Knowl Inf Syst @ CrossMark
DOI 10.1007/s10115-017-1090-9

REGULAR PAPER

Self-labeling techniques for semi-supervised time series
classification: an empirical study

Mabel Gonzilez! @ - Christoph Bergmeir?® -
Isaac Triguero® - Yanet Rodriguez! - José M. Benitez*

Received: 19 May 2016 / Revised: 14 July 2017 / Accepted: 28 July 2017
© Springer-Verlag London Ltd. 2017

Abstract An increasing amount of unlabeled time series data available render the semi-
supervised paradigm a suitable approach to tackle classification problems with a reduced
quantity of labeled data. Self-labeled techniques stand out from semi-supervised classifica-
tion methods due to their simplicity and the lack of strong assumptions about the distribution
of the labeled and unlabeled data. This paper addresses the relevance of these techniques in
the time series classification context by means of an empirical study that compares successful
self-labeled methods in conjunction with various learning schemes and dissimilarity mea-
sures. Our experiments involve 35 time series datasets with different ratios of labeled data,
aiming to measure the transductive and inductive classification capabilities of the self-labeled
methods studied. The results show that the nearest-neighbor rule is a robust choice for the base
classifier. In addition, the amending and multi-classifier self-labeled-based approaches reveal
a promising attempt to perform semi-supervised classification in the time series context.

Keywords Semi-supervised classification - Self-labeled - Time series classification -
Semi-supervised learning - Self-training

1 Introduction

In the time series field, the semi-supervised learning (SSL [12]) paradigm has received a
lot of research attention during the past decade. As cheap sensors of all kinds become more
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and more available, vast amounts of unlabeled time series data are generated. By contrast,
the cost related to the labeling process makes it often unfeasible to obtain a fully labeled
training set. In this situation, SSL is a good solution to improve the learning accuracy taking
advantage of the unlabeled data in conjunction with a small set of labeled data. Specifically,
semi-supervised classification (SSC) focuses on training a classifier such that it outperforms
a supervised classifier trained on the labeled data alone. In the time series domain, SSL
has found a wide range of applications such as the classification of flying insects [5], web
information extraction [23] and failure prediction in oil production [40]. In this work, we
tackle SSC problems in the time series classification context.

Time series data are characterized by a high dimensionality and its numerical and
continuous nature. Therefore, a special treatment must be considered to deal with time
series classification [25]. A first category of proposals, called feature-based approach
[7,11,17,26,62], transforms the original time series into a new description space where
conventional classifiers can be applied. Signal processing or statistical tools are commonly
used to extract features from the original raw data. A second category [21,34,46,52,53,64]
focuses on customizing or developing classifiers specifically designed for time series data.
This category, which includes the instance-based approach, is mostly based on the selection
of an appropriate representation of the time series and a suitable measure of dissimilarity.
Several representations and dissimilarity measures have been proposed to deal with the time
series classification problem including: spectral approaches [22], autocorrelation function
[2] and elastic measures [13,41,54]. Our paper considers this second approach.

Several SSC approaches have been applied to the time series classification problem. The
work of Marussy and Buza [43] uses the cluster-then-label approach by a constrained hierar-
chical single link clustering method. The work of Frank et al. [24] applies a similar approach
with a similarity measure called geometric template matching. The applicability of graph-
based methods to time series classification is addressed in various works [ 18, 19]. The classical
semi-supervised support vector machines method is extended to tackle time series classifi-
cation by Kim [35].

Another family of SSC methods, denoted self-labeled techniques [57], aims to enlarge
the original labeled set using the most confident predictions to classify unlabeled data. In
contrast to the previous mentioned approaches, self-labeled techniques do not make any
special assumptions about the distribution of the input data. Self-training [67] and co-training
[9] are the most popular self-labeled techniques. Both approaches have been applied in a time
series context.

Self-training is a wrapper method that iteratively classifies the unlabeled examples, assum-
ing that its more accurate predictions tend to be correct. In the time series domain, the
self-training technique is mostly applied to a particular case of SSC, called positive unla-
beled learning, within which only examples from one class are available [6,14,30,51,61]. In
conjunction with the self-training, the k-nearest-neighbor (kNN [1]) is typically used as the
base learner as it has shown to be particularly effective for time series classification tasks
[55,58].

Co-training is a SSC method that requires two conditionally independent views which are
sufficient for learning and classification. For each view, the unlabeled instances with highest
confidence are selected and labeled to be turned into additional training data for the other
view. The multi-view requirement of the co-training technique is typically too strong and
difficult to meet in the time series domain where in most cases observations close together
are correlated. The work of Meng et al. [44] applies a variant of co-training [29] which uses
the hidden Markov model [49] and one-nearest-neighbor (INN) as two different learners
instead of the classical two views of the data.
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There are various works in the literature [6,14,44,51,61] that focus on the SSC of time
series, which involve self-labeled techniques. Self-training and co-training are the only self-
labeled techniques that have been applied in a time series context so far, to the best of our
knowledge. Our study broadens this approach to other self-labeled techniques, therewith
gaining new insights and allowing for more detailed conclusions on this topic. Moreover,
despite the successful application of 1NN to time series classification tasks, the use of different
learning approaches as a base classifiers seems to be an under-explored area. These reasons
motivate our paper, which has three main objectives as follows:

— To explore the applicability of classical self-labeled techniques in the time series domain,
as well as the use of other classification schemes as base learners in addition to the well-
known INN.

— To identify the best methods for each base learner under different ratios of labeled data
and dissimilarity measures.

— To determine the influence of the geometrical characteristics of time series datasets in
the performance of the self-labeled techniques.

The rest of the paper is organized as follows. In Sect. 2, we provide definitions and the
notation of SSC in the time series domain. Furthermore, we discuss the main characteristics of
the self-labeled techniques and the base learners involved in this study. In Sect. 3, we introduce
the experimental framework. In Sect. 4, we present the results obtained and discuss them.
Finally, Sect. 5 concludes the paper.

2 Semi-supervised time series classification

In this section, we define the SSC of time series problem and the principal notation and
definitions. Furthermore, we review the self-labeled techniques and the base learner methods
involved in this study (Sects. 2.1, 2.2).

In SSC, the source dataset has two parts, L and U. Let L be the set of instances {x1, . . ., x7}
for which the labels {y1, ..., y;} are provided. Let U be the set of instances {x;41, . .., Xi4+4}
for which the labels are not known. We follow the typical assumption that there is much more
unlabeled than labeled data, i.e., u > [. The whole set L U U forms the training set.

Throughout this study, each instance x;,i = 1, ...,/ + u, represents a univariate, real-
valued and evenly spaced time series. In this case, the time series x; = [p1, p2, ..., pul iS
considered a sequence of /-dimensional data points.

Depending on the goal, we can categorize SSC into two slightly different settings [12],
namely transductive and inductive learning. The former is devoted to predict the labels on
the unlabeled instances U provided during the training phase. The latter aims to predict the
labels on unseen testing instances. In this work, we delve into both settings aiming to perform
an extensive analysis of the selected methods.

