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Luis Íñiguez
Dept. of Computer Science and A.I.

University of Granada, Spain
Email: luisiniguez@correo.ugr.es

Mikel Galar
Department of Automatic and Computation

Public University of Navarre, Spain
Email: mikel.galar@unavarra.es

Alberto Fernández
Dept. of Computer Science and A.I.

University of Granada, Spain
Email: alberto@decsai.ugr.es

Abstract—Fuzzy Rule Based Classification Systems have the
benefit of making possible to understand the decision of the
classifier. Additionally, they have shown to be robust to solve
complex problems. When these capabilities are applied to the
context of Big Data, the benefits get multiplied.

Therefore, to achieve the highest advantages of Fuzzy Rule
Based Classification Systems, the output model must be both
interpretable and accurate. The former is achieved by using
fuzzy linguistic labels, that are related to human understanding.
The latter is achieved by means of robust fuzzy rules, which
are identified by means of a component known as “fuzzy rule
weight”. However, obtaining these rule weights is computationally
expensive, resulting on a bottle-neck when applied in Big Data
problems.

In this work, we propose Chi-BD-SF, which stands for Chi Big
Data Support Filtering. It comprises a scalable yet accurate fuzzy
rule learning algorithm. It is based on the well-known Chi et al.,
exchanging the rule weight computation by a support metric in
order to solve the conflicts between different consequent rules. In
order to show the goodness of this proposal, we analyze several
performance metrics, such as the quality of classification, the
robustness of the rule base generated and the runtimes of the
usage of traditional weights and the support of the rule. The
results of our novel Chi-BD-SF approach, in contrast to related
Big Data fuzzy classifiers, show that this proposal is able to out-
speed the usage of rule weights also obtaining more accurate
results.

I. INTRODUCTION

Machine Learning and Data Mining are commonly used
to solve difficult tasks and to extract knowledge from com-
plex data. For this reason, most companies and practitioners
take advantage of these algorithms [1], [2] and develop new
methods and alternatives to improve the understanding of data.
Such is the trend of these techniques that nowadays, we live
surrounded by data and artificial intelligences. Our society is
generating more and more information everyday reaching a
point were it is nearly impossible to handle all the information
created [3]. This situation is defined by the term Big Data [4].

Therefore, many techniques have been developed to address
those problems generated by this continuous flow of data. Big
Data techniques are mainly oriented to solve three common
issues when handling large amounts of data. First, Big Data
needs to be prepared to work with huge quantities of data
in an easy and scalable way. Second, it also require methods
to deal with the big stream of information generated every
second from multiple sources. Lastly, Big Data algorithms are

required to be fast and scalable to be able to work with the
continuous flow of data and solve big and complex problems
in a reasonable amount of time [5].

In order to accomplish all these requirements, several
paradigms have been proposed for adapting standard Machine
Learning and Data Mining techniques. Among them, the
MapReduce [6] framework must be excelled as one of the
most successful options.

There is a special interest on developing rule base methods
due to their interpretability [7]. A crucial aspect of classifi-
cation systems is to know the reasons under the decision of
labeling a certain example. Linguistic Fuzzy Rule Based Clas-
sification Systems (FRBCSs) generate an interpretable model
that can be used to classify an example and to understand the
reasons behind this decision [8]. FRBCS [9] works using a rule
base composed by fuzzy antecedents with their consequents
being one of the classes of the problem. The rules are usually
created using a combination of pattern matching techniques
and fuzzy logic methods.

The rule weight (RW) computation is a core part of the rule
base generation process. It helps to extract the most relevant
fuzzy rules and consequently, it points useless rules which can
lead to misclassification. When extracting rules from a dataset
it is common to have multiple rules with the same antecedent
but different consequent (known as conflicts). In these cases,
RWs help at determining which one of those rules should be
kept in the final rule base. [10].

