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a  b  s  t  r  a  c  t

The  widely  accepted  importance  of energy  efficiency  in  the  building  sector  is continuously  acknowledged
by  the engineering  and research  community,  as proven  by the  quantity  and  diversification  of  relevant
modeling  proposals  in  literature.  It is often  difficult  to collect  and  assess  this  plethora  of  approaches
and  sometimes  the diversity  of  the features  of the  available  options  makes  it  hard  to  decide  what  is the
most  convenient  for the  purpose  required.  This  work  presents  a comprehensive  analysis  of  the  most
eywords:
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odeling comparison

important  results  today,  along  with  their  various  classification  and  assessment  approaches  for  modeling
energy  building  consumption.  A critical  review  of  the  limitations  of  the  different  existing  approaches  is
conducted,  and  open  research  challenges  are  also  highlighted.  Finally,  a horizontal  and  selective  assess-
ment  of their  suitability  according  to a  descriptive  set of  qualitative  comparison  contexts  and  parameters
is  provided.

© 2017  Published  by  Elsevier  B.V.
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orld [1]. The sector expansion drives its energy consumption
ncrease. More specifically world delivered energy consumption
rows by an average 1.4% per year in the residential building sector
nd 1.6% per year in the commercial building sector from 2012 to
040 [1]. Nevertheless, there is growing interest in the reduction
f building energy consumption and the associated greenhouse gas
missions. In Europe, the European Union has especially addressed
he issue of building energy consumption and efficiency [2], in order
o reduce its energy dependency, and greenhouse gas emissions.

With reference to residential buildings, most of the energy
oes towards space conditioning. Top four energy end-uses in US
esidential buildings in 2005 included space heating, space cool-
ng, water heating, and lighting with 30.7%, 12.3%, 12.2%, and 11%
f total energy consumed in buildings respectively. Refrigeration,
lectronics, wet cleaning, cooking, and computers supplement the
ist of most important residential energy end-uses. On the other
and, when it comes to commercial buildings, space conditioning
emains the primary target for energy end-uses. Top four energy
nd-uses in US commercial buildings in 2005 included lighting,
pace heating, space cooling, and water heating with 25.5%, 14.2%,
3.1%, and 6.8% of total energy consumed in buildings respectively.
lectronics, ventilation, refrigeration, computers, and cooking sup-
lement the list of the most important commercial energy end-uses
3].

Different parameters affect the degree to which energy end-uses
ffect overall energy consumption, including climate and meteo-
ological conditions, occupancy and occupant behavior, building
haracteristics, building systems and appliances. Furthermore,
hen it comes to energy consumption end-uses may  affect one

nother, as is the case of space heating attributed to appliances.
epending on the building site, the source of energy may  be diverse,
.g. electricity, natural gas, or oil, and it may  include secondary
ources, such as generation (e.g. Renewable Energy Sources – RES),
o-generation, and passive solar gains.

The modeling of energy consumption and efficiency in buildings
s a useful tool that allows the quantification of building energy
onsumption and sharing of end-uses. In this context, it can pro-
ide a useful prediction of consumed energy that, accumulated to a
egional or national scale, can determine energy supply require-
ents. Furthermore, it can provide useful feedback on decision

upport with reference to building retrofits, application of new
echnologies and materials, so that return of investment is calcu-
ated for different types of building interventions.

The focus of this paper is to review approaches for modeling
nergy consumption and efficiency in buildings, and propose an
ssessment methodology of existing approaches, based on a qual-
tative comparison. The rest of the paper is structured as follows.
ection 2 provides a classification of modeling approaches. Section

 presents selected state-of-the-art implementations and results.
ection 4 presents a discussion on the relative suitability of mod-
ling approaches. Finally, Section 5 summarizes the conclusions.

. Classification of modeling approaches

Different modeling approaches appear in literature. They utilize
nput data to calculate or simulate energy consumption. Model-
ng approaches can vary significantly depending on the availability
nd details of the data. Different criteria have been defined for
heir classification, including the relative hierarchical position of
ata inputs as compared to the building sector, the details of the

equired information, and the energy data acquisition approach. A
rief description of the main categories in each criterion and their
trengths and weakness is given below. The limitations and open
hallenges of the existing approaches are also highlighted.
dings 158 (2018) 1662–1682 1663

2.1. Classification according to the relative hierarchical position
of data inputs and building sector

Two  general categories may  be discerned: top-down and
bottom-up. Bottom-up models calculate the energy consumption
of an individual building or groups of buildings, and then extrapo-
late to a regional or national scale. Top-down models utilize total
building sector energy consumption estimation, and map energy
consumption to building sector global characteristics. Macroeco-
nomic indicators, such as Gross Domestic Product (GDP), price
indices, and employment rates are used to perform regression anal-
ysis and obtain the energy consumption. A subsequent microscale
approach may  provide individual consumption. Following this
approach, a classification of modeling techniques is presented in
[4]. According to this, the top-down category includes economet-
ric and technological models. Economic indexes, such as energy
price, are the main input of the former, while technological models
attribute energy consumption to broad characteristics of building
stock.

The main limitation of this approach is the primary need of mas-
sive data that in some cases is not available or supplied by building
managers. Furthermore, sensitive information such as housing sur-
veys may  be needed, which is not always accessible. An existing
gap in methodological resources to explain energy consumption
of singular buildings or buildings under very specific energy use
conditions is evident. Due to the fact that this approach does not
distinguish energy consumption due to individual end-uses, it is
not the most appropriate to identify massive energy consumers in
buildings. In general, the approach output does not provide detailed
information in order to design specific energy saving strategies in
buildings oriented to reduce energy needs by end-use.

Bottom-up models estimate separately the energy consumption
of a building, and then extrapolate to regional or national level. Two
different methodologies may  be used: statistical or engineering.
Statistical methods exploit established relations between end-uses
and energy consumption. Relevant models can be applied to pre-
dict the energy consumption of representative buildings. Historical
information is used to establish relations between building energy
consumption and end-uses. Regression, conditional demand anal-
ysis, and neural networks are classified under statistical methods.
Regression and conditional demand analysis use regression anal-
ysis to determine model coefficients, while the latter takes into
account the existence of end-use appliances. Neural networks rely
on simplified mathematical models seeking to minimize errors.

Engineering methods estimate final energy consumption based
on building characteristics and uses. Historical consumption data
are used for the calibration of derived models ensuring compliance
with the building Measuring and Verification guidelines [5]. Distri-
bution, archetypes and samplings are classified under engineering
methods. Distribution technique relies on the distribution and use
of end-use appliances aggregating to end-use energy consumption,
missing though end-use interactions. Archetypes classify buildings
to representative building classes. Energy consumption is an esti-
mate of modeled archetypes, allowing extrapolation to a larger
scale. Sampling technique utilizes energy consumption data from
a sample of buildings or energy consuming units. Providing a wide
range of buildings and making the sample representative of the
building stock can lead to wider energy consumption estimation.

One of the main limitations of bottom-up models is the need
for detailed data on energy consumption, frequently acquired by
advanced metering systems. A considerable amount of historical
data is also necessary, in order to have enough base data to train

the predictive model. They also present a clear limitation with ref-
erence to the need for detailed building constructive information.
When project documents are not available or accessible, such mod-
eling techniques have to rely to a large extent on user/engineer
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xperience and previous knowledge. Engineering models are not
uitable for ancient or historical buildings, which were built in the
bsence of technical guides, making it almost impossible to know
uch constructive details about the material composition and the
eal status of external walls.

The top-down modeling’s main strength is the need for aggre-
ated data only, which is generally widely available. Top-down
pproaches rely on historical data and allow the forecast of energy
onsumption on a larger scale, without going into detail on the
pecific end-uses. Thus, the approach is quite suitable for the pur-
ose of decision making on energy policies at regional, national or

nternational level. Nevertheless, the reliance on historical data is a
rawback, since there is no possibility to model discontinuous tech-
ological advances. Furthermore, when it comes to large buildings,
he historical data acquisition can be a complex process, while in
he case of modeling of several buildings there is a need for histor-
cal data harmonization. Finally, the lack of end-use details makes
t difficult to identify key consuming areas in the case of modeling
or energy retrofitting purposes.

Meanwhile, the bottom-up methodology allows a closer
pproximation to consumer areas. Also, it is related to a range of
arameters that affect final energy demand. However, it requires

 great level of detailed data and may  be subject to a number of
ifficulties in order to choose a sufficiently representative sample
f the building portfolio.

.2. Classification according to the details of required information

According to the details of their required information, model-
ng techniques can be classified as white box, black box, and grey
ox [6]. White box techniques, or otherwise called physical mod-
ls, use sets of equations to solve building physical phenomena,
uch as heat transfer. A deep level of detail about building geom-
try and description of material properties is required, presenting
ne of the main limitations of these techniques. Yet, there is no
eed for model training data. White box methods are widely used to
odel the building thermal behavior and their results may  be inter-

reted in physical terms. Another limitation of these techniques is
he need for an expert to build the model and interpret results, a
ole not suitable for the common energy managers. Furthermore,
esulting models have difficulties in extracting conclusions or being
dapted to different buildings bearing different physical behaviors.
espite the high impact of building user behavior on final energy
onsumption, the use in these models is usually misleading.

On the other hand, black box approaches do not require such
etailed physical information on buildings. Such models utilize
amples of training data, describing the behavior of specific sys-
ems. Black box approaches can predict energy consumption, when
iven a large amount of training data over an exhaustive period
f time. Trends may  be found across different buildings, yet data
ining techniques are building-specific, leading to needs for new
odeling, when a new building is treated. Difficulties exist with ref-

rence to the interpretation of results in physical terms. The main
imitation of these models is the difficulty to adapt the model to
ndividual buildings, given that their internal calculation engine
s not accessible to users or it does not provide a friendly user
nterface.

