

2,𝑖𝑗 )
1−𝜗𝑖𝑗

)

=
(

(𝑏2,𝑖𝑘)𝜗𝑖𝑘 ⊗ (𝑏
◦

2,𝑖𝑘)
1−𝜗𝑖𝑘

)

⊗
(

(𝑏2,𝑘𝑗 )𝜗𝑘𝑗 ⊗ (𝑏
◦

2,𝑘𝑗 )
1−𝜗𝑘𝑗

)

(11)

where i, k, 𝑗 = 1, 2,… , 𝑛.
From the upper triangular property and Eq. (8), we get

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

[𝜌−𝑖𝑗 , 𝜌
+
𝑖𝑗 ]

𝜃𝑖𝑗 ⊗ [𝜌+𝑖𝑗 , 𝜌
−
𝑖𝑗 ]

1−𝜃𝑖𝑗
)

=
(

[𝜌−𝑖𝑘, 𝜌
+
𝑖𝑘]

𝜃𝑖𝑘 ⊗ [𝜌+𝑖𝑘, 𝜌
−
𝑖𝑘]

1−𝜃𝑖𝑘
)

⊗
(

[𝜌−𝑘𝑗 , 𝜌
+
𝑘𝑗 ]

𝜃𝑘𝑗 ⊗ [𝜌+𝑘𝑗 , 𝜌
−
𝑘𝑗 ]

1−𝜃𝑘𝑗
)

, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗
(

[𝜎−𝑖𝑗 , 𝜎
+
𝑖𝑗 ]

𝜗𝑖𝑗 ⊗ [𝜎+𝑖𝑗 , 𝜎
−
𝑖𝑗 ]

1−𝜗𝑖𝑗
)

=
(

[𝜎−𝑖𝑘, 𝜎
+
𝑖𝑘]

𝜗𝑖𝑘 ⊗ [𝜎+𝑖𝑘, 𝜎
−
𝑖𝑘]

1−𝜗𝑖𝑘
)

⊗
(

[𝜎−𝑘𝑗 , 𝜎
+
𝑘𝑗 ]

𝜗𝑘𝑗 ⊗ [𝜎+𝑘𝑗 , 𝜎
−
𝑘𝑗 ]

1−𝜗𝑘𝑗
)

, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

(12)

Remark 1. Note that we apply the upper triangular part of the
QIVMPR 𝑄1 = (𝑞1,𝑖𝑗 )𝑛×𝑛 to define its consistency, while the lower
triangular part of the QIVMPR 𝑄2 = (𝑞2,𝑖𝑗 )𝑛×𝑛 is adopted to define
the consistency of 𝑄2, which are composed by the preferred and non-
preferred multiplicative interval membership degrees of IVIMVs in �̃�,
respectively.

We take the logarithm on Eq. (12) and derive

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜃𝑖𝑗 [log(𝜌−𝑖𝑗 ), log(𝜌
+
𝑖𝑗 )] + (1 − 𝜃𝑖𝑗 )[log(𝜌+𝑖𝑗 ), log(𝜌

−
𝑖𝑗 )]

=
(

𝜃𝑖𝑘[log(𝜌−𝑖𝑘), log(𝜌
+
𝑖𝑘)] + (1 − 𝜃𝑖𝑘)[log(𝜌+𝑖𝑘), log(𝜌

−
𝑖𝑘)]

)

⊕
(

𝜃𝑘𝑗 [log(𝜌−𝑘𝑗 ), log(𝜌
+
𝑘𝑗 )] + (1 − 𝜃𝑘𝑗 )[log(𝜌+𝑘𝑗 ), log(𝜌

−
𝑘𝑗 )]

)

,

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜗𝑖𝑗 [log(𝜎−𝑖𝑗 ), log(𝜎
+
𝑖𝑗 )] + (1 − 𝜗𝑖𝑗 )[log(𝜎+𝑖𝑗 ), log(𝜎

−
𝑖𝑗 )]

=
(

𝜗𝑖𝑘[log(𝜎−𝑖𝑘), log(𝜎
+
𝑖𝑘)] + (1 − 𝜗𝑖𝑘)[log(𝜎+𝑖𝑘), log(𝜎

−
𝑖𝑘)]

)

⊕
(

𝜗𝑘𝑗 [log(𝜎−𝑘𝑗 ), log(𝜎
+
𝑘𝑗 )] + (1 − 𝜗𝑘𝑗 )[log(𝜎+𝑘𝑗 ), log(𝜎

−
𝑘𝑗 )]

)

,

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

(13)

To judge whether Eq. (13) is true, we build the following two
models:

𝜑∗
1 = min

𝑛−2
∑

𝑖=1

𝑛−1
∑

𝑘=𝑖+1

𝑛
∑

𝑗=𝑘+1

(

𝜒+
𝑘,𝑖𝑗 + 𝜒−

𝑘,𝑖𝑗 + 𝛾+𝑘,𝑖𝑗 + 𝛾−𝑘,𝑖𝑗
)

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜃𝑖𝑘 log(𝜌−𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌+𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )

= 𝜃𝑖𝑗 log(𝜌−𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌+𝑖𝑗 ) − 𝜒+
𝑘,𝑖𝑗 + 𝜒−

𝑘,𝑖𝑗 , 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )

= 𝜃𝑖𝑗 log(𝜌+𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌−𝑖𝑗 ) − 𝛾+𝑘,𝑖𝑗 + 𝛾−𝑘,𝑖𝑗 , 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜒+
𝑘,𝑖𝑗 , 𝜒

−
𝑘,𝑖𝑗 , 𝛾

+
𝑘,𝑖𝑗 , 𝛾

−
𝑘,𝑖𝑗 ≥ 0, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜃𝑖𝑗 = 0 ∨ 1, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑗

(M-1)

and

𝜑∗
2 = min

𝑛
∑

𝑖=𝑘+1

𝑛−1
∑

𝑘=𝑗+1

𝑛−2
∑

𝑗=1

(

𝜂+𝑘,𝑖𝑗 + 𝜂−𝑘,𝑖𝑗 + 𝜇+
𝑘,𝑖𝑗 + 𝜇−

𝑘,𝑖𝑗

)

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜗𝑖𝑘 log(𝜎−
𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎+

𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎−
𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎+

𝑘𝑗 )

= 𝜗𝑖𝑗 log(𝜎−
𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎+

𝑖𝑗 ) − 𝜂+𝑘,𝑖𝑗 + 𝜂−𝑘,𝑖𝑗 , 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜗𝑖𝑘 log(𝜎+
𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎−

𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎+
𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎−

𝑘𝑗 )

= 𝜗𝑖𝑗 log(𝜎+
𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎−

𝑖𝑗 ) − 𝜇+
𝑘,𝑖𝑗 + 𝜇−

𝑘,𝑖𝑗 , 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜂+𝑘,𝑖𝑗 , 𝜂
−
𝑘,𝑖𝑗 , 𝜇

+
𝑘,𝑖𝑗 , 𝜇

−
𝑘,𝑖𝑗 ≥ 0, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜗𝑖𝑗 = 0 ∨ 1, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑗

(M-2)
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where the constraints in models (M-1) and (M-2) are separately derived
from the first and second equations in (13) by adding non-negative
flexible variables 𝜒+

𝑘,𝑖𝑗 , 𝜒
−
𝑘,𝑖𝑗 , 𝛾

+
𝑘,𝑖𝑗 , 𝛾

−
𝑘,𝑖𝑗 , 𝜂

+
𝑘,𝑖𝑗 , 𝜂

−
𝑘,𝑖𝑗 , 𝜇

+
𝑘,𝑖𝑗 , and 𝜇−

𝑘,𝑖𝑗 for each
triple of (i, k, j) such that i < k < j, 𝜃𝑖𝑗 and 𝜗𝑖𝑗 are 0–1 indicator variables
as shown in Eq. (9).

Models (M-1) and (M-2) can be equivalently combined into the
following model:

𝜑∗ = min

(𝑛−2
∑

𝑖=1

𝑛−1
∑

𝑘=𝑖+1

𝑛
∑

𝑗=𝑘+1

(

𝜒+
𝑘,𝑖𝑗 + 𝜒−

𝑘,𝑖𝑗 + 𝛾+𝑘,𝑖𝑗 + 𝛾−𝑘,𝑖𝑗
)

+
𝑛
∑

𝑖=𝑘+1

𝑛−1
∑

𝑘=𝑗+1

𝑛−2
∑

𝑗=1

(

𝜂+𝑘,𝑖𝑗 + 𝜂−𝑘,𝑖𝑗 + 𝜇+
𝑘,𝑖𝑗 + 𝜇−

𝑘,𝑖𝑗

)

)

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜃𝑖𝑘 log(𝜌−𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌+𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )

= 𝜃𝑖𝑗 log(𝜌−𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌+𝑖𝑗 ) − 𝜒+
𝑘,𝑖𝑗 + 𝜒−

𝑘,𝑖𝑗 , 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )

= 𝜃𝑖𝑗 log(𝜌+𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌−𝑖𝑗 ) − 𝛾+𝑘,𝑖𝑗 + 𝛾−𝑘,𝑖𝑗 , 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜒+
𝑘,𝑖𝑗 , 𝜒

−
𝑘,𝑖𝑗 , 𝛾

+
𝑘,𝑖𝑗 , 𝛾

−
𝑘,𝑖𝑗 ≥ 0, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜃𝑖𝑗 = 0 ∨ 1, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑗

𝜗𝑖𝑘 log(𝜎−
𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎+

𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎−
𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎+

𝑘𝑗 )

= 𝜗𝑖𝑗 log(𝜎−
𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎+

𝑖𝑗 ) − 𝜂+𝑘,𝑖𝑗 + 𝜂−𝑘,𝑖𝑗 , 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜗𝑖𝑘 log(𝜎+
𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎−

𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎+
𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎−

𝑘𝑗 )

= 𝜗𝑖𝑗 log(𝜎+
𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎−

𝑖𝑗 ) − 𝜏+𝑘,𝑖𝑗 + 𝜏−𝑘,𝑖𝑗 , 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜂+𝑘,𝑖𝑗 , 𝜂
−
𝑘,𝑖𝑗 , 𝜏

+
𝑘,𝑖𝑗 , 𝜏

−
𝑘,𝑖𝑗 ≥ 0, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜗𝑖𝑗 = 0 ∨ 1, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑗

(M-3)

where the objective function and the constraints in model (M-3) are
derived from those in models (M-1) and (M-2).

Addressing model (M-3), if 𝜑∗ = 0, then �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 is consis-
tent. Based on the got optimal 0-1-IVs, we can obtain the associated
consistent QIVMPRs.

Example 3.1. Let X = {𝑥1, 𝑥2, 𝑥3, 𝑥4} be the object set. The IVIMPR
�̃� on X is defined as:

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

([1, 1], [1, 1]) ([2, 3], [ 1
4
, 1
3
]) ([1, 1], [ 1

3
, 1
2
]) ([ 1

2
, 1], [ 1

8
, 1
4
])

([ 1
4
, 1
3
], [2, 3]) ([1, 1], [1, 1]) ([ 1

3
, 1
2
], [1, 2]) ([ 1

4
, 1
3
], [ 3

8
, 1])

([ 1
3
, 1
2
], [1, 1]) ([1, 2], [ 1

3
, 1
2
]) ([1, 1], [1, 1]) ([ 1

2
, 1], [ 3

8
, 1
2
])

([ 1
8
, 1
4
], [ 1

2
, 1]) ([ 3

8
, 1], [ 1

4
, 1
3
]) ([ 3

8
, 1
2
], [ 1

2
, 1]) ([1, 1], [1, 1])

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Following �̃�, the PTDIFMPR 𝑃 = (�̃�𝑖𝑗 )𝑛×𝑛 is

𝑃 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

([1, 1], [1, 1]) ([2, 3], [3, 4]) ([1, 1], [2, 3]) ([ 1
2
, 1], [4, 8])

([ 1
4
, 1
3
], [ 1

3
, 1
2
]) ([1, 1], [1, 1]) ([ 1

3
, 1
2
], [ 1

2
, 1]) ([ 1

4
, 1
3
], [1, 8

3
])

([ 1
3
, 1
2
], [1, 1]) ([ 1

2
, 1], [2, 3]) ([1, 1], [1, 1]) ([ 1

2
, 1], [2, 8

3
])

([ 1
8
, 1
4
], [1, 2]) ([ 3

8
, 1], [3, 4]) ([ 3

8
, 1
2
], [1, 2]) ([1, 1], [1, 1])

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Furthermore, two associated IVMPRs are

𝐵1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[1, 1] [2, 3] [1, 1] [ 1
2
, 1]

[ 1
3
, 1
2
] [1, 1] [ 1

3
, 1
2
] [ 1

4
, 1
3
]

[1, 1] [2, 3] [1, 1] [ 1
2
, 1]

[1, 2] [3, 4] [1, 2] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

𝐵2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[1, 1] [3, 4] [2, 3] [4, 8]

[ 1
4
, 1
3
] [1, 1] [ 1

2
, 1] [1, 8

3
]

[ 1
3
, 1
2
] [1, 2] [1, 1] [2, 8

3
]

[ 1
8
, 1
4
] [ 3

8
, 1] [ 3

8
, 1
2
] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Using model (M-3), we have 𝜑∗ = 0. Thus, this IVIMPR �̃� is consistent
following Definition 14. Based on
{

𝜃∗23 = 1, 𝜃∗12 = 𝜃∗13 = 𝜃∗14 = 𝜃∗24 = 𝜃∗34 = 0

𝜗∗21 = 0, 𝜗∗31 = 𝜗∗32 = 𝜗∗41 = 𝜗∗42 = 𝜗∗43 = 1
derived from model (M-3),

the consistent QIVMPRs are

𝑄1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[1, 1] [3, 2] [1, 1] [1, 1
2
]

[ 1
3
, 1
2
] [1, 1] [ 1

3
, 1
2
] [ 1

4
, 1
3
]

[1, 1] [3, 2] [1, 1] [1, 1
2
]

[1, 2] [3, 4] [1, 2] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

𝑄2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[1, 1] [3, 4] [3, 2] [8, 4]

[ 1
3
, 1
4
] [1, 1] [1, 1

2
] [ 8

3
, 1]

[ 1
3
, 1
2
] [1, 2] [1, 1] [ 8

3
, 2]

[ 1
8
, 1
4
] [ 3

8
, 1] [ 3

8
, 1
2
] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

One can check that this IVIMPR �̃� is inconsistent following Defini-
tions 9 and 10.

4. Incomplete and inconsistent IVIMPRs

Incomplete and inconsistent preference relations are usually ob-
tained in decision making (Capuano et al., 2018). This section studies
incomplete and inconsistent IVIMPRs. The first part studies incomplete
IVIMPRs, and the second part discusses inconsistent IVIMPRs.

4.1. A model to get missing values

In many situations, because of the limited expertise and the com-
plexity of decision-making problems, some judgements may be missing.
Therefore, we can only derive incomplete preference relations. This
subsection focuses on incomplete IVIMPRs, namely, there are unknown
values in IVIMPRs.

