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Abstract

The field of biomedicine is focused on the detection
and subsequent treatment of various complex diseases.
Among these, cancer stands out as one of the most
studied, due to the high mortality it entails. The
appearance of cancer depends directly on the correct
functionality and balance of the genome. Therefore,
it is mandatory to ensure which of the approximately
25,000 human genes are linked with this undesirable
condition. In this work, we focus on a case study of a
population affected by lung cancer. Patient information
has been obtained using liquid biopsy technology, i.e.
capturing cell information from the bloodstream and
applying an RNA-seq procedure to get the frequency
of representation for each gene. The ultimate goal of
this study is to find a good trade-off between predictive
capacity and interpretability for the discernment of
this type of cancer. To this end, we will apply
a large number of techniques for feature selection,
using different thresholds for the number of selected
discriminant genes. Our experimental results, using
Soft Computing techniques, show that model-based
feature selection via Random Forest is essential for both
improving the predictive capacity of the models, and
also their explainability over a small subset of genes.

1. Introduction

The importance of the Data Science area has
been remarkably confirmed in recent years [1].
Indeed, stake-holders are realizing the importance of
information, and especially the knowledge that can be
extracted from data [2]. For this task, it is essential
to use Machine Learning (ML) techniques that allow
the generation of models that represent and explain the
phenomena under study [3].

There exist plenty of areas of application in which
the use of ML-based solutions is particularly beneficial.
One clear example is biomedicine in general [4], and
problems based on genomics in particular [5]. The

human being is an inexhaustible source of data and
taking advantage of them directly benefits society for a
better quality of life.

Among different fields of study in biomedicine,
cancer detection is beyond question one of the most
important ones [6]. This is undoubtedly due to the
high mortality of this disease, as well as the complexity
of its correct diagnosis. Cancer is characterized by
an abnormal increase of cell division in one or several
parts of the body, leading to metastasis when it spreads
uncontrollably. Regarding the different types of cancer
that can affect the human body, lung cancer is possibly
one of the most harmful [7, 8]. Specifically, in 2018, it
comprised the 25% of the deaths caused by cancer in the
USA, with more than 150,000 reported cases.

Currently, a number of diagnostic tools are under
development. In particular, liquid biopsy [9] is
one recent and promising new biotechnology that
is emerging as an alternative to traditional imaging
detection. The underlying mechanism is to capture cell
information from the patient’s bloodstream and then
translate this information into gene expression data.
This procedure is carried out via RNA-Seq [10], which
is a precise measurement of the levels of transcripts
involving thousands of genes under study.

In practical terms, clinicians cannot handle nor
interpret such a large amount of genetic information. For
the extracted models to be truly useful, it is essential
to reduce the number of descriptive attributes to a
volume that can explain the output of the diagnosis,
and therefore present strong evidence when the system
provides a given output label [11, 12]. Like lung
cancer nodules can be seen from scanner images,
cancer-driving mutations, genes expression or other
features/sources must be explainable to be acceptable.
It is more important that liquid biopsy pipeline is
nearly fully computer-based after isolation of biological
components of interests. Thanks to this, personalized
medicine may become a reality [13].

Taking this into account, the model developed by the
ML procedure must be as simple as possible, especially
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concerning the number of involved genes. To this end,
the use of feature selection techniques in this field is
highly necessary [14]. However, there are different
alternatives whose behavior needs to be analyzed in
order to confirm the most promising methodology at
the level of reduction, predictive capacity, and execution
time.

Specifically, the importance of feature selection
techniques allows for the identification of the so-called
“differentially expressed genes”, i.e. those that may
include significant information for determining the
corresponding health condition [15]. Among the most
important techniques, we may stress solutions from
statistical methods [16], fold change, rank products,
or recursive feature elimination based on any given
classification model [17, 18, 19].

However, most of the state-of-the-art work are
focused on micro-array data [20], and therefore few
research has been carried out in the scenario of liquid
biopsy. With the objective of finding out the most
appropriate feature selection approach in this context,
we will carry out a thorough experimental study with
several different methods. Specifically, we have selected
univariate techniques with diverse scoring functions
[21], recursive feature elimination [22], and a selection
based on different learning models such as Random
Forest [23]. Finally, as classification technique we
will make use of two well-known Soft Computing
approaches. On the one hand, the Gaussian Naı̈ve Bayes
classifier [24], as it has been shown to be a proper
learning scheme in the event of sparse data, i.e. a
greater number of variables than observations [25]. On
the other hand, the Random Forest ensemble approach
[23], a well-known and accurate solution in the field of
Bioinformatics [5].