Grey box models combine physical and statistical approaches.
 rough description of building geometry and parameters is sup-
lemented by a smaller amount of training data over a short period
f time. Grey box models use the mathematical structure of the
hysics-based white box models and measured data to estimate

heir parameters. Results can be interpreted in physical terms; yet,
his hybrid approach that covers two distinct scientific domains

ay  be more difficult to grasp. Grey box models represent a balance
etween the good generalization capability of white box models
dings 158 (2018) 1662–1682

and high accuracy of black box models. Compared to the black-box
models, grey box models require more effort during the definition
stage, having good generalization capabilities, whereas obtaining
higher accuracy compared to the white-box models.

2.2.1. White box or physical models
Physical models are based on solving mathematical equations,

derived from physical laws, such as the energy conservation law.
Numerical software is usually used for this purpose. A wide range
of mechanisms can be taken into account, such as conditioning
systems, renewables, hydrothermal plants, and occupant behav-
ior. There are three main calculations [6]: the Computational Fluid
Dynamics method, the Zonal method, and the Nodal method.

The Computational Fluid Dynamics (CFD) method is the most
complete approach, since it is three-dimensional. Each building
zone is divided into cells; each cell is a control volume. Thus, quite
complex building geometries can be studied. The method’s main
drawback is its large computation time and model complexity. The
application fields of this method are HVAC systems, indoor air qual-
ity, and pollutant distribution.

The Zonal method represents a two-dimensional simplification
of the CFD method. Each building zone is divided again into cells;
each cell is the division of a room. It permits the determination
of local state variables, such as temperature, concentration, pres-
sure and air velocity in a large volume. Despite being simpler than
the CFD method, it remains quite time-consuming, while requir-
ing detailed descriptions of factors affecting indoor flow profiles.
Application fields of this method include indoor thermal comfort,
artificial and natural ventilation.

The nodal method represents the simplest of the physical meth-
ods. Each building zone is regarded as a homogeneous cell, a node,
with uniform distribution of physical quantities (e.g. ambient tem-
perature) modeled as state variables. Equations are solved per node,
offering a one-dimensional approach. The implementation is eas-
ier and the calculation times are reasonable. Yet, it is difficult to
study large volume systems and it is impossible to address local
effects like heat or source of pollutant. The application fields of this
method are the determination and time evolution of total energy
consumption, average room temperature and cooling and heating
loads.

2.2.2. Black/grey box or statistical models
Statistical methods do not require any physical information

about the building, yet, they rely on training data to extract system
functions. Multiple regression, Artificial Neural Networks (ANN)
and decision trees represent three statistical techniques used for
predicting electrical energy consumption [7]. Regression models
are commonly used due to the interpretability of model parame-
ters and ease of use; yet they can only ascertain the relationship
among the selected variables about the underlying causal mecha-
nism, but there might be uncertainties, when a relevant variable is
missing or badly measured. Neural networks are useful for energy
prediction, when mathematical formulas and prior knowledge on
the relationship among inputs and outputs are not known, yet they
have difficulty in testing parameter significance. Despite solving
this problem, decision tree models are complex, as they are sus-
ceptible to noise.

When comparing the ANN-based model and the physical sim-
ulation model (based on the EnergyPlus

®
software for example),

as predicting tools for energy consumption forecasting of a non-
residential building, models based on physical principles typically
offer the possibility to evaluate new strategies for reducing energy

consumption, while ANN models appeared more limited in this
sense [8].

The performance of grey-box models and black-box models
focusing on residential heating, ventilation and air conditioning
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ystems (HVAC) is compared in [9]. Grey box models consist of
 combination of energy balance equations and parameter esti-
ation based on sensor measurements of subsystem inputs and

utputs. Black box models that were compared were based on
ultiple-Input and Multiple-Output (MIMO) ANN, transfer func-

ion process, state-space and autoregressive exogenous model.
NN models performed best among compared models.

Two aspects to consider with reference to statistical methods
re data dimensionality and obtained model interpretability versus
ccuracy balance [6]. An important amount of data is required
y statistical techniques. The preferable measurement resolution

s the hour or days; the resolution of months is hardly useful.
ith reference to the number of variables, there is a tendency to

se as many variables as possible, without considering the redun-
ancy or correlation, since current machine learning techniques
an deal with large numbers of variables and variable selection,
o that processing can be applied. When it comes to the aspect
f interpretability versus accuracy, techniques like Support Vector
achines (SVM) or ANN produce models that are not understand-

ble by humans, thus being useful for behavior simulation, but not
or reasoning explanation. On the other hand, decision trees or rule
ets (such as greedy or genetic algorithms) are easily understood
nd can help better analyze variables and relationship causalities.
n between, regression or graphical models can be interpreted in a
eneral way. On the one hand, applying different statistical tech-
iques to the same problem and data can generate more accurate
ut more illegible models for prediction, while on the other hand,
ore easily interpretable but less accurate models for description.

.3. Classification according to the energy data acquisition
pproach

The energy performance assessment method is based on a rel-
vant energy quantification process, which in turn depends on
n energy data acquisition approach. Energy quantification meth-
ds may  be classified into three categories: calculation-based,
easurement-based, and hybrid methods [10].
Many of the physical and statistical methods are categorized

nder the broader Calculation-based class of energy quantification
ethods [6,10]. Measurement-based methods focus mainly on the

uilding Management System (BMS)/Sub-metering utilization and
n energy disaggregation. Energy disaggregation can be achieved
ither by means of pattern recognition setups trained by available
ub-metering information, or through approximations summing
p to the total energy consumption known from the energy bills.

Calculation-based methods are diverse with reference to their
onsideration of building and system dynamic effects. They
re classified into dynamic and steady-state methods. Dynamic
ethods capture building and system dynamics resulting in calcu-

ation complexity often implemented through detailed simulation.
ynamic simulations usually use a forward modeling approach,
lthough dynamic inverse modeling is also reported (classified
nder hybrid methods). Typical input parameters include building,
ystem and component descriptions along with weather condi-
ions. The details of the mathematical simulation algorithms are
escribed in the simulation engine and involve thermal load calcu-

ations, based either on heat balance or weighting factor methods,
arious air-handling and control systems simulation according to
heir schedules and calculation of final electricity and fuel use based
n system component characteristics. Different simulation tools
nclude e-Quest

®
(DOE-2), EnergyPlus

®
(DOE), ESP-r, and TRNSYS

®
.

On the other hand, steady-state methods ignore or simplify

ynamic effects thus decreasing complexity and achieving high
omputation speeds. They may  adopt forward or inverse modeling
pproaches. The Simplified Building Energy Model (SBEM), adopted
rom the current Energy Performance Building Directive (EPBD)
dings 158 (2018) 1662–1682 1665

related standards such as the EN ISO-13790, is a typical steady-
state forward model, which follows a quasi-steady state method
for the monthly heating and cooling demands, taking into account
dynamic effects through correlation factors called utilization fac-
tors. Modeling examples using an inverse modeling approach relate
energy performance indicators to energy influential factors and
can be applied either to a whole building level or to a HVAC sys-
tem level. Thus, the whole building energy consumption can be
regressed in various ways against influencing parameters. Exam-
ples of steady-state inverse models are included in the ASHRAE
Inverse Modeling Toolkit [11]. Such models include constant or
mean models, two-parameter, three-parameter, four-parameter,
five-parameter and multivariate models. Typical examples of other
methods for building load calculation are the degree-day method,
variable base degree-day method, BIN and modified BIN methods
and the equivalent full load hour method.

Measurement-based quantification is based on measured data
that represent actual building energy consumption, ranging from
energy bills to more detailed energy sub-metering and monitoring.
Energy bills represent a source of high quality energy measure-
ment data that need to be disaggregated into end-uses, in order
to develop a better understanding on energy use. Different dis-
aggregation methods have been proposed such as the bottom-up
calculation method, bottom-up short-term measurement method,
and top-down disaggregation algorithm. Different methods have
been proposed to increase disaggregation accuracy and detail,
investigating sources of inaccuracy and introducing metrics for
performance quantification [12]. The monitoring-based methods
provide such accuracy and detail through metering and monitor-
ing systems and platforms. Examples of such approaches include
end-use sub-metering, installing separate energy meters on rele-
vant circuit branches, the Non-Intrusive Load Monitoring (NILM)
method, which is a pattern recognition-based method capable of
firstly determining end-use operating characteristics and secondly
distributing monitored energy into end-uses, and Building Man-
agement System (BMS) based methods.

Hybrid quantification methods are actually a combination
of calculation-based methods and measurement-based methods,
where measurements are used to reduce calculation discrepan-
cies or identify model parameters. Usually, calibration procedures
are based on hybrid methods using a building simulation program
to tune input values, so that the program energy predictions fol-
low closely energy data measurements and the Dynamic inverse
modeling, being capable of capturing building dynamic effects,
yet introducing a higher degree of complexity and needing mea-
surements for model tuning. Typical examples of Dynamic inverse
modeling include AutoRegressive Moving Average (ARMA) models,
Fourier series models, ANN models and grey models.

3. Combined insight on classification and methodologies

With the exception of a first level classification of top-down
vs. bottom-up [4], all other surveys focus mainly on the bottom-
up sub-tree. All recent works tend to agree on a second-level
classification, although with partial overlaps, and the use of
slightly different terminology for the same underlying principles:
physical/statistical/hybrid or white/black/grey, close to calcula-
tion/measurement/hybrid, close to engineering/statistical/hybrid
approaches; all aligned with the classical (forward) and data-
driven (inverse) relevant classification [13], with their dynamic or
steady-state variances. The large picture relationships among cur-

rent classification approaches, having combined the dimensions
of pure modeling methods and quantification methods appear in
Fig. 1. This presentation indicates on the one hand the clear sub-
classes of distinct methodologies at the two ends of the spectrum



1666 C. Koulamas et al. / Energy and Buildings 158 (2018) 1662–1682

ng app

a
(
q
c
e
i
t
b
a
s

f
r
m
m
e
t
r
t
a

3

t
b
e
e
m
l
i
q
E
a
O
t
a
i
e

Fig. 1. Building modeli

nd the lack of a similar analysis as we approach the middle point
hybrid methods). On the other hand, it clarifies the fact that the
uantification methods cannot be assumed as orthogonal to or dis-
onnected from the modeling approaches. For instance, there is
vident dependency between a white-box model (i.e. physics) and
ts usage in a calculation method to quantify the energy consump-
ion of an element. Another example is related to dependencies
etween a monitoring-based data collection method (e.g. a BMS)
nd the exploitation of measurement data in order to develop a
tatistical model (e.g. train an ANN or extract a regression function).

