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Abstract Class imbalance occurs when data elements are unevenly distributed among
classes, which poses a challenge for classifiers. The core focus of the research commu-
nity has been on binary-class imbalance, although there is a recent trend toward the general
case of multi-class imbalanced data. The IFROWANN method, a classifier based on fuzzy
rough set theory, stands out for its performance in two-class imbalanced problems. In this
paper, we consider its extension to multi-class data by combining it with one-versus-one
decomposition. The latter transforms a multi-class problem into two-class sub-problems.
Binary classifiers are applied to these sub-problems, after which their outcomes are aggre-
gated into one prediction. We enhance the integration of IFROWANN in the decomposition
scheme in two steps. Firstly, we propose an adaptive weight setting for the binary classifier,
addressing the varying characteristics of the sub-problems. We call this modified classifier
IFROWANN-WIR. Second, we develop a new dynamic aggregation method called WV–
FROST that combines the predictions of the binary classifiers with the global class affinity
before making a final decision. In a meticulous experimental study, we show that our com-
plete proposal outperforms the state-of-the-art on a wide range of multi-class imbalanced
datasets.
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1 Introduction

This paper focuses on the challenge of class imbalance for classification problems, which
occurs when the elements of a dataset are unevenly distributed among the classes. Such
class imbalance poses a challenge to traditional classifiers, such that specific methods able
to deal with the imbalance need to be employed instead [31,55]. In a two-class scenario,
the imbalance ratio (IR), the ratio between the majority and minority class examples [48],
is used to identify this type of datasets. The most straightforward cause of the performance
degradation is the misclassification of minority class examples. The recognition of these
examples can be ignored in favor of majority instances when considering two common
criteria: the maximization of both accuracy and model generalization. With regard to the
former, a good classification performance on majority classes can easily overshadow a very
poor recognition of minority instances. For the latter, the regions of the problem space with
few minority examples can possibly be discarded in the learning process. Recent studies
have also shown that the problem of imbalanced classes usually occurs in combination with
various intrinsic characteristics of the data [42] that impose additional learning restrictions.
Among them,we stress the overlap between classes [2,27] and the presence of small disjuncts
and noisy data [54].

In this paper, we consider the general problem of multi-class imbalance, while many
previous works have been limited to the binary imbalanced case.Multi-class imbalanced data
is encountered in real-life applications, like microarray research [68], protein classification
[71], medical diagnosis [7], activity recognition [24], target detection [52] and video mining
[25].

When aiming to solve any classification problem, it is clear that the higher the number of
classes, the harder it becomes to correctly determine the output label for a query instance.
This is mainly due to the overlap between the different classes in the dataset, which increases
as more classes are inter-related. One simple yet effective way to address this task is to apply
a divide-and-conquer methodology. Such methods are known as decomposition strategies
[44], in which the original problem is divided into several easier-to-solve binary subsets.
A different classifier is devoted to distinguish among each pair of classes, and then, in the
testing phase, the outputs of all classifiers are aggregated to make the final decision [20]. The
difficulty in addressing the multi-class problem is therefore shifted from the classifier itself
to the combination stage. Among the proposed decomposition strategies, the one-versus-one
(OVO) setting has been shown to outperform the one-versus-all (OVA) setting for imbalanced
data (e.g. [16]). One problem related to decomposition schemes is the question of classifier
competence [19]. In the OVO setting, this issue refers to the fact that the outputs of all
classifiers are equally taken into account when extracting a final prediction, although some
of them were not trained to discern the real class of the instance and will usually not provide
any relevant information. This can hinder the prediction performance. This phenomenon
should be considered when developing a method based on OVO decomposition.

The work of [51] proposed a powerful classifier for two-class imbalanced data based
on fuzzy rough set theory [12], a mathematical theory that allows to model vagueness and
indiscernibility in data. This method was called IFROWANN and was shown to outperform
other state-of-the-art methods. Its limitation is that it was set up as a binary classifier, and it
cannot directly deal with more than two classes.

In this work, we propose the extension of IFROWANN to the multi-class setting. To
successfully classify multi-class imbalanced datasets, a binarization step is considered. We
use IFROWANN within an OVO setting, proposing two new components:
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– IFROWANN-WIR: the fuzzy rough component of the IFROWANN method requires
the specification of a weighting scheme. The original study in [51] showed that the
optimal choice depends on the IR of the two-class problem under consideration. In
an OVO decomposition, the IR can greatly differ among the binary sub-problems. We
therefore propose an adaptive version of IFROWANN, called IFROWANN-WIR, that
dynamically chooses its weight settings based on the IR of each binary problem at hand.
We demonstrate the necessity of an adaptive weight choice in our experiments.

– WV–FROST: the second original contribution (and main novelty) of this paper is a
new approach to deal with the classifier competence issue in an OVO ensemble. Each
classifier in the OVO decomposition provides local information, that is, it only discerns
between two possible classes. The reduction to two classes results in a loss of infor-
mation. This is somewhat counteracted by aggregating over all classifiers to obtain a
final prediction, as done in existing OVO aggregation schemes. We propose a further
performance enhancement by explicitly including two global measures in the decision
procedure. In this way, we aim to optimally use all information contained in the dataset.
Both global summary terms are based on fuzzy rough set theory, as the binary classifiers
are. When classifying an instance, the summary terms evaluate its global affinity with all
candidate classes, complementing the local information provided by the OVO classifiers.
Our new aggregation method is called weighted voting with fuzzy rough summary terms
(WV–FROST).

The use of fuzzy rough set theory for multi-class imbalanced classification is motivated
primarily by the excellent performance of the IFROWANN method from [51] in two-class
imbalanced problems. The fuzzy rough paradigm has also been used to preprocess such
datasets in order to facilitate their classification [56]. The limitation of IFROWANN, as stated
above, is that it cannot be directly applied in multi-class problems. We therefore use it within
the OVO decomposition scheme. However, the decomposition step poses some challenges
that should be appropriately dealt with. The importance of the classifier competence problem
has been demonstrated in the works of [21,22], which proposed dynamic classifier selection
schemes in conjunction with OVO decomposition. These methods are based on the presence
of classes in the local neighborhood of a query instance. InWV–FROST, we replace this local
evaluation by two global fuzzy rough summary terms, as local information is already provided
by the decomposition process. As we will show, fuzzy rough set theory is ideally suited to
capture the global information contained in the dataset. Furthermore, since both steps are
based on fuzzy rough set theory, the synergy between IFROWANN in theOVOdecomposition
on the one hand and WV–FROST on the other allows their combination to show a superior
behavior. Our complete novel methodology, the combination of IFROWANN-WIR in the
OVO decomposition and the WV–FROST aggregation, is referred to as FROVOCO, which
stands for Fuzzy Rough OVO COmbination. FROVOCO is a full and novel method, which
can be used directly in the classification of multi-class imbalanced data.

We use 18 datasets from various application domains in our experiments. In a first stage,
we demonstrate the advantage of our adaptive weighting scheme for IFROWANN in the OVO
setting. Secondly,we show that our affinity-based designWV–FROSToutperforms the earlier
dynamic approaches from [21,22] as well as partially constructed models using no binariza-
tion step or only one of the two summary terms. Finally, our complete method FROVOCO
is experimentally shown to outperform the state-of-the-art in multi-class imbalanced classi-
fication, in particular, C4.5-OVO combined with preprocessing [16], AdaBoost.NC [61] and
C4.5 with Mahalanobis Distance Oversampling (MDO) [1].
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The remainder of this paper is organized as follows. In Sect. 2, we recall the proposed
solutions for the classification of imbalanced data in both the binary and multi-class settings
as well as the OVO decomposition scheme and its existing traditional and dynamic aggrega-
tion methods. Section 3 describes the original IFROWANN method from [51] and provides
the necessary background on fuzzy rough set theory. The original contributions of this work,
IFROWANN-WIR and WV–FROST, are presented in Sect. 4. Our proposal is carefully eval-
uated in Sects. 5–7 and shown to outperform the state-of-the-art. Finally, our conclusions
and future work are formulated in Sect. 8.

2 Classification approaches for imbalanced data

Despite showing a fairly commonoccurrence and a strong impact on applications, the problem
of imbalanced classes has not been solved properly by machine learning algorithms. Indeed,
thosemethods that performwell in standard classification problemsdonot necessarily achieve
the best performance for imbalanced datasets [15]. The main issue is that they consider equal
distributions among classes or the same cost ranking for all classes.

