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Abstract Watershed identification is one of the main areas of study in the field
of topography. It is critical in countless applications including sustainability and
flood risk evaluation. Beyond its original conception, the watershed algorithm has
proved to be a very useful and powerful tool in many different applications beside
topography, such as image segmentation. Although there are a few publications
reviewing the state-of-the-art of watershed algorithms, they are now outdated. In
this chapter we review the most important works done on watershed algorithms,
including the problem over-segmentation and parallel approaches. Open problems
and future work are also investigated.

1 Introduction

One of the main topics in the field of topography are watersheds [90]. Knowing the
right watersheds and their corresponding catchment basins is essential in countless
applications in areas such as Civil Engineering, Hydrology, Environmental Science,
Ecology, Limnology, Urban Planning, Agriculture and so on [2, 52, 66, 86]. For
instance, determining areas where a flood risk exists can help experts to make a
decision to forbid the urban construction in such areas [35]; studying the movement
of water within the hydrological cycle need the use of catchment basins as units [59];
analyzing water quality inside lakes or reservoirs depends on several factors included
at catchment basin scale [71]; determining territorial boundaries (e.g., such as in the
case of Hudson Bay basin) require the use of watersheds [80], etc.

R. Romero-Zaliz (B)
Department of Computer Science and Artificial Intelligence, University of Granada, Granada,
Spain
e-mail: rocio@decsai.ugr.es

J.F. Reinoso-Gordo
Department of Architectonic and Engineering Graphic Expression, University of Granada,
Granada, Spain
e-mail: jreinoso@ugr.es

© Springer International Publishing AG 2018
C. Cruz Corona (ed.), Soft Computing for Sustainability Science,
Studies in Fuzziness and Soft Computing 358, DOI 10.1007/978-3-319-62359-7_12

235



236 R. Romero-Zaliz and J.F. Reinoso-Gordo

0

100

200

300

400

19
68

19
69

19
70

19
71

19
72

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Year

C
ou

nt

Fig. 1 Number of publications per year. Data obtained from Scopus c© and CiteseerX c© in October
13th, 2015

In the late ’60 and ’70s mathematicians and engineers started to work in the first
algorithmic solutions for determining catchment basin’s boundaries and watersheds
[38, 43, 72]. Later on, researchers implemented a standardized version which they
called thewatershed algorithm [22]. The watershed algorithm has proved to be a very
useful and powerful tool in many different application fields such as cartography [7,
32, 50, 65, 94], general image segmentation [61, 73, 87, 92, 97], video related issues
[17, 19, 34, 95, 98], etc. There are several publications on biological and/or medical
applications such as analysis of MRI images [3, 28, 46, 56, 77], cell images [4, 12,
14, 24, 85], ultrasound images [16, 33, 41, 45, 76], mammogram images [13, 23,
40, 79, 89], microscopy images [1, 6, 37, 42], among others.

Although there are a few publications reviewing the state-of-the-art of watershed
algorithms [43, 60] and applications [18, 29, 49, 75], they are now outdated. In the
last few years there has been an increasing number of publications in journals and
conferences (Figs. 1 and 2).

Nowadays, most of the research in watershed algorithms are specifically devoted
to image segmentation, but there are still some applications to real topographical
watersheds, as shown in the world map of Fig. 3.
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Fig. 2 Number of
publications by document
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Fig. 3 Publications apply to topographic watersheds by country. The number of publications is
color-coded from white to green, where darker green represent a higher number of publications in
the given country

The rest of this survey is organized as follows. Section 2 introduces the basic
common definitions used in the reviewed papers. Section 3 shows the main algo-
rithms and strategies used for watershed determination. Section 4 is devoted to one
of the main problems in watershed algorithms: over-segmentation. Section 5 reviews
parallel approaches. Finally, Sect. 6 is reserved for conclusions and discussion.
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2 Definitions

Each reviewed paper in this work uses different notation and terminology. Thus,
we here propose a unified notation that will be used throughout this work in order
to be able to study and compare the main algorithms and strategies cited in the
bibliography.

Let us first consider a drop of water on a topographic surface. The water streams
down, reaches a minimum of height and stops there. The set of all points of the
surface, which the drops of water reaching this minimum can come from, can be
associated with each minimum. Such a set of points is a catchment basin of the
surface. The lines, which separate different catchment basins, are called watersheds
or watershed lines.