The following sections shed light into representative approaches
rom the literature in order to: a) make clear what are the cur-
ent state-of-the art and quality limits of the forward and inverse
odeling methodologies, and b) point out the benefits of hybrid
ethods that combine elements from the far ends of the mod-

ling and quantification spectrum limits, as well as demonstrate
heir heterogeneity and multi-disciplinarity, explaining why cur-
ent classifications do not typically provide generic subclasses of
hem. Table 1 summarizes the revised studies grouped by modeling
pproach.

.1. White box/Physical/Forward models

A comprehensive introduction to important physical proper-
ies, processes and respective improvements related to important
uilding envelope components appears in [14], including energy-
fficient walls, fenestration technologies, advances in energy-
fficient roofs and effects of thermal mass and phase change
aterial on building air tightness, infiltration and cooling/heating

oads and peak loads. The effects of microclimate around a build-
ng are discussed in [15], presenting a building energy performance
uantitative analysis method, linking a microclimate model to the
nergyPlus

®
simulation program, in order to study effects of solar

nd long wave radiation, temperature, humidity, and wind speed.
ne limitation of [15] is the assumption that the surface tempera-
ures of the ground and the obstructions are the same as the outdoor
ir temperature, assuming that the obstruction materials have no
mpact on the microclimate model. In this context, the positive
ffect of passive energy-saving techniques, such as faç ades shad-
roaches classification.

ing by trees, cannot be simulated entirely, minimising the effect of
urban contexts on the simulation process.

A methodology based on dynamic simulations analysing the
parameters that mostly affect the cooling energy performance of
the building space is discussed in [16], showing the secondary role
of thermal and solar parameters of the opaque surface in contrast
to the glazed surface, as well as the weak influence of the office
building envelope compared to the more significant influence of
internal heat sources in contrast to residential buildings. The effects
of thermal insulation and in particular the usage of Phase Change
Materials (PCM) are studied in [17] through an experimental val-
idation of a semi-empirical model for the simulation of the phase
change process.

The unbalanced study of summer versus winter performance
indicators is the driving force behind the work [18], present-
ing results of comparison between actual and normalized energy
performance of a cooling plant that equipped a Milan residen-
tial building. Real energy requirements, estimated via monitoring,
were lower than those calculated with the Lombardy standard
energy certification procedure, yet consistent with EnergyPlus

®

building simulation calculations. The real performance calculated
for the winter case is consistent with the certification procedure
calculation [19]. User behavior may  lead to output differences.

Similar results appear in [20], where the simple hourly dynamic
calculation method of EN ISO 13790 standard is applied using
Matlab/Simulink

®
for an indicative building in 5 climate zones

in Poland. The normative monthly method calculations show sig-
nificant differences to EnergyPlus simulated values. The Dynamic
method and steady-state monthly method of Italian standards are
compared in [21], showing dynamic method adequacy to deal with
structure inertial properties, with the model being validated by a
measurement campaign. A methodology for heating and cooling
energy consumption estimations, simplifying dynamic simulation
methods, is presented in [22], implemented in Excel and validated
against actual hospital measurements, as well as against the Ener-

gyPlus simulation and the EN ISO13790 implementation.

Besides specialized civil, mechanical and electrical engineering
sources, physical/forward models, at a building, system or plant
level can be also found in literature of building control systems and
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Table 1
Summary of the studies reviewed.

Publication/Reference Building description Aim of the work Key contribution Algorithm/Method Data variable Software used

Type of building Size [m2] Number of floors Location

Category: White box or physical models
Yoshida, Ito, and

Yokoyama [14]
Hospital 25,000 10 Japan To investigate what

energy supply
system structure is
suitable for a
hospital for the
purpose of saving
cost.

Testing 25 different
structures of
alternative energy
supply systems

Optimization
approach −
mixed-integer
linear
programming

Utility rates, the
utility maximum
contract demands,
the numbers and
capacities of
equipment, the
energy flow rates

GAMS/CPLEX
solver

Yang  et al. [15] 1000 5 cooling:
Guangzhou/heating:
Frankfurt

Proposing an
integrated
simulation system
for building energy
assessment in
urban
environments

Coupling ENVI-met
with EnergyPlus

Open loop analysis
(one-way coupling
simulation and no
data feedback to
the ENVI-met
model)

ENVI-met: climatic
variables, E+:
convective heat
transfer coefficient
for each linking
unit of the building,
weather condition

The urban
microclimate
model
ENVI-met/the
building energy
software Energy-
Plus/coupling
platform Building
Controls Virtual
Test Bed (BCTVB).

Ballarini  and Corrado
[16]

Residential/office 192/928 2/intermediate Rome (Italy) Examines the
relationship
between the effects
of the thermal
insulation on the
building energy
need for cooling
and all the aspects
that have the most
effect on the
energy
performance of
buildings.

Analysing the
different
contributions to
the internal air
convective heat
balance and their
interrelations with
different driving
forces

Dynamic driving
forces

Convective and
radiative heat
transfer,
thermo-physical
parameters,

Energy Plus

Gowreesunker, Tassou,
and Kolokotroni [17]

Case study:
environmental
chamber, with 4
T-type
thermocouples

100 mm
×
70 mm
×
80 mm

It’s a box of a new
material

UK Semi-empirical
model for the
simulation of the
phase change
process in phase
change materials
(PCM).

The contribution of
this approach is to
differentiate
between melting
and freezing, so
that the solver uses
the appropriate
heat source
function

CFD Conductive heat
transfer variables

Computational
fluid dynamics
(CFD) simulation
environments/FLUENT

Dall’O’, Sarto, Sanna,
et al. [18]

Residential
buildings with a
total of 196 flats

Ground
floor:82.3/4th
floor: 94.36/top
floor: 126.12

4 Milan, Lombardy
region-Italy

Comparison
between the
predicted and
actual energy
performance for
summer cooling in
high-energy
performance
residential
buildings

The paper proposes
an extensive
comparative
evaluation
between the actual
and normalized
energy
performance of a
high-performance
residential building
equipped with a
cooling plant.

Thermal dynamic
modeling

Energy consump-
tion/environmental
conditions such as:
indoor and outdoor
air temperature
and humidity

Software
HOBOware of
Onset/EnergyPlus
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Table 1 (Continued)

Publication/Reference Building description Aim of the work Key contribution Algorithm/Method Data variable Software used

Type of building Size [m2] Number of floors Location

Dall’O’, Sarto, Galante,
et  al. [19]

3 flats located in:
Ground floor, 4th
floor, top floor)

Ground
floor:82.3/4th
floor: 94.36/top
floor: 126.12

4 Lombardy
region-Italy

Comparison
between predicted
and actual energy
performance for
winter heating in
high-performance
residential
buildings

A detailed analysis
of 3 flats with
different ways of
energy
computation:
theoretical
(normative)
estimation and real
measurements.

Thermal dynamic
modeling

Energy consump-
tion/environmental
conditions such as:
indoor and outdoor
air temperature
and humidity

Software
HOBOware of
Onset/EnergyPlus

Michalak [20] Typical building
(house)

130.8 2 Poland To present in detail
the application of
the simple hourly
dynamic
calculation method
from EN ISO 13790
standard to
calculate the
annual demand of
heating and
cooling energy.

Ability to test
different control
strategies, to
determine the
optimal power
value of
heating/cooling
sources, etc

Dynamic
modeling: state
space model

ISO 13790 standard
variables

Matlab/Energy
plus/Audytor OZC
(based on EN ISO
13790 standard)

De  Lieto Vollaro et al.
[21]

Old building 210 5 Central Italy,
climatic area D

Comparative
analysis of the
energy
performances of an
old building using a
semi-stationary
software and a
dynamic one

Correct estimation
of the energy
demands, taking
into account the
dynamic properties
of  the structures

Semi-stationary
(based on standard
UNI EN ISO 13790)
and dynamic
approach (transfer
functions method)

ISO 13790 standard
variables

MC11300:
steady-statepart
analysis/TRNSYS:
dynamic analysis

Čongradac et al. [22] Emergency Center
(Hospital)

8350 5 Serbia −Novi Sad Presenting the tool
for assessing the
heating and
cooling energy
consumption

Ease of use,
simplified set of
input data, as well
as the omission of a
complex dynamic
modeling

Static modeling
approach

Thermo-physical
variables similar as
those in ISO 13790
standard

EnergyPlus, Riuska
and Standard EN
13790/macros and
Visual Basic
functions of EXCEL

Mantovani and
Ferrarini [23]

Commercial
building (shoping
center)

26,369 5 Campo de Fiori
shopping center-
northern, Italy

The design of an
MPC  architecture
for the optimal
temperature
control of a real
commercial
building

A non-linear MPC
approach for
thermal energy
control

Dynamic modeling
and predictive
control approach

Air and water
temperatures,
mass flows,
conductive and
convective heat,
efficiency of heat
pumps, fan coil
models

Matlab/Energy
plus/Audytor OZC
(based on EN ISO
13790 standard)

Ferrarini  and
Mantovani [24]

Large commercial
building

26,369 5 Gavirate, Italy Modeling, control
and energy
management of a
large-commercial
building

Vertical air
temperature
stratification,
aimed at efficient
energy control

Dynamic
modeling/classical
and advanced
control approach
(PID & MPC)

Air and water
temperatures,
mass flows,
conductive and
convective heat,
efficiency of heat
pumps, fan coil
models.

