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Abstract—In the latter years, we are witnessing a movement
from the standard Data Mining towards a more profitable and
challenging scenario known as Data Science. It can be defined as
a set of quantitative and qualitative approaches that are applied
to current relevant problems. In order to be able to “dig” to
the deepest level considering the whole information available,
the knowledge domain and the analysis of the data must have a
strong synergy.

There are many fields of application where it is necessary, if
not essential, to give an explanation of the phenomenon under
study. It is no longer enough to simply apply a Machine Learning
model, but it must be comprehensible in order to provide a real
decision support system. For this reason, a strong movement has
emerged in favour of the eXplainable Artificial Intelligence that
aims to respond to the “how” and “why” of the operation of
automatic models.

In this work, our objective is to show the benefits of one of the
learning paradigms of Computational Intelligence: Fuzzy Rule
Based Systems and Evolutionary Fuzzy Systems. To this end,
we focus on biomedical applications by presenting a case study
based on lung cancer prediction from samples taken by liquid
biopsy. Liquid biopsy enable us to study genomic alterations
for each individual independently, a step towards personalised
medicine. The results show the goodness of the solution based
on Evolutionary Fuzzy Systems in terms of interpretability and
comprehensibility, obtaining a low number of rules with less than
3 fuzzy linguistic labels per antecedent.

Index Terms—eXplainable Artificial Intelligence, Evolutionary
Fuzzy Systems, Lung Cancer, Liquid Biopsy, Interpretability

I. INTRODUCTION

Technological developments around Big Data and intelligent
data analysis have recently given rise to the term Data Science.
It is an emerging area of work as a natural evolution of
the data mining field, that encompasses all the technologies
related to Big Data to deal with the collection, preparation,
analysis, visualization, management and conservation of large
collections of information [1].
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It is known that data alone do produce information but not
knowledge. The real value lies in the possibility of extracting
useful information for decision making or the exploration and
comprehension of the phenomenon that produced the data.
Due to this, there is a need to propose methodologies for the
intelligent analysis of data, which will allow us to obtain useful
knowledge from them. To this end, data analysis methods, such
as statistics and data mining, are involved in the Data Science
process, mainly via Machine Learning (ML) techniques [2].

Generally speaking, an ML model is said to be useful
when it effectively summarizes the underlying data, i.e. it
provides good predictive performance. For this reason, we
are witnessing a movement towards black-box ML approaches
with an excellent ability to learn accurately from the input
data, but that are not able to inform how they arrive at a
certain decision [3]. However, there are several scenarios, such
as medical diagnosis, where other criteria such as confidence,
robustness, reliability or trust are necessary [4], [5].

Most of the aforementioned criteria often cannot be com-
pletely quantified, but if the system is interpretable, i.e. if
it can explain its reasoning, it can be verified whether that
reasoning is sound with respect to these auxiliary criteria. This
can be compiled into a fundamental property of what was
defined as eXplainble Artificial Intelligence (XAI) [3]. In this
context, the fuzzy set theory might be regarded as a valuable
tool [6]. Its advantages are clear, including the use of linguistic
labels as a natural knowledge representation allowing the
direct human semantic interaction [7]. In addition, from a
learning perspective, translating the input features into fuzzy
variables with fuzzy membership functions permits obtaining
smoothed descriptive models that adapt well to data with a
certain degree of uncertainty.

An ML paradigm that presents a strong synergy between
accuracy and XAI are Evolutionary Fuzzy Systems (EFS)
[8], which combine a good degree of understandability, com-
prehensibility, and explainability associated with Fuzzy Rule
Based Systems (FRBS), and the potential of Evolutionary
Algorithms (EAs) as the optimization technique for improving
FRBSs.
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In this work, our objective is to stress the importance of
EFS to provide real XAI systems. To do so, we will make use
of a biomedical case study based on lung cancer prediction.
Specifically, we will consider the information extracted from
a novel and very promising biotechnology known as liquid
biopsy [9]. The underlying mechanism captures cell informa-
tion from the blood stream of the patient, and translates it
into gene expression data, leading to thousands of genes under
study.