Traditionally, the focus of class imbalance research has been on binary problems, where
one class is considerably larger than the other (Sect. 2.1). However, datasets with more than
two classes can be imbalanced as well and the attention of the research community has shifted
to this more general setting in recent years. This paper focuses on classification problems
with more than two classes, for which we apply the OVO decomposition scheme [30]. This
strategy and its aggregation mechanisms are described in Sect. 2.2, including some remarks
on the dynamic classifier selection procedure for theOVOscheme. Finally, Sect. 2.3 discusses
some relevant solutions to deal with multi-class imbalanced data.

2.1 Binary-class imbalance

When the goal is to boost the global performance on both the minority and majority classes,
special mechanisms must be applied together with the classifiers. The procedures to address
imbalanced classification in two-class problems can be categorized into three groups [40,42]:
data level solutions that rebalance the training set [4], algorithmic level solutions that adapt
the learning stage toward the minority classes [3] and cost-sensitive solutions which consider
different misclassification costs with respect to the class distribution [11].

Among thesemethodologies, the advantage of the data level solutions is that they aremore
versatile, since their use is independent of the selected classifier. Three possible schemes
can be applied: undersampling of the majority class, oversampling of the minority class
and combinations of these two. The simplest approach, random undersampling, removes
instances from the majority class until the class distribution is more balanced. A downside is
that important majority class examplesmay be ignored. The randomoversampling alternative
makes exact copies of existing minority instances. The drawback here is that this method can
increase the likelihood of overfitting [4].

More sophisticated algorithms have been proposed based on the generation of synthetic
samples, often inspired by the SMOTE oversampling method [6]. The core idea is to form
new minority class examples by interpolating between several minority class examples that
lie close together. This allows to expand the clusters of the minority class and to strengthen
the borderline areas between classes.
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2.2 The one-versus-one scheme (OVO)

The use of decomposition strategies in multi-class classification is of great interest in the
research community [20,44]. This scheme simplifies the original problem into binary-
class subsets, following a divide-and-conquer paradigm. Evidently, boundaries between two
classes are easier to learn than in the general case, where they are more likely to highly over-
lap. Therefore, the critical step is moved toward the decision process, in which the confidence
degrees of all binary classifiers must be aggregated in order to output a single class.

In the OVO strategy, an m-class problem is divided into m(m − 1)/2 two-class prob-
lems, one for each pair of classes. Each binary classification sub-problem is addressed by a
different classifier, which is built using training instances only from the two classes under
consideration. An easy way of organizing the outputs of the base classifiers for an instance
x is by means of a score-matrix R(x), given by

R(x) =

⎛
⎜⎜⎜⎝

− r12 · · · r1m
r21 − · · · r2m
...

...

rm1 rm2 · · · −

⎞
⎟⎟⎟⎠ ,

where ri j ∈ [0, 1] represents the confidence that x belongs to class i and not class j , obtained
by the binary classifier trained on these two classes. The confidence in favor of class j is set
to r ji = 1 − ri j , if the classifier does not provide it.1

Several combination strategies to derive a class prediction from R(x) have been proposed
in the literature. Two of the most intuitive aggregation methods are the simple voting strategy
(VOTE) proposed in [17] and the weighted voting strategy (WV) from [35]. In the former
setting, each binary classifier casts a vote for its predicted class. The class that receives
the most votes is predicted. In the weighted alternative, each classifier assigns a confidence
to the two classes that it handles. The class with the largest total confidence is the final
prediction. More advanced methods are pairwise coupling (PC, [30]), a decision directed
acyclic graph (DDAG, [50]), learning valued preference for classification (LVPC, [33,34]),
the non-dominance criterion (ND, [14]), a binary tree of classifiers (BTC, [13]), nesting
OVO (NEST, [38,39]) and probability estimates by pairwise coupling (PE, [65]). We refer
the reader to the review in [20] for clear descriptions of these methods.

Two more recent aggregation techniques consist of a distance-based adaptation of the
score matrix. In general, when constructing an ensemble system, an important step is the
selection of its constituent classifiers. One seeks to determine the best subset of models,
either statically (by using pruning methods [23,46]) or dynamically for each query instance
[5]. For the OVO methodology, this step becomes particularly relevant due to the problem
of non-competent classifiers [19], which are those binary classifiers whose learned classes
do not match the actual class of the query example. General classifier selection methods
are based on competence estimation techniques of standard ensembles, computing the local
accuracy of each classifier in order to carry out a dynamic selection [60,64]. This approach
does not address the OVO non-competence problem, and the adaptation of dynamic classifier
selection to this setting is not straightforward. One solution is to take the neighborhood of the
query instance into account and adapt the scorematrix in order to diminish the impact of those
classifiers of which the two classes are not sufficiently relevant based on the neighborhood
information. Two different approaches have been proposed:

1 If the classifier provides both confidence degrees, one must ensure that they are normalized such that
ri j + r ji = 1.
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– Dynamic-OVO (DynOVO) [21]. The WV scheme is used as a basis. Prior to its compu-
tation, the score matrix is filtered by considering only those classifiers whose classes are
in the neighborhood of the query instance. A neighborhood of size 3 · m is used.

– Distance relative competence weighted approach (DRCW) [22]. This methodology
consists of carrying out a dynamic adaptation of the score matrix. It alters the con-
fidence degrees by assigning a higher weight to those classifiers whose predicted
classes are in the neighborhood of the query instance, setting the final prediction to
argmaxi=1,...,m

∑
1≤ j �=i≤m

(ri j · wi j ), where wi j is the relative classifier competence

computed as wi j = d2j
d2i +d2j

, with di the average distance of the k neighbors of the i-th

class to the query instance.

2.3 Multi-class imbalance

The scenario of imbalanced classificationwithmore than two classes imposes a strong restric-
tion on the correct recognition of the different concepts present in the data [16]. This is not
only due to the larger number of boundaries to consider. All data characteristics that must
be considered in the scenario of classification with binary imbalanced data [42] are further
accentuated when working in a context with more than two classes as well. The occurrence of
multi-minority and multi-majority classes, the dependency among these classes (including
overlapping) and relations between same-class examples are possibly the main causes of
performance degradation in this case.

The three solution groups listed in the Sect. 2.1 are designed for two-class problems, and
their extension to the multi-class scenario is not straightforward. On the one hand, data level
solutions (preprocessing) are not directly applicable as the search space is increased. On the
other hand, algorithmic level solutions become more complicated since there can be more
than one minority class. Several alternatives have been developed to address this task [16].
We emphasize three different schemes: two approaches acting at the data level, namely OVO
with preprocessing [16] and MDO [1], and a third one considering the use of ensembles for
multi-class imbalanced learning, like the AdaBoost.NC method [61].

OVO combined with preprocessing Binarization techniques are very useful in overcoming
the gap between two-class and multi-class imbalanced datasets. They allow the application
of any of the standard solutions and particularly those that rebalance the training set. These
methods are composed of three simple steps [16]:

1. First, the original multi-class problem is divided into simpler binary sub-problems by
means of a decomposition strategy [20], for instance with the OVO scheme. In this way,
the skewed class distribution is somehow controlled, as the sizes of two given classes
can be similar.

2. Then, for each sub-problem, any technique for instance preprocessing in two-class imbal-
anced datasets can be applied. In this paper, we use the SMOTE method from [6]. After
this step, every binary dataset is processed by a classifier. Recall that in the learning stage
only instances from the two classes that the classifier is responsible for are taken into
account.

3. Finally, when a new instance is presented, every individual classifier is fired to provide
the confidence degrees for the two classes it is responsible for. These values are then
aggregated using one of the schemes discussed in Sect. 2.2.
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Mahalanobis distance oversampling (MDO) This method was proposed in the recent contri-
bution of [1]. It is a novel oversampling method for multi-class imbalanced problems and is
inspired by theMahalanobis distance [45]. The core idea is to not generate synthetic minority
instances at random, but rather to guarantee that an artificial instance has the same Maha-
lanobis distance to its class mean as the seed element fromwhich it was constructed. We note
that there is a small error in the description of this method, which makes the implementation
presented in [1] invalid. We have fixed this by slightly modifying Algorithm 3 from [1].
Instead of choosing the value r from the interval

[−√
AlphaV( j),

√
AlphaV( j)

]
, we divide

both boundaries by (|A| − 1), where A is the feature set. This fix is required to guarantee
that a solution can be found in line 14. Leaving Algorithm 3 as it was presented in [1] results
in failures of the method.