Definition 1 We consider a topographic surface represented by a grid structure
called Digital Elevation Model (DEM), composed of cells, analogous to a digital
image (I MG), composed of pixels. Every cell/pixel has a natural number as value
representing heights on DEM or intensity on I MG of size n × m.

DEM = {xi j ∈ R|i ∈ N, j ∈ N, i ∈ (0, . . . , n), j ∈ (0, . . . ,m)} (1)

I MG = {xi j ∈ N|i ∈ N, j ∈ N, i ∈ (0, . . . , n), j ∈ (0, . . . ,m)} (2)

For the sake of simplicity, from now on we will use the notation for topographic
surface instead of the image’s version in the rest of this manuscript.

Definition 2 Given a cell p defined as its position (i, j) in DEM , we define function
I as I (p) = xi j .

Definition 3 The set of neighborhood cells of p in the DEM is called NG(p) and
collect all cells adjacent (ad j) to p.

NG(p) = {p′ ∈ I |ad j (p, p′)} (3)

Definition 4 A path P of length l between two cells p and p′ in DEM is a (l + 1)-
tuple of adjacent cells (p0, p1, . . . , pl−1, pl) such that p0 = p, pl = p′.

Definition 5 Cells belonging to the same connected plateau CP must satisfy the
following condition

∀p, p′ ∈ CP, ∃P = (p0, p1, . . . , pl )|p0 = p ∧ pl = p′ ∧ ∀pi ∈ P, I (pi ) = I (p) = I (p′)
(4)

Definition 6 A minimum area M of DEM is a connected plateau of cells from which
it is impossible to reach a cell of lower altitude without having to climb (Fig. 4).

M = {p|∀p′ /∈ CP(p) ∧ I (p′) ≤ I (p) → ∀P = (p0, p1, . . . , pl )|p0 = p ∧ pl = p′,
∃i ∈ [1, l]|I (pi ) ≥ I (p0)} (5)
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Fig. 4 Connected plateau

Fig. 5 Geodesic distance

For a particular altitude h we denote the minimum area as Mh .

Definition 7 Th(I ) stands for the threshold of I at level h where h is the value taken
by I and h ∈ [hmin, hmax ].

Th(I ) = {p|I (p) ≤ h} (6)

Definition 8 The geodesic distance dA(p, p′) between two cells p and p′ in A is
the minimun of the length of the paths which join p and p′ and are totally included
in area A (Fig. 5).

dA(p, p
′) = min({length(P), P = (p, . . . , p′) which is totally included in A})

(7)

Definition 9 Let A and B be two sets of cells of a given DEM (Fig. 6), where B ⊂ A.
B is composed by k areas not adjacent: B1, B2, . . . , Bk (black areas in Fig. 6) but
connected through A. The geodesic influence zone I Z A(Bi ) of a component of B in
A is the locus of the cells of A whose geodesic distance to Bi is smaller than their
geodesic distance to any other component of B (blue color in Fig. 6 is the I Z A(B1)).

I Z A(Bi ) = {p ∈ A,∀ j ∈ [1, k] ∧ j �= i |dA(p, Bi ) < dA(p, Bj )} (8)

Definition 10 The cells of A which do not belong to any geodesic influence zone
constitute the skeleton by influence zones (SKIZ) of B inside A, denoted SK I ZA(B)
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Fig. 6 Geodesic influence
zone. A small example with
k = 3

SK I ZA(B) = A \ I Z A(B) with I Z A(B) =
⋃

i∈[1,k]
I Z A(Bi ) (9)

Definition 11 The set of catchment basins of DEM is equal to the set Xhmax com-
posed of not adjacent areas and obtained after the following recursion

{
Xh = Th(I ) , h = hmin

Xh+1 = Mh+1 ∪ I ZTh+1(I )(Xh) , h ∈ (hmin, hmax − 1] (10)

Definition 12 The watersheds are XC
hmax

, i.e. the complement set of Xhmax .

3 Algorithms

Naturally, the first algorithms for computing watersheds are found in the field of
topography. Lets recall that topographic surfaces are numerically handled through
DEMs, these are arrays of numbers that represent the spatial distribution of terrain
altitudes [90]. In image segmentation, its main application, the idea of the watershed
construction is quite simple: a gray scale image can be considered as a topographic
relief, the gray scale value of a pixel being the altitude at that particular point [69].
Using this analogy we can now review all papers regardless of its application.