The rest of this contribution is arranged as follows.
In Section 2 we will introduce the characteristics of the
lung cancer diagnostics problem that will be used as
case study. Then, Section 3 is devoted to describe the
paradigms for feature selection that we have chosen for
study. The experimental framework where we establish
all the specifications for the analysis can be found in
Section 4. Next, the experimental study where the
results are analyzed is shown in Section 5. Finally,
Section 6 will summarize and conclude this work.

2. A Case Study on Lung Cancer
Prediction via Liquid Biopsy

Cancer is one of the most harming diseases nowadays.
There are two main characteristics that represent this
condition. On the one hand, the abnormal and
uncontrolled cell proliferation and growth. On the other

hand, the possibility of invading several parts of the
body that were unrelated to the location of the primary
tumor, which is known as metastasis. The main cause
of cancer is the mutation in some of the genes involved
in cell growth or cell cycle control. Therefore, it is
of extreme importance to be able to detect changes in
gene expression levels for determining the presence of
malignant cells.

Throughout this section, we will introduce some of
the main properties of lung cancer, as well as some
key aspects of the novel revolutionary biotechnology,
known as liquid biopsy, which allows detecting cancer
from blood samples (Section 2.1). Afterwards, we will
introduce the dataset employed as a case study, together
with its main characteristics, and the bioinformatics
methodology followed to prepare the dataset from
the raw information to ease the applications of the
ML-based models (Section 2.2).

2.1. Diagnosis of lung cancer using liquid
biopsy

Lung cancer is a quite aggressive type of cancer that, as
its name suggests, is mainly located in the respiratory
system. Amongst all cancer types, it is by far the most
harmful, being the third cause of death overall in the
USA [7, 8].

One of the main drawbacks of lung cancer is that
individuals do not exhibit any symptoms at the initial
stages of the disease. This issue implies a major
difficulty for an early detection via traditional imaging
diagnosis, i.e. low-dose computed tomography (LDCT).
In addition to the former, this methodology has several
drawbacks, as pointed out below:

1. The first one is the high false positive rate that
varied from 3-30% in Randomised Cohort Trials
and from 5% to 51% in cohort studies[26]. This
is due to the fact that LDCT can detect benign
nodules that are not related to any cancer. Taking
into account the invasive nature of the possible
treatments, it implies a large cost for the health
of these individuals.

2. The second drawback is the invasiveness due to
the radioactive dose of LDCT per examination,
namely 1.5 mSv[26].

3. The third disadvantage is the price. The annual
screening costs between $126,000 - $169,000 per
Quality-Adjusted Life-Year (QUALY) for lung
cancer patient in the USA. This value is beyond
the $100,000 threshold that is considered to be as
cost effective.
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Another issue related to lung cancer detection is that
it distinguishes between two major molecular types. On
the one hand, Small Cell Lung Cancer (SCLC) that
comprises approximately 10-15% of the cases. On the
other hand, and most common, Non-Small Cell Lung
cancer (NSCLC) that represents the remaining 85-90%.
Nevertheless, a closer look to NSCLC reveals three
major subtypes, namely adenocarcinoma, squamous cell
carcinoma and large cell cancer [27].

Focusing on the origins of cancer conditions, we
must consider that genome alterations have the potential
to serve as a powerful diagnostic tool. However,
sequencing of the genome (or a part of it) is traditionally
based on tissues biopsy. Thus, the cancer status of
the individual as well as its location must be known.
A new strong actor, liquid biopsy, could possibly
solve all these problems thanks to today’s advances of
biotechnology [9]. The false positive rate can be studied
threw statistical methods based on genomic information.
Liquid biopsy is minimally invasive; nowadays a blood
test is a well-known practice without any consequence
for the patient. Although a blood test is cost effective,
the isolation, sequencing of biological components of
interest and downstream analysis might be seen as
expensive. Nevertheless, the sequencing cost keeps
decreasing since the first sequenced human genome in
2001. Whole-exome sequencing can, nowadays, be
done for less than $1000.