AdaBoost.NC ensemble The binary version of this method was proposed in [62] and incor-
porates negative correlation learning. It is based on the AdaBoost algorithm and extends it by
introducing diversity between the constructed classifiers. The instance weights are not solely
used to better recognize misclassified elements in later iterations, but also to enhance the
diversity. AdaBoost.NC was extended to handle more than two classes in [61]. The authors
noted that the application of random oversampling is required to improve the recognition
of minority instances. To avoid increasing the training time, we incorporate this instruction
in our experiments by a modified initialization of the ensemble weights, in order to give a
higher significance to smaller classes. AdaBoost.NC is an important standard to measure
the performance of new methods in multi-class imbalanced learning against. We note that
the use of ensembles for multi-class imbalanced learning has been evaluated in [28,67] as
well, albeit in conjunction with feature selection. In the study of [70], ensembles for binary
imbalanced classification were used within the OVO decomposition, showing competitive
results with AdaBoost.NC.

3 The IFROWANN algorithm

In this second preliminary section, we recall the original IFROWANN classification method,
the classifier using fuzzy rough sets for binary imbalanced classification. We provide the
necessary background on fuzzy rough set theory (Sect. 3.1) and the classification model
itself (Sect. 3.2).

3.1 Fuzzy rough set theory

Fuzzy rough set theory [12] is a mathematical tool dealing with two distinct types of uncer-
tainty in data, namely vagueness and incompleteness. It was developed by integrating fuzzy
set theory [69] into rough set theory [49]. Rough sets approximate a concept C described by
an incomplete feature set in two ways. The lower approximation contains elements certainly
belonging to C , while the upper approximation consists of elements possibly belonging to
it. When these two sets are equal, there is no uncertainty in the data. In every other case, C
cannot be described conclusively based on the observed features and can only be approxi-
mated. A limitation of rough set theory is that it requires discretization of any real-valued
features in order to obtain useful results. The extension to fuzzy rough set theory addresses
this issue. By measuring similarity between instances with fuzzy relations, the discretization
requirement is removed. Fuzzy rough set theory has been used in many machine learning
applications, see [58] for a recent review.
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The fuzzy rough lower approximation of a concept C is a fuzzy set, defined as

C(x) = min
y∈T [I(R(x, y),C(y))], (1)

where T is the training set and the R(·, ·) relation expresses the similarity or indiscerni-
bility between elements. The values C(·) represent the membership degree of the training
instances to the concept. In this paper, where C corresponds to a decision class, C(y) can
take on only two values: 0 (element y not in class C) and 1 (element y in class C). Finally,
I is a fuzzy logic operator called an implicator. This is a [0, 1]2 → [0, 1] mapping decreas-
ing in its first argument, increasing in its second and satisfying the boundary conditions
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. Since C(y) can only take on values 0
and 1, derivations show that, using popular choices for I like the Kleene-Dienes implicator
(I(a, b) = max(1 − a, b)) or the Łukasiewicz implicator (I(a, b) = min(1 − a + b, 1)),
expression (1) can be simplified to

C(x) = min
y /∈C (1 − R(x, y)). (2)

The membership of x to the lower approximation of C is therefore given by the complement
to 1 of its similarity with the most similar instance not in C .

The membership to the fuzzy rough upper approximation of C is given as

C(x) = max
y∈T [T (R(x, y),C(y))], (3)

where the fuzzy logic operator T is a triangular norm (t-norm), a commutative and associative
[0, 1]2 → [0, 1]mapping increasing in both arguments and satisfying the boundary condition
(∀a)(T (a, 1) = a). As above, since C(y) only takes on 0–1 values, (3) can be shown to
simplify to

C(x) = max
y∈C R(x, y) (4)

and is therefore given as the highest similarity of x with a training instance belonging to C .
Both (2) and (4) show that the membership degree of an instance to the fuzzy rough

approximations of decision classes are determined based on their similarity with a single
training instance. These procedures are therefore highly susceptible to noise. Several noise-
tolerant versions of fuzzy rough sets have been proposed in the literature [9]. We recall the
OWA-based fuzzy rough sets from [8]. This model replaces the minimum and maximum
operators in (1) and (3) by ordered weighted average (OWA, [66]) aggregations. An OWA
aggregation of a set of values V = {v1, . . . , vn} uses a weight vector W = 〈w1, . . . wn〉 of
which all elements are drawn from [0, 1] and sum to 1 in total. These weights are assigned
to elements in V based on their position in an ordered sequence. Concretely, two steps are
performed:

1. Sort the elements in V in descending order. Let S = 〈s1, . . . sn〉 be this sorted sequence,
where si is the i th largest value in V .

2. Compute the OWA aggregation of V as OWAW (V ) =
∑n

i=1
wi si .

The OWA-based fuzzy rough set model proposed in [8] uses appropriate weight vectors Wl

and Wu for the lower and upper approximations that soften the minimum and maximum,
respectively. It replaces (1) and (3) by

C(x) = OWA
y∈T

Wl [I(R(x, y),C(y))] (5)

123



Dynamic affinity-based classification of multi-class…

and

C(x) = OWA
y∈T

Wu [T (R(x, y),C(y))]. (6)

We note that to measure the similarity between two instances x and y in this study, we
use the fuzzy relation R(·, ·) defined as

R(x, y) = 1

|A|
∑
a∈A

Ra(x, y),

whereA is the feature set. The function Ra(·, ·) expresses the feature-wise similarity between
instances, calculated as

Ra(x, y) = 1 − |a(x) − a(y)|
range(a)

when a is a numeric feature and as

Ra(x, y) =
{
1 if a(x) = a(y)

0 otherwise,

when a is nominal. This relation has previously been used in various other works, including
[51], on which we base our proposal.

3.2 The classification model

In [51], a classification method for two-class imbalanced data based on fuzzy rough set
theory was proposed. It is an extension of the fuzzy rough nearest neighbor classifier (FRNN,
[36]), modified to deal with class imbalance. To classify an instance x , FRNN computes its
membership degree to the fuzzy rough lower and upper approximations of each class. The
score for a class is set to the average membership degree of x to its approximations. The
membership degrees are computed by expressions (1) and (3).

The proposal of [51] was called IFROWANN and is developed to deal with class imbal-
ance in two-class datasets. With only two possible class labels, it was shown that the upper
approximation of classes does not carry any additional information on top of that represented
by the lower approximation. Consequently, only the membership to the lower approxima-
tions of the two classes is computed in the classification step and the class for which this
value is largest is used as prediction. The OWA-based alternative (5) is used. The distinction
between minority and majority classes is incorporated in a class-dependent weight selection
for the OWA aggregation, that is, the definition of the weight vector Wl can be different for
the two classes. Our definition of these weights differs slightly from the description given in
the original proposal, but is equivalent and somewhat clearer to interpret. In particular, we
base this description on the integration of an OWA operator in the simplified form (2) rather
than (5). The lower approximations of the positive (minority) and negative (majority) classes
P and N , using the weight vectors W+

l and W−
l , are, respectively, given by

P(x) = OWA
y /∈P

W+
l (1 − R(x, y)) = OWA

y∈N
W+

l (1 − R(x, y)) (7)

and

N (x) = OWA
y /∈N

W−
l (1 − R(x, y)) = OWA

y∈P

W−
l (1 − R(x, y)). (8)
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Six different weighting schemes were proposed in [51], of which two were shown to yield
the best results in an extensive experimental study. In this paper, we denote them asWe and
Wγ . They, respectively, correspond to schemes W4 and W6 of [51]. Version We uses the
same weight definition for W+

l and W−
l , namely that of exponential weights, which, for a

vector of length n, are defined as

W =
〈

1

2n − 1
,

2

2n − 1
, . . . ,

2n−2

2n − 1
,

2n−1

2n − 1

〉
.