For any incomplete IVIMPR �̃� = (𝑟𝑖𝑗 )𝑛×𝑛, let

⎧

⎪

⎨

⎪

⎩

𝑈1 = {𝜌−𝑖𝑗 is missing,where 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗}

𝑈2 = {𝜌+𝑖𝑗 is missing,where 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗}

and
⎧

⎪

⎨

⎪

⎩

𝑈3 = {𝜎−𝑖𝑗 is missing,where 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗}

𝑈4 = {𝜎+𝑖𝑗 is missing,where 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗}.

When there are values in [1/9, 9] for all unknown values in �̃� that
make it consistent, Eq. (10) holds. Next, we consider another equivalent

6
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consistency condition to address the case where ignored objects exist,
namely, all information for some objects is unknown.

Property 1. Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be an (incomplete) IVIMPR. Then, it is
consistent if and only if the following is true:
⎧

⎪

⎨

⎪

⎩

(

𝑞1,𝑖𝑗
)𝑛−2 = ⊗𝑛

𝑘=1,𝑘≠𝑖,𝑗
(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑗
)

(

𝑞2,𝑖𝑗
)𝑛−2 = ⊗𝑛

𝑘=1,𝑘≠𝑖,𝑗
(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑗
)

,
(14)

where 𝑄1 = (𝑞1,𝑖𝑗 )𝑛×𝑛 and 𝑄2 = (𝑞2,𝑖𝑗 )𝑛×𝑛 are the QIVMPRs for the
IVMPRs 𝐵1 = (𝑏1,𝑖𝑗 )𝑛×𝑛 and 𝐵2 = (𝑏2,𝑖𝑗 )𝑛×𝑛 obtained from the PTDIFMPR
𝑃 = (�̃�𝑖𝑗 )𝑛×𝑛, respectively.

Proof. When the (incomplete) IVIMPR �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 is consistent,
the QIVMPRs 𝑄1 = (𝑞1,𝑖𝑗 )𝑛×𝑛 = ([𝑞−1,𝑖𝑗 , 𝑞

+
1,𝑖𝑗 ])𝑛×𝑛 and 𝑄2 = (𝑞2,𝑖𝑗 )𝑛×𝑛 =

([𝑞−2,𝑖𝑗 , 𝑞
+
2,𝑖𝑗 ])𝑛×𝑛 for the IVMPRs 𝐵1 = (𝑏1,𝑖𝑗 )𝑛×𝑛 and 𝐵2 = (𝑏2,𝑖𝑗 )𝑛×𝑛 are

consistent, namely, Eq. (10) is true for 𝑄1 and 𝑄2. From Eq. (10), we
get
{

(

𝑞1,𝑖𝑗
)𝑛 = ⊗𝑛

𝑘=1
(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑗
)

(

𝑞2,𝑖𝑗
)𝑛 = ⊗𝑛

𝑘=1
(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑗
)

(15)

where i, 𝑗 = 1, 2, . . . , n.

For per Eq. (15), we obtain
⎧

⎪

⎨

⎪

⎩

(

𝑞1,𝑖𝑗
)𝑛 = ⊗𝑛

𝑘=1,𝑘≠𝑖,𝑗
(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑗
)

⊗
(

𝑞1,𝑖𝑖 ⊗ 𝑞1,𝑖𝑗
)

⊗
(

𝑞1,𝑖𝑗 ⊗ 𝑞1,𝑗𝑗
)

(

𝑞2,𝑖𝑗
)𝑛 = ⊗𝑛

𝑘=1,𝑘≠𝑖,𝑗
(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑗
)

⊗
(

𝑞2,𝑖𝑖 ⊗ 𝑞2,𝑖𝑗
)

⊗
(

𝑞2,𝑖𝑗 ⊗ 𝑞2,𝑗𝑗
)

⇒

⎧

⎪

⎨

⎪

⎩

(

𝑞1,𝑖𝑗
)𝑛 = ⊗𝑛

𝑘=1,𝑘≠𝑖,𝑗
(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑗
)

⊗
(

𝑞1,𝑖𝑗
)2

(

𝑞2,𝑖𝑗
)𝑛 = ⊗𝑛

𝑘=1,𝑘≠𝑖,𝑗
(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑗
)

⊗
(

𝑞2,𝑖𝑗
)2

⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝑞1,𝑖𝑗
)𝑛 ⊗ [1∕𝑞−1,𝑖𝑗 , 1∕𝑞

+
1,𝑖𝑗 ]

2

= ⊗𝑛
𝑘=1,𝑘≠𝑖,𝑗

(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑗
)

⊗
(

𝑞1,𝑖𝑗
)2 ⊗ [1∕𝑞−1,𝑖𝑗 , 1∕𝑞

+
1,𝑖𝑗 ]

2

(

𝑞2,𝑖𝑗
)𝑛 ⊗ [1∕𝑞−2,𝑖𝑗 , 1∕𝑞

+
2,𝑖𝑗 ]

2

= ⊗𝑛
𝑘=1,𝑘≠𝑖,𝑗

(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑗
)

⊗
(

𝑞2,𝑖𝑗
)2 ⊗ [1∕𝑞−2,𝑖𝑗 , 1∕𝑞

+
2,𝑖𝑗 ]

2

⇒

⎧

⎪

⎨

⎪

⎩

(

𝑞1,𝑖𝑗
)𝑛−2 = ⊗𝑛

𝑘=1,𝑘≠𝑖,𝑗
(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑗
)

(

𝑞2,𝑖𝑗
)𝑛−2 = ⊗𝑛

𝑘=1,𝑘≠𝑖,𝑗
(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑗
)

.

When Eq. (15) holds, we have
⎧

⎪

⎨

⎪

⎩

𝑞1,𝑖𝑗 = 𝑛−2
√

⊗𝑛
𝑘=1,𝑘≠𝑖,𝑗

(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑗
)

𝑞2,𝑖𝑗 = 𝑛−2
√

⊗𝑛
𝑘=1,𝑘≠𝑖,𝑗

(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑗
)

(16)

Eq. (16) shows that
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑞1,𝑖𝑙 ⊗ 𝑞1,𝑙𝑗 = 𝑛−2
√

⊗𝑛
𝑘=1,𝑘≠𝑖,𝑙

(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑙
)

⊗ 𝑛−2
√

⊗𝑛
𝑘=1,𝑘≠𝑙,𝑗

(

𝑞1,𝑙𝑘 ⊗ 𝑞1,𝑘𝑗
)

𝑞2,𝑖𝑙 ⊗ 𝑞2,𝑙𝑗 = 𝑛−2
√

⊗𝑛
𝑘=1,𝑘≠𝑖,𝑙

(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑙
)

⊗ 𝑛−2
√

⊗𝑛
𝑘=1,𝑘≠𝑙,𝑗

(

𝑞2,𝑙𝑘 ⊗ 𝑞2,𝑘𝑗
)

⇒

⎧

⎪

⎨

⎪

⎩

𝑞1,𝑖𝑙 ⊗ 𝑞1,𝑙𝑗 = 𝑛−2
√

⊗𝑛
𝑘=1,𝑘≠𝑖,𝑙

(

𝑞1,𝑖𝑘 ⊗ 𝑞1,𝑘𝑙 ⊗ 𝑞1,𝑙𝑘 ⊗ 𝑞1,𝑘𝑗
)

𝑞2,𝑖𝑙 ⊗ 𝑞2,𝑙𝑗 = 𝑛−2
√

⊗𝑛
𝑘=1,𝑘≠𝑖,𝑙

(

𝑞2,𝑖𝑘 ⊗ 𝑞2,𝑘𝑙 ⊗ 𝑞2,𝑙𝑘 ⊗ 𝑞2,𝑘𝑗
)

⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏1,𝑖𝑙 ⊗ 𝑏1,𝑙𝑗 =
𝑛−2

√

⊗𝑛
𝑘=1,𝑘≠𝑖,𝑙

(

𝑏1,𝑖𝑘 ⊗ 𝑏1,𝑘𝑗
)

= 𝑏1,𝑖𝑗

𝑏2,𝑖𝑙 ⊗ 𝑏2,𝑙𝑗 =
𝑛−2

√

⊗𝑛
𝑘=1,𝑘≠𝑖,𝑙

(

𝑏2,𝑖𝑘 ⊗ 𝑏2,𝑘𝑗
)

= 𝑏2,𝑖𝑗

When an incomplete IVIMPR �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 is consistent, we take the
logarithm on Eq. (14) and obtain

⎧

⎪

⎨

⎪

⎩

(𝑛 − 2) log
(

𝑞1,𝑖𝑗
)

= ⊕𝑛
𝑘=1,𝑘≠𝑖,𝑗

(

log
(

𝑞1,𝑖𝑘
)

⊕ log
(

𝑞1,𝑘𝑗
))

(𝑛 − 2) log
(

𝑞2,𝑖𝑗
)

= ⊕𝑛
𝑘=1,𝑘≠𝑖,𝑗

(

log
(

𝑞2,𝑖𝑘
)

⊕ log
(

𝑞2,𝑘𝑗
))

(17)

Eq. (17) indicates that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(𝑛 − 2) log
(

(𝑏1,𝑖𝑗 )
𝜃𝑖𝑗 ⊗ (𝑏

◦
1,𝑖𝑗 )

1−𝜃𝑖𝑗
)

= ⊕𝑛
𝑘=1,𝑘≠𝑖,𝑗

(

log
(

(𝑏1,𝑖𝑘)𝜃𝑖𝑘

⊗(𝑏
◦
1,𝑖𝑘)

1−𝜃𝑖𝑘
)

⊕ log
(

(𝑏1,𝑘𝑗 )
𝜃𝑘𝑗 ⊗ (𝑏

◦
1,𝑘𝑗 )

1−𝜃𝑘𝑗
))

(𝑛 − 2) log
(

(𝑏2,𝑖𝑗 )
𝜗𝑖𝑗 ⊗ (𝑏

◦
2,𝑖𝑗 )

1−𝜗𝑖𝑗
)

= ⊕𝑛
𝑘=1,𝑘≠𝑖,𝑗

(

log
(

(𝑏2,𝑖𝑘)𝜗𝑖𝑘

⊗(𝑏
◦
2,𝑖𝑘)

1−𝜗𝑖𝑘
)

⊕ log
(

(𝑏2,𝑘𝑗 )
𝜗𝑘𝑗 ⊗ (𝑏

◦
2,𝑘𝑗 )

1−𝜗𝑘𝑗
))

(18)

From Eq. (18), we derive

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝑛 − 2)
(

𝜃𝑖𝑗 log(𝜌−𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌+𝑖𝑗 )
)

=
𝑛
∑

𝑘=1,𝑘≠𝑖,𝑗

(

𝜃𝑖𝑘 log(𝜌−𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌+𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 )

+(1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )
)

(𝑛 − 2)
(

𝜃𝑖𝑗 log(𝜌+𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌−𝑖𝑗 )
)

=
𝑛
∑

𝑘=1,𝑘≠𝑖,𝑗

(

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 )

+(1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )
)

(𝑛 − 2)
(

𝜗𝑖𝑗 log(𝜎−𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎+𝑖𝑗 )
)

=
𝑛
∑

𝑘=1,𝑘≠𝑖,𝑗

(

𝜗𝑖𝑘 log(𝜎−𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎+𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎−𝑘𝑗 )

+(1 − 𝜗𝑘𝑗 ) log(𝜎+𝑘𝑗 )
)

(𝑛 − 2)
(

𝜗𝑖𝑗 log(𝜎+𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎−𝑖𝑗 )
)

=
𝑛
∑

𝑘=1,𝑘≠𝑖,𝑗

(

𝜗𝑖𝑘 log(𝜎+𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎−𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎+𝑘𝑗 )

+(1 − 𝜗𝑘𝑗 ) log(𝜎−𝑘𝑗 )
)

(19)

Eq. (19) shows that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪
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(𝑛 − 2)
(

𝜃𝑖𝑗 log(𝜌−𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌+𝑖𝑗 )
)

=

( 𝑖−1
∑

𝑘=1
+

𝑗−1
∑

𝑘=𝑖+1
+

𝑛
∑

𝑘=𝑗+1

)

×
(

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )
)

(𝑛 − 2)
(

𝜃𝑖𝑗 log(𝜌+𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌−𝑖𝑗 )
)

=

( 𝑖−1
∑

𝑘=1
+

𝑗−1
∑

𝑘=𝑖+1
+

𝑛
∑

𝑘=𝑗+1

)

×
(

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )
)

(𝑛 − 2)
(

𝜗𝑖𝑗 log(𝜎−𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎+𝑖𝑗 )
)

=

( 𝑖−1
∑

𝑘=1
+

𝑗−1
∑

𝑘=𝑖+1
+

𝑛
∑

𝑘=𝑗+1

)

×
(

𝜗𝑖𝑘 log(𝜎−𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎+𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎−𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎+𝑘𝑗 )
)

(𝑛 − 2)
(

𝜗𝑖𝑗 log(𝜎+𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎−𝑖𝑗 )
)

=

( 𝑖−1
∑

𝑘=1
+

𝑗−1
∑

𝑘=𝑖+1
+

𝑛
∑

𝑘=𝑗+1

)

×
(

𝜗𝑖𝑘 log(𝜎+𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎−𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎+𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎−𝑘𝑗 )
)

(20)

Following the construction of elements in the IVMPRs 𝐵1 = (𝑏1,𝑖𝑗 )𝑛×𝑛
and 𝐵2 = (𝑏2,𝑖𝑗 )𝑛×𝑛, we can only apply the upper triangular part of

7
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𝐵1 and the lower triangular part of 𝐵2 to get unknown values in the
incomplete IVIMPR �̃� = (𝑟𝑖𝑗 )𝑛×𝑛. From Eq. (20), we get
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪
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⎪

⎪

⎪

⎩

𝑖−1
∑

𝑘=1

(

(𝜃𝑘𝑖 − 1) log(𝜌−𝑘𝑖) + 𝜃𝑘𝑖 log(𝜌+𝑘𝑖) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )
)

+
𝑗−1
∑

𝑘=𝑖+1

(

𝜃𝑖𝑘 log(𝜌−𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌+𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )
)

+
𝑛
∑

𝑘=𝑗+1

(

𝜃𝑖𝑘 log(𝜌−𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌+𝑖𝑘) + (𝜃𝑗𝑘 − 1) log(𝜌−𝑗𝑘) + 𝜃𝑗𝑘 log(𝜌+𝑗𝑘)
)

= (𝑛 − 2)
(

𝜃𝑖𝑗 log(𝜌−𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌+𝑖𝑗 )
)

, 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗

𝑖−1
∑

𝑘=1

(

(𝜃𝑘𝑖 − 1) log(𝜌+𝑘𝑖) + 𝜃𝑘𝑖 log(𝜌−𝑘𝑖) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )
)

+
𝑗−1
∑

𝑘=𝑖+1

(

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )
)

+
𝑛
∑

𝑘=𝑗+1

(

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + (𝜃𝑗𝑘 − 1) log(𝜌+𝑗𝑘) + 𝜃𝑗𝑘 log(𝜌−𝑗𝑘)
)