There are a few reviews devoted to watershed algorithms in the bibliography.
The first one appeared in the early 90s, when Beucher and Meyer publish a book
chapter introducing what they have called the “watershed transformation” (basically
the flooding process explained below) along with the principles of morphological
segmentation and morphological tools [9]. This transformation was rapidly adopted
by many other researchers for their own particular applications [30, 96].

Later on in 2003, Najman and Couprie study the behavior of watershed algo-
rithms. Through the introduction of the concept of “pass value” they show that most
classical watershed algorithms do not allow the retrieval of some important topo-
logical features of the image [60]. An important consequence of this result is that it
is not possible to compute sound measures such as depth area or volume of basins
using most classical watershed algorithms.
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Fig. 7 Immersion-based watersheds

Finally and more than 5 years later, Körbes and Lotufo present a communication in
a symposium reviewing fifteen watershed algorithms in a comprehensive way [43].
Afterwards several novel algorithms were developed and thus needed an updated
review.

But let us first introduce the two main strategies for determining watersheds, we
will study each of them separately in the next subsections.

3.1 By Immersion

The first strategy that we will analyze is called immersion (also called flooding). It
was first developed for contour detection in images and introduced by Beucher and
Lantuejoul in 1979 [8].

Later, an algorithmic-based definition for the identification of watersheds by
immersion was introduced by Vincent and Soille in 1991 [90]. By analogy to the idea
of immersion, we can figure that we have pierced holes in each regional minimum
of our topographic surface. We then slowly immerse our surface into a lake. Starting
from the minima of lowest altitude, the water will progressively fill up the different
catchment basins. Now, at each position where the water coming from two different
minima would merge, we build a “dam”. At the end of this immersion procedure,
each minimum is completely surrounded by dams, which delimit its associated catch-
ment basin. The whole set of dams which has been built provides a division of the
surface in its different catchment basins. These dams correspond to the watersheds
of our surface [90] (Fig. 7). Vincent and Soille algorithm was developed for image
segmentation and involves two major steps: (1) sorting of pixels in increasing order
of gray value (the gray value of a pixel being the altitude at a particular point), and
(2) fast computation of geodesic influence zones by breadth-first scanning of each
threshold level using a first-in-first-out (FIFO) data structure (Algorithm 1).

Meijster and Roerdink propose in 1998 [51] an algorithm with two stages: (1)
transform a lower complete image using a FIFO-queue algorithm, and (2) calculate
the watershed using graph theory and removing the old FIFO-queue (Algorithm 4).

Lotufo and Falcao, in 2000, reviews the watershed in the graph framework of
a shortest-path forest problem using a lexicographic path cost formulation. This
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Algorithm 1 Vincent and Soille’s immersion watershed approach [90]
Require: Ii � Ii original image of size n × m
Ensure: Io � Io image of the labeled watersheds

1: MASK ← −2
2: WSHED ← 0
3: queue ← ∅
4: for all p ∈ Io do
5: Io(p) ← −1
6: end for
7: current_label ← 0
8: dist ← 0
9: Initialize each pixel of Id with 0 � Id work image of distances
10: Sort the pixels of Ii in the increasing order of their gray values
11: hmin ← min(Ii )
12: hmax ← max(Ii )

13: for h ← hmin to hmax do � geodesic SKIZ of level h − 1 inside level h
14: for all p such that (Ii (p) = h) do � pixels accessed through the sorted
15: Io(p) ← MASK array
16: if (∃p′ ∈ NG(p)|(Io(p′) > 0) or (Io(p′) = WSHED)) then
17: Id (p) ← 1
18: fifo_push(queue, p)
19: end if
20: end for
21: dist ← 1
22: fifo_push(queue, p0) � p0 is a fictitious pixel
23: repeat
24: p ← fifo_get(queue)
25: if (p = p0) then
26: if queue �= ∅ then
27: fifo_push(queue, p0)
28: dist ← dist + 1
29: p ← fifo_get(queue)
30: end if
31: end if

formulation reflects the behavior of the ordered queue-based watershed algorithm
[47].