2.1 Self-labeled techniques

Self-labeled techniques follow a wrapper methodology using one or more supervised classi-
fiers to determine the most likely class of the unlabeled instances during an iterative process.
The base classifier(s) play(s) a crucial role in the estimation of the most confident instances
of U. The main feature that distinguishes self-labeled methods is the way they obtain one or
several enlarged labeled sets to efficiently represent the learned hypothesis from the training
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set. In the literature, there are several proposals that follow this approach which differ mainly
in the following aspects:

— Addition mechanism There is a variety of schemes in which the enlarged set can be formed.
The most used ones are incremental and amending. The former adds, step-by-step, the
most confident instances from U to the enlarged set. The latter allows rectifications to
already labeled instances to avoid the introduction of noisy instances in the enlarged
set(s).

— Classification model Self-labeled techniques can use one or more base classifiers to
establish the class of unlabeled instances. Single-classifier models assign to each instance
the most likely class considering the used classifier. Multi-classifier models combine the
hypothesis learned by several classifiers to estimate the class by agreement of classifiers
or combination of the probabilities obtained by single-classifiers.

— Learning approach Independently of the number of base classifiers, the number of learn-
ing methods is another important issue. The single learning approach can be linked with
single- and multi-classifier models. By contrast, the multi-learning approach is intrin-
sically related to the multi-classifier model. In a multi-learning method, the different
classifiers come from different learning methods.

— Stopping criterion This is the mechanism used to stop the self-labeling process preventing
the addition of labeled instances in L with alow confidence level. Often, a prefixed number
of iterations is used as stopping criterion. Another criterion used is the occurrence of
non-changes in the learned hypotheses during successive iterations of the self-training
process.

Since each approach has its own benefits and drawbacks, we include in this study a
representative sample of methods. The selection made is based on the results obtained in the
extensive overview study of Triguero et al. [57], and it includes the following methods:

— Standard self-training (SelfT [67]): is a single-classifier and single learning method that
extends the set L with the most confident examples extracted and classified from U,
during an iteratively and incremental process. The stopping criterion consists in a fixed
number of iterations that can be adapted to the original size of U. Following a wrapper
methodology, the base classifier used by self-training is considered as another parameter
of the method.

— Self-training with editing (SETRED [38]): is a self-training variant with a different addi-
tion mechanism. SETRED introduces a data editing method to filter the noise examples
that has been labeled by the base classifier. For each iteration, the mislabeled examples
are identified using the local information provided by the neighborhood graph [71].

— Self-training nearest-neighbor rule using cut edges (SNNRCE [59]): is a variant of
SETRED that includes a first stage where the most confident examples are added to
L. In the next stage, the self-training standard is applied in combination with the INN
rule as a base classifier. The iterative process stops when the expected number of exam-
ples in the minority class is reached, according to the distribution observed in L. In the
final stage, the mislabeled examples are relabeled attending to the information provided
by the neighborhood graph.

— Tri-training (TriT [70]): is a variant of co-training that trains three instead of the traditional
two classifiers. These classifiers have in common the same learning scheme. The diversity
between the base classifiers is obtained through manipulating the original set L, for
example, using Bagging [10]. For each iteration, the selected examples from U are labeled
and added to the training set of a specific classifier only if there is agreement between the
remaining classifiers and some conditions are satisfied. The stopping criterion is reached

@ Springer



Self-labeling techniques for semi-supervised time...

Table 1 Summary of the self-labeled methods selected

Abbreviated Addition Classification Learning Time iteration complexity

name mechanism model approach

SelfT Incremental Single Single Te(w) + T +1)

SETRED Amending Single Single Tew) + O+ 1)) + Td +1")
SNNRCE Amending Single Single Te(w) + Tl +1)

TriT Incremental Multi Single 6Tc(u) + Z?:l Te(l; + ll{)
Democratic Incremental Multi Multi Z,N: 1 Tci (u) + Z,N: | Tti ; + ll( )

when the hypothesis of the three classifiers does not suffer any modification during a
complete iteration.

— Democratic co-learning (Democratic [69]): is a multi-classifier and multi-learning
method. The specific number of classifiers and its learning scheme are established as
arguments of the method. Initially, all classifiers are trained using the examples in L.
For each iteration, a label for each unlabeled example is proposed via majority vote. If
the classification provided by a classifier disagrees with most classifiers, in a particular
example, then this example is included in the training set of the classifier. The iteratively
process stops when the training sets of the classifiers do not suffer any additions during
a complete iteration.

Table 1 summarizes the principal characteristics of the self-labeled methods selected.

The variety of stopping criteria, associated with the self-labeled methods, makes difficult
in estimating the maximum number of iterations performed by each method. For simplicity,
we focus the temporal analysis on the complexity related to the execution of each iteration
in the main loop of the method. The algorithmic complexity is based on the current number
of unlabeled examples () and labeled examples (/) at the beginning of the iteration. Table 1
includes the time analysis of each method. The functions 7; and 7, represent the time cost
associated with an specific learning scheme in the task of training the model and classifying
new instances, respectively. I’ is the number of candidate examples selected to increase the
set L, and [” is the resulting number of examples after the filtering process. In the case of
the SETRED method, the construction of the neighborhood graph has a cubic complexity.
For the analysis of the Democratic method, we take into account the existence of N different
learning schemes.

2.2 Supervised approaches for time series classification

Different approaches have been used to face the time series classification problem such as
kNN classifiers, decision trees (DT) or support vector machines (SVMs).

The kNN classifier has been widely applied in the time series context [28,45]. This classi-
fier approximates the confidence in terms of dissimilarity between instances. There are several
distance measures presented in the literature that have been used for evaluating dissimilar-
ity between time series: lock-step measures (Euclidean), feature-based measures (Fourier
coefficients), model-based measures (autocorrelation functions), and elastic measures.

The construction of DT is another approach applied to time series classification. Yamada
et al. [66] propose two binary split tests called the standard-example and the cluster-example.
The former selects an existing instance as the standard time series, and the members of the
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child nodes are selected depending on their distances to this selected instance. The later split
searches for two standard time series to bisect the set of instances. A similar idea is followed
by Balakrishnan and Madigan [4] with a clustering-goodness criterion which searches for
the pair of time series that best bisects the set of instances. In both works, the dynamic time
warping (DTW [54]) distance is used. A new split criterion based on an adaptive metric that
covers both behavior and value proximities is developed in Douzal-Chouakria and Amblard
[21].