Many weight computation methods have been developed
to improve the rule base generation process. Heuristics like
Certainty Factor (CF) and Penalized Certainty Factor (PCF)
are widely used and their reliability came from multiple studies
[10]. These methods test every fuzzy rule of the rule base with
every instance of the dataset in order to calculate the weight
of the fuzzy rule. The number of required operations is high
and it grows exponentially with the size and complexity of the
problem

To develop a new algorithm for Big Data problems one
needs to focus on making it robust and scalable. Typically
there are two options in order to implement a certain algorithm
into MapReduce [11]. The first one, is a local divide and
conquer implementation where the data is distributed among
the cluster and every machine gets a solution of the problem
and the final output is the combination of all of them. This
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approach allows one to fastly implement any existing method
in MapReduce, but the results obtained are approximations
that depends on the degree of parallelism since the data
is not considered as a whole. The other is a distributed
implementation of the algorithm, where the result is an exact
solution. However, these approaches are much more complex
to be designed because the data is distributed among a cluster
of computing nodes. Both alternatives have been applied in the
design of FRBCS algorithms for Big Data, e.g., Chi-FRBCS-
BigData [12] with a divide and conquer strategy and Chi-BD
[13] with an exact solution.

Rule weights are an important part of a fuzzy rule, they
are not only used to add more discriminant power to fuzzy
rules, but they also serve as a conflict resolver in case of
overlapping areas, i.e. rules with same antecedent but different
consequent. However, as stated previously the cost in time
required to compute the weights is excessive, not scalable and
unrealizable when the dataset is too large, even for a cluster.

Our hypothesis is that the weight of a fuzzy rule is an issue
when working with Big Data problems and that we could
use other more efficient metrics that can be introduced into
MapReduce without additional cost. The new metric must
be able to solve conflicts between rules and not require an
excessive amount of operations at the same time.

We suggest the standard support of a rule to deal with
conflicts. Unlike the weight, obtaining the standard support
require less operations and does not need to use the whole
dataset iteratively. When a conflict between rules arises, the
rule with the highest support is chosen as to be the most
representative among them. In this work we propose Chi-BD-
SF, a robust alternative approach for FRBCS in Big Data that
allows the rule base generation process to be more efficient
using the standard support as filtering method.

In order to show the true benefits of this novel approach
based on the support, we will contrast the behavior of Chi-BD-
SF versus several related FRBCS models for Big Data, namely
Chi-FRBCS [14] (the sequential approach), Chi-FRBCS-
BigData [12] (the approximate MapReduce implementation)
and Chi-BD [13] (the exact Big Data implementation). This
evaluation will be carried out in terms of several performance
metrics. First, we will consider the classification accuracy and
geometric mean. Second, we will analyze the interpretability
of the system by means of the rule base size. Finally, the
scalability will be contrasted using the elapsed training times.

This work is organized as follows. First, Section II introduce
the theoretical framework of Big Data. Then, Section III
explain the basis of FRBCS, Chi-FRBCS algorithm and two
Big Data implementations, Chi-FRBCS-Big Data and Chi-BD.
Followed by Section IV which describes this work proposal,
Chi-BD-SF algorithm. Section V shows the experimental
framework, the algorithms used and their configuration, the
datasets, the measures considered and the computational in-
frastructure. Section VI presents the experimental results and
the analysis, being divided into two subsections; on the one
hand, an experimentation with standard datasets to test in a
single machine; on the other hand, the experimentation with

big datasets in a cluster of computing nodes. Last Section VII
presents the final conclusions and future work.

II. BIG DATA ENVIRONMENT

Big Data is a term referring to problems where one should
deal with large amounts of information. Getting an over-
whelming input data involve the processes of storing and
working with it too. The complexity of these processes is
beyond the capabilities of a single machine. A cluster with
multiple interconnected machines is required. Big Data tech-
nologies are oriented to work with a cluster of computers, dis-
tribute the information and process the information in parallel.
This section is divided in two parts. First, Section II-A explains
Hadoop and MapReduce programming paradigm, technologies
used in Big Data. Then, Apache Spark is presented in Section
II-B, a computation engine which improves it and solves some
of its deficiencies.

A. Hadoop and MapReduce

Hadoop is an open source Big Data framework for dis-
tributed programming [15]. It is oriented to be used from
one machine to a whole cluster of computers, being able to
store large amounts of data and obtain a great computation
performance. Hadoop offers as main features accessibility to
the data no matter if it is in a single machine or stored in
the cloud, robustness and scalability to add new machines to
the infrastructure and in a simple and fault tolerant way. To
work with large amounts of data, Hadoop needs to store all
the information in an effective and simple way to be used
by programs. The information is stored using the Hadoop
Distributed File System (HDFS) [16], a file system specifically
designed to distribute all the information across a cluster of
computing nodes and keep it secure and accessible.