Undoubtedly, medical doctors need a compact ML system
for it to be truly useful. This compactness is given in both in
terms of rules and gene attributes that explain the prediction.
To this end, in our work we will stress the quality of EFS for
achieving interpretable and comprehensible decision support
systems in biomedical applications, namely via the Fuzzy As-
sociative Rule-based Classifier for High Dimensional (FARC-
HD) algorithm [10]. In the experimental study, we will confirm
the superior capabilities of FARC-HD versus state-of-the-art
rule learning models such as Decision Trees (DT) [11] and
Random Forest [12].

The rest of this contribution is arranged as follows. In
Section II we will introduce the paradigm of EFS and its
relationship with the achievement of XAI in ML. Then,
Section III will describe the characteristics of the biomedical
case study that will serve us to show the good behavior of
EFSs. The experimental study with the results on accuracy and
interpretability will be shown in Section IV. Finally, Section
V will summarize and conclude the paper.

II. EVOLUTIONARY FUZZY SYSTEMS FOR RULE
LEARNING: THE QUEST FOR EXPLAINABLE ARTIFICIAL

INTELLIGENCE

In the introduction of this contribution, we stressed that
both accuracy and interpretability/explainability should be
considered when determining what kind of ML techniques will
be used to address a specific problem. In this case, the hitch
is that usually both are in conflict, leading to a complex task.
[6].

A compromise solution that is often considered is to take
advantage of rule-based systems. This type of paradigm allows
auditing the extracted knowledge with a double objective.
On the one hand, obtaining a more direct explanation of the
cognition process carried out by the system. On the other hand,
being able to trust in the description of the rules and their
relationship with the problem that is aimed to be solved.

FRBSs are composed of fuzzy IF-THEN rules where both
antecedents and consequents usually contain fuzzy sets. The
main components of any FRBS are the knowledge base (KB)
and the inference engine module. The KB comprises all the
fuzzy rules within a rule base (RB), and the definition of
the fuzzy sets in the data base (DB). The inference engine
includes a fuzzification interface, an inference system, and a
defuzzification interface.

To boost the behavior and predictive abilities of FRBS,
EFS are developed on top of them. The goal of this type of
approaches is to learn or to tune the components of the FRBS

using an evolutionary process commonly taken from available
data. In this sense, rule sets, membership functions, and many
other features of an FRBS can be easily optimized via EAs
[8].

The goodness of EFS is mainly based on two characteristics.
On the one hand, the inherent interpretability of the system,
namely the comprehensibility associated with the use of a
simple description mechanism in the form of fuzzy linguistic
rules, as well as the understandability of the rule-based system
and the inference procedure. On the other hand, the robustness
of modeling scenarios that are difficult to represent with other
types of paradigms, especially when users must deal with the
lack of data or uncertainty in the definition of the input data.

However, it must be emphasized that FRBSs must remain
simple and understandable since they are not interpretable per
se [13], [14]. It is important to take into account different
issues in order to obtain the FRBSs that represent knowledge
that can be easily understandable by humans. Among others,
the rule base compactness or the semantic comprehensibility of
the fuzzy partitions must be stressed. Moreover, the EFSs must
be properly designed to obtain the desired trade-off between
accuracy and explainability for the problem at hand.

III. A CASE STUDY ON LUNG CANCER PREDICTION VIA
LIQUID BIOPSY

Cancer is a term that englobes a wide range of heteroge-
neous diseases that share two main properties: i) uncontrolled
abnormal cell growth and ii) capacity to invade other parts
of the body. The molecular cause are mutations in important
genes like those involved in repair mechanisms, cell growth
or cell cycle control. Both the DNA mutations in important
driver genes and the changes in expression levels are used
frequently as attributes in ML approaches to detect the pres-
ence of malignant cells or to predict the outcome of a certain
treatment.