Although We uses the same general definition for W+
l and W−

l , the actual vectors can be
very different, since their lengths can differ greatly. Indeed, note that the aggregations in
(7) and (8) are over sets of sizes |N | and |P|, respectively. For imbalanced datasets there
can be a large difference in these values. The second scheme Wγ does use different weight
definitions for W+

l and W−
l . For W−

l , the exponential weights remain in place. For W+
l , a

different approach is taken by actively removing elements from the aggregation (7). Instead
of using the contribution 1 − R(x, y) for all instances y ∈ N , only the smallest values are
used. These correspond to the instances y ∈ N most similar to x . Their number is set to
r = 
|P|+γ (|N |− |P|)�, with γ ∈ [0, 1] a user-defined parameter. This step is achieved by
setting the first |N | − r positions of the vector to 0, as they correspond to the highest values.
The weight vector is therefore given by

W+
l =

〈
0, . . . , 0,

2

r(r + 1)
,

4

r(r + 1)
, . . . ,

2(r − 1)

r(r + 1)
,

2

r + 1

〉
. (9)

The remaining r values are assigned linear increasing weights as opposed to exponential
weights, in order to ensure that they have a more balanced contribution. More details and
motivation can be found in [51]. With respect to the parameter γ , the value 0.1 was proposed
and experimentally shown to perform better than alternative values for this parameter. The
related study [59] also confirmed that setting γ to 0.1 is a good choice.

4 FROVOCO: novel algorithm for multi-class imbalanced problems

In this section, we describe our proposal for multi-class imbalanced classification using fuzzy
rough set theory:

– In Sect. 4.1, we describe our IFROWANN-WIR binary classifier. We propose a new
adaptive weighting scheme that selects appropriate weights depending on the IR of the
pair of classes at hand.

– In Sect. 4.2, we describe our new OVO aggregation scheme: weighted voting with fuzzy
rough summary terms (WV–FROST). We introduce two global summary terms, mea-
suring the affinity of a test instance with the possible classes in two ways. We combine
these terms with the WV aggregation scheme to enhance the performance of the latter.
WV–FROST deals with the classifier competence issue in an OVO decomposition in a
global way.

– As a summary, we present a flowchart of our full proposal FROVOCO in Sect. 4.3.

4.1 Binary classifier within OVO: IFROWANN-WIR

In the first stage of our experimental study (Sect. 6.1), we will evaluate the performance of
IFROWANN in the OVO schemes discussed in Sect. 2.2. For each pair of classes, we apply
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an IFROWANN classifier to discern between them. The smallest class of the two is used
as positive class. The original method solely yields class predictions, while the construction
of the OVO score matrix requires the output of class confidence scores. To this end, when
classifying x and applying IFROWANN to classes C1 and C2, we set the score for C1 to

C1(x)
C1(x)+C2(x)

and that for C2 to
C2(x)

C1(x)+C2(x)
.

An important question with respect to IFROWANN regards the choice of the weighting
scheme. As indicated above, the original study put forward two good candidate schemes:
We and Wγ . It was shown that We performs well for mildly imbalanced data with an IR up
to 9, while for higher imbalance Wγ obtained better results. An IR of 9 is traditionally used
(e.g. [41,57]) as a threshold above which datasets are considered highly imbalanced. In a
binarization scheme, the IR can be different for each pair of classes. It may therefore not be
prudent to decide on the weighting scheme of IFROWANNbeforehand, but rather choose this
based on the imbalance between the two classes. In our experiments, we therefore evaluate
three separate settings, two where the weighting scheme is the same in all IFROWANN
classifiers (either We or Wγ ) and a third one where We is used when the IR between a
pair of classes is at most 9 and Wγ otherwise. We denote the third scheme as WIR and the
corresponding classifier as IFROWANN-WIR.

Our experimental results in Sect. 6.1 will show that the third scheme outperforms the other
two. The motivation of the threshold of 9 follows from the conclusions of [51]. However,
based on the performance of IFROWANN evaluated on 102 two-class imbalanced datasets in
the original experimental study, we also construct a visual motivation in Fig. 1. The interested
reader may find the full experimental results on the web page http://www.cwi.ugent.be/sarah.
php. In the figures, we plot the difference in obtained AUC values by IFROWANN using the
weighting schemeW6 (Wγ ) orW4 (We) against the IR of the dataset. Figure 1a contains the
results of all 102 datasets. The only clear conclusion that can be drawn from this plot is that for
very highly imbalanced data (IR above 65),Wγ has the clear advantage. In Fig. 1b we zoom
in on Fig. 1a on the section containing datasets with an IR at most 20. We observe that the
benefits ofWe can only be found for the mildly imbalanced datasets. Finally, in Figs. 1c and
1d, we take the group of 88 datasets with IR at most 65 in order to decide on a threshold above
whichWγ can be preferred. In these plots, we present averages over consecutive data points
in order to obtain a smoother figure. In Fig. 1c, we averaged over 4 observations, meaning
that the leftmost point was taken as the average value of the 4 least imbalanced datasets in
the study. In Fig. 1d, averages were taken over 8 observations, providing an even smoother
visual. From both figures, a threshold of 9 certainly seems appropriate. When the IR of the
dataset is higher than 9, Wγ yields better results for IFROWANN than We. Otherwise, the
latter is preferred. We are aware that the choice of this threshold may still appear artificial.
It follows from a tradition in imbalanced learning and the empirical validation referenced
and presented above. This threshold seems appropriate for our purposes and by setting it
beforehand, we avoid the cost of choosing betweenWe andWγ based on a validation of the
training data.

We want to note that it would also be possible to extend IFROWANN to a multi-class
classifier without applying a binarization step. However, due to the definition of the fuzzy
rough approximation operators (2–6), this corresponds largely to an OVA aggregation, which
has been shown in previous studies (e.g. [16]) to not perform well compared to an OVO
setting. Indeed, preliminary results for this evaluation (Sect. 6.2) showed that a multi-class
version of IFROWANN does not perform at the same level as the integration of the classifier
in binarization schemes. As this path seemed less promising, we do not pursue it further in
this paper.
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Fig. 1 Motivation for the definition of WIR. The horizontal axis represents the IR of the dataset and the
vertical axis the difference in performance (AUC) between W6 (Wγ ) andW4 (We), based on the results on
the 102 datasets in [51]. Positive values indicate thatW6 (Wγ ) performs better thanW4 (We). Lines between
points were drawn for the sake of visual clarity. a 102 datasets (IR: 1.82–129.44), b 55 datasets (IR: 1.82–20),
c 88 datasets (IR: 1.82–65), d 88 datasets (IR: 1.82–65)

4.2 New OVO aggregation scheme: WV–FROST

We present a new OVO aggregation scheme, called weighted voting with fuzzy rough sum-
mary terms (WV–FROST). It enhances the WVmethod with a global evaluation represented
by two summary terms. This can be regarded as an alternative for traditional dynamic classi-
fier selection models. Whereas those methods only take into account the locality of the input
instance, we propose to counteract the information loss resulting from the dataset reduction
to class pairs by the inclusion of global measures in the decision procedure. The addition
of these terms deals with the problem of classifier competence, as the aggregation not only
relies on the binary classification performance, but uses the global information available in
the dataset as well.

When classifying an instance x , the WV aggregation method constructs a vector Vx based
on the score matrix obtained after the OVO process. For each class C , the position Vx (C)

presents the weighted vote for C . This is the sum of the off-diagonal elements on the row
corresponding to C in the score matrix. The class with the highest value is selected. Our
proposal WV–FROST adds the values of two additional measures to the Vx vector before
selecting the best class:
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– Positive affinity term: we compute the membership degree of an instance to each class,
based on the full training set, by means of the fuzzy rough approximation operators.

– Negative affinity term: each classC can be represented by a vector containing the expected
membership degrees of an instance of class C to all classes. For a test instance, such a
signature vector can be constructed as well. We penalize the distance from an instance
to a class based on these vectors.

Positive affinity For a class C , the value mem(x,C) is the average membership degree of x
to the fuzzy rough lower and upper approximations of C , that is,

mem(x,C) = C(x) + C(x)

2
,

using the OWA-basedmodel. The definition ofmem(x,C) is based on the decision procedure
of the FRNN classifier, on which IFROWANN was inspired. It is important to note that the
mem values are determined in the full dataset and not based on versions reduced to two classes.
This measure is therefore a global evaluation of the class to which x is most likely to belong.
To determine the membership degreesC(x) andC(x), weight vectors related to schemeWIR

are used. The sets of values to be aggregated for the lower and upper approximations ofC are
of sizes |co(C)| and |C |, respectively, where co(·) denotes the complement of a class. When
the IR between C and its complement is at most 9, exponential weights are used for both the
lower and upper approximation. In the other case, the shortest weight vector uses exponential
weights and the longest weights (9), respectively, replacing P and N by min(|C |, |co(C)|)
and max(|C |, |co(C)|) in this definition. When adding the mem values to the Vx vector, we
replace each value Vx (C) with the average Vx (C)+mem(x,C)

2 . This means that we replace the
single local measure Vx (C) by the average of the local and global measures.