= (𝑛 − 2)
(

𝜃𝑖𝑗 log(𝜌+𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌−𝑖𝑗 )
)

, 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗

𝑖−1
∑

𝑘=1

(

𝜗𝑖𝑘 log(𝜎−𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎+𝑖𝑘) + (𝜗𝑗𝑘 − 1) log(𝜎−𝑗𝑘) + 𝜗𝑗𝑘 log(𝜎+𝑗𝑘)
)

+
𝑗−1
∑

𝑘=𝑖+1

(

(𝜗𝑘𝑖 − 1) log(𝜎−𝑘𝑖) + 𝜗𝑘𝑖 log(𝜎+𝑘𝑖) + (𝜗𝑗𝑘 − 1) log(𝜎−𝑗𝑘)

+𝜗𝑗𝑘 log(𝜎+𝑗𝑘)
)

+
𝑛
∑

𝑘=𝑗+1

(

(𝜗𝑘𝑖 − 1) log(𝜎−𝑘𝑖) + 𝜗𝑘𝑖 log(𝜎+𝑘𝑖) + 𝜗𝑘𝑗 log(𝜎−𝑘𝑗 )

+(1 − 𝜗𝑘𝑗 ) log(𝜎+𝑘𝑗 )
)

= (𝑛 − 2)
(

𝜗𝑖𝑗 log(𝜎−𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎+𝑖𝑗 )
)

, 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 > 𝑗

𝑖−1
∑

𝑘=1

(

𝜗𝑖𝑘 log(𝜎+𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎−𝑖𝑘) + (𝜗𝑗𝑘 − 1) log(𝜎+𝑗𝑘) + 𝜗𝑗𝑘 log(𝜎−𝑗𝑘)
)

+
𝑗−1
∑

𝑘=𝑖+1

(

(𝜗𝑘𝑖 − 1) log(𝜎+𝑘𝑖) + 𝜗𝑘𝑖 log(𝜎−𝑘𝑖) + (𝜗𝑗𝑘 − 1) log(𝜎+𝑗𝑘)

+𝜗𝑗𝑘 log(𝜎−𝑗𝑘)
)

+
𝑛
∑

𝑘=𝑗+1

(

(𝜗𝑘𝑖 − 1) log(𝜎+𝑘𝑖) + 𝜗𝑘𝑖 log(𝜎−𝑘𝑖) + 𝜗𝑘𝑗 log(𝜎+𝑘𝑗 )

+(1 − 𝜗𝑘𝑗 ) log(𝜎−𝑘𝑗 )
)

= (𝑛 − 2)
(

𝜗𝑖𝑗 log(𝜎+𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎−𝑖𝑗 )
)

, 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 > 𝑗

(21)

It is noted that Eqs. (17) to (21) are equivalent. The purpose for
deriving Eq. (21) is to apply the upper triangular part of the QIVMPR
𝑄1 = (𝑞1,𝑖𝑗 )𝑛×𝑛 and the lower triangular part of the QIVMPR 𝑄2 =
(𝑞2,𝑖𝑗 )𝑛×𝑛 to determine missing values.

To judge whether the incomplete IVIMPR �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 is consistent
and to derive missing values, we establish the following model:

𝜙∗ = min

(𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1

(

𝜒+
𝑖𝑗 + 𝜒−

𝑖𝑗 + 𝛾+𝑖𝑗 + 𝛾−𝑖𝑗
)

+
𝑛
∑

𝑖=𝑗+1

𝑛−1
∑

𝑗=1

(

𝜂+𝑖𝑗 + 𝜂−𝑖𝑗 + 𝜇+
𝑖𝑗 + 𝜇−

𝑖𝑗

)

)

𝑠.𝑡.
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𝑖−1
∑

𝑘=1

(

(𝜃𝑘𝑖 − 1) log(𝜌−𝑘𝑖) + 𝜃𝑘𝑖 log(𝜌+𝑘𝑖) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )
)

+
𝑗−1
∑

𝑘=𝑖+1

(

𝜃𝑖𝑘 log(𝜌−𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌+𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )
)

+
𝑛
∑

𝑘=𝑗+1

(

𝜃𝑖𝑘 log(𝜌−𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌+𝑖𝑘) + (𝜃𝑗𝑘 − 1) log(𝜌−𝑗𝑘) + 𝜃𝑗𝑘 log(𝜌+𝑗𝑘)
)

= (𝑛 − 2)
(

𝜃𝑖𝑗 log(𝜌−𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌+𝑖𝑗 )
)

− 𝜒+
𝑖𝑗 + 𝜒−

𝑖𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗
𝑖−1
∑

𝑘=1

(

(𝜃𝑘𝑖 − 1) log(𝜌+𝑘𝑖) + 𝜃𝑘𝑖 log(𝜌−𝑘𝑖) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )
)

+
𝑗−1
∑

𝑘=𝑖+1

(

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )
)

+
𝑛
∑

𝑘=𝑗+1

(

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + (𝜃𝑗𝑘 − 1) log(𝜌+𝑗𝑘) + 𝜃𝑗𝑘 log(𝜌−𝑗𝑘)
)

= (𝑛 − 2)
(

𝜃𝑖𝑗 log(𝜌+𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌−𝑖𝑗 )
)

− 𝛾+𝑖𝑗 + 𝛾−𝑖𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗

𝑖−1
∑

𝑘=1

(

𝜗𝑖𝑘 log(𝜎−
𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎+

𝑖𝑘) + (𝜗𝑗𝑘 − 1) log(𝜎−
𝑗𝑘) + 𝜗𝑗𝑘 log(𝜎+

𝑗𝑘)
)

+
𝑗−1
∑

𝑘=𝑖+1

(

(𝜗𝑘𝑖 − 1) log(𝜎−
𝑘𝑖) + 𝜗𝑘𝑖 log(𝜎+

𝑘𝑖) + (𝜗𝑗𝑘 − 1) log(𝜎−
𝑗𝑘) + 𝜗𝑗𝑘 log(𝜎+

𝑗𝑘)
)

+
𝑛
∑

𝑘=𝑗+1

(

(𝜗𝑘𝑖 − 1) log(𝜎−
𝑘𝑖) + 𝜗𝑘𝑖 log(𝜎+

𝑘𝑖) + 𝜗𝑘𝑗 log(𝜎−
𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎+

𝑘𝑗 )
)

= (𝑛 − 2)
(

𝜗𝑖𝑗 log(𝜎−
𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎+

𝑖𝑗 )
)

− 𝜂+𝑖𝑗 + 𝜂−𝑖𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 > 𝑗

𝑖−1
∑

𝑘=1

(

𝜗𝑖𝑘 log(𝜎+
𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎−

𝑖𝑘) + (𝜗𝑗𝑘 − 1) log(𝜎+
𝑗𝑘) + 𝜗𝑗𝑘 log(𝜎−

𝑗𝑘)
)

+
𝑗−1
∑

𝑘=𝑖+1

(

(𝜗𝑘𝑖 − 1) log(𝜎+
𝑘𝑖) + 𝜗𝑘𝑖 log(𝜎−

𝑘𝑖) + (𝜗𝑗𝑘 − 1) log(𝜎+
𝑗𝑘) + 𝜗𝑗𝑘 log(𝜎−

𝑗𝑘)
)

+
𝑛
∑

𝑘=𝑗+1

(

(𝜗𝑘𝑖 − 1) log(𝜎+
𝑘𝑖) + 𝜗𝑘𝑖 log(𝜎−

𝑘𝑖) + 𝜗𝑘𝑗 log(𝜎+
𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎−

𝑘𝑗 )
)

= (𝑛 − 2)
(

𝜗𝑖𝑗 log(𝜎+
𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎−

𝑖𝑗 )
)

− 𝜇+
𝑖𝑗 + 𝜇−

𝑖𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 > 𝑗

1∕9 ≤ 𝜌−𝑖𝑗 ≤ 𝜌+𝑖𝑗 , 𝜌
−
𝑖𝑗 ∈ 𝑈1 ∧ 𝜌+𝑖𝑗 ∉ 𝑈2

𝜌−𝑖𝑗 ≤ 𝜌+𝑖𝑗 ≤ min{1∕𝜎−
𝑖𝑗 , 9}, 𝜌

−
𝑖𝑗 ∉ 𝑈1 ∧ 𝜌+𝑖𝑗 ∈ 𝑈2 ∧ 𝜎−

𝑖𝑗 ∉ 𝑈4

1∕9 ≤ 𝜎−
𝑖𝑗 ≤ 𝜎+

𝑖𝑗 , 𝜎
−
𝑖𝑗 ∈ 𝑈3 ∧ 𝜎+

𝑖𝑗 ∉ 𝑈4

𝜎−
𝑖𝑗 ≤ 𝜎+

𝑖𝑗 ≤ min{1∕𝜌−𝑖𝑗 , 9}, 𝜎
−
𝑖𝑗 ∉ 𝑈3 ∧ 𝜌+𝑖𝑗 ∈ 𝑈4 ∧ 𝜌−𝑖𝑗 ∉ 𝑈2

𝑐𝑣𝑠𝑘𝑖𝑝[3𝑝𝑡] 1∕9 ≤ 𝜌−𝑖𝑗 ≤ 𝜌+𝑖𝑗 ≤ min{1∕𝜎−
𝑖𝑗 , 9}, 𝜌

−
𝑖𝑗 ∈ 𝑈1 ∧ 𝜌+𝑖𝑗 ∈ 𝑈2 ∧ 𝜎−

𝑖𝑗 ∉ 𝑈4

1∕9 ≤ 𝜎−
𝑖𝑗 ≤ 𝜎+

𝑖𝑗 ≤ min{1∕𝜌−𝑖𝑗 , 9}, 𝜎
−
𝑖𝑗 ∈ 𝑈3 ∧ 𝜎+

𝑖𝑗 ∈ 𝑈4 ∧ 𝜌−𝑖𝑗 ∉ 𝑈2

𝜌−𝑖𝑗 ≤ 𝜌+𝑖𝑗 ≤ 9, 𝜎−
𝑖𝑗 ≤ 𝜎+

𝑖𝑗 ≤ 9,

{

log(𝜌+𝑖𝑗 ) + log(𝜎−
𝑖𝑗 ) ≤ 0

log(𝜌−𝑖𝑗 ) + log(𝜎+
𝑖𝑗 ) ≤ 0

for

⎧

⎪

⎨

⎪

⎩

𝜌−𝑖𝑗 ∉ 𝑈1 ∧ 𝜌+𝑖𝑗 ∈ 𝑈2

𝜎−
𝑖𝑗 ∉ 𝑈3 ∧ 𝜎+

𝑖𝑗 ∈ 𝑈4

⎧

⎪

⎨

⎪

⎩

1∕9 ≤ 𝜌−𝑖𝑗 ≤ 𝜌+𝑖𝑗 ≤ 9

1∕9 ≤ 𝜎−
𝑖𝑗 ≤ 𝜎+

𝑖𝑗 ≤ 9
,

⎧

⎪

⎨

⎪

⎩

log(𝜌+𝑖𝑗 ) + log(𝜎−
𝑖𝑗 ) ≤ 0

log(𝜌−𝑖𝑗 ) + log(𝜎+
𝑖𝑗 ) ≤ 0

,

⎧

⎪

⎨

⎪

⎩

𝜌−𝑖𝑗 ∈ 𝑈1 ∧ 𝜌+𝑖𝑗 ∈ 𝑈2

𝜎−
𝑖𝑗 ∈ 𝑈3 ∧ 𝜎+

𝑖𝑗 ∈ 𝑈4

𝜒+
𝑖𝑗 , 𝜒

−
𝑖𝑗 , 𝛾

+
𝑖𝑗 , 𝛾

−
𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑗

𝜃𝑖𝑗 = 0 ∨ 1, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑗
𝜂+𝑖𝑗 , 𝜂

−
𝑖𝑗 , 𝜇

+
𝑖𝑗 , 𝜇

−
𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑗

𝜗𝑖𝑗 = 0 ∨ 1, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑗

(M-4)

where the first four constraints are derived from Eq. (21) by adding
non-negative flexible variables 𝜒+

𝑘,𝑖𝑗 , 𝜒
−
𝑘,𝑖𝑗 , 𝛾

+
𝑘,𝑖𝑗 , 𝛾

−
𝑘,𝑖𝑗 , 𝜂

+
𝑘,𝑖𝑗 , 𝜂

−
𝑘,𝑖𝑗 , 𝜇

+
𝑘,𝑖𝑗 , and

8
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𝜇−
𝑘,𝑖𝑗 for each triple of (i, k, j) such that i < k < j, 𝜃𝑖𝑗 and 𝜗𝑖𝑗 are 0–1

indicator variables as shown in Eq. (9), the rest constraints are derived
from the conditions of IVIMVs in IVIMPRs as shown in Eq. (5), and 𝑈𝑝
are shown above, 𝑝 = 1, 2, 3, 4.

Addressing model (M-4), we derive missing values in �̃� = (𝑟𝑖𝑗 )𝑛×𝑛.
If we have 𝜙∗ = 0, then �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 is consistent. Otherwise, it is
inconsistent. However, the determined missing values make �̃� have the
highest consistent level.

4.2. Models to derive consistent IVIMPRs

In general, preference relations offered by the DMs are inconsistent
(Chiclana et al., 2009). To derive the reasonable ranking, consistency
analysis is needed. Considering the consistency of IVIMPRs, this sub-
section builds several models to derive completely consistent IVIMPRs
from inconsistent ones.

Let �̃� = (𝑟𝑖𝑗 )𝑛×𝑛 be a complete IVIMPR. To judge its consistency, we
can apply model (M-3). However, when the objective function value
𝜑∗ ≠ 0, �̃� is inconsistent. In this case, we should adjust the original
judgements. To do this, we build the following model to determine
QIVMPRs with the highest consistent level.