In this Section, our objective is to present the main features
of lung cancer diagnosis (Section III-A). Then, we focus on the
description of liquid biopsy as a novel technique to detect can-
cer from blood samples (Section III-B). Afterwards, we will
introduce the dataset employed as case study, together with
its main characteristics (Section III-C). Finally, we provide
some comments on the bioinformatics methodology followed
to prepare the dataset prior to the applications of the ML
models (Section III-D).

A. Diagnosis of lung cancer: past and present

Lung cancer is a type of cancer located in the respiratory
system. It was the leading cause of death worldwide in 2018
amongst all cancers and the third cause of death in the
USA [15]. Cancer genome alterations have the potential to
serve as a powerful cancer diagnostic tool. Nevertheless, such
knowledge is only being used to better understand the biology
of it and choose an appropriate treatment. This is primary
because the sequencing of the genome (or the part of it) is
traditionally based on tissues biopsy. Thus, the cancer status
of the individual as well as its location must be known.



In the case of lung cancer, unfortunately individuals do
not exhibit any symptoms at the initial stages of the disease,
implying a difficulty of an early detection. Imaging diagnostic
is a preferred choice nowadays. To this end, doctors use the
newest version of computational tomography scan called low-
dose computed tomography (LDCT) which uses less radiation
[16].

However, imaging diagnostics has several drawbacks, as
pointed out below:

1) The first one is the high false positive rate that varied
from 3-30% in Randomised Cohort Trials and from 5%
to 51% in cohort studies [17]. This is due to the fact that
LDCT can detect benign nodules that are not related to
any cancer. Taking into account the invasive nature of
the possible treatments, it implies a large cost for the
health of these individuals.

2) The second drawback is the invasiveness due to the
radioactive dose of LCDT per examination, namely 1.5
mSv [17].

3) The third disadvantage is the price. The annual screening
costs between $126,000 - $169,000 per Quality-Adjusted
Life-Year (QUALY) for lung cancer patient in USA
[18]. This value is beyond the $100,000 threshold that
is considered to be as cost effective.

B. Liquid biopsy, a potential game changer

Liquid biopsy is becoming a strong potential new way of
diagnosis, cost-effective and minimally invasive. Isolation of
biological components is now possible and under research. It
aims to study any biological component related to cancer from
a blood sample of the individual.

It is known that primary tumour interacts with the blood
stream in different ways [9]. It needs nutrients transported
by the blood stream to survive, and therefore we may find
Circulating Tumour Cells (CTCs), i.e. cells originated from
the tumour and made their way to the blood stream. The term
“tumour-Educated Platelets” (TEPs) is used when platelets
and tumours interacts and exchange information within the
blood stream [19], [20]. TEPs can provide tumour’s genetic
material, more precisely RNA, which can lead to the study
of the tumours genetic makeup/gene expression. In addition
to the former, their size makes them a suitable solution to be
easily extracted and analyzed.

However, lots of challenges remain in cancer diagnosis. One
of them is the total transparency of the ML algorithm used to
detect cancer. It is of extreme importance to assist clinicians
in their work. Strong evidence must be outputted when a
sample is classified as cancer. Like lung cancer nodules can
be seen from scanner images, cancer driving mutations, genes
expression or other features/sources must be explainable to be
accepted. It is more important that liquid biopsy pipeline is
nearly fully computer-based after isolation of biological com-
ponents of interests. Thanks to this, personalized medicine is
becoming a reality [21].

C. Dataset of the study

As commented previously, genomic alterations of cancer
can now be studied for diagnosis by means of liquid biopsy.
We must take into account that lung cancer is a highly
heterogeneous disease. Two major molecular types can be
distinguished: Small Cell Lung Cancer (SCLC) and the most
commonly Non-Small Cell Lung cancer (NSCLC). In NSCLC,
three majors subtypes have been discovered: adenocarcinoma,
squamous cell carcinoma and large cell cancer [22]. The cur-
rent study is focused on NSCLC without taking the subtypes
into account.