The programming paradigm used by Hadoop is MapRe-
duce [6], which enables to execute computational expensive
programs in parallel to reduce the time needed. The origin
of MapReduce came from two famous functional operators,
map and reduce. Consequently all the action of a MapReduce
algorithm need to have a map phase and a reduce phase. Map
is a functional operator that take data and transform it in
order to create new information, structures, etc.. The reduce
phase is when all the transformed data from the previous
map phase is taken and used to obtain the desired result
from the MapReduce operation by aggregating all the previous
information. MapReduce is a powerful tool to create robust
parallel algorithms but not all methods can be implemented in
MapReduce. To properly implement an algorithm in MapRe-
duce, it should be possible to adapt the original algorithms
to the properties of this framework. All the iterative method
have issues with MapReduce paradigm, but some alternatives
to Hadoop has been implemented to solve this problem such
as Spark.

B. Spark

Spark is a cluster computing platform designed to be
fast and general purpose. It extends the popular MapReduce
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model to efficiently support more types of computations. At
its core, Spark is a computational engine that is responsi-
ble for scheduling, distributing, and monitoring applications
consisting of many computational tasks across many worker
machines, or a computing cluster [17]. Due to Spark engine,
it supports multiple packages such as SQL, machine learning
or stream processing.

The key of Spark came from his unique data structure and
the lazy evaluation strategy. The Resilient Distributed Dataset
(RDD) is a data structure which divide and distribute the data
into different partitions. The RDDs are immutable, persistent
and can cast MapReduce operations (among others), ideal to
develop machine learning and data mining algorithms. Spark
works in a lazy way. When a transform operation, like a
map function, is called, it does not execute it, Spark will
save it and wait. When an action operation is called, like the
reduce function, then spark will execute it and all the saved
transformation operations before the action. This strategy gives
Spark the big picture of what the application desires to do
and optimize the process. As a result of combining this two
features, the incompatibilities between MapReduce paradigm
and iterative method are solved when working with Spark [17].

III. FUZZY RULE BASE CLASSIFICATION SYSTEMS

In this section we introduce the fundamentals of FRBCS
(Section III-A), then we include the description of the Chi
fuzzy rule learning algorithm (Section III-B). Finally, we focus
on the Big Data implementations of the fuzzy rule learning
algorithm, namely Chi-FRBCS-Big Data and Chi-BD (Section
III-C).

A. Basic components of FRBCS

An FRBCS uses fuzzy sets and rules to represent the knowl-
edge of a specific area and model the relationship between
variables in order to use them to classify future instances.
They are used as classifier because they contribute with a fuzzy
rule base, which is interpretable by humans [18], making them
desirable for problem related experts. The main components
of every FRBCS are the Knowledge Base (KB) and the Fuzzy
Reasoning Method (FRM).

The KB is compounded of the rule base, a database and
the membership functions, used to model linguistic labels and
store them. To generate the rule base, a fuzzy rule learning
algorithm is required. Taking a training dataset where every
instance has the form xp = (xp1, ..., xpn) p = {1, ..., P}
where xpi is the value of the i-th attribute and i = {1, 2, ..., n}
is the p-th instance of the training dataset. Every instance
belongs to a specific class yp ∈ C = {C1, C2, ..., Cm} where
m is the total number of classes. Every instance is transformed
into a fuzzy rule using fuzzy variables created by fuzzy sets
like Fig. 1 and a membership function with the following
structure:

Rule Rj : If x1 is Aj1and . . . and xn is Ajn

Then Class Cj with RWj

(1)

The RW is the weight of the rule, it is calculated using
heuristic methods like CF (2) or PCF (3), where the member-
ship function (4) is used [10].