The working procedure of liquid biopsy for cancer
detection is based on the interaction between tumors
and bloodstream [9]. Indeed, it is likely to discover
Circulating Tumor Cells (CTCs), which in turn may
exchange information with “tumor-Educated Platelets”
(TEPs) [28, 29]. TEPs can provide tumor’s genetic
material, more precisely RNA, which can lead to the
study of the tumor’s gene expression. Furthermore,
these blood components are “big” enough to be
easily extracted and analyzed by means of biological
procedures.

2.2. Bioinformatics pipeline to develop the
case study

Despite the promising results of liquid biopsy in cancer
detection, there are still only a few datasets available
for lung cancer that come from this methodology. In
our particular case, we refer to the study conducted by
Best et al. in 2015 [28], and subsequently extended
in 2017 [29]. Both works are based on a pipeline
called ThromboSeq, which starts from differentially
spliced RNA from (TEPs) to create the gene expression
matrices.

Taking a closer look into the extraction process, the

followed procedure was as follows. First, the total blood
TEP RNA was isolated from the cancer patients and the
total platelet RNA from the non-cancer. Next, the RNA
was then subjected to complementary DNA (cDNA)
synthesis and amplification according to the standard
protocol. This cDNA is of high importance as it is the
input material for Next Generation Sequencing (NGS)
methods, i.e. to extract the whole information from the
genes.

As soon as this “raw” initial data is collected,
the first step is the library preparation. This part
includes fragmentation of the cDNA, barcode labeling
(important for the sequencing process), and product
PCR amplification. Once this preparation is completed,
the library was sequenced with the use of an Illumina
HiSeq 2500 machine. The result of the sequencing,
i.e sequence of each cDNA, is written to a file. The
data analysis started by removing adaptors from each
cDNA sequence and filtered out low quality ones. Then
aligned each cDNA to the reference genome (hg19) to
identify which sequence belongs to which location in
the genome. The transcription levels of the genes are
directly proportional to the number of sequences aligned
to it (read counts).

This type of dataset is called gene expression count
matrix. Specifically, the “presence” of each gene is
represented by the number of RNA sequences belonging
to each gene (discrete values). Gene expression is a
regulatory process by which information goes through
the following stages: from DNA to RNA, then to
proteins. Therefore, the expression of a given gene
is frequently estimated by the abundance of the RNA
transcribed from that gene by the cells. Thus, the more
RNA of a gene A is detected, the more gene A is
expressed. In this particular case study, a subset of 4,635
genes has been monitored in the TEPs (gene transcripts
or features), from the number of up to 25,000 genes
that the human genome approximately contains. Finally,
this count matrix was normalized by trimmed mean
of Mvalues (TMM) [30], which is the recommended
procedure in the event of gene abundance data, setting
the range of each gene/attribute between 0.0 and 2.0
approximately.

Once this procedure is completed, each one of the
samples is linked with the clinical data in order to set
the diagnosis label as lung cancer or non-cancerous
individuals. We must stress that this dataset is focused
on NSCLC without taking the subtypes into account.
The final dataset contained 779 samples/individuals, 402
of which were diagnosed with lung cancer, and the
remaining 377 as non-cancerous cases.

The dataset is freely available on Gene Expression
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Omnibus (GEO) of the NCBI1 under accession code
GSE89843 [29].

3. Addressing High Dimensional Gene
Expression Data via Feature Selection

When addressing any classification problem, the success
of any ML algorithm is strongly dependent on the
dataset’s internal characteristics [31]. If we focus our
attention on the area of bioinformatics, there are several
issues that may hinder the classification ability such
as the imbalanced problem (uneven class distribution),
the curse of dimensionality (a high number of input
attributes), or the class overlapping (same a priori class
probability within a small cluster) [32].

Among these issues, in this work contribution, we
focus on the so-called high dimensionality problem
[33]. The most straightforward solution to overcome
this problem is by means of preprocessing approaches,
namely, feature selection methods. The objective of
these approaches is to reduce the full feature set to a
smaller subset with a similar (or even better) predictive
capability.