Best et al. created in 2015 ThromboSeq, an ML pipeline
detecting cancer using Particle Swarm Optimisation (PSO)
[19]. In 2017, they enhanced their pipeline by integrating
computed differentially spliced RNA from tumour Educated
Platelets (TEPs) [20]. In our study, we use the gene expression
dataset of 2017 freely available on Gene Expression Omnibus
(GEO) of the NCBI1 under accession code GSE89843 [20].
The dataset contains 779 individuals. 402 were diagnosed
with lung cancer and the remaining 377 are non-cancerous
individuals.

The total blood TEP RNA was isolated from the cancer
patients and the total platelet RNA from the non-cancer.
Furthermore, the RNA was then subjected to complementary
DNA (cDNA) synthesis and amplification according to the
standard protocol. This cDNA is of high importance as it
is the input material for Next Generation Sequencing (NGS)
methods, i.e. to extract the whole information from the genes.
The first step is the library preparation which includes frag-
mentation of the cDNA, barcode labeling (important for the
sequencing process), and product PCR amplification. Once the
library preparation is completed, the library was sequenced
with the use of a Illumina HiSeq 2500 machine. The result
of the sequencing, i.e sequence of each cDNA, is written in
a file. The data analysis can start by removing adaptors for
each cDNA and filtered out low quality ones. Then aligning
each cDNA to the reference genome (hg19) to identify which
sequence belongs to which location in the genome. Lastly,
for each gene, sequence reads are aligned to it. Transcription
levels of the gene are directly proportional to the read counts.

D. Bioinformatic methodology before classification

The selected dataset for the study [20] contains 779 samples
with related 4,635 values representing the abundance of the
gene transcripts (features). This type of dataset is called gene
expression count matrix due to the expression of genes are
represented by the number of RNA sequences belonging to
each gene (discrete values). Gene expression is a regulatory
process by which information goes through the following
stages: DNA-RNA-proteins. The expression of a given gene
is frequently estimated by the abundance of the RNA that it
is transcribed of that gene by the cells. Thus, the more RNA
of a gene A is detected, the more gene A is expressed. The

1https://www.ncbi.nlm.nih.gov/gds



human genome contains about 21,000 genes, but only 4,635
have been monitored in the TEPs.

The pipeline continues with the following steps. Firstly low
count genes have been filtered with the method of Chen &
Smyth [23], leading to a subset of 1,585. Secondly, the count
matrix was normalised by trimmed mean of Mvalues (TMM).
Before classification, a feature selection preprocessing step
was used, according to the gini score computation [24]. This
score was obtained for every gene, then taking as threshold
the 10% of the maximum value found over all features.

In summary, the characteristics of the dataset used in the
experimental study are the following ones. There is a total
number of 779 instances divided into two classes, namely 377
samples that represent non-cancer patients, and 402 samples
for lung cancer cases. The total amount of input attributes
used for training comprises about 200 genes, depending on
how feature selection is computed on the different partitions;
whereas test partitions contain the whole 1,585 genes. Finally,
the range of each gene/attribute ranges approximately between
0.0 and 2.0 after the TMM normalization step.

IV. EXPERIMENTAL STUDY

In this section, we will show the good properties of EFS
to address the lung cancer prediction problem. To this end,
we will first present the methods and parameters that will be
employed to extract the knowledge from the data (Subsection
IV-A). Then, we will show the experimental results in terms
of accuracy and interpretability, and we will carry out an
empirical evaluation of the rule-based methods in accordance
with these metrics (Subsection IV-B). Finally, we present
a brief discussion on the issues of interpretability achieved
by the EFS model in the selected biomedical application
(Subsection IV-C).

A. Methods and parameters

As introduced at the beginning of this work, the EFS
method that we propose to apply for reaching the a high
degree of interpretability and explainability is FARC-HD. The
reasons behind this choice are the good capabilities towards
this objective that are provided by this classification algorithm,
such as a low number of rules and antecedents, among others.