RWj = CF =

∑
xp∈ClassCj

µAj
(xp)

P∑
p=1

µAj
(xp)

(2)

RWj = PCF =

∑
xp∈ClassCj

µAj
(xp)−

∑
xp /∈ClassCj

µAj
(xp)

P∑
p=1

µAj
(xp)

(3)

µAj =
n∏
i=i

µAji
(xpi) (4)

Once the KB of the FRBCS has been built, one can classify
new examples following its FRM. Given an unclassified ex-
ample, the FRM uses the KB to compare it with every fuzzy
rule and takes the class of the winning rule [19], using the
coverage degree (5) to decide the class of the example by
selecting the class of the rule achieving the largest degree.

bj(xp) = µAj
(xp)RWj (5)

B. Chi-FRBCS

One of the most widely known FRBCS algorithms is Chi-
FRBCS [14]. To generate the rule base the algorithm makes
the following steps:

• First of all it transforms the attributes of the problem into
fuzzy variables. All the variables are equally transformed
using triangular fuzzy sets (Fig. 1).

• Then, it takes the instances of the training datatset and
generates a set of fuzzy rules using the fuzzy variables.

• In order to solve conflicts between rules with same an-
tecedent but different consequent the RWs are computed
using methods like the CF (2) or the PCF (3) and the one
with the largest weight is kept.

Fig. 1. Fuzzy variable with triangular fuzzy sets
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C. Chi-FRBCS-Big Data and Chi-BD

In order to use Chi-FRBCS algorithm on a cluster with
large datasets, MapReduce implementations of Chi algorithm
must be considered. The development of Chi-FRBCS on
MapReduce has two alternatives, the first one is the local
version, where the data is distributed and several local Chi
classifiers are learned. As a result a local approximation is
obtained, which depends on the degree of parallelism. The
second one is a global version, which recovers the original
Chi algorithms and obtains exactly the same result, but being
designed to deal with big datasets. Both approaches make use
of MapReduce paradigm in order to develop the distributed
algorithms [11].

Chi-FRBCS-Big Data [12] uses the distribution of the
training dataset into its benefit creating multiple rule bases,
one per mapper, and merges them into a final rule base.
A Big Data implementation that can improve its execution
time as more mappers are added. However, the quality of the
final classifier gets degraded because each data chunk of data
becomes smaller and less representative.

Chi-BD [13] is a more recent Big Data implementation
of Chi-FRBCS, unlike Chi-FRBCS-Big Data, this algorithm
shares a candidate rule base, a rule base with fuzzy rules
with same antecedent and different consequent, with all the
mappers in order to get the same results as using the original
Chi-FRBCS algorithm. It also speed-ups the process splitting
the fuzzy rules and storing the common antecedent parts to
pre-compute the majority of RW calculus operations.

IV. CHI-BD-SF: AN ALTERNATIVE TO THE USAGE OF
RULE WEIGHTS IN FRBCSS FOR BIG DATA

Current FRBCS implementations of Chi for Big Data
present several issues. In Chi-FRBCS-BigData, the problem
is that, in order to alleviate the RWs computation cost, several
rule bases are created with different chunks of data, but each
rule base will not have a general view of the problem and
hence, some RWs may not properly represent the problem.
On the other hand, Chi-BD avoids this point by learning the
same RWs as Chi-FRBCS in a distributed way, as stated in
Section III-C. However, this leads to a not totally scalable
method due to the bottle-neck being in the RW computation,
which is O(n ∗m), n being the number of examples and m
being the number of rules.

An ideal implementation needs to be fast and accurate but
we have previously observed, the calculus of the weight is ex-
pensive and the main issue in the MapReduce implementation.

In order to make the learning of Chi algorithm faster,
we propose an alternative approach, named as Chi Big Data
Support Filtering (Chi-BD-SF). This method omits the weight
heuristic methods like CF (2) or PCF (3) which are computa-
tionally expensive. However, we must take into account that
although discarding RWs solves the computational complexity
of the algorithm, there is no way of knowing which fuzzy
rules are reliable and which not. And even more important,
there will be conflicts between rules with same antecedent but
different consequent that cannot be determined.

To solve this crucial problem, this algorithm calculates
the standard support of every fuzzy rule as decision making
method. The rule with the highest support is chosen since it is
the most probable class of an example in its region. We must
point out that the fuzzy support can not be considered, as it
suffers from the same computational complexity problems as
the RW computation.

Applying this heuristic, the rule base generation stage be-
comes much faster due to the lineal computational complexity
of the support. Fuzzy rules are selected using their support
but this metric is not used for classification (that is, all rules
have weight equal to one). Hence, the FRM way to labeling
an example to a certain class is using the membership degree
(4) and the winning rule method [19].