There are different types of schemes to carry
out this procedure. In the remainder of this
Section, we will describe in detail the different
approaches we have selected for the experimental study,
namely univariate methods (Section 3.1), embedded
model-based solutions (Section 3.2), and Recursive
Feature Elimination (REF) (Section 3.3).

3.1. Univariate feature selection

The first group of approaches to be taken into account in
this study are filtering techniques based on computing a
ranking of the features depending on different scoring
functions. Specifically, all attributes are considered
independently based on univariate statistical tests. In
this work, the selected scoring functions are the
following ones:

1. Chi-squared (Chi2) [34]. It determines if the
association between two categorical variables of
the sample would reflect their real association in
the population. In the case of feature selection,
this test computes the dependence between any
variable and the class, in order to detect whether
it is relevant or not for the classification. The
formula for Chi2 is shown next:

X2 =
(Of − Ef )

2

Ef
(1)

1https://www.ncbi.nlm.nih.gov/gds

where Of refers to the observed frequency, i.e.
the number of observations of class, and Ef is
the expected frequency, that is, the number of
expected observations of class if there was no
relationship between the feature and the target.
Since Chi2 is defined only for nominal variables,
a binning discretization is applied [35].

2. Correlation Score (CORR) [36]. The filtering in
this case is carried out using the correlation matrix
via Pearson formula. Specifically, this value ρj,j′
is computed for each pair of attributes j and j′,
and subsequently computes the lowest absolute
correlation, as follows:

CFS(j) = min
j′
|ρj,j′ |. (2)

3. Mutual Information (MI) [37]. It computes the
amount of information about one attribute that can
be gained by observing another one, as follows:

MI(j) =
∑
y∈y

∑
x∈xj

p(x, y) log

(
p(x, y)

p(x)p(y)

)
,

(3)

where x and y are the various levels of attribute
xj and the target vector y, respectively; whereas
p(x) and p(y) are their marginal probability
distributions, with p(x, y) being their joint
distribution. As it can be noted, this approach
assumes that the covariates are nominal variables.
As in the case of Chi2, MI can be used with
numerical variables after binning them [35].

4. F-Value Classification (FC) [38]. The F-value
scores examine if, when we group the numerical
feature by the target vector, the means for each
group are significantly different.

In other words, it does a hypothesis testing model
X and Y where X is a model created by just a
constant and Y is the model created by a constant
and a feature. The least square errors in both the
models are compared and check if the difference
in errors between model X and Y are significant
or introduced by chance.

3.2. Embedded Model-based Selection

In practice, there are several classifiers from which the
information on the contribution of each variable can
be exported after the learning stage. Specifically, two
different attributes can be considered depending on the
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used paradigm. On the one hand, the feature importance,
measured for example the actual influence of each
feature on the final inference, i.e. the depth in a decision
tree. On the other hand, the estimated coefficients,
which can be also a reliable measure regarding the
absolute value.

Among different classification methods, we have
selected three relevant alternatives, namely Linear
Support Vector Machines (SVM) [39], Random Forest
(RF) [40], and LASSO [41].

3.3. Recursive Feature Elimination

Standard univariate filtering methods have the drawback
of not considering a global view of the system, but
a local computation for each attribute in isolation.
A similar problem is related to model-based feature
selection since there can be a high correlation among
several highly ranked variables.

Therefore, we must excel in the advantages of
wrapper approaches. They consist of an iterative
procedure that involves the classification model for
determining the most appropriate features for the
prediction.

Among different alternatives, we have focused
on RFE, which is an instance of backward feature
elimination [42], thus starting with the full set of
attributes and removing, in each step, the worst attribute
remaining in the set. For computational reasons, it may
be more efficient to remove several features at a time,
at the expense of possible classification performance
degradation. That procedure is recursively repeated on
the pruned set until the desired number of features to
select is eventually reached.

In order to be able to rank the features according
to their importance, an external classification algorithm
must be taken into account. In this case study, we will
use RFE with two different estimators or classifiers,
namely Logistic Regression (LR) [43] and Random
Forest (RF) [23].

4. Experimental Framework

In this section we will analyze the behavior of the
different approaches for feature selection, as introduced
in Section 3. To do so, we will use as baseline classifier
two different Soft Computing approaches, namely the
Gaussian Naı̈ve Bayes [24] and the Random Forest
ensemble [23].