On the other hand, SVMs are a popular technique that has been applied to time series
classification. The work of Pree et al. [47] compares several similarity measures used as
kernel function in SVM. In contrast to other learning approaches, the performance of the
SVM constructed with Euclidean distance significantly outperforms those obtained using
DTW distance. The reason of this behavior has been analyzed in multiple works [37,68].
It is caused by the indefiniteness of the kernel constructed with DTW. The use of classical
recursive elastic distances to construct recursive edit distance kernels is addressed in Marteau
and Gibet [42]. The kernels constructed in this way are positive definite if some sufficient
conditions are satisfied. Moreover, the construction of a weighted DTW kernel to classify
time series data is proposed in Jeong and Jayaraman [33].

In this study, we use as base learners three instance-based classifiers representative for
those classification approaches, namely kNN, DT and SVM.

3 Experimental framework

This section presents the information related to the datasets involved in the study in Sect. 3.1.
The performance measures and the configuration parameters of the algorithms used are
addressed in Sects. 3.2 and 3.3, respectively.

3.1 Datasets

The experimentation is based on 35 standard classification datasets taken from public avail-
able repositories [15,60]. Table 2 summarizes the main properties of the selected datasets.
The datasets involved in this study contain between 56 and 9236 instances, the time series
length ranges from 24 to 1882, and the number of classes varies between 2 and 14. For each
dataset, the time series are z-normalized, following the recommendation in Rakthanmanon
et al. [50].

The datasets are randomly divided using a fivefold cross-validation procedure. Each train-
ing partition (4/5 of the total set of examples) is randomly divided into two sets: L and U,
of labeled and unlabeled (i.e., the labels are withheld and not available to the algorithm)
examples, respectively. Following the approach of Triguero et al. [57] and Wang et al. [59],
we do not attempt to keep the class proportion in the L and U sets the same as in the whole
training set. The class label of the instances selected to form the set U is removed. We make
sure that every class has been represented in L.

With the purpose of studying the influence of the amount of labeled data, we take different
ratios when dividing the training set. In our experiments, three ratios are used: 10, 20 and
30%. For instance, assuming a training partition which contains 100 examples, when the
labeled rate is 10%, 10 examples are put into L with their labels while the remaining 90
examples are put into U without their labels. Note that the test partition (25 examples) is kept
aside to evaluate the inductive performance of the learned hypothesis.
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Table 2 Summary description of

the times series datasets Datasets Nl?mber ‘of Time series Nur'rvlbc:tr of
instances length classes
CBF 930 128 3
Chlorine 4307 166 3
CinC_ECG_t 1420 1639 4
Coffee 56 286 2
Cricket_X 780 300 12
Cricket_Y 780 300 12
Cricket_Z 780 300 12
ECG 2026 85 2
ECGFiveD 884 136 2
FaceAll 2250 131 14
FacesUCR 2250 131 14
Fish 350 463 7
Gun_Point 200 150 2
Haptics 463 1092 5
InlineS 650 1882 7
Italy 1096 24 2
Lighting2 121 637 2
Lighting7 143 319 7
MALLAT 2400 1024 8
Medicall 1141 99 10
MoteStrain 1272 84 2
Olive 60 570 4
OSULeaf 442 427 6
Sony 621 70 2
Sonyll 980 65 2
StarLightC 9236 1024 3
Synthetic 600 60 6
Trace 200 275 4
Two 5000 128 4
TwoLeadECG 1162 82 2
uWaveGL_X 4478 315 8
uWaveGL_Y 4478 315 8
uWaveGL_Z 4477 315 8
Wafer 7164 152 2
Yoga 3300 426 2

3.2 Performance measures

With the aim of measuring the effectiveness of the classification performed by the SSC
techniques, we use two classical statistics: accuracy rate [63] and Cohen’s kappa rate [8].
The two measures are briefly explained as follows:
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Table3 Parameter specification for the base learners and self-labeled methods involved in the experimentation

Algorithm Parameters
kNN Number of neighbors = 1
DT Minimum number of objects per leaf = 3, impurity level = 0.1, behavior influence = 2.0
SVM C={27°,27% ...,1,...,2%}, Kemnel type = RBF,
o=1{275,27% ... 1,...,25}, cross-validation = threefolds
SelfT Max iterations = min{50, [0.7 - |U|/InstPerlter]}
SETRED Max iterations = min{50, [0.7 - |U|/InstPerlter]}, significance threshold = 0.05
SNNRCE Significance threshold = 0.05
TriT No parameters specified
Democratic Classifiers = INN, DT and SVM

— Accuracy: This measure reflects the agreement between the observed and predicted
classes. It is a simple metric commonly employed for assessing the performance of
classifiers.

— Cohen’s kappa: This measure takes into account the successful hits that would be gen-
erated simply by chance. Cohen’s kappa ranges from —1 to 1, where a value of 0 means
there is no agreement, a value of 1 indicates total agreement, and a negative value indicates
that the prediction is in the opposite direction.

3.3 Algorithms used and parameters

In this section, we specify the configuration parameters of all the methods involved in this
study. The selected values are uniformly used in all the datasets, and they were mostly selected
taking into account the recommendations offered in previous works. The parameters are not
optimized for each specific dataset because the main purpose of this experimental study
is to compare the general performance of the self-labeled techniques. The configuration
parameters are shown in Table 3.

Some of the self-labeled methods have their own built-in stopping criteria, which we use
accordingly for these methods. For classifiers which have not a predefined stopping criterion
we define it as follows. For each dataset, the self-labeled process stops when it satisfies the
first of the following stopping criteria: (i) 70% of the unlabeled instances in the initial set
U have been removed and inserted into L or (ii) the algorithm has reached a maximum
number of 50 iterations. Here, InstPerlter is the number of instances removed from U for
each iteration. The stopping criterion proposed facilitates the exploitation of U and avoids
the extreme output caused by adding in the base learner all the unlabeled instances from U.

Most of the self-labeled methods include one or more base classifier(s). For those methods
that support base classifiers from different approaches (SelfT and TriT), we explore all the
possible combinations. In this study, we select as a base classifiers three methods that represent
influent approaches of time series classification algorithms: kNN, DT and SVM.

INN is a widely used classifier in the time series classification domain. Multiple studies
[28,36,55,65] related to time series similarity measures are based on this classifier.

The method proposed in Douzal-Chouakria and Amblard [21] is selected to construct DT
specifically designed to classify time series data. This method obtains competitive results,
and its split procedure is flexible enough to cover behavior and value proximities. The cost
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function ¢, to evaluate the proximity between two series is evaluated as ¢, (r) = 2/(1 +
exp(b-Co(r)))-c(r), where r is a mapping between two series, Co is the behavior-based cost
function, c is the values-based cost function, and the parameter » modulates the influence of
the behavior in the overall cost. This parameter has been empirically fixed to 2 (Table 3). As
Co function, we have used a variant of Pearson correlation involving first-order differences,
and as ¢ function, we have explored several time series measures.