V. EXPERIMENTAL FRAMEWORK

In this section we present the experimental framework used.
Therefore, we enumeate the methods and their configuration,
metrics, datasets and infrastructure.

As presented in Section III, we will use Chi-FRBCS Big
Data implementations and the alternative algorithm purposed.
All of them were developed in Scala using Apache Spark,
Section II-B. In summary, the methods considered in our
experimental study are the following.
• Chi-FRBCS: Original Chi-FRBCS algorithm, it does not

use any parallelism.
• Chi-NE: Chi-FRBCS-Big Data algorithm, its name is an

abbreviation from “Chi-No Exact” due to the approxi-
mated results it obtains compared to the original Chi-
FRBCS algorithm.

• Chi-BD: Exact Chi-FRBCS optimized Big Data imple-
mentation. It is only used with Big Data datasets to speed-
up the experimentation process.

• Chi-BD-SF: Our proposed algorithm as a parallel version,
i.e. it provides a global version where the standard
support is computed considering all the examples.

In order to study the FRBCS algorithms it is necessary to
set the corresponding configuration. The parameters for each
classification algorithm are presented in Table I. Notice that
all of them are common for every algorithm except for Chi-
BD which needs two extra parameters to accelerate the rule
computation process.

In this study we will use two different case studies to ex-
tract well-founded conclusions from our experiments: standard
classification datasets (to be run on a single machine) and
big datasets (to be run on a cluster of counting nodes) [20].
The former ones are presented in Table II, whereas the latter
ones are presented in Table III. All the datasets are two-class
problems in accordance to the previous experiments with Chi
algorithms in Big Data problems [12], [13].

In order to compare the different algorithms we will con-
sider the quality of the classifier, measured by the classification
accuracy (8) and the geometric mean (9) (which helps in better
analyzing the classification of both classes). In order to obtain
the classification performance we will use a confusion matrix,
Table IV.
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TABLE I
FRBCS CONFIGURATION

Number of labels in local: 3 and 5 fuzzy sets

Number of labels in Big Data: 3 fuzzy sets

T-norm: Product

Use of PCF rule weight: Local

Use of CF rule weight: Local and Big Data

Use of weightless fuzzy rules: Local and Big Data

Fuzzy reasoning method: Winning rule

Chi-BD specific parameters

Number of rule splits: 4

Minimum frequent occurrences: 10

TABLE II
STANDARD TWO-CLASS DATASETS

Dataset Instances Real Integer Nominal Total

Banana 4,300 2 0 0 2

Magic 19,020 10 0 0 10

Phoneme 5,404 5 0 0 5

Pima 768 8 0 0 8

Ring 7,400 20 0 0 20

Skin 245,157 0 3 0 3

Spambase 4,597 57 0 0 57

Susy-1% 50,103 18 0 0 18

TwoNorm 7,400 20 0 0 20

Wdbc 560 30 0 0 30

TABLE III
BIG DATA TWO-CLASS DATASETS

Dataset Instances Real Integer Nominal Total

Covtype 1 581,012 10 0 44 54

ECBDL 14-0.6 600,000 60 0 30 90

Poker 0 1,025,010 0 10 0 10

Susy 5,000,000 28 0 0 28

TABLE IV
CONFUSION MATRIX

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)

Negative class False positive (FP) True negative (TN)

TPrate =
TP

(TP + FN)
(6)

TNrate =
TN

(TN + FP )
(7)

Accuracy =
TP + TN

TN + FP + TN + FN
(8)

GM =
√
TPrate ∗ TNrate (9)

To compare the robustness of the rule base generated by the
weight heuristic, we will use the rule base size which will be
analyzed in combination with the quality as classifier.

Finally, we will also take into account the fuzzy rule base
generation runtime of each algorithm. In this way we could
analyze in some way the cost related to the computation of
the RW in the learning stage.

In this study we have used two different infrastructures to
perform the studies, a cluster for Big Data datasets and a local
machine for the executions with standard datasets.