MATLAB/UNI EN
ISO 13790 standard
and dynamic
modeling with
Matlab/Simulink
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Category: Conventional Statistics/Regression based
Krese, Prek, and Butala

[25]
Office 7200 13 Ljubljana, Slovenia To improve the

cooling degree
method taking into
account both the
sensible and latent
loads and use it to
analyze electric
energy
consumption data
from an existing
building and
compared against
the conventional
cooling degree day
approach

An improved
cooling degree
method which
takes into account
both the sensible
and latent loads, is
used to analyze
electric energy
consumption data
from an existing
building and
compared against
the
conventional
cooling degree day
approach

Statistical analysis
to improve cooling
degree days
method and
piecewise linear
regression

Monthly electric
energy
consumption

N/A

Fumo,  Mago, and Luck
[26]

Office 715 1 Atlanta and
Meridian, USA

Employ a series of
predetermined
coefficients to the
monthly energy
consumption data
from electrical.

The use of
predetermined
coefficients relieve
the user from the
burden of
performing or
learning how to
perform a detailed
dynamic
simulation of the
building. The
information given
by these
coefficients could
cover information
missing from
utility bills to
perform an energy
analysis

Uses an
‘EnergyPlus
normalized energy
consumption
coefficients’
(E + NECC) as
normalized energy
profiles

Hourly electrical
and fuel energy
consumption

EnergyPlus to
generate data

Smith  et al. [27] Office 4980 3 Baltimore, USA Uses EnergyPlus
normalized energy
consumption
coefficients to
estimate the
energy profiles of
buildings with
similar
characteristics to a
given benchmark
model

the coefficient
methodology
decreases the error
limits in almost all
of the test
points

Uses an
‘EnergyPlus
normalized energy
consumption
coefficients’
(E + NECC) as
normalized energy
profiles

Hourly energy
consumption

EnergyPlus to
generate data

Catalina,  Virgone, and
Blanco [28]

Residential Different buildings
shapes with areas
from 150 to 300 m2

1 Paris, Marseille,
Chambery,
Strasbourg, Rouen,
Brussels, France

The development
of regression
models to predict
the monthly
heating demand

Easy use equations
to be applied by
architects and
professionals at
early desing stage,
with small range of
error

Multiple regression
analysis

Monthly heating
demand

TRNSYS to generate
data
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Table 1 (Continued)

Publication/Reference Building description Aim of the work Key contribution Algorithm/Method Data variable Software used

Type of building Size [m2] Number of floors Location

Catalina, Iordache, and
Caracaleanu [29]

Residential 3907 11 Bucharest,
Romania

Develop a simple
and large
applicable model
to estimate heating
energy demand
based on three
inputs: heat loss
coefficient, the
south equivalent
surface and the
difference between
the indoor set
point temperature
and the sol-air
temperature

A correction made
in the model to
better take into
account human
behavior improves
heating
consumption
predictions under
real building‘s
operation
conditions

Iteratively
reweighted least
squares (IRLS)

Heating energy
demand

TRNSYS to generate
data

Asadi,  Amiri, and
Mottahedi [30]

Commercial 2,322.6 2 Houston, USA To build a simple
but precise model
to predict energy
consumption,
based on
regression analysis
with massive data
results as inputs to
cover a
comprehensive set
of variables

Monte Carlo was
used to define a set
of 70,000
simulation
scenarios. High
precision of
predictions was
obtained, within an
error or 5%

Linear regression
model and
standardized
regression
coefficients

Annual heating and
cooling demand

DOE-2 to generate
data

Amiri,  Mottahedi, and
Asadi [31]

Commercial 2322.6 2 San Jose, USA To create a
multiple regression
model, flexible and
simple, to evaluate
the building energy
consumption and
performance

Monte Carlo was
uased to define a
set of 30,000
simulation
scenarios

Stepwise
regression.
multiple linear
regression

Annual energy
consumption

DOE-2 to generate
data

Pedersen, Stang, and
Ulseth [32]

Residential, office,
educational

Case studies range
from 70 to 7000 m2

N/A Trondheim,
Norway

Perform a load
prediction method
for heat and
electricity demand
in buildings and a
method for load
aggregation based
on the building
categories’ load
profiles

Model flexible and
simple with high
accuracy to
evaluate the
building energy
consumption
and performance

Piece-wise linear
regression and
probability
distribution
analyses

Annual heating and
electricity demand

DOE-2 to generate
data

Fumo  and Rafe Biswas
[33]

Residential N/A N/A Texas, USA Analyze previous
information on
regression analyses
on prediction of
energy
consumption in
buildings

Results from a case
study, as the time
interval of the
observed data
increases, the
quality of the
models improves

Simple linear,
simple quadratic
and multiple linear

Hourly and daily
energy
consumption

N/A
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Yun et al. [34] Residential, office 464.5 1 Atlanta, USA Develop an
efficient ARX
indexed model
more accurate,
easily
implementable and
computationally
efficient AI-based
models for cooling
and heating loads
in buildings

the performance of
a  properly indexed
ARX model is
better than that of
non-indexed
models and
comparable to that
of the BPNN

ARX model (Fourth
order auto
regressive model
with exogenous
inputs)

Cooling and
heating loads

EnergyPlus to
generate data

E.  Wang, Shen, and
Grosskopf [35]

Residential Wide range given
480 case study

Wide range given
480 case study

Iowa, USA Selective
residual-clustering
benchmarking
method is
proposed for
building envelope
energy efficiency
evaluation with
multi or high
dimensional data
set.

PCA allows to
represent multi
correlated
variables with less
principal
uncorrelated
components in
terms of data
variability. Results
obtained are
comparable with
reliable infrared
thermography

Multivariate linear
regression analysis
with principal
component
analysis to address
the
multicollinearity
risk, PCR, PCA,
MRA, Fuzzy
C-Means

Energy efficiency of
existing building
envelopes

N/A

Qiang  et al. [36] Office 12,770/49,800 N/A Tianjin, China An improved
mutlivariable
linear regression
model is presented,
based on a better
selection of
meteorological
variables and
better description
of internal factors

A dynamic
two-step
correction is
proposed. PCA is an
applicable measure
to avoid the
negative effect of
multicollinearity
on prediction

Multivariable
linear regression

Daily cooling load N/A

Majcen, Itard, and
Visscher [37]

Residential 105 N/A The Netherlands Analyze key factors
that cause
discrepancies
between
theoretical and
actual gas
consumptions by
using regression
analysis.

Average indoor
temperature and
ventilation rate
were found to have
a  large influence on
the theoretical gas
consumption
whereas number of
occupants and
internal heat load
have limited
impact

Descriptive
statistics and
regression analysis

Gas consumption N/A
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Table 1 (Continued)

Publication/Reference Building description Aim of the work Key contribution Algorithm/Method Data variable Software used

Type of building Size [m2] Number of floors Location

Majcen, Itard, and
Visscher [38]

Residential N/A N/A The Netherlands Examine
discrepancies
between the
normalized
theoretical and
actual heating
consumption, in
order to improve
energy label
certification
calculation
method.

Occupant behavior
has larger effect
that the considered
by calculation
method. Factors
with significant
effect are different
for overpredicting
and
underpredicting
cases

Multiple regression Gas consumption N/A

Hoş gör and Fischbeck
[39]

Residential N/A N/A Gainesville, Florida,
Texas

To explore the
effect of statistical
modeling
structural and
demographic
characteristics on
residential energy
efficiency
parameters using
Princeton
Scorekeeping
Method and
publicly available
data on house
energy efficiency

Publicly available
information can
help predict energy
efficiency
parameters and
savings potential.
Predictive
regression models
can be applied
anywhere and
models with R2
values higher than
30% can be
interpreted to have
a  relatively high
explanatory power

PRISM (Princeton
Scorekeeping
Method)

Electricity, heating
and cooling
demand

N/A

US  Environmental
Protection Agency
[40–42]

Medical Building portfolio Building portfolio USA; Canada To use regression
models to identify
the aspects of
building activity
that are significant
drivers of energy
use, normalize
those factors and
propose a method
to score energy
efficiency in
Hospitals.

The methodology
allows to compare
energy use
prediction for a
building to its
acutal energy use
and give a score of
performance,
relative to the
national
population

Weighted ordinary
least squares
regression

Energy
consumption
expressed in
source energy use
intensity

N/A

Christiansen et al. [43] Medical 90 individual
buildings,
400,000 m2

N/A Hamburg, Germany To give a better
understanding of
the
time-dependent
energy
consumption of a
medical building
laboratory plug
loads under
consideration of
uncertainties

Only a few plug
load groups
contribute the
greater part of the
total electrical
energy demand

Cumulative load
predictions

Electricity
consumption

N/A
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Zhou et al. [45] Office 15 buildings, from
24,000 to
99,000 m2

N/A Beijing and Hong
Kong, China

To analyze the
main
characteristics of
lighting energy use
over various
timescales
capturing energy
use patterns

The results are
applicable to large
office buildings
without
daylighting
controls or any
other automatic
lighting controls.
Lighting energy use
was found to be
mainly driven by
the occupant
schedule and the
influence of the
outdoor
illuminance was
very weak

Least squares
regression

Hourly lighting’s
electricity
consumption

N/A

Palacios-Garcia et al.
[46]

Residential N/A N/A Andalusia region,
Spain

Perform a
high-resolution
stochastic model
for simulating
lighting
consumption
profile with high
temporal
resolution and
analyze the
economic and
environmental
impact of applying
LED technology’s
penetration into
domestic lighting
systems

Results
demonstrated a
strong relationship
between sunlight
availability and
active
occupancy of
dwellings with
electricity
consumption for
lighting

Stochastic model Hourly lighting’s
electricity
consumption

N/A

C.  Yan, Wang, and Xiao
[47]

Commercial 321,000/54,490 108 floors the first
case study, not
provided in the
second

Hong Kong and
Beijing, China

Develop a
simply-use energy
performance
assessment
method of cooling
load in existing
buildings, based on
the electricity
consumption data
and cooling energy
balances between
demand side and
supply side of
HVAC systems.