Negative affinity The second summary term evaluates the affinity of an instance with a class
at a higher level. For every class C , a signature vector SC can be constructed that consists
of the expected membership degrees of an instance of that class to every possible class.
In the literature (e.g. [37]), such a signature is also called a decision template. This vector
has a length equal to the number of classes and position SC (C ′) corresponds to the average
membership value of the training instances of class C to class C ′, calculated in the same way
as the mem measure. The vector is therefore determined as

SC = 〈SC (C1), SC (C2), . . . , SC (Cm)〉

=
〈

1

|C |
∑
y∈C

mem(y,C1), . . . ,
1

|C |
∑
y∈C

mem(y,Cm))

〉
,

wherem is the number of classes in the training set. A similar vector Sx can be computed for
a test instance x , gathering its mem values for all classes. The mean squared error between
Sx and each of the vectors SC expresses to what extent x is similar to the training instances
of class C . It is computed as

mse(x,C) = 1

m

m∑
i=1

(mem(x,Ci ) − SC (Ci ))
2 . (10)

This is a negative affinity term, as a higher value implies less similarity between the instance
and the class. Tomotivate the inclusion of this term, consider the following example. Suppose
that in a dataset of three classes, classesC1 andC2 have a high overlap in feature space. In this
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Fig. 2 Overview of the proposed WV–FROST aggregation method

case, the computed values mem(x,C1) and mem(x,C2) can be expected to be very similar
and therefore not contain sufficient information to make a decision between classes. On the
other hand, the signature vectors SC1 and SC2 present the expected membership degrees of
instances of these two classes to all classes. In particular, comparing the value mem(x,C3)

to SC1(C3) and SC2(C3) may provide the final clue in the decision process. We note that, in
order to bring the mse values to a similar scale as Vx (C) and mem(x,C), we divide each of
them by their sum and define the normalized value as

(∀C)

(
msen(x,C) = mse(x,C)∑m

i=1 mse(x,Ci )

)
.

We use the memn values as summary terms. We subtract them from Vx (C) with a weight 1
m ,

since we can expect the information in msen(x,C) to be less reliable when more classes are
present in the dataset. The reason is that when the number of classes increases, the vector SC
becomes longer and the constituent membership degrees more similar, such that the mean
squared error is less able to make a distinction between classes.

In conclusion, in our proposed method WV–FROST, for an instance x and a class C , the
value Vx (C) obtained from the OVO score matrix by the WV procedure is replaced by the
affinity-based value

AVx (C) = Vx (C) + mem(x,C)

2
− 1

m
msen(x,C).

A visual representation of WV–FROST is provided in Fig. 2. As part of our experimen-
tal study, we show that the inclusion of both summary terms outperforms settings where
we only include one of the two. The final prediction for an instance x is obtained as
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Fig. 3 Flowchart of the complete FROVOCO method

argmaxi=1,...,m [AVx (Ci )]. By including the global summary terms, a dynamic aggregation
in the spirit of the recent methods described in Sect. 2.2 from [21,22] is achieved, although it
differs from them in a crucial point. The proposals of [21,22] modify the score matrix of an
instance before aggregating it to a prediction value with the WV method. In our approach,
we do not modify the matrix, but rather the aggregated values.

4.3 Overview of the FROVOCO proposal

We refer to the combination of our IFROWANN-WIR in theOVOsetting and ourWV–FROST
aggregation as FROVOCO(FuzzyRoughOVOCOmbination). Fuzzy rough set theory is used
in both the binary classification step and the aggregation phase and the combined benefits
of the two is shown in our experimental analysis. For the sake of clarifying the two-stage
FROVOCO methodology, Fig. 3 summarizes the actions of this proposal. To classify a test
instance x , the following steps are performed:

1. In the decomposition phase, x is send to all IFROWANN-WIR methods, each using a
pair of classes as training set.

2. Class confidence scores are obtained from the IFROWANN-WIR classifiers.
3. These scores are grouped into a score matrix.
4. WV–FROST is applied to aggregate the score matrix to the vector containing the values

AVx (C) for all classes C (Fig. 2). Instance x is assigned to the class corresponding to
the largest AVx (·) value.
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5 Experimental setup

In this section, we lay out the details of our study, specifying the datasets, the evaluation
measures, the tests used in the statistical analysis and the state-of-the-art methods to which
we compare our proposal. The experimental study is conducted in Sects. 6–7.

5.1 Datasets

The 18 datasets used in this study are presented in Table 1. We list the number of instances,
features (numeric and nominal) and classes. In the presentation of the experimental results,
we use the shorter ID names to refer to the datasets. To give an indication of the imbalance
present in a dataset, we list the minimum, average and maximum values of the IR between
its class pairs. In all datasets, the minimum IR is low, meaning that there are at least two
classes with relatively similar sizes. The maximum IR expresses the highest degree of pair-
wise imbalance encountered in a dataset. As the table shows, the values for this measure
differ greatly across the 18 datasets and are often very high. The average IR is computed
as the average of the imbalance ratios in the OVO decomposition. For most datasets, this
value is moderate, although a few outliers are present. For the sake of completeness, we also
provide the distribution of the instances over the classes (in brackets below the IR infor-
mation). In our evaluation, we use the tenfold DOB-SCV partitioning scheme from [47]
in order to avoid the data-shift problem, the issue of having different distributions in the
training and test partitions of the evaluation. In the fold construction of DOB-SCV, regions
of same-class elements are divided over different folds to guarantee a proper representa-
tion of such a region in all partitions. The use of this partitioning scheme for imbalanced
data was advised in [43]. The full datasets and all partitions are available from the KEEL
dataset repository (http://www.keel.es) for any interested reader that wishes to repeat our
analysis.

5.2 Evaluation measures

Toevaluate the performance of the includedmethods,we use twopopular evaluationmeasures
used in multi-class imbalanced classification. The first is the average accuracy (AvgAcc),
defined as the average of the class-wise accuracies, that is,

AvgAcc = 1

m

(
m∑
i=1

corri
|Ci |

)
,

where corri is the number of correctly classified instances of class Ci . This measure is also
referred to as balanced accuracy. The second measure is the mean area under the curve
(MAUC, [29]), which is the mean of the pairwise AUC values of all pairs of classes, defined
as

MAUC = 2

m(m − 1)

∑
i< j

AUC(Ci ,C j ) = 2

m(m − 1)

∑
i< j

(
A(Ci ,C j ) + A(C j ,Ci )

2

)
.

For two classesCi andC j , the value AUC(Ci ,C j ) represents the probability that a randomly
selected element from the first class also has a higher probability of being assigned to that
class by the classifier compared to a randomly selected element of the other class (A(Ci ,C j ))
and vice versa (A(C j ,Ci )). We include both measures to capture two different aspects of the
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Table 1 The 18 multi-class imbalanced datasets used in our experimental study

Dataset ID # inst # feat m Min IR Av. IR Max IR

Automobile aut 150 25 (15/10) 6 1.04 4.90 16.00

(3/20/48/46/29/13)

Balance bal 625 4 (4/0) 3 1.00 4.25 5.88

(288/49/288)

Cleveland cle 297 13 (13/0) 5 1.03 3.87 12.62

(164/55/36/35/13)

Contraceptive con 1473 9 (9/0) 3 1.23 1.55 1.89

(629/333/511)

Dermatology der 358 34 (34/0) 6 1.00 2.17 5.55

(111/60/71/48/48/20)

Ecoli eco 336 7 (7/0) 8 1.00 15.27 71.50

(143/77/2/2/35/20/5/52)

Glass gla 214 9 (9/0) 6 1.09 3.60 8.44

(70/76/17/13/9/29)

Led7digit led 500 7 (7/0) 10 1.00 1.16 1.54

(45/37/51/57/52/52/47/57/53/49)

Lymphography lym 148 18 (3/15) 4 1.33 18.30 40.50

(2/81/61/4)

Newthyroid new 215 5 (5/0) 3 1.17 3.48 5.00

(150/35/30)

Pageblocks pag 5472 10 (10/0) 5 1.32 31.65 175.46

(4913/329/28/87/115)

Satimage sat 6435 36 (36/0) 6 1.01 1.73 2.45

(1533/703/1358/626/707/1508)

Shuttle shu 58,000 9 (9/0) 7 1.30 561.92 558.60

(45,586/49/171/8903/3267/10/13)