Local machine infrastructure:
• CPU: Intel(R) core(TM) i5-4210M CPU 2’6GHz (4

cores)
• Main memory: 4GB
• OS: Ubuntu 14.04 LTS

Cluster infrastructure:
• Number of nodes: 12
• CPU: Intel(R) Core(TM) i7-4930K CPU 3.40GHz (6

cores)
• Main memory: 64GB
• Storage: 1x2 TB (root + HDFS)
• Connection: Gigabit Ethernet
• OS: CentOS 6.8
• Hadoop: CDH 5.10.0

VI. EXPERIMENTAL RESULTS

In this section we present the experimental results of the
study. It is divided into two parts. First, the results obtained
using standard datasets with a local machine (Section VI-A).
Second, the results using a cluster of computers and Big Data
datasets (Section VI-B). The analysis of the results is included
in each part.

A. Results over the standard classification datasets

In this subsection we present the results using standard
datasets. Tables V and VI shows the summary of all the
results using different algorithms and methods, separated by
the number of fuzzy sets used.

Table V shows an interesting and surprising behavior for
Chi-BD-SF versus the remaining Chi approaches. In this
case, the use of support filtering instead of the common RW
provides better results in terms of performance. The accuracy
is slightly better than the rest of methods but the results with
the geometric mean shows that the usage of the RW tends to
benefit a certain class.
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Looking at the rule base size results it is clear that PCF
method gets the smallest rule base, since it removes rules
having negative weights. Comparing PCF and CF the only
difference between both methods is the rule base size, there
is not a significant improvement on the classification quality
when using PCF despite of the reduced rule base.

Comparing the time employed to generate the rule base, it is
clear the difference between the methods using weighted fuzzy
rules and the weightless one. Chi-FRBCS algorithm obtains
good classification results but the time needed to obtain them is
high. Taking a look at Chi-NE results, the rule base generation
time descend when using a higher level of parallelism but the
lose of classification quality is excessive. Chi-BD-SF has the
best results in rule base generation time and classification.

As expected, using the standard support instead of the
weight makes the algorithm faster and solves the rule base
generation time problem. Furthermore, and as pointed out pre-
viously, Chi-BD-SF obtains the best results in classifications,
which is unexpected. We consider that the granularity of the
FRBCS is responsible of this issue. Using a low granularity
makes a fuzzy rule space representation wider, in consequence,
a few well positioned instances of a class have more impact
than the rest of the instances, even when they are more
numerous. For this reason we also use 5 fuzzy sets to test
this hypothesis due to make more specific fuzzy rules.

When using a higher number of fuzzy sets, the differences
in rule base generation time between Chi-BD-SF and the rest
of methods is greatly increased since more rules are generated.
While weighted fuzzy rule methods increments their rule base
generation time, Chi-BD-SF execution time is not altered.
Chi-FRBCS algorithm obtains an improvement at accuracy
remaining almost equal to Chi-BD-SF but not in geometric
mean, where Chi-BD-SF proves to be the fairest algorithm
among all when classifying.

TABLE V
AVERAGE RESULTS OF ACCURACY, GM, NUMBER OF RULES AND TIMES IN

TEST USING 3 LABELS IN STANDARD CLASSIFICATION DATASETS

Method Acc. GM # Rules Time (mm:ss)

CF

Chi-FRBCS 0.74048 0.58571 580.46 00:33

Chi-NE 2 Mappers 0.74070 0.58762 580.46 00:19

Chi-NE 16 Mappers 0.71881 0.43986 580.38 00:10

Chi-NE 64 Mappers 0.57832 0.43614 580.38 00:06

PCF

Chi-FRBCS 0.74539 0.57563 498.16 00:33

Chi-NE 2 Mappers 0.74167 0.57962 502.46 00:20

Chi-NE 16 Mappers 0.71500 0.42419 545.9 00:10

Chi-NE 64 Mappers 0.57840 0.43632 575.6 00:07

Chi-BD-SF 0.76993 0.70342 580.46 00:02

TABLE VI
AVERAGE RESULTS OF ACCURACY, GM, NUMBER OF RULES AND TIMES IN

TEST USING 5 LABELS IN STANDARD CLASSIFICATION DATASETS

Method Acc. GM # Rules Time (mm:ss)