Regarding state-of-the-art methods in ML that are applied
to lung cancer classification, they may vary from one study to
another [25]. In a recent review on the topic, authors stressed
two points [26]: on the one hand “simple is often better” and,
on the other hand, “ensemble methods produce robust results”.
Taking this into account, we will make use of both decision
trees and random forest for the experimental analysis.

Below, we provide a brief description of these learning
algorithms, whose implementations have been taken from two
well-known ML software packages, namely KEEL [27], and
scikit-learn [28].

1) EFS: FARC-HD [10] extracts fuzzy association rules
by limiting the order of the associations. The for-
mer constraint is used as a “pre-screening” for high
quality candidate rules during learning, which allows

the achievement of more interpretable rules, i.e. a low
number of rules with few antecedents. Finally, an evo-
lutionary rule selection and lateral tuning procedure is
applied for improving the classification accuracy of the
final rule set.
A standard configuration has been selected. This in-
cludes five fuzzy sets per attribute, with product t-norm
and winning rule inference to determine the output class.
Minimum support and confidence were set to 0.05 and
0.8 respectively. The maximum depth of the tree when
discovering frequent items was set to 3, and the pre-
screening parameter (k) was set to 2.

2) Decision Tree (DT): CART [11] creates a binary tree,
finding for each node (i.e. in a greedy manner) the
feature and threshold that yield the largest information
gain at each node for categorical targets.
We have selected the gini-index criterion for splitting
nodes, with a maximum depth of 5 levels for the tree (to
ensure a certain level of interpretability). The minimum
number of samples to make a split was set to 3, and the
minimum number of samples for a leave is 1.

3) Ensemble System: Random Forest [12] is composed of
a set of different DTs, each of which is built by the
CART algorithm. In order to consider diversity among
these different trees or estimators, a bagging approach
is considered, in which examples are randomly taken
with replacement into each “bag” or new training set.
To add even more diversity, a random feature selection
is applied within each bag.
The parameters in this case are exactly the same as
in the case of the DT. By being an ensemble system
10 different estimators have been considered to build
the forest, and a number of log2 features are selected
within each bag.

Finally, for carrying out a proper validation of the experi-
mental results, the data were partitioned using a 5-fold cross
validation procedure, that is, using the 80% of the data for
training and the remaining 20% for testing, and repeating this
process 5 times.

B. Results and analysis

The accuracy values obtained by each classification system
and the information regarding interpretability are shown in
Table I. Specifically, we have included both the training and
test prediction scores, the number of nodes for the solutions
based on DT, and the number of rules and antecedents. In the
case of DTs, the number of rules is equal to the number of
total leaves, whereas the number of antecedents is computed
as the average depth of the tree.

Observing these results we may excel the goodness of the
FARC-HD EFS approach, as it obtains the best accuracy
overall in the test partitions. Furthermore, the robustness of the
EFS solution is also emphasized by the low deviation shown
in the accuracy values with respect to the DT and RF.

Focusing on the main topic of this work, namely the
capabilities of EFS to achieve XAI ML models, we must



TABLE I
EXPERIMENTAL RESULTS FOR ACCURACY AND INTERPRETABILITY ON
THE LUNG CANCER DATA. RESULTS OF THE EFS, DT AND ENSEMBLE

SYSTEM ARE SHOWN FROM LEFT TO RIGHT.

EFS DT Ensemble
AccuracyTr 0.9143 ± 0.0075 0.8280 ± 0.0174 0.9974 ± 0.0022
AccuracyTst 0.7819 ± 0.0382 0.7205 ± 0.0751 0.7744 ± 0.0587
#Nodes - 45.40 ± 7.92 44.96 ± 1.75
#Rules 23.40 ± 3.71 23.20 ± 3.96 22.98 ± 0.87
#Antecedents 2.7283 ± 0.1061 3.6787 ± 0.1447 3.6788 ± 0.0407

also conclude that FARC-HD outputs a very compact and
interpretable model, comparable to the one obtained by DT
in terms of absolute number of rules. In the case of RF, each
tree has a similar number of rules (branches) than for FARC-
HD and CART, but we must acknowledge that we are using 10
different estimators, thus losing a high degree of explainability,
i.e. the inference mechanism is impossible to follow.