The proposed
simplified method
provides
satisfactory results
on the annual
analysis, given a
higher error rate
for monthly
analysis.

Optimization
algorithm using
trial-and-error
method

Disaggregated
energy
consumptions and
the energy
performance
indicators of HVAC
systems

N/A
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Table 1 (Continued)

Publication/Reference Building description Aim of the work Key contribution Algorithm/Method Data variable Software used

Type of building Size [m2] Number of floors Location

Category: Machine Learning Models
Bagnasco et al. [48] Medical clinic,

three building set
9500 3 blocks Turin, Italy Predict EEC from

previous values
Original data and
ANN algorithm

Time series: ANN
(MLP) with RPROP

Daily − season
separation −,
previous day
consumption

Matlab

Jovanović,  Sretenović,
and Živković  [49]

University campus,
35 buildings

300,000 Trondhei, Norway Predict EEC from
previous values

Original data and
ensemble ANN

Time series:
Ensemble of 3 ANNs
(FFNN + RBFN + ANFIS)

Daily − cold period
(January-March),
only working days
−  previous day info

Matlab

Papantoniou and
Kolokotsa [50]

Several cities N/A Ancona (Italy),
Chania (Greece),
Granada (Spain),
Mollet (Spain)

Predict air
temperature for a
4h–24 h horizon

Predicting outdoor
air temperature
with ANN

Time series: ANN Every 12 h or 24 h,
one year −

Matlab

Chae  et al. [51] Three office
buildings in urban
area

15,224 Korea Predict EEC every
15-min

Predicting
electricity
consumpution for
next day with
15-min data
resolution

Time series: ANN
with Bayesian
regularization
(comparison with
SVM, LR, RBF,
lazy. . .)

Every 15-min, few
weeks of 2012 −
short-term
monitoring −
HVAC set temp, OT,
RH, sky, WS,  HVAC
variables

N/A

Popoola, Munda, and
Mpanda [52]

Several cities N/A South Africa Estimate and
understand
lighting load

Lighting load
profile prediction
with neuro-fuzzy
systems

Regression: ANFIS Survey data for 417
buildings −
occupancy, income

Matlab

Platon,  Dehkordi, and
Martel [53]

Institutional
building

16,790 Calgary, Canada Predict EEC for a
1h–6 h horizon

Prediction of
electricity
consumptuion
with 1 h to 6 h
horizon

Time series: ANN,
PCA, CBR

Hourly, one year
March 2013-May
2014 − OT, RH, IT, 8
vars. of HVAC

N/A

Koo  and Hong [54] School 2000 test in Seoul, South
Korea

Historical trends
CO2 emission
(energy
performance) of a
building

Studying historical
trends in the
energy
performance of
existing buildings

Regression: CBR
and GA as
optimizer
(comparison with
MRA and ANN)

1999–2010, yearly
− different
building and using
factors (people,
classes, etc.)

Evolver for GA

Edwards,  New, and
Parker [55]

3 test residential
houses

N/A Knox County,
Tennessee, USA

Predict EEC for the
next hour

Predicting hourly
electricity
consumpution

Time series: LR,
ANN, SVR

Year 2010, every
15 min  − artificial
occupancy and
usage of test
houses − many
variables on house
controlled
condition

Matlab, LIBSVM,
LS-SVMlab
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Yu et al. [56] 80 residential
building

N/A 6 districts in Japan Energy demand
modeling

Energy demand
modeling

Classification:
Decision trees

Year 2003, every
15 min − 10 vears
weather, indoor,
occupants

N/A

Li,  Su, and Chu [57] 2 buildings: a big
building and a
10-floors library

25,542 10 floors Hangzhou, China Predict EEC Predicting energy
consumption with
genetic-neuro fuzzy
systems

Time series: ANN,
GA-ANFIS

Sep 1989-Feb 1990
(hourly) and
Oct-Nov 2009
(hourly) − OT, SR,
RH, WS

N/A

Tsanas  and Xifara [58] 12 simulated
buildings.

771.75 Athens, Greece Predict heating
load and cooling
load

Analysis of energy
performance in
buildings by machine
learning

Regression:
Ensemble learning
(Random Forests),
IRLS

Simulation, 768
samples, (surface,
wall, roof areas,
height, orientation,
glazing)

N/A

Castelli  et al. [59] Same than [58] 771.75 Same than [58] Same than [58] Analysis of energy
performance in
buildings by
evolutionary
computation

Regression:
Genetic
Programming
(with local search
and linear scaling)

Same than [58] N/A

Category: Grey Box/Hybrid models
Raftery, Keane, and

O’Donnell [61]
Office 30,000 4 floors Leixlip, Ireland Dynamic

Simulation Model
Calibration
(Methodology)

A systematic
evidence-based
methodology for the
calibariotn of
dynamic simulation
models, using E+ and
SVN  tools

Dynamic
Simulation with
systematic version
control

All E+ with hourly
measurements of
plugs & lights
electrical energy
consumption

EnergyPlus,
TortoiseSVN

Raftery,  Keane, and
Costa [62]

Office 30,000 4 floors Leixlip, Ireland Dynamic
Simulation Model
Calibration (Case
study)

Application case
study of the
methodology
proposed in [61]

Dynamic
Simulation with
systematic version
control

All E+ with hourly
measurements of
plugs & lights
electrical energy
consumption

EnergyPlus,
TortoiseSVN

Coakley  et al. [63] Office 700 3 floors Galway, Ireland Dynamic
Simulation Model
Calibration
(Methodology)

A methodology for
the calibariotn of
dynamic simulation
models combining
evidence-based
model developent
with statistical
optimization
techniques

Uncertainty
analysis on Monte
Carlo based
multiple dynamic
simulation outputs

All E+ with hourly
measurements of
space temp, CO2,
electrical & heat
energy
consumption

OpenStudio,
EnergyPlus

Coakley,  Raftery, and
Molloy [64]

Office 700 3 floors Galway, Ireland Dynamic
Simulation Model
Calibration (Case
study)

Application case
study of the
methodology
proposed in [67]

Uncertainty
analysis on Monte
Carlo based
multiple dynamic
simulation outputs

All E+ with hourly
measurements of
space temp, CO2,
electrical & heat
energy
consumption

OpenStudio,
EnergyPlus

Mustafaraj et al. [65] Office with
underfloor heating

4500 3 floors Cork, Ireland Dynamic
Simulation Model
Calibration

Methodology to
calibrate the
dynamic models for
predicting the
thermal behavior of
underfloor heating,
heat-pump and
natural ventilation

Dynamic
Simulation

All E+ with
monthly electricity
& gas bills and
hourly
measurements of
temperature &
humidity

DesignBuilder,
EnergyPlus
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Table 1 (Continued)

Publication/Reference Building description Aim of the work Key contribution Algorithm/Method Data variable Software used

Type of building Size [m2] Number of floors Location

Roberti, Oberegger, and
Gasparella [66]

Historical building 3000 3 floors plus attic
and basement

Bolzano, Italy Dynamic
Simulation Model
Calibration

Sensitivity analysis
on parameters of
historiic buildings’
models

Dynamic
Simulation

All E+ with hourly
space temperature

EnergyPlus

Royapoor and Roskilly
[67]

Office 8365 5 floor Newcastle, UK Dynamic
Simulation Model
Calibration

Building model
calibration case
study

Dynamic
Simulation

All E+ with hourly
mesurements of
space temperature,
electrical & gas
energy
consumption

EnergyPlus

Lü  et al. [68] 4 sport hauls 3000 to 6000 Single Volume Finland Simplified models
for the prediction
of energy
consumption

Physical model
with stochastic
parameters

Physical, ARIMA,
SVD, Convex hull

Qenvelope, Qsolar,
Qventilation,
Qoccupancy
Qlighting

Matlab LibSVM

Heo,  Choudhary, and
Augenbroe [69]

Office N/A N/A Cambridge, UK Calibration of
normative energy
models for retrofit
analysis

Uncertainty
quantification and
calibration of quasi
steady state ISO
normative model

Bayesian
Calibration

Envelope thermal
properties, internal
loads, ventilation,
HVAC generation
efficiency &
distribution loss
factors

EnergyPlus (for
validation and
performance
comparison)

Brohus  et al. [70] 5 zone test model N/A 1 N/A Uncertainty
quantification in a
physical model

Uncertainty
quantification by
means of stochastic
differential
equations

Stochastic
Differential
Equations

Zone thermal
capacity, specific
heat loss,
temperature,
internal heat
generation

L.  Wang, Mathew, and
Pang [71]

DOE reference
office building

4982 3 Multiple (virtual) Uncertainty
quantification in a
dynamic
simulation model

Investigation of
uncertainties and
understanding of
the impacts of key
operation
parameters in
energy
consumption

Monte Carlo based
multiple dynamic
simulations

All E+ EnergyPlus

Zhao  et al. [74] DOE reference
office building

4982 3 Multiple (virtual) Create an occupant
behavior and
schedule modeling
method

Development of an
indirect practical
data mining
approach using
office appliance
power
consumption data
in order to learn
the occupant
behavior

Decision Tree,
LWNB, SVM, LR,
LWR  and Dynamic
Simulation

Occupancy
Schedules

EnergyPlus

D’Oca  and Hong [75] Office 17,402 5 Frankfurt, Germany Create an occupant
behavior and
schedule modeling
method

Development of a
three-step data
mining framework
to discover
occupancy patterns
in office spaces

Decision Tree,
k-means

Occupancy
Schedules

RapidMiner
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lgorithms, especially related to model predictive control, although
ost of them are better classified as grey models, as in Refs. [23,24].
As mentioned before, white box models require a thermal engi-

eering expert to model and interpret their results. The study
f dynamic driving forces, made by the reviewed works, clearly
alls for a previous extended knowledge on dynamic heat trans-
ission in buildings. The output of these models is not directly

nterpretable by building managers and the adaptation of the tech-
ique results to manageable information is done under the user
riteria, overlooking sometimes interesting information for build-
ng managers. These models perform an exhaustive modeling of
utdoor conditions, requiring detailed data (usually hourly data) on
olar radiation, outdoor temperatures and wind velocity. The access
o these databases is not always free for researchers and users. In
ddition, it is common to find data gaps for specific locations far
rom important cities and climate stations, making it difficult to

odel buildings in certain locations.