The former is probably the most well-known
probabilistic classifier that is based, as its name
suggests, in the Bayes’ theorem of conditional
probability with independence among the features given
the class label. This issue implies the method to

be a very appropriate solution in the event of high
dimensional problems [25]. The decision rule for
assigning the output class is given in Eq. 4.

ŷ = argmax
k∈{1,...,K}

p(Ck)

n∏
i=1

p(Xi|Ck) (4)

In order to compute the parameter estimations,
namely the class prior probability values p(Xi|Ck),
non-parametric models for the features must be obtained
from the training set. For the particular case of
continuous data, values associated with each class
are frequently assumed to follow a normal (Gaussian)
distribution, which is the alternative selected in our
study. For any observation value v and given a class
Ck, the following formula is applied (Eq. 5)

p(x = v|Ck) =
1√
2πσ2

k

e
− (v−λk)2

2σ2
k (5)

The Random Forest algorithm is a robust
combination among the construction of uncorrelated
trees using CART [44], bootstrap aggregation (bagging),
and the random subspace method. As such, this learning
scheme divides the original data into different subsets
(with replacement) and learns a different decision tree
for each one of them. In order to add more diversity
between the classifiers, a number of random variables
are also selected with each “bag”.

In order to contrast the quality of the different
feature selection alternatives, we have selected two
complementary metrics. On the one hand, the standard
predictive accuracy and, on the other hand the Area
Under the ROC Curve (AUC) [45]. In the first
case, i.e. accuracy, only correct hits are taking into
account, disregard the output class. This way, we may
evaluate whether the learned model is able to globally
discriminate the concepts under study. In the second
case, i.e. probabilistic AUC, the confidence degrees
of each output are taken into account. In such way, a
model in which true positives relay on high confidences,
whereas false positives are related to low confidences,
will present a higher performance value.

The estimates for both metrics will be obtained
by means of a Stratified Fold Cross-Validation.
Specifically, this procedure is carried out using 5
folds and, in accordance with the stochastic nature
of the learning methods, each one of the 5-fold
cross-validation is run 3 times. Therefore, experimental
results for each method and dataset are computed with
an average of 15 runs.

The rest of the experimental framework that we
have set up for the thorough comparison of feature

Page 1731



selection techniques is described as follows. First, we
have carried out the learning procedure with the whole
dataset, namely using all the input variables / genes,
in order to establish the baseline performance values.
Then, we have considered several thresholds for the
number of variables selected, from just 5 genes per
dataset, implying an interpretable final system, to a
moderate value of 200 genes per problem. Specifically,
the range of values is {5, 10, 20, 50, 100, 200}.

Finally, we must state that all the implementations
for carrying out the experimentation, have been taken
from the well-known Python ML scikit-learn library
[46]. Parameters have been set by default implying, in
the case of Random Forest, a number of 100 estimators,
gini criterion for computing each split, and all trees to
be expanded until all leaves are pure or contain less than
2 examples.

5. Analysis and Discussion of Results

Experimental results in the test partitions are shown by
means of boxplots for the sake of comprising the most
significant statistical information from the 15 runs per
experiment. Figures 1 and 2 contains the results for
the Naive Bayes classifier, and Figures 3 and 4 for the
Random Forest. Each illustration is divided into three
parts with aims at showing (a) a complete comparison
for all feature selection methods regarding the different
thresholds; (b) to contrast the best number of features
for the learning task; and (c) to analyze the behavior of
each feature selection method disregard the number of
variables that is chosen. For the sake of including the
baseline results with the complete set of features, these
are noted as “ALL”.

Focusing on this graphical representation of the
results, we may observe a similar trend independently
of the metric used, namely accuracy and AUC, and
classifier. Focusing first on univariate methods, there
are two different groups of approaches. On the one
hand, those based on Chi2 and correlation (CORR)
provide very poor solutions, even in the case of a
moderate number of variables (200). On the other
hand, those based on the F-test from ANOVA (FC) and
Mutual Information (MI) are very competitive with the
remaining options. In the particular case of FC, its
behavior is especially excelled in the case of setting the
threshold for a very low number of variables (5-20).
Comparing the two methods/classifiers selected for the
RFE, the best approach is by far the one based in RF,
being the highest performing choice overall. Finally,
contrasting the different alternatives for feature selection
based on the models, i.e. ETC, LASSO, RF and SVM,
those consisting on the ensemble schemes are the most

(a) Comparison of the 10 feature selection techniques

(b) Comparison grouped by number of features
selected

(c) Comparison grouped by feature selection
technique

Figure 1: Boxplots with accuracy test results for Naive Bayes.

remarkable ones, that is, ETC and RF, being both of
them equally competitive.