𝛥∗ = max

((𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
𝜃𝑖𝑗

)

−

( 𝑛
∑

𝑖=𝑗+1

𝑛−1
∑

𝑗=1
𝜗𝑖𝑗

))

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜑∗ =

(𝑛−2
∑

𝑖=1

𝑛−1
∑

𝑘=𝑖+1

𝑛
∑

𝑗=𝑘+1

(

𝜒+
𝑘,𝑖𝑗 + 𝜒−

𝑘,𝑖𝑗 + 𝛾+𝑘,𝑖𝑗 + 𝛾−𝑘,𝑖𝑗
)

+
𝑛
∑

𝑖=𝑘+1

𝑛−1
∑

𝑘=𝑗+1

𝑛−2
∑

𝑗=1

(

𝜒+
𝑘,𝑖𝑗 + 𝜒−

𝑘,𝑖𝑗 + 𝛾+𝑘,𝑖𝑗 + 𝛾−𝑘,𝑖𝑗
)

)

𝜃𝑖𝑘 log(𝜌−𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌+𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌−𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌+𝑘𝑗 )

= 𝜃𝑖𝑗 log(𝜌−𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌+𝑖𝑗 ) − 𝜒+
𝑘,𝑖𝑗 + 𝜒−

𝑘,𝑖𝑗 ,

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜃𝑖𝑘 log(𝜌+𝑖𝑘) + (1 − 𝜃𝑖𝑘) log(𝜌−𝑖𝑘) + 𝜃𝑘𝑗 log(𝜌+𝑘𝑗 ) + (1 − 𝜃𝑘𝑗 ) log(𝜌−𝑘𝑗 )

= 𝜃𝑖𝑗 log(𝜌+𝑖𝑗 ) + (1 − 𝜃𝑖𝑗 ) log(𝜌−𝑖𝑗 ) − 𝛾+𝑘,𝑖𝑗 + 𝛾−𝑘,𝑖𝑗 ,

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜒+
𝑘,𝑖𝑗 , 𝜒

−
𝑘,𝑖𝑗 , 𝛾

+
𝑘,𝑖𝑗 , 𝛾

−
𝑘,𝑖𝑗 ≥ 0, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑘 < 𝑗

𝜃𝑖𝑗 = 0 ∨ 1, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 < 𝑗

𝜗𝑖𝑘 log(𝜎−𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎+𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎−𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎+𝑘𝑗 )

= 𝜗𝑖𝑗 log(𝜎−𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎+𝑖𝑗 ) − 𝜂+𝑘,𝑖𝑗 + 𝜂−𝑘,𝑖𝑗 ,

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜗𝑖𝑘 log(𝜎+𝑖𝑘) + (1 − 𝜗𝑖𝑘) log(𝜎−𝑖𝑘) + 𝜗𝑘𝑗 log(𝜎+𝑘𝑗 ) + (1 − 𝜗𝑘𝑗 ) log(𝜎−𝑘𝑗 )

= 𝜗𝑖𝑗 log(𝜎+𝑖𝑗 ) + (1 − 𝜗𝑖𝑗 ) log(𝜎−𝑖𝑗 ) − 𝜇+
𝑘,𝑖𝑗 + 𝜇−

𝑘,𝑖𝑗 ,

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜂+𝑘,𝑖𝑗 , 𝜂
−
𝑘,𝑖𝑗 , 𝜇

+
𝑘,𝑖𝑗 , 𝜇

−
𝑘,𝑖𝑗 ≥ 0, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑘 > 𝑗

𝜗𝑖𝑗 = 0 ∨ 1, 𝑖, 𝑗 = 1, 2,… , 𝑛; 𝑖 > 𝑗

(M-5)

where 𝜑∗ is the optimal objective function value of model (M-3), and
all other constraints are same as those in model (M-3).

Addressing model (M-5), we derive two associated QIVMPRs 𝑄
′
1 =

(𝑞′1,𝑖𝑗 )𝑛×𝑛 and 𝑄
′
2 = (𝑞′2,𝑖𝑗 )𝑛×𝑛 by the obtained 0–1 IVs. Furthermore,

the upper triangular part of the QIVMPR 𝑄
′
1 has the largest number of

intervals, while the lower triangular part of the QIVMPR 𝑄
′
2 has the

largest number of intervals.

For the QIVMPR 𝑄
′
1 = (𝑞′1,𝑖𝑗 )𝑛×𝑛, let 𝑄

∗
1 = (𝑞∗1,𝑖𝑗 )𝑛×𝑛 be the adjusted

consistent QIVMPR, where

𝑞∗1,𝑖𝑗 = 𝑞′1,𝑖𝑗 ⊗ [𝜍−1,𝑖𝑗 , 𝜍
+
1,𝑖𝑗 ]⊗ [1∕𝜏−1,𝑖𝑗 , 1∕𝜏

+
1,𝑖𝑗 ] (22)

with 𝜍−1,𝑖𝑗 , 𝜍
+
1,𝑖𝑗 , 𝜏

−
1,𝑖𝑗 , 𝜏

+
1,𝑖𝑗 ≥ 1 and 𝜍−1,𝑖𝑗𝜍

−
1,𝑗𝑖 = 𝜏−1,𝑖𝑗𝜏

−
1,𝑗𝑖 = 𝜍+1,𝑖𝑗𝜍

+
1,𝑗𝑖 = 𝜏+1,𝑖𝑗𝜏

+
1,𝑗𝑖=

1, i, 𝑗 = 1, 2, . . . , n.

For the QIVMPR 𝑄
′
2 = (𝑞′2,𝑖𝑗 )𝑛×𝑛, let 𝑄

∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛 be the adjusted

consistent QIVMPR, where

𝑞∗2,𝑖𝑗 = 𝑞′2,𝑖𝑗 ⊗ [𝜍−2,𝑖𝑗 , 𝜍
+
2,𝑖𝑗 ]⊗ [1∕𝜏−2,𝑖𝑗 , 1∕𝜏

+
2,𝑖𝑗 ] (23)

with 𝜍−2,𝑖𝑗 , 𝜍
+
2,𝑖𝑗 , 𝜏

−
2,𝑖𝑗 , 𝜏

+
2,𝑖𝑗 ≥ 1 and 𝜍−2,𝑖𝑗𝜍

−
2,𝑗𝑖 = 𝜏−2,𝑖𝑗𝜏

−
2,𝑗𝑖 = 𝜍+2,𝑖𝑗𝜍

+
2,𝑗𝑖 = 𝜏+2,𝑖𝑗𝜏

+
2,𝑗𝑖

= 1, i, 𝑗 = 1, 2, . . . , n.

From Eqs. (22) and (23), we derive

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

𝑞′−1,𝑖𝑗𝜍
−
1,𝑖𝑗

𝜏−1,𝑖𝑗
,
𝑞′+1,𝑖𝑗𝜍

+
1,𝑖𝑗

𝜏+1,𝑖𝑗

]

=

[

𝑞′−1,𝑖𝑘𝜍
−
1,𝑖𝑘

𝜏−1,𝑖𝑘
,
𝑞′+1,𝑖𝑘𝜍

+
1,𝑖𝑘

𝜏+1,𝑖𝑘

]

⊗

[

𝑞′−1,𝑘𝑗𝜍
−
1,𝑘𝑗

𝜏−1,𝑘𝑗
,
𝑞′+1,𝑘𝑗𝜍

+
1,𝑘𝑗

𝜏+1,𝑘𝑗

]

, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑘 < 𝑗

[

𝑞′−2,𝑖𝑗𝜍
−
2,𝑖𝑗

𝜏−2,𝑖𝑗
,
𝑞′+2,𝑖𝑗𝜍

+
2,𝑖𝑗

𝜏+2,𝑖𝑗

]

=

[

𝑞′−2,𝑖𝑘𝜍
−
2,𝑖𝑘

𝜏−2,𝑖𝑘
,
𝑞′+2,𝑖𝑘𝜍

+
2,𝑖𝑘

𝜏+2,𝑖𝑘

]

⊗

[

𝑞′−2,𝑘𝑗𝜍
−
2,𝑘𝑗

𝜏−2,𝑘𝑗
,
𝑞′+2,𝑘𝑗𝜍

+
2,𝑘𝑗

𝜏+2,𝑘𝑗

]

, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛, 𝑖 > 𝑘 > 𝑗

(24)

We take the logarithm on Eq. (24) and derive

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

log(𝑞′−1,𝑖𝑗 ) + log(𝜍−1,𝑖𝑗 ) − log(𝜏−1,𝑖𝑗 ) = log(𝑞′−1,𝑖𝑘)

+ log(𝜍−1,𝑖𝑘)

− log(𝜏−1,𝑖𝑘) + log(𝑞′−1,𝑘𝑗 ) + log(𝜍−1,𝑘𝑗 ) − log(𝜏−1,𝑘𝑗 )

log(𝑞′+1,𝑖𝑗 ) + log(𝜍+1,𝑖𝑗 ) − log(𝜏+1,𝑖𝑗 ) = log(𝑞′+1,𝑖𝑘)

+ log(𝜍+1,𝑖𝑘)

− log(𝜏+1,𝑖𝑘) + log(𝑞′+1,𝑘𝑗 ) + log(𝜍+1,𝑘𝑗 ) − log(𝜏+1,𝑘𝑗 )

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛
𝑖 < 𝑘 < 𝑗

log(𝑞′−2,𝑖𝑗 ) + log(𝜍−2,𝑖𝑗 ) − log(𝜏−2,𝑖𝑗 ) = log(𝑞′−2,𝑖𝑘)

+ log(𝜍−2,𝑖𝑘)

− log(𝜏−2,𝑖𝑘) + log(𝑞′−2,𝑘𝑗 ) + log(𝜍−2,𝑘𝑗 ) − log(𝜏−2,𝑘𝑗 )

log(𝑞′+2,𝑖𝑗 ) + log(𝜍+2,𝑖𝑗 ) − log(𝜏+2,𝑖𝑗 ) = log(𝑞′+2,𝑖𝑘)

+ log(𝜍+2,𝑖𝑘)

− log(𝜏+2,𝑖𝑘) + log(𝑞′+2,𝑘𝑗 ) + log(𝜍+2,𝑘𝑗 ) − log(𝜏+2,𝑘𝑗 )

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛
𝑖 > 𝑘 > 𝑗

(25)

The adjustments should be as small as possible to retain more original
information. Thus, we further build the following model:

9
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𝛬∗ = min
𝑛−2
∑

𝑖=1

𝑛−1
∑

𝑘=𝑖+1

𝑛
∑

𝑗=𝑘+1

(

𝜍−1,𝑖𝑗 + 𝜍+1,𝑖𝑗 + 𝜏−1,𝑖𝑗 + 𝜏+1,𝑖𝑗 + 𝜍−2,𝑗𝑖

+𝜍+2,𝑗𝑖 + 𝜏−2,𝑗𝑖 + 𝜏+2,𝑗𝑖
)

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

log(𝑞′−1,𝑖𝑗 ) + log(𝜍−1,𝑖𝑗 ) − log(𝜏−1,𝑖𝑗 ) = log(𝑞′−1,𝑖𝑘)

+ log(𝜍−1,𝑖𝑘)

− log(𝜏−1,𝑖𝑘) + log(𝑞′−1,𝑘𝑗 ) + log(𝜍−1,𝑘𝑗 ) − log(𝜏−1,𝑘𝑗 )

log(𝑞′+1,𝑖𝑗 ) + log(𝜍+1,𝑖𝑗 ) − log(𝜏+1,𝑖𝑗 ) = log(𝑞′+1,𝑖𝑘)

+ log(𝜍+1,𝑖𝑘)

− log(𝜏+1,𝑖𝑘) + log(𝑞′+1,𝑘𝑗 ) + log(𝜍+1,𝑘𝑗 ) − log(𝜏+1,𝑘𝑗 )

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛
𝑖 < 𝑘 < 𝑗

log(𝑞′−2,𝑖𝑗 ) + log(𝜍−2,𝑖𝑗 ) − log(𝜏−2,𝑖𝑗 ) = log(𝑞′−2,𝑖𝑘)

+ log(𝜍−2,𝑖𝑘)

− log(𝜏−2,𝑖𝑘) + log(𝑞′−2,𝑘𝑗 ) + log(𝜍−2,𝑘𝑗 ) − log(𝜏−2,𝑘𝑗 )

log(𝑞′+2,𝑖𝑗 ) + log(𝜍+2,𝑖𝑗 ) − log(𝜏+2,𝑖𝑗 ) = log(𝑞′+2,𝑖𝑘)

+ log(𝜍+2,𝑖𝑘)

− log(𝜏+2,𝑖𝑘) + log(𝑞′+2,𝑘𝑗 ) + log(𝜍+2,𝑘𝑗 ) − log(𝜏+2,𝑘𝑗 )

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛
𝑖 > 𝑘 > 𝑗

log(𝑞′−1,𝑖𝑗 ) + log(𝜍−1,𝑖𝑗 ) − log(𝜏−1,𝑖𝑗 ) ≤ log(9)

log(𝑞′−1,𝑖𝑗 ) + log(𝜍−1,𝑖𝑗 ) − log(𝜏−1,𝑖𝑗 ) ≥ − log(9)

log(𝑞′+1,𝑖𝑗 ) + log(𝜍+1,𝑖𝑗 ) − log(𝜏+1,𝑖𝑗 ) ≤ log(9)

log(𝑞′+1,𝑖𝑗 ) + log(𝜍+1,𝑖𝑗 ) − log(𝜏+1,𝑖𝑗 ) ≥ − log(9)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛
𝑖 < 𝑘 < 𝑗

log(𝑞′−2,𝑖𝑗 ) + log(𝜍−2,𝑖𝑗 ) − log(𝜏−2,𝑖𝑗 ) ≤ log(9)

log(𝑞′−2,𝑖𝑗 ) + log(𝜍−2,𝑖𝑗 ) − log(𝜏−2,𝑖𝑗 ) ≥ − log(9)

log(𝑞′+2,𝑖𝑗 ) + log(𝜍+2,𝑖𝑗 ) − log(𝜏+2,𝑖𝑗 ) ≤ log(9)

log(𝑞′+2,𝑖𝑗 ) + log(𝜍+2,𝑖𝑗 ) − log(𝜏+2,𝑖𝑗 ) ≥ − log(9)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛
𝑖 > 𝑘 > 𝑗

𝜍−1,𝑖𝑗 , 𝜍
+
1,𝑖𝑗 , 𝜏

−
1,𝑖𝑗 , 𝜏

+
1,𝑖𝑗 > 1, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑘 < 𝑗

𝜍−2,𝑖𝑗 , 𝜍
+
2,𝑖𝑗 , 𝜏

−
2,𝑖𝑗 , 𝜏

+
2,𝑖𝑗 > 1, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛, 𝑖 > 𝑘 > 𝑗

(M-6)

where the first four constraints are derived from Eq. (25), 𝜍−1,𝑖𝑗 , 𝜍
+
1,𝑖𝑗 ,

𝜏−1,𝑖𝑗 , 𝜏
+
1,𝑖𝑗 , 𝜍

−
2,𝑖𝑗 , 𝜍

+
2,𝑖𝑗 , 𝜏

−
2,𝑖𝑗 and 𝜏+2,𝑖𝑗 are adjusted variables as shown in

Eqs. (22) and (23), and the fifth to twelfth constraints are obtained
from the conditions of IVIMVs in IVIMPRs as shown in Eq. (5).