Additionally, the number of antecedents per rule in the case
of FARC-HD is below 3 on average. That means that every
rule can be easily managed by the end-user or expert, com-
prising a few features (genes in this case) and providing very
useful knowledge. As an example, Fig. 1 illustrates a complete
RB obtained by FARC-HD, where we may observe that 13
and 11 rules are considered for predicting “Non Cancer” and
“Cancer” conditions, respectively. Another advantage is related
to the use of linguistic variables so that no crisp threshold
values are used on the antecedent conditions, allowing a closer
semantic comprehension of the model.

R1: IF NREP IS med AND YBX1 IS low AND LAPTM4B IS med: NONCANCER CF: 0.875
R2: IF NSA2 IS verylow AND HNRNPR IS verylow AND PRKCB IS verylow: NONCANCER CF: 0.84
R3: IF NSA2 IS verylow AND PRKCB IS verylow AND LINC00892 IS med: NONCANCER CF: 0.875
R4: IF NSA2 IS verylow AND COX7B IS high AND ZNF542 IS verylow: NONCANCER CF: 0.92
R5: IF CLINT1 IS verylow AND PPCS IS med AND RBBP4 IS verylow: NONCANCER CF: 0.80
R6: IF LTBP3 IS med AND SLA IS verylow AND EVI5 IS low: NONCANCER CF: 0.75
R7: IF LTBP3 IS med AND SLA IS verylow AND DCTN1 IS verylow: NONCANCER CF: 0.80
R8: IF HNRNPR IS verylow AND PRKCB IS verylow: NONCANCER CF: 0.85
R9: IF HNRNPR IS verylow AND ATPAF1 IS low AND PARVB IS med: NONCANCER CF: 0.825
R10: IF ENKUR IS low AND LINC01151 IS med: NONCANCER CF: 0.80
R11: IF PARVB IS verylow AND FNBP1 IS low AND PTPRF IS low: NONCANCER CF: 0.80
R12: IF COX7B IS high AND ZNF542 IS verylow: NONCANCER CF: 0.925
R13: IF RBBP4 IS verylow AND LINC00892 IS high AND RP11-556E13.1 IS verylow: NONCANCER CF: 
0.825

R14: IF DHRS7 IS verylow AND RPL19 IS med AND UXS1 IS verylow: CANCER CF: 0.975
R15: IF RPN2 IS verylow AND CCDC53 IS med AND RASA2 IS med: CANCER CF: 0.925
R16: IF RTN2 IS verylow AND WHAMMP2 IS verylow: CANCER CF: 0.80
R17: IF MAST4 IS verylow AND PPP1R12C IS verylow AND LINC01088 IS med: CANCER CF: 0.875
R18: IF LGALS3BP IS med AND WASF1 IS med AND PARD3 IS low: CANCER CF: 0.825
R19: IF KCTD20 IS verylow AND BAD IS verylow AND LINC01151 IS low: CANCER CF: 0.725
R20: IF NCOA2 IS verylow AND PARVB IS verylow AND PTPRF IS verylow: CANCER CF: 0.90
R21: IF DCK IS verylow AND YBX1 IS med AND AC079807.4 IS verylow: CANCER CF: 0.875
R22: IF DCK IS low AND PFKM IS verylow AND TCP1 IS verylow: CANCER CF: 0.675
R23: IF PARK7 IS verylow AND MEF2C-AS1 IS verylow AND MTRNR2L2 IS verylow: CANCER CF: 0.80
R24: IF CREB3 IS verylow AND RBM3 IS med: CANCER CF: 0.925

Fig. 1. Example of RB obtained by FARC-HD algorithm.