When we evaluate the goodness of the feature
selection techniques versus the baseline approach,
namely considering the whole 4,635 attributes, some
small differences might be emphasized depending on
whether accuracy or AUC is considered. In the former
case, we may observe a quite similar performance for
the lower number of variables, but then a significant
boost in the case of the ensemble models, i.e. REF RF,
ETC and RF (filter approach) from 20 variables
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(a) Comparison of the 10 feature selection techniques

(b) Comparison grouped by number of features
selected

(c) Comparison grouped by feature selection
technique

Figure 2: Boxplots with AUC test results for Naive Bayes.

henceforth. Additionally, and as stressed in the
general case study, FC univariate method is a very
suitable approach in the case of a low number of
variables. In the latter case, the baseline approach
(all variables) is outperformed for all selected feature
selection techniques. Specifically, in the case of 20 and
50 variables, REF RF obtains up to ten points of higher
performance, thus confirming the need for a proper
preprocessing approach.

Continuing with the former analysis, very interesting

(a) Comparison of the 10 feature selection techniques

(b) Comparison grouped by number of features
selected

(c) Comparison grouped by feature selection
technique

Figure 3: Boxplots with accuracy test results for Random
Forest.

conclusions can be extracted when focusing on the
illustrations that represent the grouped comparisons, i.e.
part (b) and (c) in all Figures. Specifically, observing the
performance regarding the number of selected features
(part (b)) very good properties can be highlighted from
20 to 200 variables, i.e. just considering from the 0,5%
to the 5% of the original variables. Furthermore, when
combining the results per feature selection technique
disregard the threshold (part (c)), there is a clear superior
behavior in the cases of ETC, FC, REF RF and RF.
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(a) Comparison of the 10 feature selection techniques

(b) Comparison grouped by number of features
selected

(c) Comparison grouped by feature selection
technique

Figure 4: Boxplots with AUC test results for Random Forest.

To conclude this experimental study, we compile the
best results, i.e. baseline approach (ALL), REF RF and
RF for Naive Bayes and Random Forest classifiers in
Table 1. The information shown include, for each the
number of selected features, the average values of the
accuracy and AUC, together with the standard deviation
for the training and test partitions. We also show the
elapsed learning time for the whole procedure, i.e. from
the feature selection to the problem transformation and
the generation of the classifier.

Table 1: Comparison of the accuracy and AUC results for the
best performing feature selection techniques, REF RF and RF.
Baseline results (ALL) are also included.

Classif. Filter #Feats. AccTr AccTst AUCTr AUCTst Time

NB
ALL 4635 .8123 ± .0073 .7359 ± .0636 .8671 ± .0158 .7981 ± .0196 .2873 ± .0591

REF RF

5 .7687 ± .0258 .7422 ± .0564 .8548 ± .0187 .8269 ± .0417 6,731.5 ± 218.08
10 .7961 ± .0139 .7700 ± .0379 .8714 ± .0083 .8442 ± .0339 6,894.6 ± 179.66
20 .8158 ± .0105 .7876 ± .0461 .8871 ± .0100 .8594 ± .0378 6,988.3 ± 71.65
50 .8324 ± .0127 .7926 ± .0399 .9139 ± .0101 .8738 ± .0337 6,958.2 ± 61.94
100 .8424 ± .0077 .7879 ± .0449 .9269 ± .0060 .8729 ± .0305 6,939.5 ± 61.74
200 .8449 ± .0089 .7807 ± .0439 .9289 ± .0095 .8675 ± .0221 6,919.9 ± 485.23