CF

Chi-FRBCS 0.80033 0.75197 3,605.46 02:51

Chi-NE 2 Mappers 0.80041 0.75297 3,605.22 01:12

Chi-NE 16 Mappers 0.76441 0.60280 3,605.14 00:14

Chi-NE 64 Mappers 0.71077 0.67100 3,605.12 00:07

PCF

Chi-FRBCS 0.80792 0.75175 3,188.1 02:52

Chi-NE 2 Mappers 0.80815 0.75458 3,261.94 01:16

Chi-NE 16 Mappers 0.76445 0.59787 3,518.34 00:15

Chi-NE 64 Mappers 0.71090 0.67075 3,597.7 00:07

Chi-BD-SF 0.79907 0.77432 3,605.46 00:02

B. Results over the Big Data classification datasets

In this subsection we present the results obtained with FR-
BCS Big Data implementations with large datasets in a cluster
of computers. Due to the small differences in performance
observed between CF and PCF, in this part of the study
we have set CF by default. In this case we have used only
experiments with 3 fuzzy partitions because of time constraints
for the Chi-BD and Chi-NE implementations. Results are
divided depending on the parallelism used in order to test the
scalability, Table VII and VIII shows the results with 32 and
64 mappers respectively.

The behavior of the algorithms does not change from
standard to large datasets. Chi-BD obtains better results than
the approximate (local) counterpart, that is, Chi-NE. However,
in terms of runtimes it becomes slower due to the bottle-
neck coming from the computation of the RWs. The Chi-
BD algorithm tested was developed in Spark. In spite of
the benefits of Spark, it does not reach the runtimes of
original Hadoop Chi-BD [13]. Its efficiency, like Chi-NE,
grows with the capacity of the cluster but the weight time
calculus grows near exponentially with the complexity of the
problem (O(n ∗m) n number of examples and m number of
fuzzy rules of the rule base), making them not scalable. Chi-
BD-SF obtains the best results of all the algorithms. Increasing
the level of parallelism affect positively its runtime results and
does not affect its quality. Avoiding the weight and using the
standard support makes the algorithm linear and scalable, even
improving the quality as classifier.

VII. CONCLUDING REMARKS

In this work we have proposed Chi-BD-SF as a robust novel
FRBCS algorithm for Big Data problems. In order to obtain
these results, it employs the standard support to make a quick
decision between conflict fuzzy rules, i.e. those with same
antecedent but different consequent.
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TABLE VII
RESULTS OF ACCURACY, GM, NUMBER OF RULES AND TIME IN TEST

USING 3 LABELS, CF AND 32 MAPPERS IN BIG DATA CLASSIFICATION
DATASETS

32 mappers

Method Acc. GM # Rules Time (hh:mm:ss)

Covtype 1

Chi-BD 0.75365 0.67290 8,689.6 00:00:55

Chi-NE 0.68937 0.49344 8,689.6 00:00:50

Chi-BD-SF 0.78871 0.74322 8,689.6 00:00:03

ECBDL 14-0.6

Chi-BD 0.97986 0.03506 479,340.0 01:55:18

Chi-NE 0.97985 0.03506 479,025.6 00:04:41

Chi-BD-SF 0.97983 0.03506 479,340.0 00:00:09

Poker 0

Chi-BD 0.64103 0.63722 56,177.6 00:12:22

Chi-NE 0.54834 0.54494 56,177.6 00:02:46

Chi-BD-SF 0.60982 0.60805 56,177.6 00:00:03

Susy

Chi-BD 0.61378 0.45313 10,516.8 00:09:40

Chi-NE 0.59888 0.38954 10,516.8 00:25:58

Chi-BD-SF 0.65524 0.63631 10,516.8 00:00:19

Average

Chi-BD 0.74708 0.44958 138,681.0 00:34:34

Chi-NE 0.70411 0.36574 138,602.4 00:08:34

Chi-BD-SF 0.75840 0.50566 138,681.0 00:00:09

We have tested Chi-BD-SF with different levels of granu-
larity using a local machine showing its capacity to have low
runtimes and good classification performance. When dealing
with large datasests using 3 fuzzy sets, the differences at
runtime compared with the rest of the algorithms increases
greatly while the classification quality remains equal. We still
have to determine how higher levels of granularity affects its
classification results with Big Data datasets.