Finally, regarding the number of genes used within the
model, about 25 genes are considered for “Non Cancer” con-
dition and 30 genes for the “Cancer” prediction. This implies
a very low number if we contrast it versus the original number
of genes selected at the beginning of the data extraction
procedure, i.e. more than 4,000. Furthermore, only 3 genes are
overlapped in the “Cancer” vs. “Non Cancer” rules (PARVB,
PTPRF and LINC01151), but the linguistic label associated in
each case is very different, i.e. “Medium” vs. “Very low”.

C. Discussion on interpretability issues

Throughout this work contribution we have stressed the
relevance of EFS in the context of the emerging field of XAI
[6], [29]. It is straightforward to acknowledge the need of an
interpretable system for any diagnosis application. We must
take into account that the medical doctor must have the central
role within this task, using the AI model only as a decision
support system.

With this purpose, we have shown the benefits of a predic-
tive model obtained by FARC-HD algorithm in the context
of lung cancer prediction. Below, we enumerate the good
capabilities and advantages of this type of FRBCS with respect
to other type of ML solutions:

1) First, the benefits of using natural language for explain-
ing any choice taken by the AI system must be stressed
[14]. In this particular case, this is related with the use
of linguistic terms in the antecedents of the rules, which
should be meaningful for physicians [13].

2) Second, the working procedure of FARC-HD is designed
to obtain a compact fuzzy rule-based system in both
terms of number of rules and number of antecedents per
rule. The first point, i.e. low number of rules, is achieved
in two different stages of the algorithm: first due to a
filtering procedure based on the actual rule coverage, and
second by means of a evolutionary rule selection mech-
anism. The second point, namely a reduced antecedent
length, is due to the associative rule learning design, that
is, selecting only those combination of input attributes
that imply a high support and confidence values.

3) Finally, we must focus on the inference mechanism,
which determines the reason why for the prediction.
In this sense, using a winning rule scheme implies
that the decision only depends on a single antecedent
description. In addition to the former, the use of rule
weights is also positive as it adds a confidence degree
that may help the human user to have a certain trust on
the system.

Thanks to all these characteristics, we must consider the
fuzzy classifier from FARC-HD to be a very suitable so-
lution comprising both a good predictive performance and
interpretability. The computational cost involved in the op-
timization step of the EFS has also shown to be necessary
to achieve an appropriate balance between both former ca-
pabilities. In this sense, developing ad-hoc multi-objective
approaches and/or using specific feature selection techniques
for reducing the number of involved genes to the minimum,
can be regarded as some interesting topics to be taken into
account as future research lines.

V. CONCLUDING REMARKS

New applications addressed by Data Science are no longer
focused on achieving the highest accuracy, but also to make
it explainable for researchers and practitioners. Along with
the different paradigms in ML, those based in EFS have
the advantage of preserving the comprehensibility of fuzzy



systems, together with a boost in prediction via evolutionary
optimization. This way, it allows handing XAI learning models
including transparency, understanding and comprehensibility.

In this work, we have included a case study on a biomed-
ical scenario. Specifically, we have selected a lung cancer
prediction problem based on liquid biopsy, and we have
applied different rule learning methods to check whether
EFSs can provide a good trade-off between accuracy and
interpretability. Experimental results have shown that EFS are
a highly recommended solution, as they achieved the highest
test accuracy, together with the best interpretability features.
Among others, we have stressed a low number of rules, also
with few linguistic fuzzy antecedents, and an easy-to-follow
inference mechanism.

For the first time, a cancer diagnostic tool such as liquid
biopsy can use the powerful and relevant knowledge contained
in a genome of an individual. Abnormalities detected can be
better studied than standard X-ray scan outputting a lot of
genomic data. As pointed out above, we have stressed how
the good capabilities of EFS allow using the former genomic
information to extract useful and comprehensible knowledge.
This synergy between liquid biopsy biotechnology and XAI
will surely lead to personalised interpretable medicine, ensur-
ing adequate and better diagnostic tools and treatments.
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