The kernel function selected to construct the SVMs is Gaussian radial basis function
(RBF), i.e., Kg(x;, xj) = exp(—d(x;, xj)z/(Zoz)). Most previous studies [42,47,68] use it
in combination with a distance measure d selected from the time series domain. Following
the methodology in Marteau and Gibet [42], we normalize the pairwise distance matrix in the
training stage to limit the search space of the parameters. Specifically, we use a predefined set
of C and sigma values to select the most appropriate value during a cross-validation process.
Additionally, other kernels were evaluated [16,56], but result of an unfeasible computational
cost in the self-labeled context.

Throughout the experimentation, we evaluate five different measures to compute the dis-
similarity between instances: Euclidean, DTW, ERP, ACF and FFT. The Sakoe—Chiba band
global constraint [54] is used to improve the performance of the elastic measures. Specifically,
we fix the window size to 4 and 9% of the time series length for DTW and ERP, respectively,
following the recommendation in Kurbalija et al. [36].

4 Results and discussion

This section presents the results obtained in the experiments and a detailed discussion of
those. We evaluate the performance of the methods in two different settings: results obtained
in transductive learning (Sect. 4.1) and inductive learning (Sect. 4.2), under three different
ratios of labeled data. Section 4.3 presents an empirical analysis of the run-times obtained by
the self-labeled techniques. Section 4.4 addresses the geometrical characteristics of the time
series datasets and its influence in the performance of the techniques studied. A comparison
between the supervised and semi-supervised learning paradigm is presented in Sect. 4.5.
Finally, the discussion of all results is performed in Sect. 4.6.

We use nonparametric statistical tests to contrast the results obtained, following the
methodology proposed in Garcia et al. [27]. Concretely, we use the Aligned Friedman test
[32] for multiple comparisons to detect statistically significant differences between the evalu-
ated methods and the post-hoc procedure of Hochberg [31] to characterize those differences.
In comparisons with only two algorithms involved, we use the Wilcoxon signed rank test,
following the recommendation in Demsar [20].

4.1 Transductive results

As stated in Sect. 2.1, the main goal of transductive classification is to predict the class of the
unlabeled data used during the training phase. Table 4 presents the average accuracy (Acc)
results of the self-labeled methods involved in this study over the 35 datasets with 10, 20 and
30% of labeled data. The methods are presented in descending order of the accuracy. For those
methods that support different base classifiers, we have explored all possible combinations
specifying the classifier in the method’s name.

The difference between this ranking and the ranking obtained when we sort using the kappa
results is denoted as AK: positive values indicate that the method obtains a better position
ranking by kappa, negative values indicate the opposite, and zero means no difference. AK
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Table 4 Self-labeled methods ordered by the average accuracy results obtained in the transductive phase

10% 20% 30%

(Euclidean) Acc AK (Euclidean) Acc AK (Euclidean) Acc AK
SETRED 0.720 0 SETRED 0.762 0 SETRED 0.794
TriT-INN 0.718 0 Democratic 0.760 0 Democratic 0.793
Democratic 0.715 0 TriT-INN 0.759 0 TriT-INN 0.790
SelfT-INN 0.708 0 SelfT-INN 0.750 0 SNNRCE 0.781 -2
SNNRCE 0.707 0 SNNRCE 0.749 0 TriT-SVM 0.777 +1
TriT-SVM 0.694 0 TriT-SVM 0.734 0 SelfT-INN 0.776 +1
TriT-DT 0.635 0 SelfT-SVM 0.686 0 SelfT-SVM 0.721 0
SelfT-SVM 0.618 0 TriT-DT 0.671 0 TriT-DT 0.694 0
SelfT-DT 0.598 0 SelfT-DT 0.639 0 SelfT-DT 0.664 0
10% 20% 30%

(DTW) Acc AK (DTW) Acc AK (DTW) Acc AK
TriT-INN 0.771 0 TriT-INN 0.815 0 TriT-INN 0.840 0
SETRED 0.770 0 SETRED 0.814 0 SETRED 0.840 0
Democratic 0.758 0 Democratic 0.802 0 Democratic 0.829 0
SNNRCE 0.757 0 SNNRCE 0.800 0 SNNRCE 0.827 0
SelfT-INN 0.745 0 SelfT-INN 0.787 0 SelfT-1INN 0.812 0
TriT-SVM 0.732 0 TriT-SVM 0.782 0 TriT-SVM 0.806 0
TriT-DT 0.679 0 TriT-DT 0.718 —1 SelfT-SVM 0.750 0
SelfT-DT 0.638 —1 SelfT-SVM 0.715 +1 TriT-DT 0.748 0
SelfT-SVM 0.638 +1 SelfT-DT 0.681 0 SelfT-DT 0.710 0
10% 20% 30%

(ACF) Acc AK (ACF) Acc AK (ACF) Acc AK
TriT-INN 0.689 0 TriT-INN 0.720 0 TriT-INN 0.743 0
SETRED 0.685 0 SETRED 0.715 0 SETRED 0.737 0
SNNRCE 0.681 0 SNNRCE 0.710 0 SNNRCE 0.731 0
Democratic 0.677 0 Democratic 0.709 0 Democratic 0.730 0
SelfT-INN 0.655 0 SelfT-INN 0.687 0 TriT-DT 0.708 —1
TriT-DT 0.654 0 TriT-DT 0.684 0 SelfT-INN 0.705 +1
TriT-SVM 0.640 0 TriT-SVM 0.683 0 TriT-SVM 0.699 -1
SelfT-DT 0.627 0 SelfT-DT 0.665 0 SelfT-DT 0.693 +1
SelfT-SVM 0.569 0 SelfT-SVM 0.632 0 SelfT-SVM 0.659 0
10% 20% 30%

(FFT) Acc AK (FFT) Acc AK (FFT) Acc AK
SETRED 0.721 0 SETRED 0.762 0 SETRED 0.794 -1
Democratic 0.715 0 TriT-1INN 0.760 0 Democratic 0.794 +1
TriT-1INN 0.715 0 Democratic 0.759 0 TriT-1INN 0.790 0
SelfT-INN 0.709 0 SNNRCE 0.750 —1 SNNRCE 0.782 —1
SNNRCE 0.708 0 SelfT-INN 0.749 +1 SelfT-INN 0.776 +1
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Table 4 continued

10% 20% 30%

(FFT) Acc AK (FFT) Acc AK (FFT) Acc AK
TriT-SVM 0.694 0 TriT-SVM 0.741 0 TriT-SVM 0.768 0
TriT-DT 0.636 0 SelfT-SVM 0.681 0 SelfT-SVM 0.723 0
SelfT-SVM 0.622 0 TriT-DT 0.673 0 TriT-DT 0.696 0
SelfT-DT 0.597 0 SelfT-DT 0.639 0 SelfT-DT 0.663 0
10% 20% 30%

(ERP) Acc AK (ERP) Acc AK (ERP) Acc AK
SETRED 0.783 0 Democratic 0.825 0 Democratic 0.847 0
Democratic 0.780 0 TriT-1INN 0.821 0 TriT-1NN 0.846 0
TriT-1INN 0.779 0 SETRED 0.820 0 SETRED 0.845 0
TriT-SVM 0.772 0 SNNRCE 0.808 0 TriT-SVM 0.836 0
SNNRCE 0.767 —1 TriT-SVM 0.805 —1 SNNRCE 0.832 0
SelfT-INN 0.760 +1 SelfT-INN 0.800 +1 SelfT-INN 0.823 0
SelfT-SVM 0.724 0 TriT-DT 0.736 0 TriT-DT 0.762 -1
TriT-DT 0.696 0 SelfT-SVM 0.722 0 SelfT-SVM 0.756 +1
SelfT-DT 0.689 0 SelfT-DT 0.697 0 SelfT-DT 0.722 0

shows whether or not a certain method benefits from random hits. Table 4 reveals no significant
difference between the two orders as only a handful of methods exhibit AK values different
from zero.