In 2001, Chen and Shi [15] modify the original Vincent and Soille immersion-
based watershed algorithm to correct some issues: (1) incorrect labeling when a point
p is at the same distance from three or more adjacent catchment basins (i.e., it will
be labeled as catchment basin instead as watershed), (2) unnecessary computation
of geodesic distance between points which belong to the labeled, (3) memory con-
sumption, and (4) incapacity to obtain information about catchment basins during the
processing. The modified algorithm proposed introduces a third step call “gushing
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32: for all p′ ∈ NG(p) do � p′ belongs to an already labeled basin or to the
33: if ((0 < Id (p′) < dist) or (Io(p′) = WSHED)) then watershed
34: if (Io(p′) > 0) then
35: if ((Io(p) = MASK) or (Io = WSHED)) then
36: Io(p) ← Io(p′)
37: else if (Io(p) �= Io(p′)) then
38: Io(p) ← WSHED
39: end if
40: else if (Io(p) = MASK) then
41: Io(p) ← WSHED
42: end if
43: else if ((Io(p′) = MASK) and (Id (p′) = 0)) then
44: Id (p′) ← dist + 1
45: fifo_push(queue, p′)
46: end if
47: end for
48: until (queue = ∅)
49: for all p|(Ii (p) = h) do � checks if new minima have been discovered
50: Id (p) ← 0 � the distance associated with p is reset to 0
51: if (Io(p) = MASK) then
52: current_label ← current_label + 1
53: fifo_push(queue, p)
54: Io(p) ← current_label
55: while (queue �= ∅) do
56: p′ ← fifo_get(queue)
57: for all p′′ ∈ NG(p′) do
58: if (Io(p′′) = MASK) then
59: fifo_push(queue, p′′)
60: Io(p′′) ← current_label
61: end if
62: end for
63: end while
64: end if
65: end for
66: end for

step”, that together with the immersion step, produces a fast recognition of pixels of
labeled and gets the flood level of the catchment basin.

Later on, Rambabu et al. first, in 2003, propose a new algorithm based on hill
climbing simulation, that avoided multiple scanning of the original matrix by using
different queues to store pixels [69]. Then, in 2008, Rambabu and Chakrabarti gives
an updated and corrected version of this same algorithm [70].

In 2005, Shen and Chang [74] present a nearest-neighbor graph (NNG) based
watershed algorithm. The main idea behind this work is to transform the image into
a NNG and then partitioned by discovering the defined geographic features in the
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Algorithm 2 Meijster and Roerdink’s Lower_complete function
Require: Ii � Ii original image of size n × m
Ensure: Ilc � Ilc lower complete image

1: queue ← ∅
2: for all p ∈ Ii do
3: Ilc(p) ← 0
4: if ∃p′ ∈ NG(p)|(Ii (p′) < Ii (p)) then
5: fifo_push(queue, p)
6: Ilc ← −1
7: end if
8: end for
9: dist ← 1
10: fifo_push(queue, p0) � p0 is a fictitious pixel
11: while (queue �= ∅) do
12: p ← fifo_get(queue)
13: if (p = p0) then
14: if (queue �= ∅) then
15: fifo_push(queue, p0)
16: dist ← dist + 1
17: end if
18: else
19: Ilc ← dist
20: for all p′ ∈ NG(p)|((Ii (p′) = Ii (p)) and (Ilc(p′) = 0)) do
21: fifo_push(queue, p′)
22: Ilc(p′) ← −1 � to prevent from queuing twice
23: end for
24: end if
25: end while
26: for all p ∈ Ii |(Ilc(p) �= 0) do
27: Ilc ← dist × Ii (p) + Ilc(p) − 1
28: end for

first step. The initial population result is also transformed into the NNG again and
the recursively distilled by the proposed algorithm.