The lessons learned through this work contribution lead
us to new possibilites for FRBCS in Big Data. Showing
the weight as an excessive computational calculus for large
datasets and at the same time, exposing an alternative method
more suitable for Big Data algorithms. This study brings
new future works. Firstly, test the impact of granularity in
FRBCS in Big Data problems. Secondly, research and design
new scalable FRBCS algorithms using the presented ideas.
Thirdly, test the possibility of use the support of the rules to
calculate the coverage degree. Lastly, adapt fuzzy support and
confidence heuristics to Big Data problems.

ACKNOWLEDGMENT

This work was supported in part by the Spanish Ministry
of Science and Technology under Projects TIN2015-68454-R,
TIN2016-77356-P and TIN2017-89517-P (AEI/FEDER, UE);

TABLE VIII
RESULTS OF ACCURACY, GM, NUMBER OF RULES AND TIMES IN TEST
USING 3 LABELS, CF AND 64 MAPPERS IN BIG DATA CLASSIFICATION

DATASETS

64 mappers

Method Acc. GM # Rules Time (hh:mm:ss)

Covtype 1

Chi-BD 0.75365 0.67290 8,689.6 00:01:09

Chi-NE 0.68409 0.61706 8,689.6 00:00:23

Chi-BD-SF 0.78871 0.74322 8,689.6 00:00:03

ECBDL 14-0.6

Chi-BD 0.97986 0.03506 479,340.0 01:13:44

Chi-NE 0.97984 0.03506 479,024.8 00:01:15

Chi-BD-SF 0.97983 0.03506 479,340.0 00:00:08

Poker 0

Chi-BD 0.64103 0.63722 56,177.6 00:08:09

Chi-NE 0.55469 0.55239 56,177.6 00:01:04

Chi-BD-SF 0.60982 0.60805 56,177.6 00:00:03

Susy

Chi-BD 0.61378 0.45313 10,516.8 00:06:09

Chi-NE 0.53592 0.29762 10,516.8 00:12:06

Chi-BD-SF 0.65524 0.63631 10,516.8 00:00:13

Average

Chi-BD 0.74708 0.44958 138,681.0 00:22:18

Chi-NE 0.68864 0.37553 138,602.2 00:03:42

Chi-BD-SF 0.75840 0.50566 138,681.0 00:00:07

and the Project BigDaP-TOOLS - Ayudas Fundación BBVA
a Equipos de Investigación Cientı́fica 2016.

REFERENCES

[1] I. Witten, E. Frank, M. Hall, and C. Pal, Data Mining Practical Machine
learning tools and techniques. Elsevier, 2016.

[2] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: item-
to-item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1,
pp. 76–80, Jan 2003.

[3] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information Sci-
ences, vol. 275, pp. 314 – 347, 2014.
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[12] S. del Rı́o, V. López, J. M. Benı́tez, and F. Herrera, “A mapreduce
approach to address big data classification problems based on the
fusion of linguistic fuzzy rules,” International Journal of Computational
Intelligence Systems, vol. 8, no. 3, pp. 422–437, 2015.

[13] M. Elkano, M. Galar, J. Sanz, and H. Bustince, “Chi-bd: A fuzzy rule-
based classification system for big data classification problems,” Fuzzy
Sets and Systems, 2017, in press, doi:10.1016/j.fss.2017.07.003.

[14] Z. Chi, H. Yan, and T. Pham, Fuzzy Algorithms: With Applications to
Image Processing and Pattern Recognition. River Edge, NJ, USA:
World Scientific Publishing Co., Inc., 1996.

[15] C. Lam, Hadoop in Action, 1st ed. Greenwich, CT, USA: Manning
Publications Co., 2010.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-
tributed file system,” in Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), I. C. Society, Ed.,
2010, pp. 1–10.

[17] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark:
Lightning-Fast Big Data Analysis. O’Reilly Media, 2015.

[18] H. Ishibuchi, T. Nakashima, and M. Nii, Classification and Modeling
with Linguistic Information Granules: Advanced Approaches to Linguis-
tic Data Mining, ser. Advanced Information Processing. Springer Berlin
Heidelberg, 2006.

[19] O. Cordón, M. J. del Jesus, and F. Herrera, “A proposal on reason-
ing methods in fuzzy rule-based classification systems,” International
Journal of Approximate Reasoning, vol. 20, no. 1, pp. 21–45, 1999.

[20] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

2018 IEEE International Conference on Fuzzy Systems (FUZZ) 538