Figure 1 shows box and whisker plots of the methods under the dissimilarity measures
studied. This illustration allows us to visualize in more detail the performance of the self-
labeled methods. It shows the gain of accuracy caused by the use of DTW and ERP in
comparison with the other measures. The superiority of DTW over Euclidean distance has
been addressed in previous studies about time series classification problem. For instance, the
extensive study performed by Serra and Arcos [55] supports this conclusion. Furthermore,
the study of Wang et al. [58] reveals that DTW and ERP are clearly superior to Euclidean
distance. In this sense, our results confirm the advantage of these elastic measures in the
semi-supervised context.

On the other hand, the methods combined with 1NN as a base classifier exhibit the better
performance. By contrast, the lowest results are obtained in combination with DT. Moreover,
the use of SVM as a base classifier causes a spread behavior of the accuracy values. Figure 2
presents the average results in a bar plot aiming to compare the accuracy values across
different labeled ratios.

We perform a comparison of the accuracy among all single learning methods grouped
by their learning scheme. This comparison allows us to determine the most successful self-
labeled methods for each base classifier.

The Aligned Friedman test, applied to accuracy for all methods that use 1NN as a base
classifier, detects significant differences in a significance level of « = 0.05 for all comparisons
performed. Table 5 shows the rankings obtained. The most accurate method is chosen as the
control method for the application of the post-hoc procedure. For Euclidean and FFT distance,
the method selected is SETRED in all labeled ratios. For DTW, ACF and ERP, the method
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Fig. 1 Box and whisker plots for the accuracy in transductive phase. The bottom and fop of a box are the first
and third quartiles. The band inside the box is the median. a 10% labeled data. b 20% labeled data. ¢ 30%
labeled data

selected is TriT in most of the comparisons. SNNRCE and SelfT show the lowest values of
accuracy. In the majority of comparisons, these methods are significantly outperformed by
the control method, following the Hochberg post-hoc procedure.

Table 6 shows the application of the Wilcoxon signed ranks test to contrast the accuracy
of the methods that use DT and SVM as a base classifiers. For all dissimilarity measures and
labeled ratios, TriT outperforms SelfT using both base classifiers. The difference obtained
results significant on a significance level of o« = 0.05, with the exception of ERP at 10% of
labeled data.

Finally, Table 7 offers a comparison between the most competitive methods from single
learning and the multi-learning approach (Democratic). We consider as “competitive” those
methods that have not been significantly outperformed more than twice in the 15 comparisons
performed (five distance measures x three labeled ratios) in Tables 5 and 6. Following this
criterion, the outstanding methods selected are: SETRED and TriT.

The Aligned Friedman test, applied to accuracy, detects significant differences on a sig-
nificance level of @ = 0.05 for all comparisons performed. For the dissimilarity measures
DTW and ACEF, the control method selected is TriT-1NN in most cases. For the dissimilarity
measures Euclidean, FFT and ERP, Democratic is selected as control method in most of
the comparisons. SETRED exhibits a competitive behavior because is not outperformed by
the control method in any of comparisons. By contrast, TriT-SVM and TriT-DT are signifi-

@ Springer



Self-labeling techniques for semi-supervised time...

= 10% = 10%
o 20% o 20%
09 4 o 30% 09 4 O 30%

08
0.7 —

07 o

06 o

Accuracy mean (Euclidean)
1
Accuracy mean (DTW)
L

05 —
E B 2 & p £ E E B 2 ¢ £ 5 E
© 12} » = @ %] © 12} [} = @ %]
%] a » %] [ %]
1.0 4 1.0 4
= 10% m 10%
— o 20% — o 20%
&5 09 O 30% T 09 O 30%
< L
c c
M 08 @ 0.8
@ @
£ 1S
> >
8] o
0.7 — 07 4
:
3 3
O o
< 06 < 06
05 — 05 —
o w = = [} w = =
£ 8 ¢ ¢ 2 5 5 £ 8 ¢ ¢ 2 5 5
I N PP £ & T E 207 A ~ S
E 8 7 E E £ g F E 4 2z &£ E £ 3 &
3 = 2 3 = %} 3 = g 3 = %]
1.0 4
w 10%
—~ = 20%
& 09 O 30%
w
=
c
@© 08 —
@
£
3
0.7 —
e
3
Q
Q
< 06
05 —
= =
2 8 8 2 S = 5 5
T 'D_: ['4 T (%] 2 e -
z = I i =4 =
Eow oz £ E &£ g F
& s 8 8 = °

Fig. 2 Bar plot of the comparison between the average accuracy obtained during the transductive phase

cantly outperformed by the control method in most of the comparisons performed, with the
exception of ERP where TriT-SVM exhibits a better behavior.

4.2 Inductive results

The main target of inductive learning is to classify instances not included in the training
phase. This analysis is useful to test the previous learned hypotheses and their generalization
abilities. Table 8 shows the average obtained using all dissimilarity measures studied. Figure 4