.2. Black box/Statistical/Inverse models

.2.1. Conventional statistics/Regression-based models
An improved method for the application of Cooling Degree Days

CDD), base temperature determination and CDD calculation tech-
ique including latent loads is presented in [25]. An approach to
implify and avoid detailed hourly simulations that uses predeter-
ined coefficients to be applied to monthly energy consumption

ctual data from energy bills is presented in [26], showing errors
ithin 10% [27].

Simplified regression models producing required data by
ynamic simulation can overcome lack of adequate measurement
ata as in [28], utilizing different regression inputs for 16 French
ities, with the deviation between predicted and simulated results
eing 5.1% with average error of 2%. The same methodology with
ifferent regression inputs is used in [29,30]. An extensive Monte
arlo simulation campaign is used in [30], with the regression
quation showing a maximum error less than 5% to simulation
utputs. The Monte Carlo simulation with the DOE-2 simulator gen-
rating 30 thousand design parameter combinations and using 17
ey building design variables is presented in [31], with the result-
ng statistical analysis of data including stepwise regression, linear
egression equations and the most effective parameter sensitivity
nalysis.

Estimation of heat and electricity load profiles based on regres-
ion analysis (heat load) and statistical analysis (electricity load)
f district heat and electricity consumption measurements is dis-
ussed in [32]. Various regression analyses are performed in [33],
uggesting the use of both the coefficient of determination and the
oot mean square error metrics for model quality comparison and
ssessment. A computationally efficient autoregressive model for
hermal load prediction using different sets of coefficients is pre-
ented in [34], validating prediction accuracy with the EnergyPlus

®

imulator.
The Principal Component Regression can solve multi-

ollinearity effects transforming collinear variables to orthogonal
omponents [35]; the method is validated through infrared ther-
ography showing superiority against statistical rating method.

he prediction accuracy of cooling load in office buildings can be
mproved by simultaneous application of Principal Component
nalysis of meteorological factors, cumulative effect of high

emperatures and dynamic two step correction; the validation was
one in Tianjin office buildings showing a prediction accuracy of a
ean absolute relative error less than 8% [36].

Energy labeling data and primary energy consumption of

etherlands dwellings, with nearly 200k entries being used in a
op-down approach [37,38] reveal different parameter influences
f theoretical and actual gas and electricity consumptions. The
dings 158 (2018) 1662–1682 1677

PRInceton Scorekeeping Method (PRISM) is used to examine the
energy-efficiency profile of individual single-family houses from
Gainesville, Florida [39], by processing weather and usage data
as inputs to an iterative regression approach computing energy
efficiency parameters. Various regressions have been tried over
building databases of Portfolio Manager/EnergyStar scoring appli-
cations; the most notable and relevant ones were those addressing
US and Canada hospital population [40–42].

A model approach focusing on medical equipment and over
33,500 h of measurement in the University Medical Centre of Ham-
burg shows that cumulative load predictions for an entire building
are possible with an error of less than 6% [43]. The overall energy
footprint of a CT scan is calculated in [44].

The stochastic nature of lighting energy use due to occupant
behavior is analyzed in [45], based on relative measurements from
15 large Beijing and Hong Kong office buildings and a stochastic
lighting energy use model is proposed to improve simulation accu-
racy. Similarly, [46] a stochastic model is proposed to be used in
simulations of residential building cases.

A specific usage of disaggregation techniques for energy bills has
been studied in [47], proposing an optimization algorithm to estab-
lish best possible cooling energy balances and disaggregate energy
consumption of different users. The algorithm has been validated
through cooling season measurement data from two Hong Kong
and Beijing buildings.

Although allowing a detailed energy consumption comprehen-
sion, the statistics and regression-based techniques rely on a large
amount of historical information, apart from the data needed to cal-
ibrate and validate the model. This sort of information may not be
always available to users, both due to technical and managerial rea-
sons. One of the main limitations is that energy consumption must
be assigned beforehand to end-uses, lacking the chance of detect-
ing marginal consumers [4]. Furthermore, these techniques require
a former estimation of occupant behavior, taking into account
the demonstrated variability in determining occupant behavior in
building energy modeling.

Although these techniques perform accurate predictions and
reduce error from 6% [43] to 2% [28], they are not the best option for
detecting the reasons of consumption and designing energy saving
measures, as the models are more focused in the prediction, rather
than the identification of energy saving opportunities.

The Regression analysis is a validated technique for explaining
major consumers in buildings. However, residuals are usually not
accurately explained, as no specific pattern is found [29].

There is still a gap in knowledge about regression techniques for
explaining residuals, those smalls energy consumers that, although
may  not be significant in amount, reflect non-considered phenom-
ena in the buildings that hide behaviors or appliances beyond
the building manager’s control. The accurate consideration and
explanation of residuals is still an open research challenge in the
evolution of these techniques.

3.2.2. Machine learning
A large number of papers exploit the potential of Artificial Neural

Networks (ANN) in energy consumption predictions. A multi-layer
perceptron ANN, based on a backpropagation training algorithm for
load prediction is presented in [48]. Various types of ANNs for the
prediction of the heating energy consumption of a university cam-
pus are studied in [49], trained and tested on actual measurement
data; usage of an ensemble of more than one types leads to better
results. Different Matlab implemented neural network topologies

for the prediction of outdoor air temperatures using data from four
European cities are shown in [50]. A short-term (15 min) forecast-
ing model for a commercial building energy usage based on an ANN
with Bayesian regularization is presented in [51].
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An Adaptive Neural Fuzzy Inference System (ANFIS) is proposed
or residential lighting load prediction in [52], showing better corre-
ation and root mean square error to regression models on metered
ata. The ANN and Case-Based Reasoning (CBR) techniques were
sed for an hourly electricity consumption prediction in a Cana-
ian facility in [53], with ANN models outperforming CBR models.
implified CBR (S-CBR) was applied on the energy performance of

 Seoul school building and validated in [54]. A comparison of the
pplication of 7 machine learning techniques to data from the res-
dential and commercial building sector is presented in [55], with
NN-based methods performing better in the commercial build-

ng and the Least Square Support Vector Machines outperforming
NNs in the residential buildings.

Besides the ANNs, other approaches receive attention in litera-
ure. A decision tree-based predictive model is presented in [56],
acilitating the easy extraction of information, accurately predicting
uilding energy demand levels (92%) and providing a combination
f factors and thresholds, leading to high building energy per-
ormances. A hybrid Genetic Algorithm-Adaptive Network based
uzzy Inference System (GA-ANFIS) is presented in [57], providing
etter prediction accuracy to ANNs. A random forest-based statisti-
al machine learning framework is used in [58] to estimate heating
nd cooling load, validated through simulation of 768 residential
uildings. The same dataset is used in [59] for residential build-

ng load estimation, via a genetic programming-based framework
ombined with a local search method and linear scaling.

Similar to regression techniques, a large amount of historical
ata is necessary for training and predicting energy consumption.
nother limitation is the time-consuming calculations and specific
oftware tools user-expertise. One disadvantage observed in the
eviewed works is the need for pre-processing a large amount of
ata in order to decide the number of networks before building
he model [48] or identify significant variables and outliers [49].
ike regression models, machine learning techniques do not give
ny explanation to outliers as residual data is removed in the pre-
rocessing analysis [49].

Such techniques could predict energy consumption more accu-
ately. However, they face the challenge of a deeper explanation of
xisting phenomena, as they do not calculate dynamic heat transfer
henomena. In fact, from the user point of view, it could be claimed
hat machine learning techniques represent an opposite approach
o white box and physical techniques.

Machine learning developers also face the problem of easy
eneralization to different buildings without requiring significant
hange of the model or by endangering the precision of predictions.

.3. Grey box/Hybrid models

A recent review of approaches to model calibration is presented
n [60], assessing various analytical and mathematical/statistical
ools. Yet, no consensus exists on standard calibration procedures
nd methods to be generally used on a variety of buildings.

A systematic evidence-based methodology for calibration of
imulation models is presented in [61–64]. Parameter values refer-
nce the source of information used to make changes to the initial
odel, using version control software to store the records of the

alibration process. A demonstration case calibrating an Ireland
ntel campus four-floor office building is presented in [62], with
he results showing excellent correlation with measured HVAC
onsumption data. The methodology is combined with statistical
onte Carlo-based optimization techniques in [63,64], applied in

 naturally ventilated library building at the National University of

reland, Galway.

A detailed example of calibration flow for an EnergyPlus
®

sim-
lation of a building with underfloor heating system and natural
entilation is shown in [65], taking into account heat pump, energy
dings 158 (2018) 1662–1682

consumption and zone temperature measurements. The possibility
of poor calibrated models based on only one measured parameter
is shown in [66], showcased for a medieval building EnergyPlus
model. A similar example appears in [67], where a set of two  envi-
ronmental sensors and a weather station are used for annual space
air temperature predictions.

A hybrid physical–statistical approach is described in [68],
where stochastic parameters are introduced into the physical
model and the statistical time series model is formulated to reflect
model uncertainties, while a methodology based on Bayesian cali-
bration of the normative EN ISO 13790 energy models is presented
in [69], focusing on model parameter uncertainty quantification
to generate probabilistic predictions of retrofit performances. The
uncertainty is also quantified in [70] by means of stochastic differ-
ential equations applied to a general heat balance for an arbitrary
number of loads and zones in a building, to determine the dynamic
thermal response under random conditions. Uncertainty in energy
consumption due to actual weather and building operational prac-
tices is investigated in [71], using simulation-based analysis of a
medium size office building and Monte Carlo sampling of possible
parameter combinations.