3.2 By Rainfall

The second strategy is called rainfall and has two main steps: (1) the weakest edges
are removed by “drowning” the image, creating a number of “lakes” grouping all the
pixels that lie below a certain threshold (this is useful to reduce the influence of noise,
and reduces the over-segmentation), and (2) the direction of a raindrop from each
pixel would flow if it would fall on the topographic activity surface. This steepest
descent neighbor and the pixel under consideration are then merged, finally enabling
the localization of the remaining edges and segments [21] (Fig. 8).
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Algorithm 3 Meijster and Roerdink’s Resolve function [51]
Require: p � p input pixel
Ensure: ce � ce canonical element (label assigned to a minimum) of p or

WSHED in case p lies on a watershed

1: Create array sln where sln[p, i] is a pointer to the i-th steepest lower neighbor of pixel p
2: WSHED ← −1
3: i ← 1
4: ce ← 1
5: while (i ≤ 4) and (ce �= WSHED)) do
6: if ((sln[p, i] �= p) and (sln[p, i] �= WSHED)) then
7: sln[p, i] ← Resolve(sln[p, i])
8: end if
9: if (i = 1) then
10: ce ← sln[p, 1]
11: else if (sln[p, i] �= ce) then
12: ce ← WSHED
13: for j ← 1 to 4 do
14: sln[p, i] ← WSHED
15: end for
16: end if
17: i ← i + 1
18: end while

Algorithm 4 Meijster and Roerdink’s immersion watershed approach [51]
Require: Ii � Ii original image of size n × m
Ensure: Io � Io image of the labeled watersheds

1: WSHED ← 0
2: Ilc ← Lower_complete(Ii ) � transform the image (Algorithm 2)
3: for all p ∈ Ilc do
4: Io(p) ← Resolve(p) � see Algorithm 3
5: end for

Mortensen and Barret in 1999 introduces an optimization variation for the rainfall-
based watershed algorithm using a tobogganing technique, which makes a much more
computationally efficient algorithm [57]. In this version, tobogganing over-segments
an image into small regions by sliding in the derivative terrain. The basic idea is that
given the gradient magnitude of an image, each pixel determines a slide direction by
finding the pixel in a neighborhood with the lowest gradient magnitude. Pixels that
“slide” to the same local minimum are grouped together, thus segmenting the image
into a collection of small regions.

A year later, Bieniek and Moga [11] propose an efficient algorithm based on con-
nected components that generates the same results as the original Meyer’s algorithm
[53] but with a simpler algorithmic construction and, hence, a lower complexity (it
can label all catchment basins by only scanning the image four times).
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(a) drowning threshold (b) steepest descent rain falling principle

Fig. 8 Rainfall-based watersheds

Later on, in 2007, Osma-Ruiz et al. implement a more efficient algorithm by
computation of shortest paths [63] (Algorithm 5). This algorithm produces the same
result as the previous works using only two scans (plus another to initialize the data
structures), thus decreasing the running time obtained in [11, 81].

One of the latest work in the area was developed by Świercz and Iwanowski in
2010 [82]. In their work, a mechanism called directional code is used to code descent
paths, where each visited pixel receives a temporary marking in the output label array.
The value of this temporary marking represents the position of pixel in the image.
A path can be therefore viewed as a series of pointers to pixels stored in the output
array.

3.3 Mixed Approaches

In 2005 Sun et al. modifies Bieniek and Moga’s work simulating raining to generate
the connected components using chain code instead of pixel address. Afterwards,
they simulate flooding to label catchment basins by tracing chain codes [81]. This
algorithm not only can label catchment basins by scanning the image only four times,
but also is more helpful to the following image processing.

Cousty et al. in 2009 introduces the first work that mathematically prove equiva-
lence to both immersion-based and rainfall-based watersheds [20]. For this purpose,
the authors propose a new definition of watershed, called watershed cut and give a
liner-time algorithm to compute the watershed cuts of an edge-weighted graph (pre-
processed image). The proposed algorithm does not require any sorting step or the
use of any sophisticated data structure such as a hierarchical queue or a representation
to maintain unions of disjoint sets.
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Algorithm 5 Osma-Ruiz’s rainfall watershed approach [63]
Require: Ii � Ii original image of size n × m
Ensure: Io � Io image of the labeled watersheds

1: UNVISITED ← −8 � Step 1: Initialization
2: PENDING ← −9
3: for all p ∈ Ii do
4: Io(p) ← UNVISITED
5: end for
6: qPending ← ∅
7: qEdge ← ∅
8: q Inner ← ∅
9: qDescending ← ∅