@ Springer



M. Gonzalez et al.

Table 5 Aligned Friedman ranking of the accuracy using INN as a base classifier

INN Algorithm  10% 20% 30%
Rank PHochberg Rank PHochberg Rank PHochberg
(Euc) SETRED 552 - 53.7 - 499 -
TriT 60.8 0.56 61.3 0.43 60.9 0.25
SelfT 772 0.04 772 0.03 86.0 58x 1074
SNNRCE 887 1.6 x 1073 89.6 6.4x107° 85.0 58x 107%
(DTW)  TriT 50.0 - 479 - 50.4 0.96
SETRED 57.0 0.47 50.9 0.75 499 -
SNNRCE 832 12 x 1073 89.0 45%x 107 81.5 22x 1073
SelfT 91.7 51x107 94.0 6.0 x 1070 100.0 1.0 x 1076
(ACF) TriT 50.2 - 457 - 445 -
SETRED 63.9 0.15 59.8 0.14 62.9 0.06
SNNRCE 685 0.11 70.5 0.02 723 82x 1073
SelfT 99.2 1.0 x 107% 1059 0.0 102.2 0.0
(FFT) SETRED 55.0 - 553 - 498 -
TriT 66.4 0.23 60.0 0.62 60.3 0.27
SNNRCE 84.4 73x 1073 88.7 1.7 x x1073 85.7 42 x 1074
SelfT 76.0 0.06 77.9 0.03 86.1 42 x 1074
(ERP) TriT 55.5 0.68 50.6 - 50.7 -
SETRED 515 - 56.7 0.52 57.5 0.48
SelfT 89.7 25x 1074 92.0 58 x 107 91.9 6.4 x 107
SNNRCE 85.1 1.0 x 1073 82.6 1.8x 1073 81.7 28x 1073
Adjusted p values for the post-hoc procedure of Hochberg
Table 6 Wilcoxon signed ranks test of the accuracy for DT and SVM as a base classifiers
Algorithms ~ 10% 20% 30%
Neg Pos  pyalue Neg Pos  pyalue Neg Pos  pyalue
DT
(Euc)  TriT-SelfT 4 31 40x10° 4 31 10x10° 3 32 1.0x10°°
(DTW) TiT-SefT 3 32 10x10°® 5 30 20x10° 1 34 00
(ACF) TrTSelfT 9 26 80x1073 10 25 70x103 8 27 60x1073
(FFT)  TrT-SelfT 5 30 20x10® 3 32 20x10® 3 32 1.0x10°°
(ERP) TrT-SelfT 16 19 0.53 233 10x10° 2 33 00
SVM
(Buc)  TrTSelfT 5 30 7.0x10° 12 23 40x103 8 27 10x10°*
(DTW) TiT-SelfT 5 30 30x10® 8 27 32x10° 7 28 21x107°
(ACF) TrT-SelfT 9 26 27x107% 6 29 22x107% 12 23 30x1073
(FFT)  TriT-SelfT 7 28 50x10® 8 27 31x107% 10 25 28x1073
(ERP)  TrT-SelfT 16 19  0.09 5 30 21x107° 7 26 14x107*

The number of negative and positive ranks is shown in conjunction with the p value
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Table7 Aligned Friedman ranking of the accuracy of the most competent methods for each learning approach
using the dissimilarity measures studied

Distance Algorithm 10% 20% 30%
Rank PHochberg Rank PHochberg Rank PHochberg
(Euc) TriT-INN 66.4 - 69.8 0.47 72.6 0.35
Democratic 67.3 0.93 61.0 - 61.3 -
SETRED 71.6 0.93 72.0 0.47 73.5 0.35
TriT-SVM 92.7 0.08 91.9 0.03 85.2 0.14
TriT-DT 141.8 0.0 145.1 0.0 147.3 0.0
(DTW) TriT-1INN 56.9 - 58.4 - 57.9 -
SETRED 64.9 0.51 61.6 0.79 63.8 0.62
Democratic 71.7 0.44 72.9 0.46 71.4 0.52
TriT-SVM 1050  21x107%  100.6 15x1073  10L.1  11x1073
TriT-DT 141.3 0.0 146.2 0.0 145.6 0.0
(ACF) TriT-1INN 551 - 58.2 - 56.7 -
SETRED 62.5 0.54 67.8 0.42 71.2 0.23
Democratic 71.5 0.35 75.8 0.28 73.6 0.23
TriT-SVM 132.2 0.0 113.7 1.4 %1075 121.8 0.0
TriT-DT 1185 0.0 1244 00 1165 2.0x 1076
(FFT) Democratic 63.2 - 62.6 - 60.2 -
TriT-INN 70.0 0.57 68.9 0.59 70.4 0.40
SETRED 70.3 0.57 73.9 0.59 73.6 0.40
TriT-SVM 93.8 0.03 89.6 0.07 90.4 0.03
TriT-DT 142.4 0.0 144.8 0.0 145.2 0.0
(ERP) Democratic 69.0 - 57.8 - 66.3 -
TriT-INN 75.0 0.75 72.3 0.23 71.4 0.67
SETRED 72.8 0.75 74.6 0.23 75.3 0.67
TriT-SVM 73.8 0.75 86.4 0.05 76.3 0.67
TriT-DT 149.2 0.0 148.7 0.0 150.4 0.0

Adjusted p values for the post-hoc procedure of Hochberg

shows box and whisker plots of the same results grouped by ratios. Figure 3 shows a bar
plot of the average accuracy reflecting the improvement obtained by increasing the amount
of labeled examples.

Once more, we perform a comparison of the accuracy among all single learning methods
grouped by their learning scheme. The aligned Friedman test, applied to the accuracy of
all methods that use 1NN as base learning scheme, detects significant differences for all
comparisons performed. Table 9 shows the rankings obtained. The control method selected
is SETRED in most of the comparisons except for ACF where TriT is selected in two labeled
ratios. In general, SNNRCE and SelfT show the lowest values of accuracy and are significantly
outperformed by the control method in most of the comparisons following the Hochberg post-
hoc procedure.

Table 10 shows the application of the Wilcoxon signed ranks test to the accuracy for the
methods that use DT and SVM as a base classifiers. For all dissimilarity measures and labeled
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Table 8 Self-labeled methods ordered by the average accuracy results obtained in the inductive phase

10% 20% 30%

(Euclidean) Acc AK (Euclidean) Acc AK (Euclidean) Acc AK
Democratic 0.719 0 SETRED 0.763 0 SETRED 0.794 -1
SETRED 0.718 0 Democratic 0.757 0 Democratic 0.794 +1
TriT-INN 0.715 0 TriT-INN 0.756 0 TriT-INN 0.788 0
SelfT-INN 0.711 0 SNNRCE 0.754 —1 SNNRCE 0.788 0
SNNRCE 0.707 0 SelfT-INN 0.753 +1 SelfT-INN 0.784 0
TriT-SVM 0.693 0 TriT-SVM 0.734 0 TriT-SVM 0.778 0
TriT-DT 0.633 -1 SelfT-SVM 0.694 0 SelfT-SVM 0.739 0
SelfT-SVM 0.627 +1 TriT-DT 0.667 0 TriT-DT 0.693 0
SelfT-DT 0.602 0 SelfT-DT 0.641 0 SelfT-DT 0.665 0
10% 20% 30%

(DTW) Acc AK (DTW) Acc AK (DTW) Acc AK
SETRED 0.771 0 SETRED 0.813 0 SETRED 0.843 0
TriT-INN 0.768 0 TriT-INN 0.810 0 TriT-INN 0.839 0
SNNRCE 0.764 0 SNNRCE 0.807 0 SNNRCE 0.838 0
Democratic 0.760 0 Democratic 0.801 0 Democratic 0.831 0
SelfT-INN 0.748 0 SelfT-INN 0.791 0 SelfT-1INN 0.824 0
TriT-SVM 0.732 0 TriT-SVM 0.783 0 TriT-SVM 0.806 0
TriT-DT 0.677 0 SelfT-SVM 0.725 0 SelfT-SVM 0.762 0
SelfT-SVM 0.643 0 TriT-DT 0.712 0 TriT-DT 0.743 0
SelfT-DT 0.636 0 SelfT-DT 0.679 0 SelfT-DT 0.710 0
10% 20% 30%