To reduce the complexity of obtaining consistent QIVMPRs, we
convert model (M-6) into the following linear model:

𝛺∗ = min
𝑛−2
∑

𝑖=1

𝑛−1
∑

𝑘=𝑖+1

𝑛
∑

𝑗=𝑘+1

(

𝜉−1,𝑖𝑗 + 𝜉+1,𝑖𝑗 + 𝜁−1,𝑖𝑗 + 𝜁+1,𝑖𝑗 + 𝜉−2,𝑗𝑖

+𝜉+2,𝑗𝑖 + 𝜁−2,𝑗𝑖 + 𝜁+2,𝑗𝑖
)

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗 = log(𝑞′−1,𝑖𝑘) + 𝜉−1,𝑖𝑘 − 𝜁−1,𝑖𝑘

+ log(𝑞′−1,𝑘𝑗 ) + 𝜉−1,𝑘𝑗 − 𝜁−1,𝑘𝑗

log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗 = log(𝑞′+1,𝑖𝑘) + 𝜉+1,𝑖𝑘 − 𝜁+1,𝑖𝑘

+ log(𝑞′+1,𝑘𝑗 ) + 𝜉+1,𝑘𝑗 − 𝜁+1,𝑘𝑗

log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖 = log(𝑞′−2,𝑘𝑖) + 𝜉−2,𝑘𝑖 − 𝜁−2,𝑘𝑖

+ log(𝑞′−2,𝑗𝑘) + 𝜉−2,𝑗𝑘 − 𝜁−2,𝑗𝑘

log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖 = log(𝑞′+2,𝑘𝑖) + 𝜉+2,𝑘𝑖 − 𝜁+2,𝑘𝑖

+ log(𝑞′+2,𝑗𝑘) + 𝜉+2,𝑗𝑘 − 𝜁+2,𝑗𝑘

log(𝑞′−1,𝑖𝑗 ) + log(𝜍−1,𝑖𝑗 ) − log(𝜏−1,𝑖𝑗 ) ≤ log(9)

log(𝑞′−1,𝑖𝑗 ) + log(𝜍−1,𝑖𝑗 ) − log(𝜏−1,𝑖𝑗 ) ≥ − log(9)

log(𝑞′+1,𝑖𝑗 ) + log(𝜍+1,𝑖𝑗 ) − log(𝜏+1,𝑖𝑗 ) ≤ log(9)

log(𝑞′+1,𝑖𝑗 ) + log(𝜍+1,𝑖𝑗 ) − log(𝜏+1,𝑖𝑗 ) ≥ − log(9)

log(𝑞′−2,𝑗𝑖) + log(𝜍−2,𝑗𝑖) − log(𝜏−2,𝑗𝑖) ≤ log(9)

log(𝑞′−2,𝑗𝑖) + log(𝜍−2,𝑗𝑖) − log(𝜏−2,𝑗𝑖) ≥ − log(9)

log(𝑞′+2,𝑗𝑖) + log(𝜍+2,𝑗𝑖) − log(𝜏+2,𝑗𝑖) ≤ log(9)

log(𝑞′+2,𝑗𝑖) + log(𝜍+2,𝑗𝑖) − log(𝜏+2,𝑗𝑖) ≥ − log(9)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛
𝑖 < 𝑘 < 𝑗

𝜉−1,𝑖𝑗 , 𝜁
−
1,𝑖𝑗 , 𝜉

+
1,𝑖𝑗 , 𝜁

+
1,𝑖𝑗 , 𝜉

−
2,𝑗𝑖, 𝜁

−
2,𝑗𝑖, 𝜉

+
2,𝑗𝑖, 𝜁

+
2,𝑗𝑖 ≥ 0, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛,

𝑖 < 𝑘 < 𝑗

(M-7)

where
{

𝜉−1,𝑖𝑗 = log(𝜍−1,𝑖𝑗 ), 𝜉
+
1,𝑖𝑗 = log(𝜍+1,𝑖𝑗 )

𝜉−2,𝑗𝑖 = log(𝜍−2,𝑗𝑖), 𝜉
+
2,𝑗𝑖 = log(𝜍+2,𝑗𝑖)

and
{

𝜁−1,𝑖𝑗 = log(𝜏−1,𝑖𝑗 ), 𝜁
+
1,𝑖𝑗 = log(𝜏+1,𝑖𝑗 )

𝜁−2,𝑗𝑖 = log(𝜏−2,𝑗𝑖), 𝜁
+
2,𝑗𝑖 = log(𝜏+2,𝑗𝑖),

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛 with 𝑖 < 𝑘 < 𝑗, and

all other notations are same as those in model (M-6).

Remark 2. Model (M-7) cannot guarantee that adjusted consistent
IVMPRs satisfy the condition of IVIFVs, namely, none of the following
conditions holds:

From (i)
{

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗 ≤ log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗
log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖 > log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖

or

(ii)
{

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗 > log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗
log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖 ≤ log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖,

we have
{

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗 + log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖 ≤ 0

log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗 + log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖 ≤ 0.

From (iii)
{

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗 ≤ log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗
log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖 ≤ log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖

or

(iv)
{

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗 > log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗
log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖 > log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖,

we derive
{

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗 + log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖 ≤ 0

log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗 + log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖 ≤ 0.

To avoid the above situation, we further build the following linear
model:

𝛷∗ = min
𝑛−2
∑

𝑖=1

𝑛−1
∑

𝑘=𝑖+1

𝑛
∑

𝑗=𝑘+1

(

𝜉−1,𝑖𝑗 + 𝜉+1,𝑖𝑗 + 𝜁−1,𝑖𝑗 + 𝜁+1,𝑖𝑗 + 𝜉−2,𝑗𝑖

+𝜉+2,𝑗𝑖 + 𝜁−2,𝑗𝑖 + 𝜁+2,𝑗𝑖
)
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𝑠.𝑡.
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⎪
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⎪
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⎪
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⎪

⎪
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⎪

⎪

⎪

⎨
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⎪

⎪
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⎪
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⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗 = log(𝑞′−1,𝑖𝑘) + 𝜉−1,𝑖𝑘 − 𝜁−1,𝑖𝑘
+ log(𝑞′−1,𝑘𝑗 ) + 𝜉−1,𝑘𝑗 − 𝜁−1,𝑘𝑗
log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗 = log(𝑞′+1,𝑖𝑘) + 𝜉+1,𝑖𝑘 − 𝜁+1,𝑖𝑘
+ log(𝑞′+1,𝑘𝑗 ) + 𝜉+1,𝑘𝑗 − 𝜁+1,𝑘𝑗
log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖 = log(𝑞′−2,𝑘𝑖) + 𝜉−2,𝑘𝑖 − 𝜁−2,𝑘𝑖
+ log(𝑞′−2,𝑗𝑘) + 𝜉−2,𝑗𝑘 − 𝜁−2,𝑗𝑘
log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖 = log(𝑞′+2,𝑘𝑖) + 𝜉+2,𝑘𝑖 − 𝜁+2,𝑘𝑖
+ log(𝑞′+2,𝑗𝑘) + 𝜉+2,𝑗𝑘 − 𝜁+2,𝑗𝑘
log(𝑞′−1,𝑖𝑗 ) + log(𝜍−1,𝑖𝑗 ) − log(𝜏−1,𝑖𝑗 ) ≤ log(9)

log(𝑞′−1,𝑖𝑗 ) + log(𝜍−1,𝑖𝑗 ) − log(𝜏−1,𝑖𝑗 ) ≥ − log(9)

log(𝑞′+1,𝑖𝑗 ) + log(𝜍+1,𝑖𝑗 ) − log(𝜏+1,𝑖𝑗 ) ≤ log(9)

log(𝑞′+1,𝑖𝑗 ) + log(𝜍+1,𝑖𝑗 ) − log(𝜏+1,𝑖𝑗 ) ≥ − log(9)

log(𝑞′−2,𝑗𝑖) + log(𝜍−2,𝑗𝑖) − log(𝜏−2,𝑗𝑖) ≤ log(9)

log(𝑞′−2,𝑗𝑖) + log(𝜍−2,𝑗𝑖) − log(𝜏−2,𝑗𝑖) ≥ − log(9)

log(𝑞′+2,𝑗𝑖) + log(𝜍+2,𝑗𝑖) − log(𝜏+2,𝑗𝑖) ≤ log(9)

log(𝑞′+2,𝑗𝑖) + log(𝜍+2,𝑗𝑖) − log(𝜏+2,𝑗𝑖) ≥ − log(9)
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⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛
𝑖 < 𝑘 < 𝑗

𝜃1𝑖𝑗
(

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗

≤ log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗
)

𝜃1𝑖𝑗
(

log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖

> log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖
)

𝜃2𝑖𝑗
(

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗

> log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗
)

𝜃2𝑖𝑗
(

log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖

≤ log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖
)

(

𝜃1𝑖𝑗 + 𝜃2𝑖𝑗
)(

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗

+ log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖
)

≤ 0
(

𝜃1𝑖𝑗 + 𝜃2𝑖𝑗
)(

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗

+ log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖
)

≤ 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗

𝜃3𝑖𝑗
(

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗

≤ log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗
)

𝜃3𝑖𝑗
(

log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖

≤ log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖
)

𝜃4𝑖𝑗
(

log(𝑞′−1,𝑖𝑗 ) + 𝜉−1,𝑖𝑗 − 𝜁−1,𝑖𝑗

> log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗
)

𝜃4𝑖𝑗
(

log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖

> log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖
)

(

𝜃3𝑖𝑗 + 𝜃4𝑖𝑗
)(

log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗

+ log(𝑞′−2,𝑗𝑖) + 𝜉−2,𝑗𝑖 − 𝜁−2,𝑗𝑖
)

≤ 0
(

𝜃3𝑖𝑗 + 𝜃4𝑖𝑗
)(

log(𝑞′+1,𝑖𝑗 ) + 𝜉+1,𝑖𝑗 − 𝜁+1,𝑖𝑗

+ log(𝑞′+2,𝑗𝑖) + 𝜉+2,𝑗𝑖 − 𝜁+2,𝑗𝑖
)

≤ 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗

𝜃1𝑖𝑗 = 1 ∨ 0, 𝜃2𝑖𝑗 = 1 ∨ 0, 𝜃3𝑖𝑗 = 1 ∨ 0, 𝜃4𝑖𝑗 = 1 ∨ 0, 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗

𝜃1𝑖𝑗 + 𝜃2𝑖𝑗 + 𝜃3𝑖𝑗 + 𝜃4𝑖𝑗 = 1, 𝑖, 𝑗 = 1, 2,… , 𝑛, 𝑖 < 𝑗

𝜉−1,𝑖𝑗 , 𝜁
−
1,𝑖𝑗 , 𝜉

+
1,𝑖𝑗 , 𝜁

+
1,𝑖𝑗 , 𝜉

−
2,𝑗𝑖, 𝜁

−
2,𝑗𝑖, 𝜉

+
2,𝑗𝑖, 𝜁

+
2,𝑗𝑖 ≥ 0, 𝑖, 𝑘, 𝑗 = 1, 2,… , 𝑛,

𝑖 < 𝑘 < 𝑗

(M-8)

where the first eleven constraints are obtained from model (M-7), 𝜃𝑝𝑖𝑗
is an 0–1 indicator variable for all i, 𝑗 = 1, 2, . . . , n with i < j and
𝑝 = 1, 2, 3, 4, and the rest constraints are derived the four cases listed
in Remark 2.

Addressing model (M-8), we derive the adjusted consistent QIVM-
PRs 𝑄

∗
1 = (𝑞∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛 with the smallest total adjust-

ment. Then, we can obtain the associated consistent IVMPRs 𝐵
∗
1 =

(𝑏
∗
1,𝑖𝑗 )𝑛×𝑛 and 𝐵

∗
2 = (𝑏

∗
2,𝑖𝑗 )𝑛×𝑛, where 𝑏

∗
1,𝑖𝑗 =

{

𝑞∗1,𝑖𝑗 𝑞∗,−1,𝑖𝑗 ≤ 𝑞∗,+1,𝑖𝑗

𝑞∗◦1,𝑖𝑗 𝑞∗,−1,𝑖𝑗 > 𝑞∗,+1,𝑖𝑗

and

𝑏
∗
2,𝑖𝑗 =

{

𝑞∗2,𝑖𝑗 𝑞∗,−2,𝑖𝑗 ≤ 𝑞∗,+2,𝑖𝑗

𝑞∗◦2,𝑖𝑗 𝑞∗,−2,𝑖𝑗 > 𝑞∗,+2,𝑖𝑗 ,
𝑖, 𝑗 = 1, 2,… , 𝑛 with 𝑖 < 𝑗. Furthermore,

the consistent IVIMPR �̃�∗ = (𝑟∗𝑖𝑗 )𝑛×𝑛 is derived as:

𝑟∗𝑖𝑗 =
(

𝜌∗𝑖𝑗 , 𝜎
∗
𝑖𝑗

)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝑞∗1,𝑖𝑗 , 𝑞
∗
2,𝑖𝑗

)

𝑞∗,−1,𝑖𝑗 ≤ 𝑞∗,+1,𝑖𝑗 ∧ 𝑞∗,−2,𝑖𝑗 ≤ 𝑞∗,+2,𝑖𝑗
(

𝑞∗◦1,𝑖𝑗 , 𝑞
∗
2,𝑖𝑗

)

𝑞∗,−1,𝑖𝑗 > 𝑞∗,+1,𝑖𝑗 ∧ 𝑞∗,−2,𝑖𝑗 ≤ 𝑞∗,+2,𝑖𝑗
(

𝑞∗1,𝑖𝑗 , 𝑞
∗◦
2,𝑖𝑗

)

𝑞∗,−1,𝑖𝑗 ≤ 𝑞∗,+1,𝑖𝑗 ∧ 𝑞∗,−2,𝑖𝑗 > 𝑞∗,+2,𝑖𝑗
(

𝑞∗◦1,𝑖𝑗 , 𝑞
∗◦
2,𝑖𝑗

)

𝑞∗,−1,𝑖𝑗 > 𝑞∗,+1,𝑖𝑗 ∧ 𝑞∗,−2,𝑖𝑗 > 𝑞∗,+2,𝑖𝑗

(26)

where 𝑖, 𝑗 = 1, 2,… , 𝑛.

Example 4.1. Let X = {𝑥1, 𝑥2, 𝑥3, 𝑥4} be the object set. The incomplete
IVIMPR �̃� on X is defined as:

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

([1, 1], [1, 1]) 𝑥 ([𝑥, 2], [ 1
5
, 1
3
]) ([ 1

4
, 1
3
], [1, 2])

𝑥 ([1, 1], [1, 1]) ([ 1
6
, 1
4
], 𝑥) (𝑥, [ 1

2
, 1])

([ 1
5
, 1
3
], [𝑥, 2]) (𝑥, [ 1

6
, 1
4
]) ([1, 1], [1, 1]) ([3, 5], 𝑥)

([1, 2], [ 1
4
, 1
3
]) ([ 1

2
, 1], 𝑥) (𝑥, [3, 5]) ([1, 1], [1, 1])

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Using model (M-4), the missing values are determined as follows: 𝑟12 =
([0.6667, 0.6667], [1.4815, 1.5]), 𝜌−13 = 0.1111, 𝜎23 = [0.75, 0.75], 𝜌24 =
[0.3953, 0.5], 𝜎34 = [0.2, 0.2]. For the complete IVIMPR �̃�, we apply
model (M-3) to judge its consistency, by which we have 𝜑∗ = 20.6177.
From model (M-5), we obtain

𝑄1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [0.6667, 0.6667] [0.1111, 2] [0.25, 0.3333]
[1.5, 1.5] [1, 1] [0.1667, 0.25] [0.3953, 0.5]
[9, 2] [6, 4] [1, 1] [3, 5]
[4, 3] [2.5297, 2] [0.3333, 0.2] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

,

𝑄2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [0.675, 0.6667] [5, 3] [1, 0.5]
[1.4815, 1.5] [1, 1] [1.3333, 1.3333] [2, 1]
[0.2, 0.3333] [0.75, 0.75] [1, 1] [5, 5]

[1, 2] [0.5, 1] [0.2, 0.2] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

.