10: ncatch ← 1 � Step 2: Identifying regional minima and
11: for all p ∈ Ii do steepest descending paths
12: if (Io(p) = UNVISITED) then � if the point has not been
13: for all p′ ∈ NG(p) do analyzed yet, study it
14: if (Ii (p) = Ii (p′)) then � this is a plateau
15: if (qPending = ∅) then
16: Io(p) ← PENDING
17: queue_push(qPending, p)
18: end if
19: Io(p′) ← PENDING
20: queue_push(qPending, p′)
21: else if (Ii (p′) = min(Ii (NG(p))) then
22: min ← p′
23: end if
24: end for
25: if (qPending �= ∅) then � if p belongs to a plateau
26: while (qPending �= ∅) do make it lower-complete image
27: p′ ← queue_pop(qPending) if not, p is considered a minimum
28: min ← ∅ unless there is a lower neighbor
29: if (p �= p′) then � calculations already done for seed
30: for all p′′ ∈ NG(p′) do � put in the queue all the points
31: if (Ii (p′′) = Ii (p)) then in the plateau
32: if (Io(p′′) = UNVISITED) then
33: Io(p′′) ← PENDING
34: queue_push(qPending, p′′)
35: end if
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36: else if (Ii (p′′) = min(Ii (NG(p′)))) then min ← p′′
37: end if
38: end for
39: end if
40: if (min �= ∅) then � classify p′ as either an edge or inner point
41: min ← Io(p′)
42: queue_push(qEdge, p′)
43: else
44: queue_push(q Inner, p′)
45: end if
46: end while
47: if (qEdge �= ∅) then � if the plateau has no edge points,
48: if (q Inner �= ∅) then it is a minimum
49: while (qEdge �= ∅) do else, make it lower complete
50: p′ ← queue_pop(qEdge)
51: for all p′′ ∈ NG(p′) do
52: if ((Ii (p′′) = Ii (p)) and (Io(p′′) = PENDING)) then
53: Io(p′′) ← p′
54: queue_push(qEdge, p′′)
55: end if
56: end for
57: end while
58: end if
59: else
60: while (q Inner �= ∅) do
61: p′ ← queue_pop(q Inner )
62: Io(p′) ← ncatch
63: end while
64: ncatch ← ncatch + 1
65: end if
66: else
67: if (min = ∅) then
68: Io(p) ← ncatch
69: ncatch ← ncatch + 1
70: else
71: min ← Io(p)
72: end if
73: end if
74: end if
75: end for
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76: for all p ∈ Ii do � Step 3: Assignment of pixels to catchment basins
77: p′ ← p
78: while (Io(p′) ≤ 0) do � it is not a minimum
79: queue_push(qDescending, p′)
80: p′ ← p′

re f � p′
re f point pointed to by p′

81: end while
82: while (qDescending �= ∅) do
83: p′′ ← queue_pop(qDescending)
84: Io(p′′) ← Io(p′)
85: end while
86: end for

4 Over-Segmentation

Researcher noticed that it was hard to apply watershed transformations since they are
very sensitive to noise. One of the main drawbacks of the classical watershed algo-
rithm is a phenomenon known as over-segmentation. There are several approaches to
reduce the impact of this issue, which can be categorized into two approaches: pre-
processing and post-processing. Several pre-processing and post-processing methods
were reviewed by Bieniecki in 2004 applied to color images. Between the studied
pre-processing methods, the author analyze noise removal by using a median filter,
color morphology and other smoothing filters. Between the post-processing methods,
the author research merging basins by gradient watersheds on graphs, basin dynam-
ics, inclusionary and exclusionary cues, image component labeling and multi-scale
gradient analysis [10].

4.1 Pre-processing

The most efficient pre-processing techniques are based on markers. In a marker-
based algorithm, the gradient image is first modified by a marker image, which is a
binary image with the object interiors (markers) being set to 0 and the uncertainty
areas being set to 255 (Fig. 9). Each marker indicates the presence of an object [25].

In Moga and Gabbouj watershed transformation is augmented to perform with the
aid of a priori supplied image markers. In this method pixels are first clustered based
on spatial proximity and gray level homogeneity with the watershed transformation.
Boundary-based region merging is the effected to condense non-marked regions
into marked catchment basins The agglomeration strategy works with a weighted
neighborhood graph representation of the over-segmented image [55].