(ACF) Acc AK (ACF) Acc AK (ACF) Acc AK
TriT-INN 0.689 0 TriT-INN 0.720 0 SETRED 0.744 0
SNNRCE 0.688 —1 SETRED 0.717 0 TriT-INN 0.741 0
SETRED 0.685 +1 SNNRCE 0.714 0 SNNRCE 0.739 0
Democratic 0.674 0 Democratic 0.708 0 Democratic 0.732 0
SelfT-INN 0.659 0 SelfT-1INN 0.696 0 SelfT-INN 0.717 0
TriT-DT 0.654 0 TriT-SVM 0.687 —1 TriT-DT 0.711 0
TriT-SVM 0.643 0 TriT-DT 0.684 +1 TriT-SVM 0.702 -1
SelfT-DT 0.629 0 SelfT-DT 0.664 0 SelfT-DT 0.697 +1
SelfT-SVM 0.565 0 SelfT-SVM 0.632 0 SelfT-SVM 0.667 0
10% 20% 30%

(FFT) Acc AK (FFT) Acc AK (FFT) Acc AK
SETRED 0.720 0 SETRED 0.764 0 SETRED 0.794 0
Democratic 0.716 0 Democratic 0.758 0 Democratic 0.791
TriT-INN 0.713 -1 TriT-INN 0.757 0 SNNRCE 0.789 -1
SelfT-INN 0.711 +1 SNNRCE 0.755 —1 TriT-INN 0.788 +1
SNNRCE 0.710 0 SelfT-1NN 0.753 +1 SelfT-1INN 0.785 0
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Table 8 continued

10% 20% 30%

(FFT) Acc AK (FFT) Acc AK (FFT) Acc AK
TriT-SVM 0.697 0 TriT-SVM 0.742 0 TriT-SVM 0.771 0
TriT-DT 0.638 —1 SelfT-SVM 0.687 0 SelfT-SVM 0.739 0
SelfT-SVM 0.628 +1 TriT-DT 0.673 0 TriT-DT 0.691 0
SelfT-DT 0.601 0 SelfT-DT 0.642 0 SelfT-DT 0.663 0
10% 20% 30%

(ERP) Acc AK (ERP) Acc AK (ERP) Acc AK
SETRED 0.779 0 SETRED 0.825 0 SETRED 0.845 0
Democratic 0.778 0 Democratic 0.822 0 TriT-1NN 0.844 0
TriT-1INN 0.774 0 TriT-1NN 0.820 0 Democratic 0.842 0
TriT-SVM 0.772 0 SNNRCE 0.815 0 SNNRCE 0.841 0
SNNRCE 0.768 —1 TriT-SVM 0.808 —1 TriT-SVM 0.836 0
SelfT-INN 0.763 +1 SelfT-INN 0.808 +1 SelfT-INN 0.832 0
SelfT-SVM 0.730 0 TriT-DT 0.732 —1 SelfT-SVM 0.772 0
TriT-DT 0.694 0 SelfT-SVM 0.730 +1 TriT-DT 0.753 0
SelfT-DT 0.684 0 SelfT-DT 0.693 0 SelfT-DT 0.726 0

ratios, TriT outperforms significantly SelfT using both base classifiers, with the exception of
SVM under ERP at 10% of labeled data.

Finally, Table 11 offers a comparison between the most competitive methods from single
learning and the multi-learning approach. Once more, the outstanding methods selected
are: SETRED and TriT. The aligned Friedman test, applied to accuracy, detects significant
differences for all comparisons performed. For the dissimilarity measures Euclidean, FFT
and ERP, the control method selected is Democratic in all comparisons. For ACF, TriT-INN
is selected as control method in most of the comparisons. SETRED exhibits the best behavior
under the dissimilarity measure DTW. TriT-SVM and TriT-DT are significantly outperformed
in most of the comparisons by the control method, with the exception of FFT and ERP where
TriT-SVM exhibits a competitive behavior.

4.3 Experimental run-times

From the temporal analysis performed in Sect. 2.1, it is clear that the main source of temporal
complexity is related to the successive operations of training the model(s) and classifying
instances. The cost associated with this operations directly depends on the learning scheme(s)
used. In this section, we present an empirical analysis of the run-times based on a sample
of 20 datasets included in the experimentation. All experiments were performed in a cluster
conformed by 46 nodes, each one equipped with an Intel® Core™ i7-930 processor at
2.8 GHz and 24 GB of RAM memory. Under GNU/Linux, we ran the experiments using R
version 3.3.1 [48].

During the training and classification process, we provide the time series datasets to the
self-labeled techniques using a distance matrix form. This avoids the repetitions of distance
calculations, and therefore it reduces the running time. For that reason, the time consumption
associated with the distance matrices computation are not considered in the current analysis.
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Fig. 3 Bar plot of the comparison between the average accuracy obtained during the transductive phase

Table 12 contains the run-times of the self-labeled techniques using a sequential execution
of the fivefold cross-validation procedure. TriT-1NN obtains the lower run-times in all the
cases. The 1-NN base classifier produces the shortest run-times, whereas the SVM produces
the longest ones. This is caused by the time consumption involved in the construction of SVM
with the threefold cross-validation process to adjust the parameters C and o. Democratic
obtains expensive run-time because it trains a classifier for each learning scheme. SETRED
and SNNRCE obtain competitive results as the base classifier trained is 1NN.
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4.4 Tmpact of the geometrical characteristics of datasets

The geometrical characteristics of the datasets affect the performance of the self-labeled
methods. The overlapping of samples is a common source of difficulty in the classification
process. In addition, the reduced labeled sample in the SSC framework and the high dimen-
sionality of time series data introduces another layer of complexity. In Wang et al. [59], the
overlapping of samples from different classes is investigated in order to offer an explanation
of the decreasing performance experimented by the SSC algorithms in datasets that suffer
this problem.

We follow a similar idea by computing the neighbors of each training instance (from U)
in a neighborhood graph constructed from L U U. The proportion of neighbors (from L)
with a different class with respect to the training instance analyzed, is used as an overlapping
measure. Table 13 includes this overlapping measured averaged for all training examples
of each dataset. The neighborhood graph was computed for each dissimilarity measure and
proportion of labeled data. The datasets with high proportions of neighbors with different
class are related to high levels of overlap between classes.