Thyroid thy 7200 21 (21/0) 3 2.22 20.16 40.16

(166/368/6666)

Wine win 178 13 (13/0) 3 1.20 1.30 1.48

(59/71/48)

Winequality-red wqr 1599 11 (11/0) 6 1.07 18.83 68.10

(10/53/681/638/199/18)

Winequality-white wqw 4898 11 (11/0) 7 1.07 61.08 439.60

(20/163/1457/2198/880/175/5)

Yeast yea 1484 8 (8/0) 10 1.08 11.65 92.60

(244/429/463/44/51/163/35/30/20/5)

The number of features is divided between numeric and nominal ones, e.g. the automobile dataset has 15
numeric features and 10 nominal features

classification behavior of the algorithms. AvgAcc considers the actual prediction output of
themethod andmeasures howwell it recognizes the different classes, whileMAUC expresses
the ability of the method to separate pairs of classes, as noted in e.g. [61].
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5.3 Statistical analysis

We list average results taken over the group of 18 datasets and, for the final comparison in
Sect. 7.2, the results on each individual dataset as well. We combine this with an appropriate
statistical analysis, applying non-parametric statistical tests as recommended by e.g. [10,26].
For the comparison between two methods, we use the Wilcoxon signed-ranks test [63]. Its
null hypothesis is that the two methods have an equivalent performance. In order to find
sufficient evidence to reject the null hypothesis, the absolute differences in results of the two
methods are ranked. The smallest absolute difference is assigned rank 1 and the largest rank
n, with n the number of observations (18 in our study). In a comparison of ‘Method 1 versus
Method 2’, the positive differences are in favor of the first method, the negative differences
in favor of the second. The ranks of the positive differences are summed up to R+ and those
of the negative differences to R−. We report these two values, together with the p value
of the test. When it is smaller than the significance level α, the null hypothesis is rejected
and the first method is concluded to perform significantly better than the second. We also
perform multiple comparisons, that is, we take a group of methods and determine whether
any significant performance differences can be found among them. In this case, we use the
Friedman test [18] in combinationwith theHolmpost hoc procedure [32]. The null hypothesis
of the Friedman test is that all methods under consideration perform equivalently. When it
is rejected, the post hoc procedure is applied to detect where the significant differences can
be found. The Friedman test is based on a ranking procedure and the method with the lowest
rank is concluded to have the overall best performance. It is used as a control method to
which the remaining methods are compared in the Holm process. When the p values of these
comparisons are lower than α, it is concluded that the control method outperforms the other
method with statistical significance. For these multiple comparisons, we list the Friedman
ranks of all methods, the p value of the Friedman test (pFriedman) and the adjusted p values
of the post hoc procedure (pHolm).

5.4 Structure of experiments and method parameters

The experimental comparison is divided into two parts, discussed in separate sections:

– Section 6: we first conduct an internal comparison of our proposal, in order to clearly
show the strength of the separate components IFROWANN-WIR and WV–FROST.

– Section 7: we show the benefits ofWV–FROST over other dynamic aggregationmethods.
Finally, we compare our full method FROVOCO to three state-of-the-art methods in
multi-class imbalanced classification recalled in Sect. 2.3. In AdaBoost.NC [61], we
have set the penalty strength λ to 2, as done in earlier work e.g. [16,61]. The number
of classifiers in the ensemble was set to 10, which is a lower value than the one used
by these referenced studies. In a preliminary evaluation, we observed that this value
provides better average results on our selected datasets. It has been used in ensembles
for imbalanced data in earlier studies as well e.g. [42]. For the OVO combination with
preprocessing, we use the SMOTE-C4.5 classifier with the same parameter settings as
[16]. The use of decision tree learners like C4.5 in ensembles has been highlighted in
[53]. Finally, we include the MDO preprocessing method in combination with C4.5 as
well. We do not use any cost-sensitive classification method, as an appropriate definition
of the cost matrix is usually not readily available [55] and domain experts are required
for its specification [72].
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6 Experimental evaluation of IFROWANN-WIR and WV–FROST

As a first part of our experiments, we empirically justify our proposed components, the
IFROWANN-WIR classifier and the WV–FROST aggregation. This section is divided as
follows:

– Section 6.1: we evaluate the performance of the IFROWANN method in existing OVO
schemes, using the three weighting schemes listed in Sect. 4.1. We clearly show the
benefit of our novel IFROWANN-WIR method.

– Section 6.2: we compareWV–FROST to related partially constructed aggregationmodels
and show the advantages of the full proposal.

6.1 Evaluation of IFROWANN-WIR

In this section, we evaluate the classification performance of IFROWANN in an OVO setting.
We use the nine traditional aggregation procedures listed in Sect. 2.2, postponing the compar-
ison with the dynamic aggregation methods DynOVO and DRCW to Sect. 7.1. With regard
to IFROWANN, we evaluate the three weighting schemes listed in Sect. 4.1: the two original
schemesWe andWγ as well as our adaptive proposalWIR. The latter setting corresponds to
our IFROWANN-WIR method. The results of these experiments can be found in Table 2. We
present the average values of the evaluation measures taken over all datasets, accompanied
by their standard deviations.

The benefit of scheme WIR over We and Wγ is clear. This is particularly reflected in the
average accuracy measure, where substantial differences can be observed. For each aggre-
gation method, WIR attains the highest average accuracy. The results of We are better than
those for Wγ . This can be explained based on the description of the datasets in Table 1
and the conclusions drawn from Fig. 1. Indeed, computing the pairwise IR between classes,
these values are often found to be less than 9, a situation whereWe yields better results than
Wγ . Considering the MAUC, smaller differences in performance for the three alternatives
are observed. In most cases, We still outperforms Wγ . For five aggregation methods, WIR

yields the highest MAUC value. In the cases where it does not, the differences with the best
performing scheme are small.

We conclude that, when fixing theweighting scheme,We yields better results thanWγ , but
using our adaptive schemeWIR further improves the performance. This largest improvement
is made for the average accuracy measure, showing that correct classifications require the
use of WIR. The power of separating between class pairs, evaluated by the MAUC, is more
or less comparable forWe andWIR. Deciding onWIR as weighting scheme and taking both
evaluation measures into account, we can select the WV procedure as favored aggregation
method. It attains the highest average accuracy value, among the highest MAUC values and
its robustness has been demonstrated in [20,35]. In the next section, we further improve the
results of IFROWANN-WIR-WVby replacing theWVstep by our newproposalWV–FROST.

6.2 Evaluation of WV–FROST

Wecontinue the experimental study in this sectionwith an evaluation ofWV–FROST, our new
OVO aggregation method. We compare our novel proposal to partially constructed versions.
As described in Sect. 4.2, WV–FROST includes two summary terms in the score vector
constructed by WV. Two important questions need answering, namely:

1. Does WV–FROST improve the performance of WV?
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Table 2 Results of the integration of IFROWANN in theOVO settingwith the traditional aggregationmethods

Method AvgAcc

We Wγ WIR

VOTE 69.4460 ± 19.6554 61.6819 ± 20.7889 70.4035 ± 20.5736

WV 69.4460 ± 19.6554 63.1538 ± 21.6848 71.4921 ± 19.5685

PC 69.4959 ± 19.6182 62.6440 ± 21.0826 71.3500 ± 19.1160

DDAG 69.9674 ± 19.6337 59.4896 ± 21.0593 71.1942 ± 19.9944

LVPC 58.8251 ± 20.3807 61.2524 ± 20.2090 63.2167 ± 19.5304

ND 69.5269 ± 19.5921 58.5540 ± 23.3192 70.2541 ± 21.2630

BTC 69.4497 ± 19.7924 59.0936 ± 21.4492 70.5591 ± 20.5641

NEST 69.5686 ± 19.6920 56.2790 ± 23.1138 70.0260 ± 21.2530

PE 69.4785 ± 19.7172 62.1607 ± 21.3814 71.1413 ± 19.6598

Method MAUC

We Wγ WIR

VOTE 0.8566 ± 0.1227 0.8208 ± 0.1379 0.8613 ± 0.1204

WV 0.8921 ± 0.1120 0.8910 ± 0.1025 0.8895 ± 0.1120

PC 0.8958 ± 0.1062 0.8935 ± 0.1058 0.8939 ± 0.1067

DDAG 0.8070 ± 0.1243 0.7366 ± 0.1384 0.8143 ± 0.1274

LVPC 0.8932 ± 0.1110 0.8919 ± 0.1043 0.8910 ± 0.1107

ND 0.8779 ± 0.1065 0.8457 ± 0.1229 0.8794 ± 0.1092

BTC 0.8035 ± 0.1259 0.7341 ± 0.1413 0.8105 ± 0.1304

NEST 0.8572 ± 0.1228 0.8208 ± 0.1380 0.8613 ± 0.1204

PE 0.8952 ± 0.1065 0.8875 ± 0.1089 0.8927 ± 0.1077

For each method and each evaluation measure, we print the result of the best performing weighting scheme
in bold

2. Do partially constructed models yield similar or better results?

We address these questions in Table 3. We include the results of the following models:

– IFROWANN-WIR-WV: the best performing version in Sect. 6.1, the integration of
IFROWANN-WIR in a traditional OVO setup with WV aggregation.