From model (M-8), the obtained consistent QIVMPRs are

𝑄
∗
1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [0.667, 0.667] [0.111, 0.167] [0.25, 0.333]
[1.5, 1.5] [1, 1] [0.167, 0.25] [0.375, 0.5]
[9, 6] [6, 4] [1, 1] [2.25, 2]
[4, 3] [2.666, 2] [0.444, 0.5] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

,

𝑄
∗
2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [0.675, 0.667] [0.548, 0.297] [1.35, 0.667]
[1.482, 1.5] [1, 1] [0.812, 0.444] [2, 1]
[1.824, 3.372] [1.232, 2.25] [1, 1] [2.464, 2.25]
[0.741, 1.5] [0.5, 1] [0.406, 0.444] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

.

According to 𝑄
∗
1 and 𝑄

∗
2, the consistent IVMPRs are

𝐵
∗
1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [0.667, 0.667] [0.111, 0.167] [0.25, 0.333]
[1.5, 1.5] [1, 1] [0.167, 0.25] [0.375, 0.5]
[6, 9] [4, 6] [1, 1] [2, 2.25]
[3, 4] [2, 2.666] [0.444, 0.5] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

,

11
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𝐵
∗
2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [0.667, 0.675] [0.297, 0.548] [0.667, 1.35]
[1.482, 1.5] [1, 1] [0.444, 0.812] [1, 2]
[1.824, 3.372] [1.232, 2.25] [1, 1] [2.25, 2.464]
[0.741, 1.5] [0.5, 1] [0.406, 0.444] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

.

Furthermore, the consistent IVIMPR is following unnumbered equation
which is given in Box I. It is worth noting that only one reference (Sahu
et al., 2018) considers incomplete IVIMPR. However, it cannot be ap-

plied in this example because 𝐵(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝜌−12 𝜌−13
1
4

1
𝜌−12

1 1
𝜌612

𝜌−24
1
𝜌−13

6 1 3

4 1
𝜌−24

1
3 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

following

the incomplete IVIMPR �̃�, and we cannot derive the determined value
for 𝜌−12 using equation (7) in Sahu et al. (2018).

5. Group decision making with IVIMPRs

In many situations, more than one DM is needed to make decisions
for a practical problem, which is known as GDM (Liu et al., 2017; Pérez
et al., 2010). In GDM, an important goal is to achieve solutions with a
high consensus level. So, adequate consensus reaching processes based
on consensus measures and sometimes also on consistency measures are
developed.

This section considers GDM with IVIMPRs. To do this, the first part
focuses on consensus, and the second part offers an algorithm to GDM
with IVIMPRs.

5.1. Consensus analysis

To measure the agreement degree of individual opinions for the
final ranking, consensus analysis is necessary. Suppose that there exist
n objects X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, which are evaluated by m DMs E = {𝑒1,
𝑒2, . . . , 𝑒𝑚}. Let �̃�ℎ = (𝑟ℎ𝑖𝑗 )𝑛×𝑛 be the individual IVIMPR offered by the
DM 𝑒ℎ, where 𝑟ℎ𝑖𝑗 = (𝜌ℎ𝑖𝑗 , 𝜎

ℎ
𝑖𝑗 ) = ([𝜌ℎ,−𝑖𝑗 , 𝜌ℎ,+𝑖𝑗 ], [𝜎ℎ,−𝑖𝑗 , 𝜎ℎ,+𝑖𝑗 ]), i, 𝑗 = 1, 2, . . . ,

n; ℎ = 1, 2, . . . , m.

Definition 15. Let �̃�ℎ = (𝑟ℎ𝑖𝑗 )𝑛×𝑛 be an individual IVIMPR, and let
𝑄

ℎ,∗
1 = (𝑞ℎ,∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

ℎ,∗
2 = (𝑞ℎ,∗2,𝑖𝑗 )𝑛×𝑛 be its associated consistent

QIVMPRs, where ℎ = 1, 2, . . . , m. Then, the comprehensive QIVMPRs
𝑄

∗
1 = (𝑞∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛 are defined as

𝑞∗1,𝑖𝑗 = ⊗𝑚
ℎ=1

(

𝑞ℎ,∗1,𝑖𝑗

)𝜔ℎ
and 𝑞∗2,𝑖𝑗 = ⊗𝑚

ℎ=1

(

𝑞ℎ,∗2,𝑖𝑗

)𝜔ℎ
(27)

where i, 𝑗 = 1, 2, . . . , n, 𝜔 =
(

𝜔1, 𝜔2,… , 𝜔𝑚
)

is the weight vector on
the DM set such that ∑𝑚

ℎ=1 𝜔ℎ = 1 and 𝜔ℎ ≥ 0, ℎ = 1, 2, . . . , m.

Property 2. Let 𝑄
ℎ,∗
1 = (𝑞ℎ,∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

ℎ,∗
2 = (𝑞ℎ,∗2,𝑖𝑗 )𝑛×𝑛 be the associated

consistent QIVMPRs of �̃�ℎ = (𝑟ℎ𝑖𝑗 )𝑛×𝑛, ℎ = 1, 2,… , 𝑚, and let 𝑄
∗
1 = (𝑞∗1,𝑖𝑗 )𝑛×𝑛

and 𝑄
∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛 be the associated comprehensive QIVMPRs as shown in

Definition 15. Then, 𝑄
∗
1 and 𝑄

∗
2are both consistent.

Proof. From Eq. (27) and the consistency of individual QIVMPRs, we
have

𝑞∗1,𝑖𝑘 ⊗ 𝑞∗1,𝑘𝑗 =
(

⊗𝑚
ℎ=1

(

𝑞ℎ,∗1,𝑖𝑘

)𝜔ℎ)

⊗
(

⊗𝑚
ℎ=1

(

𝑞ℎ,∗1,𝑘𝑗

)𝜔ℎ)

= ⊗𝑚
ℎ=1

(

𝑞ℎ,∗1,𝑖𝑘 ⊗ 𝑞ℎ,∗1,𝑘𝑗

)𝜔ℎ
= ⊗𝑚

ℎ=1

(

𝑞ℎ,∗1,𝑖𝑗

)𝜔ℎ
= 𝑞∗1,𝑖𝑗

Thus, 𝑄
∗
1 is consistent. Similarly, we obtain the consistency of 𝑄

∗
2.

Now, we apply consistent QIVMPRs to offer a consensus index.

Definition 16. Let �̃�ℎ = (𝑟ℎ𝑖𝑗 )𝑛×𝑛 be an individual IVIMPR and let 𝑄
ℎ,∗
1 =

(𝑞ℎ,∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄
ℎ,∗
2 = (𝑞ℎ,∗2,𝑖𝑗 )𝑛×𝑛 be its associated consistent QIVMPRs,

where ℎ = 1, 2, . . . , m. Then, the consensus index of �̃�ℎ = (𝑟ℎ𝑖𝑗 )𝑛×𝑛 is
defined as:

𝐶𝑂𝐼(�̃�ℎ) = 1 − 1
4𝑛(𝑛 − 1)

𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1

(

|

|

|

log9(𝑞
ℎ,∗,−
1,𝑖𝑗 ) − log9(𝑞

∗,−
1,𝑖𝑗 )

|

|

|

+ |

|

|

log9(𝑞
ℎ,∗,+
1,𝑖𝑗 ) − log9(𝑞

∗,+
1,𝑖𝑗 )

|

|

|

+ |

|

|

log9(𝑞
ℎ,∗,−
2,𝑗𝑖 ) − log9(𝑞

∗,−
2,𝑗𝑖)

|

|

|

+ |

|

|

log9(𝑞
ℎ,∗,+
2,𝑗𝑖 ) − log9(𝑞

∗,+
2,𝑗𝑖)

|

|

|

)

,

(28)

where 𝑄
∗
1 = (𝑞∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛 are the comprehensively

consistent QIVMPRs shown in Definition 15.

Note that 0 ≤ 𝐶𝑂𝐼(�̃�ℎ) ≤ 1 for any individual IVIMPR �̃�ℎ, ℎ = 1, 2,
. . . , m, and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 ≤ |

|

|

log9(𝑞
ℎ,∗,−
1,𝑖𝑗 ) − log9(𝑞

∗,−
1,𝑖𝑗 )

|

|

|

≤ 2

0 ≤ |

|

|

log9(𝑞
ℎ,∗,+
1,𝑖𝑗 ) − log9(𝑞

∗,+
1,𝑖𝑗 )

|

|

|

≤ 2

0 ≤ |

|

|

log9(𝑞
ℎ,∗,−
2,𝑗𝑖 ) − log9(𝑞

∗,−
2,𝑗𝑖)

|

|

|

≤ 2

0 ≤ |

|

|

log9(𝑞
ℎ,∗,+
2,𝑗𝑖 ) − log9(𝑞

∗,+
2,𝑗𝑖)

|

|

|

≤ 2.

Property 3. Let 𝑄
ℎ,∗
1 = (𝑞ℎ,∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

ℎ,∗
2 = (𝑞ℎ,∗2,𝑖𝑗 )𝑛×𝑛 be the con-

sistent QIVMPRs obtained from the individual IVIMPR �̃�ℎ = (𝑟ℎ𝑖𝑗 )𝑛×𝑛,
ℎ = 1, 2,… , 𝑚, and let 𝑄

∗
1 = (𝑞∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛 be the

associated comprehensive QIVMPRs shown in Definition 16, where 𝜔 =
(

𝜔1, 𝜔2,… , 𝜔𝑚
)

is the weight vector on the DM set such that ∑𝑚
ℎ=1 𝜔ℎ = 1

and 𝜔ℎ ≥ 0, ℎ = 1, 2,… , 𝑚. Let 𝑄
′ℎ,∗

1 = (𝑞′ℎ,∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄
′ℎ,∗

2 = (𝑞′ℎ,∗2,𝑖𝑗 )𝑛×𝑛
be the adjusted QIVMPRs for the consistent QIVMPRs 𝑄

ℎ,∗
1 and 𝑄

ℎ,∗
2 , where

𝑞′ℎ,∗1,𝑖𝑗 =
(

𝑞ℎ,∗1,𝑖𝑗

)𝜐
⊗

(

𝑞∗1,𝑖𝑗
)1−𝜐

and 𝑞′ℎ,∗2,𝑖𝑗 =
(

𝑞ℎ,∗2,𝑖𝑗

)𝜐
⊗

(

𝑞∗2,𝑖𝑗
)1−𝜐

(29)

i, j = 1, 2,… , 𝑛, and 𝜐 ∈ (0, 1).
(i) The individual QIVMPRs 𝑄

′ℎ,∗
1 = (𝑞′ℎ,∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

′ℎ,∗
2 = (𝑞′ℎ,∗2,𝑖𝑗 )𝑛×𝑛 are

consistent;
(ii) Let �̃�′ℎ = (𝑟′ℎ𝑖𝑗 )𝑛×𝑛 be the individual IVIMPR obtained from the QIVMPRs
𝑄

′ℎ,∗
1 = (𝑞′ℎ,∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

′ℎ,∗
2 = (𝑞′ℎ,∗2,𝑖𝑗 )𝑛×𝑛, we have 𝐶𝑂𝐼(�̃�′ℎ) ≥ 𝐶𝑂𝐼(�̃�ℎ).

Proof. For (i): Property 2 shows that the comprehensive QIVMPRs
𝑄

∗
1 = (𝑞∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛 are consistent. Similar to Property 2,

we derive (i).
For (ii): For each pair of (i, j ) with i < j, we have

|

|

|

log9(𝑞
′ℎ,∗,−
1,𝑖𝑗 ) − log9(𝛱𝑚

𝑙=1,𝑙≠ℎ𝑞
∗,𝑙,−
1,𝑖𝑗 × 𝑞′ℎ,∗,−1,𝑖𝑗 )||

|

=
|

|

|

|

|

log9

(

(

𝑞ℎ,∗,−1,𝑖𝑗

)𝜐
×
(

𝑞∗,−1,𝑖𝑗

)1−𝜐
)

− log9

(

(

𝛱𝑚
𝑙=1,𝑙≠ℎ𝑞

∗,𝑙,−
1,𝑖𝑗

)𝜔𝑙

×
(

(

𝑞ℎ,∗,−1,𝑖𝑗

)𝜐
⊗

(

𝑞∗,−1,𝑖𝑗

)1−𝜐
)𝜔ℎ)|

|

|

|

|

=
|

|

|

|

𝜐 log9
(

𝑞ℎ,∗,−1,𝑖𝑗

)

+ (1 − 𝜐) log9
(

𝑞∗,−1,𝑖𝑗

)

− log9
(

𝑞∗,−1,𝑖𝑗

)

−(𝜐 − 1)𝜔ℎ log9
(

𝑞ℎ,∗,−1,𝑖𝑗

)

− (1 − 𝜐)𝜔ℎ log9
(

𝑞∗,−1,𝑖𝑗

)

|

|

|

|

≤
|

|

|

|

𝜐 log9
(

𝑞ℎ,∗,−1,𝑖𝑗

)

− 𝜐 log9
(

𝑞∗,−1,𝑖𝑗

)

|

|

|

|

+
|

|

|

|

(1 − 𝜐)𝜔ℎ log9
(

𝑞ℎ,∗,−1,𝑖𝑗

)

− (1 − 𝜐)𝜔ℎ log9
(

𝑞∗,−1,𝑖𝑗

)

|

|

|

|

≤ 𝜐
|

|

|

|

log9
(

𝑞ℎ,∗,−1,𝑖𝑗

)

− log9
(

𝑞∗,−1,𝑖𝑗

)

|

|

|

|

+ (1 − 𝜐)
|

|

|

|

log9
(

𝑞ℎ,∗,−1,𝑖𝑗

)

− log9
(

𝑞∗,−1,𝑖𝑗

)

|

|

|

|

=
|

|

|

|

log9
(

𝑞ℎ,∗,−1,𝑖𝑗

)

− log9
(

𝑞∗,−1,𝑖𝑗

)

|

|

|

|

.

12
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�̃�∗ =

⎛

⎜

⎜

⎜

⎜

⎝

([1, 1], [1, 1]) ([0.667, 0.667], [1.482, 1.5]) ([0.111, 0.167], [1.824, 3.372]) ([0.25, 0.333], [0.741, 1.5])
([1.482, 1.5], [0.667, 0.667]) ([1, 1], [1, 1]) ([0.167, 0.25], [1.232, 2.25]) ([0.375, 0.5], [0.5, 1])

([1.824, 3.372], [0.1111, 0.167]) ([1.232, 2.25], [0.167, 0.25]) ([1, 1], [1, 1]) ([2, 2.25], [0.406, 0.444])
([0.741, 1.5], [0.25, 0.333]) ([0.5, 1], [0.375, 0.5]) ([0.406, 0.444], [2, 2.25]) ([1, 1], [1, 1])

⎞

⎟

⎟

⎟

⎟

⎠

Box I.