RF

5 .7452 ± .0432 .7047 ± .0413 .8449 ± .0218 .8014 ± .0241 2.2809 ± .3055
10 .7777 ± .0245 .7477 ± .0462 .8631 ± .0151 .8276 ± .0301 2.2849 ± .0470
20 .8022 ± .0184 .7602 ± .0554 .8787 ± .0119 .8427 ± .0460 2.2863 ± .0374
50 .8153 ± .0139 .7687 ± .0419 .8902 ± .0066 .8483 ± .0396 2.2848 ± .0252
100 .8218 ± .0109 .7683 ± .0544 .8967 ± .0123 .8466 ± .0357 2.1739 ± .0945
200 .8225 ± .0063 .7799 ± .0629 .9048 ± .0093 .8474 ± .0427 2.0740 ± .0645

RF
ALL 4635 1.000 ± .0000 .8085 ± .0355 1.000 ± .0000 .9002 ± .0304 2.1180 ± .0193

REF RF

5 1.000 ± .0000 .7622 ± 0.0474 1.000 ± .0000 .8396 ± .0460 6,600.7 ± 271.60
10 1.000 ± .0000 .8200 ± 0.0559 1.000 ± .0000 .8870 ± .0461 6,959.7 ± 60.09
20 1.000 ± .0000 .8200 ± 0.0409 1.000 ± .0000 .8944 ± .0356 7,154.4 ± 91.22
50 1.0000 ± .0000 .8350 ± .0452 1.000 ± .0000 .9119 ± .0350 7,416.9 ± 232.11
100 1.000 ± .0000 .8333 ± .0409 1.000 ± .0000 .9143 ± .0284 7,250.5 ± 463.62
200 1.000 ± .0000 .8294 ± .0416 1.000 ± .0000 .9108 ± .0303 6,662.4 ± 400.73

RF

5 .9996 ± .0007 .7424 ± .0348 1.000 ± .0000 .8190 ± .0344 2.5019 ± .0435
10 1.000 ± .0000 .7841 ± .0452 1.000 ± .0000 .8668 ± .0369 2.5088 ± .0430
20 1.000 ± .0000 .7965 ± .0459 1.000 ± .0000 .8790 ± .0349 2.5581 ± .0311
50 .9999 ± .0004 .8067 ± .0356 1.000 ± .0000 .8934 ± .0311 2.6438 ± .0374
100 1.000 ± .0000 .8118 ± .0380 1.000 ± .0000 .8995 ± .0309 2.5740 ± .1055
200 1.000 ± .0000 .8200 ± .0379 1.000 ± .0000 .9059 ± .0300 2.5843 ± .0834

From this complete Table of results, some interesting
findings may be highlighted. First, the high overfitting
in the case of the baseline case study (ALL) with respect
to the use of feature selection techniques, in which
the differences between the training and test results
are almost minimal. Second, to confirm the excellent
performance of both approaches, i.e. REF RF and
RF, especially from 20 variables, which can be seen
as an interpretable number of genes for an in-depth
study by the clinician. Finally, when we analyze the
efficiency of the different feature selection techniques,
there are clear differences between the REF and the
model-based selection. The computational complexity
of the recursive approach, although obtaining the best
solution in terms of predictive ability, is probably not
worth it as it is up to 3,500 times slower than to apply
RF directly.

6. Concluding Remarks

In the field of biomedical applications, it is just as
important to obtain high precision as to make the models
generated to be explainable to clinical staff. For this
reason, it is essential to apply intelligent techniques that
are capable of learning effectively in these scenarios. In
this work, we have focused our efforts on one of the
most important problems in medical diagnosis, i.e., the
detection of lung cancer. To this end, we have selected
genetic data extracted using liquid biopsy technology,
which allows us to have genetic information of almost
5,000 different characteristics of the genome of each
sample or patient.

In order to obtain quality solutions, as well as
identifying the most relevant genes that are linked
with lung cancer condition, we have carried out a
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thorough experimental study to contrast the behavior of
different techniques for feature selection. Specifically,
we have used univariate techniques, recursive feature
elimination, and a selection based on different learning
models such as Random Forest. Finally, both a Gaussian
Naı̈ve Bayes and Random Forest classifiers have been
used for the prediction.

Different lessons have been learned from this case
study. Firstly, it ratifies the need to apply any of
the techniques for feature selection, since they have
improved the predictive capacity of the classifier with
the original data. Secondly, it has been shown that
quality results can be achieved with a threshold of
between 20 and 50 genes, which is a value manageable
by the final expert. Finally, among different methods
for selecting characteristics, those based on ensemble
models (Random Forest and ETC) stand out, especially
based on a simple ranking according to the importance
of the characteristics due to their lower computational
complexity.