Some years later Gao et al. propose a marker-based algorithm using a disjoint
set data structure with a linear complexity [25]. Later on they present an updated
algorithm to extract the regional minima from the low frequency components in the
gradient map. The extracted minima constitute the binary marker image. Then the
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(a) gradient image (b) marker image (c) modified gradient image

Fig. 9 Modification process of the gradient image by the marker image

original gradient map is modified by suppressing its all-intrinsic minima around these
extracted markers. Thus, compared with traditional approaches, both the spurious
minima are more effectively removed and meanwhile the boundaries of objects are
more effectively protected [26].

In 2009, Zhu et al. apply a multi-scale alternating sequential filtering by recon-
struction to simplify the input image in order to remove local minima which are
caused by irregular gray disturbance and noise, and preserve important contour infor-
mation [99]. After this procedure is done, there still exists some local minima problem
which is reduced by a marker-extracted method that uses minima imposition to make
a marked image before watershed transformation. Markers are a set of components
marking flat regions of an image. The mark extraction can suppress all of is intrinsic
minima. Finally, the watershed algorithm is applied to the modified gradients by the
markers.

A stochastic version of the watershed algorithm is obtained by choosing randomly
in the image the seeds from which the watershed regions are grown. In the 2009’s
work Tolosa et al. explore two seed-generation processes to avoid over-segmentation.
The first is a non-uniform Poisson process, the density of which is optimized on the
basis of the opening granulometry. The second process positions the seed randomly
within disks centered on the maxima of a distance map [84].

Procházka et al. proposes in 2010 a smoothing procedure to reduce noise and over-
segmentation. This procedure first applies wavelet image de-noising, and afterwards
a smoothing phase. The main idea in this phase is to remove image elements smaller
than the size of structuring element and to fill gaps between pixels and smoothes
their outer edges [68].

Also in 2010, Moumoun et al. introduces a filtering step to eliminate insignificant
minima that take into account not only the depth of the pixel but also the change
in concavity [58]. This is done by defining a hierarchy between minima using a
generic graph. In this graph each region is represented by a node. The minimum
curvature of a region is associated with the corresponding node. The arcs express
the adjacencies relations between regions and two regions are called adjacent if they
have adjacent faces. The weight of each arc is defined by the depth measurement
already mentioned.
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4.2 Post-processing

Gies and Bernard propose in 2004 a merging phase of basin using statistical informa-
tion. With regions of an unspecified size, the merging criterion must follow statistical
rules accounting for the region size. The authors consider the regions as the outcome
of stochastic processes. The merging criterion is based on the knowledge of region
area and statistical regional measures, determining the statistical reliability of the
merging [27].

Patino publishes in 2005 an approach that characterizes each of the segmented
regions and then employs the composition of fuzzy relations to group together similar
regions. A fuzzy c-means algorithm along with fuzzy relations can group together
similar gray-level values, but only between adjacent regions [64].

Jianhua et al. propose a more complex strategy for basin merging in 2005. Their
method pre-segments the image by watersheds and then merges it by Immune Clonal
Algorithm (ICA). To implement the task, several operators are proposed such as the
DC operator, the Proportional Creation of the First generation operator, and fitness
function based on JND and average gray value [36].

Moumoun et al. also propose a post-processing technique based on region merging
by the depth of the watershed segmentation. This depth is defined by the difference
between the height of the saddle point and the minimum of adjacent regions [58].

4.3 Other Approaches

There are very few approach to reduce over-segmentation that do not use pre-
processing or post-processing. Swiercz and Iwanowsky propose in 2011 a “water-ball
method designed to counter over-segmentation during the actual calculation of water-
sheds. This proposal can be perceived as a composite method for object extraction,
combining several techniques and mechanisms to produce satisfactory macro-scale
results [83]. The “water-ball method uses two distinct mechanisms. The first one
consists of a “rolling ball” based on the simulation of a larger object rolling down the
slope (contrary to classic rainfall methods where a single drop of water is used). This
ball has the ability to cross small ridges and ignore small, insignificant local minima.
The second mechanism, weakening with edge enhancement, makes it possible to
eliminate low, insignificant interior boundaries.

5 Parallel Approaches

When watershed algorithms are applied in large images or big DEMs, serial versions
can take many hours to return the solution. therefore, researchers dedicated their effort
to implement parallelized versions, but do to the recursive nature of the watershed
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transformation, its parallelization is not a trivial task [54] and cannot suit real-time
operations in most cases [62].