Similarly, we derive
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|

|

|

log9(𝑞
′ℎ,∗,+
1,𝑖𝑗 ) − log9(𝛱𝑚

𝑙=1,𝑙≠ℎ𝑞
∗,𝑙,+
1,𝑖𝑗 × 𝑞′ℎ,∗,+1,𝑖𝑗 )||

|

≤
|

|

|

|

log9
(

𝑞ℎ,∗,+1,𝑖𝑗

)

− log9
(

𝑞∗,+1,𝑖𝑗

)

|

|

|

|

|

|

|

log9(𝑞
′ℎ,∗,−
2,𝑗𝑖 ) − log9(𝛱𝑚

𝑙=1,𝑙≠ℎ𝑞
∗,𝑙,−
2,𝑗𝑖 × 𝑞′ℎ,∗,−2,𝑗𝑖 )||

|

≤
|

|

|

|

log9
(

𝑞ℎ,∗,−2,𝑗𝑖

)

− log9
(

𝑞∗,−2,𝑗𝑖

)

|

|

|

|

|

|

|

log9(𝑞
′ℎ,∗,+
2,𝑗𝑖 ) − log9(𝛱𝑚

𝑙=1,𝑙≠ℎ𝑞
∗,𝑙,+
2,𝑗𝑖 × 𝑞′ℎ,∗,+2,𝑗𝑖 )||

|

≤
|

|

|

|

log9
(

𝑞ℎ,∗,+2,𝑗𝑖

)

− log9
(

𝑞∗,+2,𝑗𝑖

)

|

|

|

|

.

Eq. (28) shows that 𝐶𝑂𝐼(�̃�′ℎ) ≥ 𝐶𝑂𝐼(�̃�ℎ).
Properties 2 and 3 show that the comprehensive QIVMPRs 𝑄

′∗
1 =

(𝑞′∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄
′∗
2 = (𝑞′∗2,𝑖𝑗 )𝑛×𝑛 are consistent from the individual

consistent QIVMPRs.

Definition 16 shows that the weights of the DMs are needed for cal-
culating comprehensively consistent QIVMPRs. However, the weighting
information may be unknown. To address this problem, we introduce
the following method.

Definition 17. Let �̃�1 = (𝑟1𝑖𝑗 )𝑛×𝑛 and �̃�2 = (𝑟2𝑖𝑗 )𝑛×𝑛 be any two IVIMPRs,

and let
⎧

⎪

⎨

⎪

⎩

𝐵
1,∗
1 = (𝑏

1,∗
1,𝑖𝑗 )𝑛×𝑛

𝐵
1,∗
2 = (𝑏

1,∗
2,𝑖𝑗 )𝑛×𝑛

and
⎧

⎪

⎨

⎪

⎩

𝐵
2,∗
1 = (𝑏

2,∗
1,𝑖𝑗 )𝑛×𝑛

𝐵
2,∗
2 = (𝑏

2,∗
2,𝑖𝑗 )𝑛×𝑛

be their associated con-

sistent QIVMPRs. Then, the distance between the IVIMPRs �̃�1 and �̃�2

is defined as:

𝐷
(

�̃�1, �̃�2) =
𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1

(

|

|

|

𝑏1,∗,−1,𝑖𝑗 − 𝑏2,∗,−1,𝑖𝑗
|

|

|

+ |

|

|

𝑏1,∗,+1,𝑖𝑗 − 𝑏2,∗,+1,𝑖𝑗
|

|

|

+ |

|

|

𝑏1,∗,−2,𝑗𝑖 − 𝑏2,∗,−2,𝑗𝑖
|

|

|

+ |

|

|

𝑏1,∗,+2,𝑗𝑖 − 𝑏2,∗,+2,𝑗𝑖
|

|

|

)

. (30)

Property 4. Let �̃�1 = (𝑟1𝑖𝑗 )𝑛×𝑛, �̃�
2 = (𝑟2𝑖𝑗 )𝑛×𝑛 and �̃�3 = (𝑟3𝑖𝑗 )𝑛×𝑛 be any

three IVIMPRs. Then, their distance measure defined by Eq. (30) has the
following characteristics:
(i) 𝐷

(

�̃�1, �̃�2) = 0 ⇔ �̃�1 = �̃�2;
(ii) 𝐷

(

�̃�1, �̃�2) = 𝐷
(

�̃�2, �̃�1);
(iii) 𝐷

(

�̃�1, �̃�2) +𝐷
(

�̃�2, �̃�3) ≥ 𝐷
(

�̃�1, �̃�3).

Proof. From Eq. (30), it is easy to derive the conclusion.
Next, we build a distance measure-based model to determine the

weights of the DMs.

min
𝑚
∑

ℎ=1

(( 𝑚
∑

𝑙=1,𝑙≠ℎ
𝐷
(

�̃�ℎ, �̃�𝑙)
)

𝜔ℎ

)

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚
∑

ℎ=1
𝜔ℎ = 1

𝜔ℎ ∈ [𝜔−
ℎ , 𝜔

+
ℎ ], ℎ = 1, 2,… , 𝑚

𝜔ℎ ≥ 0, ℎ = 1, 2,… , 𝑚,

(M-9)

where [𝜔−
ℎ , 𝜔

+
ℎ ] is the known weight information of the DM 𝑒ℎ, and

𝐷
(

�̃�ℎ, �̃�𝑙) is distance measure between the individual IVIMPRs �̃�ℎ and
�̃�𝑙 shown in Eq. (30).

5.2. An algorithm to GDM with IVIMPRs

From the above discussion, this subsection introduces an algorithm
to GDM with IVIMPRs based on the consistency and consensus analysis.

Step 1: Let �̃�ℎ = (𝑟ℎ𝑖𝑗 )𝑛×𝑛 be the individual IVIMPR offered by 𝑒ℎ, ℎ = 1,
2, . . . , m. If incomplete IVIMPRs exist, model (M-4) is used to
determine missing values. Otherwise, go to the next step;

Step 2: For each complete IVIMPR �̃�ℎ = (𝑟ℎ𝑖𝑗 )𝑛×𝑛, model (M-3) is
applied to judge the consistency. Then, model (M-5) is adopted to
derive the associated QIVMPRs 𝑄

ℎ
1 = (𝑞ℎ1,𝑖𝑗 )𝑛×𝑛 and 𝑄

ℎ
2 = (𝑞ℎ2,𝑖𝑗 )𝑛×𝑛,

ℎ = 1, 2, . . . , m;
Step 3: When the individual QIVMPRs 𝑄

ℎ
1 and 𝑄

ℎ
2 are consistent, go

to Step 4. Otherwise, model (M-8) is adopted to derive individual
consistent QIVMPRs 𝑄

ℎ,∗
1 and 𝑄

ℎ,∗
2 , ℎ = 1, 2, . . . , m;

Step 4: Model (M-9) is adopted to determine the weights of the DMs;
Step 5: According to 𝑄

ℎ,∗
1 and 𝑄

ℎ,∗
2 , ℎ = 1, 2, . . . , m, the comprehen-

sively consistent QIVMPRs 𝑄
∗
1 = (𝑞∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄

∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛 can

be obtained;
Step 6: Let 𝜋∗ be the threshold of consensus. If 𝐶𝑂𝐼(�̃�ℎ) ≥ 𝜋∗, ℎ = 1,

2, . . . , m, then turn to Step 8. Otherwise, go to next step;
Step 7: Let 𝐶𝑂𝐼(�̃�ℎ) = min1≤𝑙≤𝑚 𝐶𝑂𝐼(�̃�𝑙) < 𝜋∗. Property 3 is used to

adjust the consensus of 𝑄
ℎ,∗
1 and 𝑄

ℎ,∗
2 , and return to Step 5;

Step 8: Based on the comprehensively consistent QIVMPRs 𝑄
∗
1 =

(𝑞∗1,𝑖𝑗 )𝑛×𝑛 and 𝑄
∗
2 = (𝑞∗2,𝑖𝑗 )𝑛×𝑛, the comprehensively consistent

IVIMPR �̃�∗ = (𝑟∗𝑖𝑗 )𝑛×𝑛 is obtained;
Step 9: The following equation is applied to calculate the interval-

valued intuitionistic multiplicative priority weights:

�̃�𝑖 =
([

𝑛
√

𝛱𝑛
𝑗=1𝜌

∗,−
𝑖𝑗 , 𝑛

√

𝛱𝑛
𝑗=1𝜌

∗,+
𝑖𝑗

]

,
[

𝑛
√

𝛱𝑛
𝑗=1𝜎

∗,−
𝑖𝑗 , 𝑛

√

𝛱𝑛
𝑗=1𝜎

∗,+
𝑖𝑗

])

𝑖 = 1, 2,… , 𝑛. (31)

Step 10: Eq. (4) is used to rank �̃�𝑖, 𝑖 = 1, 2, . . . , n, by which the ranking
of objects 𝑥1, 𝑥2, . . . , 𝑥𝑛 is derived.

6. A case study

Nowadays, the competition among enterprises has transformed into
the competition among the enterprises’ supply chains. The suppliers
are the ‘‘lionhead’’ of the whole supply chain, which influences the
success of downstream manufacturers in delivery, product quality, lead
time, inventory level, and product design etc. The quality and price
of products supplied by suppliers determine the quality and price of
the final consumption goods and affect the market competitiveness,
market share and market viability of the final products as well as the
core competitiveness of each component of the supply chain. There-
fore, how to choose the suitable supplier is an important researching
topic. A Chinese car company plans to select a steel supplier. Through
investigation and study, four steel producers were selected as potential
suppliers: Hebei iron & steel group corporation (HBIS), Shougang group
corporation (SHOUGANG), Baosteel group corporation (BAOSTEEL),
and Anshan iron and steel group corporation (ANSTEEL). To determine
the final steel supplier, four experts are invited to evaluate these four
steel corporations. Because there are many factors to influence the
judgments of the experts, they are permitted to apply intervals on

13
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Saaty’s [1/9, 9] scale to denote their uncertainties. Furthermore, the
experts can offer the uncertain preferred and non-preferred judgments
simultaneously. When they are unable or unwilling to make judgments
for some comparisons, missing information is allowed too. On basis
of their expertise and personal preferences, the individual IVIMPRs
are offered as shown in Tables 1–4. Taking the comparison between
HBIS and SHOUGANG for example, the first expert thinks that the
preferred degree of HBIS over SHOUGANG is between 3 to 5 times,
while he/she considers that the preferred degree of SHOUGANG over
HBIS is between 1/8 to 1/6 times rather than between 1/5 to 1/3 times
due to the inconsistency of subjective judgments. To express the above
information, IVIMVs are good choices and the above judgments can be
denoted as ([3, 5], [1/8, 1/6]). Furthermore, the first expert is unable
or unwilling to give his/her comparison judgment between BAOS-
TEEL and ANSTEEL. To obtain the same preference structure as other
judgments, we here employ IVIMVs, denoted by ([𝜌1,−34 , 𝜌1,+34 ], [𝜎1,−34 , 𝜎1,+34 ]).

Suppose that the known weighting information of the experts is
𝜔ℎ ∈ [0.2, 0.3], ℎ = 1, 2, 3, 4. To rank these four steel corporations and
select the best one(s), the following procedure is needed:
Step 1: Because all individual IVIMPRs are incomplete, we apply model
(M-4) to derive complete IVIMPRs. Please see Tables 5–8.
Step 2: For each complete IVIMPR, the objective function values of
model (M-3) are

𝜑∗(�̃�1) = 14.9787, 𝜑∗(�̃�2) = 15.8535, 𝜑∗(�̃�3) = 8.0923, 𝜑∗(�̃�4) = 9.8544,

namely, none of them is consistent. Using model (M-5), individual
QIVMPRs can be obtained. Taking the individual IVIMPR �̃�1 for ex-
ample, the individual QIVMPRs are

𝑄
1
1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [3, 5] [0.5, 1] [6, 7]
[0.333, 0.2] [1, 1] [0.225, 0.236] [2, 3]

[2, 1] [4.444, 4.237] [1, 1] [9, 7.884]
[0.167, 0.143] [0.5, 0.333] [0.111, 0.127] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

𝑄
1
2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [8, 6] [4, 2] [9, 7]
[0.125, 0.167] [1, 1] [5, 3] [3, 3]
[0.25, 0.5] [0.2, 0.333] [1, 1] [9, 9]

[0.111, 0.143] [0.333, 0.333] [0.111, 0.111] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

.

Step 3: We adopt model (M-8) to derive individual consistent QIVM-
PRs. Taking the individual QIVMPRs 𝑄

1
1 and �̃�1

2 for instance, the
individual consistent QIVMPRs are

𝑄
1∗
1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [3, 4.237] [0.675, 1] [6, 7.884]
[0.333, 0.236] [1, 1] [0.225, 0.236] [2, 1.861]
[1.482, 1] [4.444, 4.237] [1, 1] [8.889, 7.884]

[0.167, 0.127] [0.5, 0.537] [0.112, 0.127] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

𝑄
1∗
2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [8, 5.92] [2.703, 2] [24.023, 17.777]
[0.125, 0.169] [1, 1] [0.338, 0.338] [3.003, 3.003]
[0.37, 0.5] [2.96, 2.96] [1, 1] [8.889, 8.889]

[0.042, 0.056] [0.333, 0.333] [0.112, 0.112] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

.

Step 4: Using model (M-9), the weights of the experts are 𝜔1 = 0.2,
𝜔2 = 0.3, 𝜔3 = 0.2, and 𝜔4 = 0.3.
Step 5: Based on individual consistent QIVMPRs and the weights of the
experts, the comprehensively consistent QIVMPRs are

𝑄
∗
1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [2.049, 2.373] [1.303, 1.705] [4.243, 6.069]
[0.488, 0.421] [1, 1] [0.636, 0.718] [2.071, 2.557]
[0.767, 0.587] [1.572, 1.392] [1, 1] [3.256, 3.56]
[0.236, 0.165] [0.483.0.391] [0.307, 0.281] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

𝑄
∗
2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [4.88, 4.017] [4.68, 3.101] [18.911, 12.706]
[0.205, 0.249] [1, 1] [0.959, 0.772] [3.875, 3.163]
[0.214, 0.323] [1.043, 1.296] [1, 1] [4.041, 4.098]
[0.053, 0.078] [0.258, 0.316] [0.247, 0.244] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

.

Step 6: Let 𝜋∗ = 0.9. By Eq. (28), we have

𝐶𝑂𝐼(�̃�1) = 0.869, 𝐶𝑂𝐼(�̃�2) = 0.917,𝐶𝑂𝐼(�̃�3) = 0.806, 𝐶𝑂𝐼(�̃�4) = 0.901.