The need for more accurate occupant behavior models is
among the results of [72], showing differences of 50% in average
between design time predicted energy use of a low-energy build-
ing in Sweden, obtained through dynamic simulation, and actual
measurements after tenants moved in. State-of-the-art occupant-
related data collection and monitoring, modeling approaches,
model evaluation, and model implementation into simulation tools
is presented in [73].

An indirect data mining approach to learn occupant passive
behavior and create the occupancy schedules of the EnergyPlus
dynamic simulator is also presented in [74]. A similar data mining
framework in presented in [75], where a learning process is used
to extrapolate office occupancy patterns and working user pro-
files from big data streams in order to feed typical building energy
modeling tools.

Accurate occupant behavior models deal with difficulties in the
acquisition of information from building occupants. These mod-
els rely on their responses for a first modeling stage but need an
exhaustive fitting once the first results are obtained. The step of
occupant interviews and response analysis is also time-consuming.
In addition, occupants are not always accessible for interview (for
example in medical buildings).

Visual-based approaches such as the Energy Performance Aug-
mented Reality are considered as powerful tools to know the real
state of behavior of the building. The authors of [76] proposed a
model approach that combines digital and thermal imagery with
fluid dynamics models. The approach proposed consisted of three
parts: 1) thermal data and digital building data collection with
a thermal camera; 2) building energy performance simulation
through a computational fluid dynamics analysis; 3) both models
are superimposed in a common 3D environment, obtaining rea-
sonable accuracy. In [77] this model was  also used to visualize
deviations between buildings’ state and simulated energy perfor-
mances and visualize the potential performance problems in the
Energy Performance Augmented Reality environment. The model
identified thermal bridges in the tested rooms.

In [78] the authors used a Graphic Processing Unit structured by
Motion and Multi-View Stereo algorithms to reconstruct in 3D the
geometrical conditions of the building that was  studied. Then, this
model was superimposed to a 3D thermal point model. The model
was used to represent six interior and exterior spaces, concluding

that thermal imagery is a feasible and relatively quick method for
analysing the actual energy performance of existing buildings. In
[79] this method was  used to conduct a cost-benefit analysis of
different retrofit alternatives of two existing buildings. The results
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Table  2
Comparison of selected approaches.

Approach Simplicity Completeness Generality Usefulness Innovation
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•

Bill-based methods High Medium 

Monitoring-based methods Low Medium 

Dynamic simulations Low High 

emonstrated the reliability and accuracy of the method in estimat-
ng the return on investment from retrofitting thermal performance
roblems.

Visual models containing thermal values facilitate the recog-
ition of temperature distribution and the detection of building
erformance failures. These methods facilitate the detection of
uilding performance deviations and identify disparities between
uilding information and real conditions. Usually, these techniques
re combined with more detailed approaches in order to extract
nformation from the visual analysis.

Vision based methods have potential in reducing time and effort
n collecting data and high level of accuracy in detecting thermal
ridges and defaults in the building. These methods present an ade-
uate balance between effort and quality of the analysis that they
erform, and they also present a great advantage by facilitating
he visualization of the data and the immediacy of their analysis.
o the contrary of other approaches, visual-based methods do not
equire detailed previous information of the building in order to
rovide immediate results without the need of exhaustive data
nalysis. These methods accurately examine the exterior energy
erformance of the building in real time. However, they are not
asily applicable to interior performance and generally they need
o be supported by another approach.

Compared with the approaches cited in previous sections, these
odels have the limitation that are not applicable in all the project’s

hases, but only in the operation phase of existing buildings. Some
spects still need to be improved: for example, achieving more
ccuracy and reliability in the identification of the threshold for
erformance detection under different external and internal con-
itions. These approaches require an exhaustive on-site inspection
f the building, and some drawbacks could come across during this
rocess, such as difficulties accessing some rooms or conflict with
he performed activities (for example, in educative buildings or

edical centres).

. Discussion on the suitability of approaches

Some authors [6,80] provide qualitative comparison frame-
orks for the identified methods on the axis of the application and
se-case on the level of building details or on the amount of mea-
urement data needed, on the computation time and on the level of
nsight to the underlying physical processes revealed. Quantitative
omparisons exist in the literature too, but they are inherently less
eneric, as they must compare a restricted set of explicit method
nstances (i.e. explicit model implementations) [7–9].

In this work, we follow a horizontal, selective but highly generic
iew. We  sort out three of the presented approaches: bill-based
ethods, monitoring-based methods and dynamic simulations

ffering a comparison against a set of specific parameters as shown
n Table 2 and Fig. 2.

The selected approaches are characterized based on the follow-
ng features:

Simplicity: inversely relates to development effort, the total work
done to apply the approach, the required information volume,

specialized skills of staff, need of an interdisciplinary team, etc.
Lower values of these concepts lead to a higher simplicity (lower
complexity) which is preferable, as it has a higher guarantee of
being successfully and on time applied.
High Low Low
Medium High High
Low High Medium

• Completeness: is the quality of explaining the total reality
involved in an energy consumption system. This property
depends largely on the degree of specificity reached and can vary
significantly among different methods of the same approach.

• Generality: stands for the quality of the obtained results, being
general enough as to be useful for a standardized comparison
among different buildings. Higher generality is preferable as the
effort to extrapolate conclusions is lower and easiness to intro-
duce the approach in new buildings is greater.

• Usefulness: relates to the utility of the derived knowledge for
making decisions on energy efficiency strategies. Models that
discover complex and interesting variable relationships and get
further insight are preferable, since they represent an advance in
the field. The level of detail of the results of the models compared
in this article is variable. This parameter evaluates the exploita-
tion of the results and predictions obtained by the model for its
use in a later analysis, especially its applicability for the decision-
making in the prioritization of economic investments in order to
reduce the energy demand of the studied building. This feature
also values the utility of results of each model for the stakeholders
in investments for energy efficiency in buildings.

• Innovation: represents the space to provide original results by
using cutting edge techniques. Although the field of energy mod-
eling has been highly explored and refined in recent years, as it
has been pointed out in the critical analysis of the limitations of
each of the approaches compared, there are still open research
challenges that need to be addressed in the future. This feature
evaluates the degree of flexibility that each approach presents
in order to improve itself and the introduction of new tools to
continue the innovation in its field of application.

Table 2 summarizes the level of achievement of the five fea-
tures above explained by each model compared. Three levels of
achievement are identified: low, medium and high.

This tabulation system allows to clearly differentiate the
strengths and weaknesses of each of the approaches compared. The
evaluation has been made based on: the literature review made in
the previous sections, the critical analysis performed during this
literature review, the study of the depth of detail of the works
reviewed. A low level means that the feature is not an identifiable
or achieved characteristic by the model. A medium level indicates
that the model presents this feature, although with deficiencies or
shows obvious improvement. Finally, a high level means that this
feature is clearly identifiable at a satisfactory level during the use
of the model and the results obtained.

From Table 2, it can be seen that the bill-based methods reach
a high level of simplicity and generality, while an intermediate
level in completeness is reported. However, it shows a low score
on both usefulness and innovation. Bill-based methods are more
easily applicable and, therefore, more general; nonetheless, they
do not go beyond the state-of-the-art, so the innovation degree is
poor.

The level of simplicity of monitoring-based methods is low,
as it can be hard to implement (depending on the measurement

they may  require sensors or specific information) and may be dif-
ficult to extrapolate to other environments. However, margin to
innovate is very good and the obtained knowledge very useful
for decision-making, reaching a high score on both usefulness and
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Fig. 2. Comparison

nnovation. Finally, dynamic simulations need an important devel-
pment effort and are hardly general; however, they provide the
ost detailed description of energy use distribution and are use-

ul for energy retrofitting in buildings, showing a medium score in
eneral. Finally, dynamic simulations reach high levels of complete-
ess, as they allow a detailed description of the energy consumption
f the building. Dynamic simulations also reach high levels in
sefulness, as the results obtained are effective and applicable in
ecision-making regarding economic investment in energy retrofit
f buildings. They have a medium score in innovation (halfway
etween detailed monitoring-based methods and generalists bill-
ased methods). Regarding simplicity, they are characterized by

 low score given that specific knowledge by the user is neces-
ary prior to perform a simulation. They also obtain a low score in
eneral, since these models require specific details of the building
especially regarding construction materials and occupation pro-
les) and their exportation to other buildings is not direct and
equires a detailed change of parameters.

The advantages of the three approaches are fairly matched, so
hoosing the best method is a matter of importance of the afore-
entioned properties. To guarantee minimal and general results,

ill-based methods seem the best option; in order to innovate,
onitoring-based methods are recommended; for obtaining the

eepest knowledge, the dynamic system method is preferable.
With a level of intermediate effort in data collection and by

ttributing much of the quality of the taken information to the user
nstead of to the existence of monitoring systems (as in machine
earning), hybrid models allow obtaining predictions with low error
ates. In addition, the approach is useful for identifying opportuni-
ies for energy saving.

Fig. 2 compares these approaches according to the five proposed
riteria.

A known barrier among the open research challenges in deliver-
ng optimal hybrid models is the data collection process. Machine
earning and calibrated methods need detailed metered infor-

ation from the building, usually collected by advanced meters,
hose cost is still not feasible for most of the buildings or housing

wners. In order to achieve a higher market penetration of such
eters, the challenge of their cost reduction has to be met. Fur-

hermore, model predictions are necessary to be compared with
eal energy bills. Researchers usually find barriers in accessing
uch information, usually stored by energy companies. Access to

arger portions of information on energy consumption of districts
r cities would provide a starting point to implement accurate
redictive models at high scale. This would in turn help the identifi-
ation of big consumers and the implementation of specific energy
lected approaches.

saving measures at district level. This is also associated to a chal-
lenge in the legal dimension, in order to make such data available
to the research community, without including sensitive informa-
tion.

5. Concluding remarks

A revision of existing approaches for modeling energy consump-
tion and efficiency in buildings has been conducted.