5.1 Parallelization Using Distributed Memory

Most of the existing papers on parallel watershed algorithms are based on a divide-
and-conquer approach [54, 55, 67, 72, 93] with regular domain decomposition into
blocks of data. Each block is then processed by a different processor independently,
thus using distributed memory. Afterwards all blocks are merged together. In 2010
Šwiercz and Iwanowski [82] present an interesting approach to reduce the merging
process by pre-calculating the adjacent sections between the different blocks. Thus,
the merging process reduces to a bulk memory copy of each processed block.

5.2 Parallelization Using Shared Memory

There are a few publications that uses a shared memory approach where there is
a need of constant synchronization between the processors that process adjacent
blocks. In Wagner et al. [91] the authors propose a chromatic ordering that allows to
gain a correct segmentation without an examination of adjacent domains or a final
relabeling. Later, VanNeerbos et al. [88] parallelize topological watersheds in such
a way that border pixels between threads are not calculated at the same time. To do
this, each thread process its tile in different stages and synchronizing between all
threads is performed after each stage. Also in 2011 Mahmoudi et al. [48] introduce
an adapted parallelization strategy called split, distribute and merge strategy which
allows efficient parallelization of a large class of topological operators including,
mainly, smoothing, skeletonization, and watershed algorithms. To achieve a good
speedup they focus on task scheduling.

5.3 Parallelization Using Graphics Processor Units

There is a rising tendency in research in parallelization using Graphics Processor
Units (GPUs) and watershed algorithms are not an exception. Kauffmann and Piche
[39] describe a cellular automaton (CA) to perform the watershed transform in N-D
images. Due to the local nature of CA algorithms they show that they are designed
to run on massively parallel processors and therefore, be efficiently implemented on
low cost consumer GPUs. A few years later Körbes et al. review the advances in
watershed processing on GPU architecture [44] on two algorithms: one inspired by
the drop of water paradigm and depth-search approaches; and one based on cellular
automata to process a shortest-path forest with sum cost function. In 2012 Hucko
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and Srámek [31] present the first GPU watershed algorithm able to process data
larger than the available memory, as the whole data has to be present in the memory
of the device. In their manuscript they present two versions of a streamed multi-
pass algorithm for watershed computation on a GPU. As the slice-based streaming
approach is used both variants are capable of processing data exceeding the size of
the available graphics accelerator memory. Another interesting approach is shown
by Quedada-Barriuso et al. [5] where the watershed transform based on a cellular
automaton, especially when the synchronization rules are relaxed. In particular, they
compare a synchronous and an asynchronous implementation of the algorithm. One
of the main applications for watersheds are medical related issues, therefore Smistad
et al. recently published a comprehensive survey on medical image segmentation on
GPUs [78].

6 Conclusions

Recent advances in watershed algorithms focus on the use of different data struc-
tures to improve the efficiency of the proposed algorithms. Most of the work done has
been developed for image segmentation purposes, specially on medical and biolog-
ical images. Also, parallel approaches seem to be an area of constant development.
Curiously, many of the most interesting proposals were published in conferences
instead of in journals. This tendency seems to change in the latest years of research.

Although there are many different watershed algorithmic solutions, there are still
many problems to solve. Thus, there is an increasing amount of publications over the
last few years. That is, watershed algorithms are still an open problem and there are
more and more new fields starting to use and develop this kind of techniques from
different points of view.

Another open issue is the oversegmentation watershed algortihms produce.
Although there are several approches to minimize this problem, there is still no
perfect solution available yet. Oversegmentation can be an important issue when
determining countours on images that will be used for counting purposes (such as
blood cells).

Many applications that use watershed algorithms work with a small dataset or
datasets. For real-world applications in topography that includes large regions of
terrain, watershed algorithms became slow and inefficient. Sometimes they are not
capable to work since memory becomes a crucial issue. For this kind of big data
processes the only available solution is the partition of the dataset into smaller sets
and the posterior merge of each partial solution.

We believe there is still a lot of improvement to be developed in this field. For
instance, there is a lack of techniques for real-time and streaming applications. Also,
we could not retrieve many studies on real watersheds in many countries, thus indi-
cating that many catchment basins worldwide have not been studied yet.
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