Because 𝐶𝑂𝐼(�̃�3) = min1≤ℎ≤4 𝐶𝑂𝐼(�̃�ℎ) = 0.806 < 0.9, we need to
adjust individual consistent QIVMPRs. After adjusting four times for
individual consistent QIVMPRs 𝑄

3∗
1 and 𝑄

3∗
2 and one time for individual

consistent QIVMPRs 𝑄
1∗
1 and 𝑄

1∗
2 , we have

𝑄
′1∗
1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [2.814, 3.817] [0.754, 1.078] [5.647, 7.484]
[0.355, 0.262] [1, 1] [0.268, 0.282] [2.007, 1.961]
[1.327, 0.928] [3.732, 3.541] [1, 1] [7.49, 6.943]
[0.177, 0.134] [0.498.0.51] [0.133, 0.144] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

,

𝑄
′1∗
2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [7.453, 5.615] [2.976, 2.147] [23.401, 16.873]
[0.134, 0.178] [1, 1] [0.399, 0.383] [3.14, 3.005]
[0.336, 0.466] [2.504, 2.615] [1, 1] [7.864, 7.858]
[0.043, 0.059] [0.318, 0.333] [0.127, 0.127] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

;

𝑄
′3∗
1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [1.71, 2.001] [1.777, 2.724] [3.729, 6.044]
[0.584, 0.5] [1, 1] [1.04, 1.362] [2.181, 3.021]
[0.562, 0.367] [0.962, 0.734] [1, 1] [2.098, 2.219]
[0.268, 0.167] [0.459, 0.33] [0.476, 0.451] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

,

𝑄
′3∗
2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [3.222, 2.784] [5.714, 3.964] [13.728, 10.173]
[0.311, 0.359] [1, 1] [1.773, 1.424] [4.26, 3.655]
[0.175, 0.253] [0.563, 0.702] [1, 1] [2.403, 2.565]
[0.073, 0.099] [0.234, 0.273] [0.416, 0.389] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

.

Furthermore, associated comprehensively consistent QIVMPRs are

𝑄
′∗
1 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [2.15, 2.462] [1.2, 1.478] [4.378, 6.015]
[0.465, 0.406] [1, 1] [0.558, 0.6] [2.036, 2.443]
[0.833, 0.677] [1.792, 1.666] [1, 1] [3.649, 4.07]
[0.228, 0.167] [0.491.0.409] [0.274, 0.246] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

𝑄
′∗
2 =

⎛

⎜

⎜

⎜

⎜

⎝

[1, 1] [5.535, 4.498] [4.46, 2.895] [20.958, 13.553]
[0.181, 0.222] [1, 1] [0.806, 0.644] [3.786, 3.014]
[0.224, 0.346] [1.241, 1.554] [1, 1] [4.699, 4.682]
[0.048, 0.074] [0.264, 0.332] [0.213, 0.214] [1, 1]

⎞

⎟

⎟

⎟

⎟

⎠

.

From the above adjusted individual consistent QIVMPRs, we derive

𝐶𝑂𝐼(�̃�1) = 0.908, 𝐶𝑂𝐼(�̃�2) = 0.924, 𝐶𝑂𝐼(�̃�3) = 0.910, 𝐶𝑂𝐼(�̃�4) = 0.904.

Step 7: From comprehensively consistent QIVMPRs 𝑄
′∗
1 and 𝑄

′∗
2, the

comprehensively consistent IVIMPR is obtained as shown in Table 9.
Step 8: From �̃�∗, the interval-valued intuitionistic multiplicative prior-
ity weights are

�̃�1 = ([1.833, 2.163] , [0.21, 0.275]) , �̃�2 = ([0.673, 0.755] , [0.916, 1.062]) ,

�̃�3 = ([1.004, 1.216] , [0.615, 0.66]) , �̃�4 = ([0.228, 0.269] , [2.388, 2.781]) .

Step 9: From Eq. (4), we have 𝑆(�̃�1) = 8.292, 𝑆(�̃�2) = 0.723, 𝑆(�̃�3) =
1.735, 𝑆(�̃�4) = 0.095.

Thus, the ranking is HBIS ≻ SHOUGANG ≻ BAOSTEEL ≻ ANSTEEL,
and HBIS is the best choice.

It is noticeable that the above ranking results are derived from com-
pletely consistent IVIMPR which ensures the logicality. One the other
hand, this ranking represents no less than 90% consensual degrees of
the experts. From the final scores of these four steel companies, HBIS
is the best choice, while ANSTEEL is the worst. With the increasing
competition among steel companies, each enterprise must enhance
the research and development of new products and improve product
quality. Meanwhile, they should reduce production costs by optimiz-
ing their industrial institutions. Then, they are not eliminated by the
market in the fierce competition.

Note that previous methods (Jiang et al., 2014; Liu et al., 2019;
Zhang, 2017; Zhang and Prdrycz, 2019; Zhang et al., 2019) for decision
making with interval-valued intuitionistic multiplicative information
cannot be applied in this example, which do not consider incomplete
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Table 1
Individual IVIMPR �̃�1 offered by the first expert.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([3, 5], [1/8,1/6]) ([1/2, 1], [1/4,1/2]) ([6, 7], [1/9,1/7])
SHOUGANG ([1/8,1/6], [3, 5]) ([1, 1], [1,1]) ([𝜌1,−23 , 𝜌1,+23 ], [1∕5, 1∕3]) ([2, 3], [𝜎1,−

24 , 𝜎1,+
24 ])

BAOSTEEL ([1/4,1/2], [1/2, 1]) ([1∕5, 1∕3], [𝜎1,−
32 , 𝜎1,+

32 ]) ([1, 1], [1,1]) ([𝜌1,−34 , 𝜌1,+34 ], [𝜎1,−
34 , 𝜎1,+

34 ])
ANSTEEL ([1/9,1/7], [6, 7]) ([𝜌1,−42 , 𝜌1,+42 ], [2, 3]) ([𝜌1,−43 , 𝜌1,+43 ], [𝜎1,−

43 , 𝜎1,+
43 ]) ([1, 1], [1,1])

Table 2
Individual IVIMPR �̃�2 offered by the second expert.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([1, 2], [1/4,1/3]) ([𝜌2,−13 , 𝜌2+13 ], [1∕5, 1∕3]) ([2, 3], [1/5,1/4])
SHOUGANG ([1/4,1/3], [1, 2]) ([1, 1], [1,1]) ([1/2, 1], [1/4,1/2]) ([𝜌2,−24 , 𝜌2+24 ], [1∕3, 1∕2])
BAOSTEEL ([1∕5, 1∕3], [𝜎2,−

31 , 𝜎2+
31 ]) ([1/4,1/2], [1/2, 1]) ([1, 1], [1,1]) ([6, 8], [1/9,1/8])

ANSTEEL ([1/5,1/4], [2, 3]) ([1∕3, 1∕2], [𝜎2,−
42 , 𝜎2+

42 ]) ([1/9,1/8], [6, 8]) ([1, 1], [1,1])

Table 3
Individual IVIMPR �̃�3 offered by the third expert.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([𝜌3,−12 , 𝜌3,+12 ], [𝜎3,−
12 , 𝜎3,+

12 ]) ([4, 6], [1/8,1/6]) ([3, 6], [1/8,1/7])
SHOUGANG ([𝜌3,−21 , 𝜌3,+21 ], [𝜎3,−

21 , 𝜎3,+
21 ]) ([1, 1], [1,1]) ([2, 4], [1/5,1/4]) ([𝜌3,−24 , 𝜌3,+24 ], [𝜎3,−

24 , 𝜎3,+
24 ])

BAOSTEEL ([1/8,1/6], [4, 6]) ([1/5,1/4], [2, 4]) ([1, 1], [1,1]) ([1, 3], [1/5,1/3])
ANSTEEL ([1/8,1/7], [3, 6]) ([𝜌3,−42 , 𝜌3,+42 ], [𝜎3,−

42 , 𝜎3,+
42 ]) ([1/5,1/3], [1, 3]) ([1, 1], [1,1])

Table 4
Individual IVIMPR �̃�4 offered by the fourth expert.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([7, 8], [1/9,1/8]) ([5, 6], [1/8,1/6]) ([𝜌4,−14 , 𝜌4,+14 ], [𝜎4,−
14 , 𝜎4,+

14 ])
SHOUGANG ([1/9,1/8], [7, 8]) ([1, 1], [1,1]) ([𝜌4,−23 , 𝜌4,+23 ], [𝜎4,−

23 , 𝜎4,+
23 ]) ([2, 3], [1/5,1/4])

BAOSTEEL ([1/8,1/6], [5, 6]) ([𝜌4,−32 , 𝜌4,+32 ], [𝜎4,−
32 , 𝜎4,+

32 ]) ([1, 1], [1,1]) ([3, 5], [1/7,1/6])
ANSTEEL ([𝜌4,−41 , 𝜌4,+41 ], [𝜎4,−

41 , 𝜎4,+
41 ]) ([1/5,1/4], [2, 3]) ([1/7,1/6], [3, 5]) ([1, 1], [1,1])

Table 5
Completely individual IVIMPR �̃�1.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([3, 5], [0.125,0.167]) ([0.5, 1], [0.25,00.5]) ([6, 7], [0.111,0.143])
SHOUGANG ([0.125,0.167], [3, 5]) ([1, 1], [1,1]) ([0.225, 0.236], [0.2, 0.333]) ([2, 3], [0.333,0.333])
BAOSTEEL ([0.25,0.5], [0.5, 1]) ([0.2, 0.333], [0.225, 0.236]) ([1, 1], [1,1]) ([7.884, 9], [0.111, 0.111])
ANSTEEL ([0.111,0.143], [6, 7]) ([0.333,0.333], [2, 3]) ([0.111, 0.111], [7.884, 9]) ([1, 1], [1,1])

Table 6
Completely individual IVIMPR �̃�2.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([1, 2], [0.25,0.333]) ([0.408, 0.866], [0.2,0.333]) ([2, 3], [0.2,0.25])
SHOUGANG ([0.25,0.333], [1, 2]) ([1, 1], [1,1]) ([0.5, 1], [0.25,0.5]) ([2, 2], [0.333,0.5])
BAOSTEEL ([0.2,0.333], [0.408, 0.866]) ([0.25,0.5], [0.5, 1]) ([1, 1], [1,1]) ([6, 8], [0.111,0.125])
ANSTEEL ([0.2,0.25], [2, 3]) ([0.333,0.5], [2, 2]) ([0.111,0.125], [6, 8]) ([1, 1], [1,1])

case. Sahu et al. (2018) only offered two methods to ascertain missing
judgment and disregarded how to calculate the priority vector and
rank objects based on completely individual IVIMPRs. Furthermore, the
authors did not research how to obtain (acceptably) consistent IVIMPRs
from inconsistent ones. Therefore, we cannot use Sahu et al.’s method
in this case study either. This case study shows that the new method
extends the application of IVIMPRs.

7. Conclusion

To address the vagueness of decision-making problems, various
types of fuzzy sets are proposed that are based on different point of
views. Considering the situation where the DMs may want to denote
their asymmetrical uncertain preferred and non-preference judgements
simultaneously, this paper introduces a consistency-and-consensus-
analysis-based method for GDM with IVIMPRs that can cope with
incomplete and inconsistent cases. To do this, we mainly do the
following jobs: defining a consistency concept, establishing a model
for judging the consistency, building a model for determining missing

values, offering a method to derive consistent IVIMPRs, analyzing the
consensus, and constructing a model to obtain the weights of the
DMs. To show the specific application of the new results, a practi-
cal decision-making problem about selecting the most suitable steel
supplier is provided. Comparing with previous methods (Jiang et al.,
2014; Zhang, 2017), the main advantages of our method include: (i)
the new consistency concept is more reasonable than previous ones
that avoids their limitations; (ii) it can address decision making with
missing information, where ignored objects exist; (iii) it is based on
the consistency and consensus analysis that guarantees the rationality
and representativeness of ranking. However, new method seems to be
more complex than previous ones (Jiang and Xu, 2014; Zhang, 2017),
which needs a series of decision-making steps. However, with the help
of computer, this issue is easy to solve.

Note that one-to-one mapping exists between IVIMPRs and IVIFPRs
(Xu, 2007a). This conclusion can be easily derived as IMFPRs (Saaty
and Vargas, 1987) and interval fuzzy preference relations (Xu and
Yager, 2009). This paper focuses on the theory and application of
IVIMVs in setting of preference relations, and we shall continue to
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Table 7
Completely individual IVIMPR �̃�3.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([1.26, 1.5], [0.625,0.633]) ([4, 6], [0.125,0.167]) ([3, 6], [0.125,0.167])
SHOUGANG ([0.625,0.633],[1.26, 1.5] ) ([1, 1], [1,1]) ([2, 4], [0.2,0.25]) ([3.78, 4], [0.2,0.238])
BAOSTEEL ([0.125,0.167], [4, 6]) ([0.2,0.25], [2, 4]) ([1, 1], [1,1]) ([1, 3], [0.2,0.333])
ANSTEEL ([0.125,0.167], [3, 6]) ([0.2,0.238], [3.78, 4]) ([0.2,0.333], [1, 3]) ([1, 1], [1,1])

Table 8
Completely individual IVIMPR �̃�4.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([7, 8], [0.111,0.125]) ([5, 6], [0.125, 0.167]) ([9, 9], [0.111, 0.111])
SHOUGANG ([0.111,0.125], [7, 8]) ([1, 1], [1,1]) ([0.671, 0.69], [1.225, 1.449]) ([2, 3], [0.2,0.25])
BAOSTEEL ([0.125, 0.167], [5, 6]) ([1.225, 1.449], [0.671, 0.69]) ([1, 1], [1,1]) ([3, 5], [0.143,0.167])
ANSTEEL ([0.111, 0.111], [9, 9]) ([0.2,0.25], [2, 3]) ([0.143,0.167], [3, 5]) ([1, 1], [1,1])

Table 9
Comprehensively consistent IVIMPR �̃�∗.

HBIS SHOUGANG BAOSTEEL ANSTEEL

HBIS ([1, 1], [1,1]) ([2.15, 2.2462], ([1.2, 1.478], ([4.368, 6.015],
[0.181,0.222]) [0.224, 0.346]) [0.048, 0.074])

SHOUGANG ([0.181,0.222], ([1, 1], [1,1]) ([0.558, 0.6], ([2.036, 2.443],
[2.15, 2.2462]) [1.241, 1.554]) [0.264,0.332])

BAOSTEEL ([0.224, 0.346], ([1.241, 1.554], ([1, 1], [1,1]) ([3.649, 4.07],
[1.2, 1.478]) [0.558, 0.6]) [0.213,0.214])

ANSTEEL ([0.048, 0.074], ([0.264,0.332], ([0.213,0.214], ([1, 1], [1,1])[4.368, 6.015]) [2.036, 2.443]) [3.649, 4.07])

study new decision-making methods with interval-valued intuitionis-
tic multiplicative information, such as methods based on aggregation
operators, similarities, distance measures, and entropy. Furthermore,
we shall research the application of IVIMVs in some other fields, in-
cluding ERP system selection, engineering project management, digital
image processing, medical recommendation, software quality assurance
management, and teaching quality assessment. Moreover, consensus is
a necessary step for GDM, and we will continue to study the consensus
for GDM with IVIMPRs following the work of Herrera-Viedma et al.
(2014).
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