The main features that characterize the methodologies are iden-
tified. A performance analysis of the methodologies is conducted,
and a rating system is proposed. According to this rating, to guar-
antee minimal and general results, bill-based methods are the
best option. Measurement-based methods present higher degree of
innovation, whereas to get the deepest knowledge, dynamic system
modeling is the best option.

This assessment methodology facilitates the comparison of dif-
ferent approaches when energy modeling in buildings is concerned.
The selection of the most appropriate method is relevant to the
individual expectations and needs.

A hybridization of the analyzed approaches could offer a more
complete solution, by taking profit of their main advantages and
mitigating their individual drawbacks. In this context, bill-based
methods could be utilized to set dynamic models that can be sub-
sequently optimized by measurement-based methods.
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performance of residential buildings: a genetic programming approach,
Energy Build. 102 (2015) 67–74, http://dx.doi.org/10.1016/j.enbuild.2015.05.
013.

dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.rser.2013.03.004
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.energy.2006.11.010
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2008.06.013
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2015.02.045
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
dx.doi.org/10.1016/j.enbuild.2012.08.037
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0060
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enconman.2007.06.045
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.07.042
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2012.06.004
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2011.12.008
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2012.08.005
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.enbuild.2011.11.046
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.energy.2014.08.019
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2014.10.080
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1016/j.enbuild.2012.01.022
dx.doi.org/10.1109/TIE.2014.2387095
dx.doi.org/10.1109/TIE.2014.2387095
dx.doi.org/10.1109/TIE.2014.2387095
dx.doi.org/10.1109/TIE.2014.2387095
dx.doi.org/10.1109/TIE.2014.2387095
dx.doi.org/10.1109/TIE.2014.2387095
dx.doi.org/10.1109/TIE.2014.2387095
dx.doi.org/10.1109/TIE.2014.2387095
dx.doi.org/10.1109/TIE.2014.2387095
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0120
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0125
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.07.027
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2010.11.012
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2008.04.001
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2012.11.010
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2014.07.096
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2015.09.073
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.enbuild.2007.10.014
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.rser.2015.03.035
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2012.08.007
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2013.12.055
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enbuild.2015.08.041
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enpol.2013.06.018
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.07.009
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
dx.doi.org/10.1016/j.enbuild.2015.01.037
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0200
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0205
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0210
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1016/j.enbuild.2015.08.022
dx.doi.org/10.1177/1355819614554845
dx.doi.org/10.1177/1355819614554845
dx.doi.org/10.1177/1355819614554845
dx.doi.org/10.1177/1355819614554845
dx.doi.org/10.1177/1355819614554845
dx.doi.org/10.1177/1355819614554845
dx.doi.org/10.1177/1355819614554845
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.09.071
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2014.12.028
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2012.09.043
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.05.056
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.02.052
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.06.054
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.11.045
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.005
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.01.047
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2015.02.004
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2012.03.010
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2010.04.006
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2011.07.010
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2012.03.003
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013
dx.doi.org/10.1016/j.enbuild.2015.05.013


1 d Buil

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

682 C. Koulamas et al. / Energy an

60] D. Coakley, P. Raftery, M. Keane, A review of methods to match building
energy simulation models to measured data, Renew. Sustain. Energy Rev. 37
(2014) 123–141, http://dx.doi.org/10.1016/j.rser.2014.05.007.

61]  P. Raftery, M.  Keane, J. O’Donnell, Calibrating whole building energy models:
an  evidence-based methodology, Energy Build. 43 (2011) 2356–2364, http://
dx.doi.org/10.1016/j.enbuild.2011.05.020.

62] P. Raftery, M.  Keane, A. Costa, Calibrating whole building energy models:
detailed case study using hourly measured data, Energy Build. 43 (2011)
3666–3679, http://dx.doi.org/10.1016/j.enbuild.2011.09.039.

63]  D. Coakley, P. Raftery, P. Molloy, G. White, Calibration of a detailed bes model
to  measured data using an evidence-based analytical optimisation approach,
Proc. Build. Simul. 2011 12th Conf. Int. Build. Perform. Simul. Assoc. (2011).

64] D. Coakley, P. Raftery, P. Molloy, Calibration of whole building energy
simulation models: detailed case study of a naturally ventilated building using
hourly measured data, in: 1st Build Simul. Optim. Conf., Loughbrgh, 2012.

65] G. Mustafaraj, D. Marini, A. Costa, M.  Keane, Model calibration for building
energy efficiency simulation, Appl. Energy 130 (2014) 72–85, http://dx.doi.
org/10.1016/j.apenergy.2014.05.019.

66] F. Roberti, U.F. Oberegger, A. Gasparella, Calibrating historic building energy
models to hourly indoor air and surface temperatures: methodology and case
study, Energy Build. 108 (2015) 236–243, http://dx.doi.org/10.1016/j.enbuild.
2015.09.010.

67] M. Royapoor, T. Roskilly, Building model calibration using energy and
environmental data, Energy Build. 94 (2015) 109–120, http://dx.doi.org/10.
1016/j.enbuild.2015.02.050.

68] X. Lü, T. Lu, C.J. Kibert, M.  Viljanen, Modeling and forecasting energy
consumption for heterogeneous buildings using a physical–statistical
approach, Appl. Energy 144 (2015) 261–275, http://dx.doi.org/10.1016/j.
apenergy.2014.12.019.

69] Y. Heo, R. Choudhary, G.A. Augenbroe, Calibration of building energy models

for  retrofit analysis under uncertainty, Energy Build. 47 (2012) 550–560,
http://dx.doi.org/10.1016/j.enbuild.2011.12.029.

70]  H. Brohus, C. Frier, P. Heiselberg, F. Haghighat, Quantification of uncertainty in
predicting building energy consumption: a stochastic approach, Energy Build.
55  (2012) 127–140, http://dx.doi.org/10.1016/j.enbuild.2012.07.013.

[

dings 158 (2018) 1662–1682

71] L. Wang, P. Mathew, X. Pang, Uncertainties in energy consumption introduced
by  building operations and weather for a medium-size office building, Energy
Build. 53 (2012) 152–158, http://dx.doi.org/10.1016/j.enbuild.2012.06.017.

72] F. Karlsson, P. Rohdin, M. Persso, Measured and predicted energy demand of a
low energy building: important aspects when using Building Energy
Simulation, Build. Serv. Eng. Res. Technol. 28 (2007) 223–235.

73] D. Yan, W.  O’Brien, T. Hong, X. Feng, H. Burak Gunay, F. Tahmasebi, A.
Mahdavi, Occupant behavior modeling for building performance simulation:
current state and future challenges, Energy Build. 107 (2015) 264–278, http://
dx.doi.org/10.1016/j.enbuild.2015.08.032.

74] J. Zhao, B. Lasternas, K.P. Lam, R. Yun, V. Loftness, Occupant behavior and
schedule modeling for building energy simulation through office appliance
power consumption data mining, Energy Build. 82 (2014) 341–355, http://dx.
doi.org/10.1016/j.enbuild.2014.07.033.

75] S. D’Oca, T. Hong, Occupancy schedules learning process through a data
mining framework, Energy Build. 88 (2015) 395–408, http://dx.doi.org/10.
1016/j.enbuild.2014.11.065.

76] Y. Ham, M.  Golparvar-Fard, EPAR, Energy Performance Augmented Reality
models for identification of building energy performance deviations between
actual measurements and simulation results, Energy Build. 63 (2013) 15–28,
http://dx.doi.org/10.1016/j.enbuild.2013.02.054.

77] M.  Golparvar-Fard, Y. Ham, Automated diagnostics and visualization of
potential energy performance problems in existing buildings using energy
performance augmented reality models, J. Comput. Civ. Eng. 28 (2014) 17–29,
http://dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311.

78] Y. Ham, M.  Golparvar-fard, An automated vision-based method for rapid 3D
energy performance modeling of existing buildings using thermal and digital
imagery, Adv. Eng. Inform. 27 (2013) 395–409, http://dx.doi.org/10.1016/j.aei.
2013.03.005.

79] Y. Ham, M.  Golparvar-Fard, Three-dimensional thermography-based method

for  cost-benefit analysis of energy efficiency building envelope retrofits, J.
Comput. Civ. Eng. ASCE 29 (2015) B4014009, http://dx.doi.org/10.1061/
(ASCE)CP.1943-5487.0000406.

80] N. Fumo, A review on the basics of building energy estimation, Renew. Sustain.
Energy Rev. 31 (2014) 53–60, http://dx.doi.org/10.1016/j.rser.2013.11.040.

dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.rser.2014.05.007
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.05.020
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
dx.doi.org/10.1016/j.enbuild.2011.09.039
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0315
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0320
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.apenergy.2014.05.019
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.09.010
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.enbuild.2015.02.050
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.apenergy.2014.12.019
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2011.12.029
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.07.013
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
dx.doi.org/10.1016/j.enbuild.2012.06.017
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
http://refhub.elsevier.com/S0378-7788(17)30564-9/sbref0360
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2015.08.032
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.07.033
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2014.11.065
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1016/j.enbuild.2013.02.054
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1061/(ASCE)CP. 1943-5487.0000311
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1016/j.aei.2013.03.005
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000406
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040
dx.doi.org/10.1016/j.rser.2013.11.040

	Suitability analysis of modeling and assessment approaches in energy efficiency in buildings
	1 Introduction
	2 Classification of modeling approaches
	2.1 Classification according to the relative hierarchical position of data inputs and building sector
	2.2 Classification according to the details of required information
	2.2.1 White box or physical models
	2.2.2 Black/grey box or statistical models

	2.3 Classification according to the energy data acquisition approach

	3 Combined insight on classification and methodologies
	3.1 White box/Physical/Forward models
	3.2 Black box/Statistical/Inverse models
	3.2.1 Conventional statistics/Regression-based models
	3.2.2 Machine learning

	3.3 Grey box/Hybrid models

	4 Discussion on the suitability of approaches
	5 Concluding remarks
	Acknowledgments
	References