– mem: no binarization, the score of a class C is set to the value mem(x,C) and the class
with the highest score is predicted.

– mem-msen : no binarization, the score of class C is mem(x,C) − 1
mmsen(x,C).

– IFROWANN-WIR-WV-mem: the WV-mem step is similar to WV–FROST, but only
includes one global summary term. The value Vx (C) is replaced by Vx (C)+mem(x,C)

2 .
– IFROWANN-WIR-WV-msen : includes only one global summary term. It replaces Vx (C)

by Vx (C) − 1
mmsen(x,C).

– IFROWANN-WIR-WV–FROST: our complete proposal.

The second and thirdmodels have been included to verifywhether the summary terms on their
own are strong enough in the prediction process andwhether the binarization is truly required.
Both methods correspond to direct generalizations of the binary IFROWANN classifier to
the multi-class setting.
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Table 3 Results of IFROWANN-WIR-WV–FROST and partially constructed versions

Method AvgAcc MAUC

IFROWANN-WIR-WV 71.4921 ± 19.5685 0.8895 ± 0.1120

mem 67.6477 ± 18.8233 0.8810 ± 0.1069

mem-msen 69.2093 ± 18.3121 0.8958 ± 0.1022

IFROWANN-WIR-WV-mem 71.5351 ± 19.3465 0.8946 ± 0.1065

IFROWANN-WIR-WV-msen 71.8868 ± 19.2429 0.8984 ± 0.0987

IFROWANN-WIR-WV–FROST 72.6327 ± 19.3379 0.9018 ± 0.0982

Table 3 shows the dominance of IFROWANN-WIR-WV–FROST over all partially con-
structed models for both evaluation measures. Considering these results in more detail,
IFROWANN-WIR-WV–FROST outperforms the traditional setting IFROWANN-WIR-WV
on 12 out of the 18 datasets for the average accuracy and on 11 out of 18 for MAUC.
Placing the results of models mem and IFROWANN-WIR-WV-mem next to each other, the
benefit of the binarization step is made clear, in particular in the evaluation by the average
accuracy. The relatively high MAUC value of mem indicates that the fuzzy rough mem-
bership degrees form a good tool to separate between pairs of classes. However, this does
not necessarily imply correct classification results, as only pairwise comparisons between
classes are used in the MAUC evaluation. This is reflected in the clearly inferior average
accuracy value of mem. This method corresponds to the most straightforward extension of
IFROWANN to a multi-class setting without applying any binarization. By also incorporat-
ing the comparison between pairs of classes in IFROWANN-WIR-WV-mem, more accurate
predictions can be made. This was already noted in Sect. 4.1 and formed part of our motiva-
tion to not further pursue a direct extension of the IFROWANNmethod without binarization.
Secondly, comparing mem to mem-msen and IFROWANN-WIR-WV-mem to IFROWANN-
WIR-WV–FROST, the improvement after including the msen term is shown. The difference
in performance between IFROWANN-WIR-WV–FROST and IFROWANN-WIR-WV-msen
shows that it is not sufficient to solely include themsen measure and that both fuzzy rough sum-
mary terms carry complementary information needed to improve the baseline performance
of IFROWANN-WIR-WV. In a statistical comparison of IFROWANN-WIR-WV–FROST
to IFROWANN-WIR-WV using the Wilcoxon test, the p values for the average accuracy
and MAUC results were 0.16736 (R+ = 118.0, R− = 53.0) and 0.08866 (R+ = 113.0,
R− = 40.0), respectively.

7 Experimental evaluation of FROVOCO

The second part of our experimental study compares our FROVOCO method to the state-of-
the-art in multi-class imbalanced classification. We consider two separate aspects:

– We compare theWV–FROST aggregation within FROVOCO to existing dynamic aggre-
gation approaches. We show that the WV–FROST outperforms the alternatives, which
justifies its inclusion in FROVOCO (Sect. 7.1).
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Table 4 Results of FROVOCO and the combination of IFROWANN-WIR with the two other dynamic aggre-
gation methods

Method AvgAcc MAUC

IFROWANN-WIR+DynOVO 71.7930 ± 19.8270 0.7894 ± 0.1151

IFROWANN-WIR+DRCW 70.8782 ± 20.1452 0.8916 ± 0.1097

FROVOCO 72.6327 ± 19.3379 0.9018 ± 0.0982

Table 5 Pairwise statistical comparisons by means of the Wilcoxon test, accompanying the results of Table 4

Comparison R+ R− p

A: WV–FROST versus DynOVO 100.0 71.0 0.52773

A: WV–FROST versus DRCW 129.0 42.0 0.05994

M: WV–FROST versus DynOVO 171.0 0.0 7.63E−6

M: WV–FROST versus DRCW 100.0 53.0 0.26595

Lines preceded by ‘A’ correspond to the evaluation by AvgAcc, while those starting with ‘M’ are related to
the evaluation by MAUC

– As a final step, we compare FROVOCO to three state-of-the-art classifiers for multi-class
imbalanced data (Sect. 7.2).

7.1 WV–FROST versus other dynamic approaches

In this section, we compare WV–FROST to the existing dynamic aggregation approaches
DynOVO [21] and DRCW [22]. For each of these three methods, we use IFROWANN-
WIR within the OVO method. The combination of IFROWANN-WIR with WV–FROST
corresponds to our full FROVOCO method.

The average accuracy and MAUC results are given in Table 4. For both measures, our
proposal attains the best results. The statistical comparison is presented inTable 5.Weobserve
that the ranks are always in favor of our proposal. WV–FROST significantly outperforms
DynOVO for the MAUC evaluation at the 5% significance level. This is due to the strict
exclusion of some candidate classes by DynOVO. The corresponding class probabilities
are set to zero, which results in lower MAUC values. The preference of WV–FROST over
DRCW is clearest for the average accuracy measure. Clearly, IFROWANN-WIR within the
OVO scheme interacts better with WV–FROST than with the existing dynamic aggregation
approaches from [21,22]. Since our classification method and aggregation scheme are both
based on fuzzy rough set theory, their superior synergy is an expected outcome. In fact, it
motivated the use of this mathematical tool in the WV–FROST aggregation.

7.2 Comparison with the state-of-the-art

We now compare our full proposal to the state-of-the-art in multi-class imbalanced clas-
sification. Table 6 lists the full results of AdaBoost.NC (Ada), SMOTE-C4.5-WV (SMT),
MDO-C4.5 (MDO) and FROVOCO (FR). For each dataset, we highlight the best performing
method. For the average accuracy, this is our proposal for 11 out of the 18 datasets. For
the MAUC, our method comes out on top for 15 of the 18 datasets. Its closest competitor
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Table 6 Full average accuracy andMAUC results for the three state-of-the-art classifiers and our FROVOCO
proposal