In accordance with the current experimental results,
we plan to extend our research by designing a more
sophisticated feature selection procedure aiming to
minimize the number of biomarker genes. Additionally,
we must study in-depth the effect of the confounding
clinical variables in the prediction of the classifier.
Finally, there is a need for including more datasets
related to liquid biopsy to provide additional support to
the findings extracted in this area of study.
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G. Santafé, A. Pérez, and V. Robles, “Machine learning
in bioinformatics,” Briefings in Bioinformatics, vol. 7,
no. 1, pp. 86–112, 2006.

[6] S. Dudoit, J. Fridlyand, and T. Speed, “Comparison of
discrimination methods for the classification of tumors
using gene expression data,” Journal of the American
Statistical Association, vol. 97, no. 457, pp. 77–86, 2002.

[7] R. Siegel, K. Miller, and A. Jemal, “Cancer statistics,
2018,” CA Cancer Journal for Clinicians, vol. 68, no. 1,
pp. 7–30, 2018.

[8] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel,
L. A. Torre, and A. Jemal, “Global cancer statistics
2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: A
Cancer Journal for Clinicians, vol. 68, pp. 394–424, nov
2018.

[9] I. Domı́nguez-Vigil, A. Moreno-Martı́nez, W. J.Y.,
M. Roehrl, and H. Barrera-Saldaña, “The dawn of the
liquid biopsy in the fight against cancer.,” Oncotarget,
vol. 9, pp. 2912–2922, jan 2017.

[10] Z. Wang, M. Gerstein, and M. Snyder, “Rna-seq: A
revolutionary tool for transcriptomics,” Nature Reviews
Genetics, vol. 10, no. 1, pp. 57–63, 2009.

[11] D. Castelvecchi, “Can we open the black box of AI?,”
Nature, vol. 538, no. 7623, pp. 20–23, 2016.

[12] A. Fernandez, M. J. del Jesus, O. Cordon, F. Marcelloni,
and F. Herrera, “Evolutionary fuzzy systems for
explainable artificial intelligence: Why, when, what
for, and where to?,” IEEE Computational Intelligence
Magazine, vol. 14, no. 1, pp. 69–81, 2019.

[13] M. Hamburg and F. Collins, “The path to personalized
medicine,” New England Journal of Medicine, vol. 363,
no. 4, pp. 301–304, 2010.

[14] J. Li, K. Cheng, S. Wang, F. Morstatter, R. Trevino,
J. Tang, and H. Liu, “Feature selection: A data
perspective,” ACM Computing Surveys, vol. 50, no. 6,
2017.

[15] I. Jeffery, D. Higgins, and A. Culhane, “Comparison
and evaluation of methods for generating differentially
expressed gene lists from microarray data,” BMC
Bioinformatics, vol. 7, 2006.

[16] C. Ding and H. Peng, “Minimum redundancy feature
selection from microarray gene expression data,” Journal
of Bioinformatics and Computational Biology, vol. 3,
no. 2, pp. 185–205, 2005.

[17] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik,
“Gene selection for cancer classification using support
vector machines,” Machine Learning, vol. 46, no. 1-3,
pp. 389–422, 2002.

[18] K.-B. Duan, J. Rajapakse, H. Wang, and F. Azuaje,
“Multiple svm-rfe for gene selection in cancer
classification with expression data,” IEEE Transactions
on Nanobioscience, vol. 4, no. 3, pp. 228–233, 2005.

[19] S. Liu, C. Xu, Y. Zhang, J. Liu, B. Yu, X. Liu, and
M. Dehmer, “Feature selection of gene expression data
for cancer classification using double rbf-kernels.,” BMC
Bioinformatics, vol. 19, no. 1, pp. 396:1–396:14, 2018.

[20] V. Bolón-Canedo, N. Sánchez-Maroño,
A. Alonso-Betanzos, J. M. Benı́tez, and F. Herrera,
“A review of microarray datasets and applied feature
selection methods.,” Inf. Sci., vol. 282, pp. 111–135,
2014.

Page 1735



[21] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature
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