Data AvgAcc MAUC

Ada SMT MDO FR Ada SMT MDO FR

aut 79.9444 80.6444 76.4778 77.1556 0.9370 0.9299 0.8928 0.9633

bal 65.8900 55.2701 56.4819 78.8514 0.8609 0.5901 0.6768 0.8854

cle 26.8750 26.1917 29.0417 33.7833 0.5834 0.5772 0.5610 0.6981

con 47.9522 51.7246 48.7521 47.4449 0.6669 0.6560 0.6529 0.6485

der 94.6845 96.2096 95.3709 97.1553 0.9857 0.9861 0.9727 0.9966

eco 76.2654 71.4609 71.1481 77.2723 0.9162 0.8990 0.8556 0.9304

gla 71.5516 75.1885 63.0437 67.0694 0.9246 0.9204 0.8534 0.9325

led 54.3621 63.5466 64.1728 64.7918 0.7640 0.9134 0.8780 0.9189

lym 72.4355 72.2222 73.2093 86.2401 0.7847 0.7717 0.8231 0.9108

new 94.7222 91.3889 90.4444 91.1111 0.9972 0.9563 0.9276 0.9981

pag 91.9105 89.2398 83.7520 90.0399 0.9876 0.9739 0.9446 0.9736

sat 87.5570 85.2928 84.7142 89.4955 0.9817 0.9619 0.9214 0.9817

shu 98.4803 96.8439 91.3154 91.8527 0.9911 0.9979 0.9600 0.9987

thy 99.4186 99.2688 97.9360 66.4500 0.9998 0.9965 0.9894 0.8494

win 94.7579 95.2698 92.9881 98.2143 0.9818 0.9788 0.9482 1.0000

wqr 39.6884 34.1986 31.8371 43.7544 0.7581 0.7495 0.6432 0.8342

wqw 47.6684 39.3455 39.3391 47.8895 0.7856 0.7772 0.6811 0.8309

yea 49.0789 51.8083 53.3381 58.8178 0.8279 0.8472 0.7693 0.8810

Mean 71.8468 70.8397 69.0757 72.6327 0.8741 0.8602 0.8306 0.9018

For each dataset, for each measure, the highest value is printed in bold

is AdaBoost.NC, that attains the highest average accuracy in four datasets and the highest
MAUC in three. These results clearly indicate that our proposal, integrating IFROWANN in
the OVO scheme with weighting schemeWIR accompanied by theWV–FROST aggregation,
has a better performance than the state-of-the-art with respect to both evaluation measures.

Statistical analysis The results of the Friedman test and the Holm post hoc procedure can be
found in Table 7. For both evaluation measures, our method is assigned the lowest rank. It
is shown to significantly outperformMDO-C4.5 for both metrics and SMOTE-C4.5-WV for
the MAUC. Table 8 presents the results of the statistical comparison using theWilcoxon test,
more powerful to study the differences between pairs ofmethods.We compare our proposal to
AdaBoost.NC, SMOTE-C4.5-WV and MDO-C4.5. For each pairwise comparison, the table
also lists the number of wins (W ) and losses (L) of FROVOCO. In all cases, the assigned
ranks are in favor of FROVOCO. It significantly outperforms all state-of-the-art methods for
the MAUC. For the average accuracy, it also performs significantly better than MDO-C4.5.
Table 8 shows that our method dominates all others in the pairwise comparisons in terms of
the number of wins on the 18 datasets as well.

It cannot be shown that the average accuracy of our method is significantly better than
that of AdaBoost.NC or SMOTE-C4.5-WV, although, as stated above, the computed ranks
indicate that our method is best. The explanation can be found in Table 6 with the thy-dataset.
On this single dataset, our proposal performs very poorly compared to the others (as do all
other OVO versions using IFROWANN). This difference is assigned the highest rank in favor
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Table 7 Results of the Friedman test and Holm post hoc procedure

Method AvgAcc MAUC

Rank pHolm Rank pHolm

FROVOCO 1.8333 (1) – 1.4444 (1) –

AdaBoost.NC 2.3333 (2) 0.245278 2.1667 (2) 0.09329

SMOTE-C4.5-WV 2.5556 (3) 0.18658 2.7222 (3) 0.00597

MDO-C4.5 3.2778 (4) 0.002367 3.6667 (4) 0.000001

pFriedman 0.008617 0.000003

Statistically significant differences at the 5% significance level are printed in bold

Table 8 Pairwise statistical comparisons by means of the Wilcoxon test

Comparison W /L R+ R− p

A: FROVOCO versus AdaBoost.NC 11/7 108.0 63.0 0.32714

A: FROVOCO versus SMOTE-C4.5-WV 12/6 116.0 55.0 0.19638

A: FROVOCO versus MDO-C4.5 16/2 148.0 23.0 0.004746

M: FROVOCO versus AdaBoost.NC 15/3 139.0 32.0 0.018234

M: FROVOCO versus SMOTE-C4.5-WV 15/3 149.0 22.0 0.004006

M: FROVOCO versus MDO-C4.5 16/2 155.0 16.0 0.0012894

Lines preceded by ‘A’ correspond to the evaluation by AvgAcc, while those starting with ‘M’ are related to
the evaluation by MAUC. Statistically significant differences at the 5% significance level are printed in bold

of the competing methods, which is why no statistical significance in the average accuracy
can be detected.

As noted in Sect. 5, the two evaluation measures capture complementary performance
information. The average accuracy solely focuses on the number of hits and misses, while
the MAUC takes the confidence of the predictions of a classifier into account. Based on the
analysis presented in Table 8, we can stress that the prediction confidences of our proposal
are significantly more reliable than those of its competitors.

Effect of the IR When we combine the results in Table 6 with the IR information from
Table 1, it can be observed that the datasets on which FROVOCO performs sub-optimally
are mainly those with a high average IR. In particular, these are the pageblocks, shuttle and
thyroid datasets, for which the high average IR is due to the presence of one very large
majority class. When we investigated these results in more detail, we observed that the
accuracy of our proposal on the single majority class is notably lower than that obtained by
the other methods, which resulted in its low average accuracy value. Both the fact that there
is only one majority class as well as its absolute volume explain why FROVOCO fails in
this situation. Firstly, the method aims to boost the performance on the minority classes to
such a degree that the classification of the single majority class is negatively affected. The
combined effect of all minority classes against the single majority class leads to a decrease in
average accuracy. Secondly (and probably most importantly), when the majority class is very
large, the OWA-based fuzzy rough approximation operators are hindered in their recognition
ability. In particular, weight vector (9), which is used when the IR between a pair of classes
is high, loses some of its strength when the absolute size of one of these classes is very
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high. The weight vector becomes very long and the weights on the non-zero positions almost
flatten out to an average, due to their linear increasing character and the condition that all
weights should sum to one. As a result, its desirable characteristics are lost.

On the winequality-white dataset, which has an average IR of 61.08, our method obtains
the best average accuracy. This does not contradict our previous statement, since there are
twomajority classes present in this dataset, of which the sizes do not differ greatly. Moreover,
the size of the largest class is also not that great compared to that of the pageblocks, shuttle
and thyroid datasets.

We would like to note that our fuzzy rough approach highly depends on the similarity
relation. When the overlap between classes is high (based on this measure), we can expect
it to be more difficult for our method to adequately discern them. In such a situation, some
confusion between classes is likely to occur, with classification errors as the result.

In general, as demonstrated by the results in Table 6 and analysis in Tables 7 and 8, our
method outperforms its competitors, because it combines local (OVO decomposition) and
global (WV–FROST) views of the data, thereby improving the recognition of difficult classes.
Only in the particular casewhen a singlemassivemajority class is present, the usermay prefer
to use AdaBoost.NC in the classification process. For reasons discussed in this paragraph,
our method is less suited to handle this one specific type of problem. This situation can easily
be checked for by a user before the application of a multi-class imbalanced classifier.

8 Conclusion

The IFROWANN method, which is based on fuzzy rough set theory, is a powerful classifier
for binary imbalanced data. In this work, we studied its extension to the multi-class imbal-
anced setting, by combining it with the OVO decomposition process. In a first stage, we have
shown that its success in existing OVO aggregation schemes is boosted by incorporating a
newly proposed weighting scheme, represented in our method IFROWANN-WIR. Secondly,
we have proposed a new aggregation schemeWV–FROST that further improves the results of
IFROWANN-WIR within the OVO setting. WV–FROST enhances the information extracted
from the binary classifiers by including two global summary terms. Both are based on fuzzy
rough set theory, yielding a nice synergy with the fuzzy rough classifiers. Their global char-
acter deals with the non-competent classifier issue encountered in OVO decompositions. Our
experiments allow us to conclude that our complete proposal called FROVOCO, which is
the combination of IFROWANN-WIR in the OVO setting and WV–FROST, outperforms the
state-of-the-art in multi-class imbalanced classification.

As future work, we propose to investigate the wider applicability of theWV–FROST step.
In this paper, both the classifier within the OVO step and the summary terms in WV–FROST
are based on fuzzy rough set theory. It will be interesting to verify whether the strength of
WV–FROST transfers to settings where a different internal classifier is used in the OVO
procedure. Furthermore, we could easily replace the WV part by any of the other existing
OVO aggregation methods and validate whether our proposed summary terms yield similar
improvements in those cases. The performance of WV–FROST on balanced datasets is left
to be evaluated as well.
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