In order to investigate the impact of the overlapping in the classification performance,
we correlate the values of Table 13 with the accuracy obtained with the self-labeled tech-
niques. Figure 5 shows the correlations obtained between the two variables studied (accuracy
and overlapping). For all dissimilarity measures and proportions of labeled data studied,
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Table 9 Aligned Friedman ranking of the accuracy using INN as a base classifier

INN Algorithm 10% 20% 30%
Rank PHochberg Rank PHochberg Rank PHochberg
(Euc) SETRED 567 - 535 - 533 -
TriT 672 027 725 0.06 684  0.04
SelfT 69.4 027 76.2 0.04 862  0.03
SNNRCE 885  3.0x 1073 79.7 0.04 740  0.02
(DTW)  TriT 557 - 63.1 0.44 63.1 0.29
SETRED 585 077 557 - 529 -
SNNRCE 728  0.15 733 0.14 735 0.06
SelfT 94.7 17 x 1074 89.8 1.3x1073 92.4 14 x 1074
(ACF) TriT 526 - 51.1 - 58.8 040
SETRED 685 020 61.9 0.26 507 -
SNNRCE 59.8 045 67.9 0.16 70.0  0.09
SelfT 1009  2.0x107° 1010 1.0x107° 1023 0.0
(FFT) SETRED 554 - 535 - 539 -
TriT 726  0.09 73.9 0.03 68.9  0.12
SNNRCE 823  0.01 783 0.03 733 0.09
SelfT 71.5 0.09 0.03 2.0x107° 85.8 30x1073
(ERP) SETRED 555 - 51.1 - 610 -
TiiT 60.6  0.59 64.5 0.16 62.1 0.90
SelfT 877  27x1073 89.6 21x107% 87.1 0.02
SNNRCE 78.1 0.03 76.6 0.01 717 0.53
Adjusted p values for the post-hoc procedure of Hochberg
Table 10 Wilcoxon signed ranks test of the accuracy for DT and SVM as a base classifiers
Algorithms  10% 20% 30%
Neg Pos  pyalue Neg Pos  pyalue Neg Pos  pyalue
DT
(Buc)  TrT-SelfT 6 28 13x105 6 29 71x105 3 32 50x10°°
(DTW) TrT-SelfT 3 32 20x107® 6 29 10x107> 3 31 53x107°
(ACF) TriTSelfT 7 27 67x1073 9 26 68x103 9 26 0.1
(FFT)  TrT-SelfT 4 30 11x107> 4 31 30x10® 5 30 60x10°
(ERP)  TriT-SelfT 10 24  0.04 4 30 10x10% 7 28 20x1074
SVM
(Euc)  TriT-SelfT 6 29 26x1075 12 23 80x103 9 25 18x1073
(DTW) TriT-SelfT 3 32 40x10® 7 27 61x107° 26 22x1074
(ACF) TriT-SelfT 6 28 18x107> 7 28 28x1075 10 25 37x1073
(FFT)  TrTSelfT 3 32 10x10% 8 27 40x104 11 23 0.1
(ERP)  TrT-SelfT 15 20 0.12 4 31 60x10% 6 27 1.0x1074

The number of negative and positive ranks is shown in conjunction with the p value
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Table 11 Aligned Friedman ranking of the accuracy of the competent methods for each learning approach
using the dissimilarity measures studied

Distance Algorithm 10% 20% 30%
Rank PHochberg Rank PHochberg Rank PHochberg

(Euc) Democratic 61.0 - 63.9 - 63.2 -
SETRED 740 040 66.5  0.82 71.0  0.52
TriT- 1NN 71.0 040 725 082 758  0.52
TrT-SVM 923 0.02 917  0.02 83.6 027
TriT-DT 1415 00 1452 0.0 146.1 0.0

(DTW) TriT-INN 615 - 627  0.89 63.1  0.66
SETRED 65.4  0.74 611 - 579 -
Democratic 71.5 0.74 70.6 0.86 71.4 0.52
TriT-SVM 1017 27x1073 975 80x1073 996 17x1073
TriT-DT 1398 0.0 1480 0.0 147.8 0.0

(ACF) TriT-INN 579 - 631 - 703 0.30
SETRED 623 071 633  0.98 578 -
Democratic 795  0.14 824 022 80.4  0.12
TriT-SVM 1254 0.0 1083 56x107% 1168 4.0x10°
TriT-DT 1147  80x107%® 1480 40x10°% 1478 9.0x10°

(FFT) Democratic 64.5 - 64.4 - 61.9 -
TriT- 1NN 719 054 748  0.67 739 055
SETRED 729 054 69.5  0.67 69.0 0.5
TrT-SVM 903  0.09 86.5  0.20 872  0.10
TriT-DT 140.1 0.0 1446 0.0 147.8 0.0

(ERP) Democratic 68.7 - 65.4 - 71.4 -
TriT- 1NN 794 071 720  0.83 723 098
SETRED 731 071 680  0.83 716 098
TriT-SVM 736 071 849 032 768  0.98
TriT-DT 1450 0.0 1495 0.0 1477 0.0

Adjusted p values for the post-hoc procedure of Hochberg

both variables present an strong inverse correlation. This means that the presence of over-
lapping in datasets affects, in a significant manner, the performance of the self-labeled
techniques.

Considering the impact of overlapping in the techniques performance, we present a study
about the tuning of some parameters based on the level of overlapping in the datasets. Specif-
ically, we study the parameter significance threshold that controls the addition mechanism
in the methods SETRED and SNNRCE. In the case of SETRED, this parameter controls
the hypothesis used to decide if an specific example must be added or not to the labeled set
L. The smaller this value, the more restrictive the selection of examples that are considered
good is. In the case of SNNRCE, the significance threshold is related to the hypothesis used
to determine if an example is considered as a “doubt example.” The greater this value, the
more examples will be considered as doubt and accordingly to the SNNRCE method they
will be relabeled.
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Fig. 5 Spearman’s p correlation coefficients obtained between the overlapping estimated in the datasets and
the accuracy results of the self-labeled techniques. a 10% labeled data. b 20% labeled data. ¢ 30% labeled
data

Figures 6 and 7 show the behavior of the significance threshold parameter throughout
different levels of overlap. The significance threshold selected is the value, between three
possible values (0.05, 0.10 and 0.15), that maximizes the accuracy of SETRED. In general,
the most appropriated threshold for datasets seems to be the most restrictive value 0.05. This
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Fig. 6 Best configuration of the significance threshold parameter for each dataset in the SETRED method. a
Euclidean 10%, b Euclidean 20%, ¢ Euclidean 30%, d DTW 10%, e DTW 20%, f DTW 30%, g ACF 10%, h
ACF 20% and i ACF 30%

value benefits datasets with low overlapping. For other datasets, including those with medium
or high degree of overlap are more flexible values of significance threshold preferred. This
behavior is more noticeable at 30% of labeled data.

Figures 8 and 9 show a similar behavior for the SNNRCE method. For this method
coincides as the most suitable option for the significance threshold the value 0.05. Although,
for some datasets with more overlapping, the values 0.10 and 0.15 result a better option. In
contrast to SETRED, this behavior is more noticeable at 10% of labeled data.

4.5 Can semi-supervised learning improve classification performance?

A recommendable procedure [12] in presence of labeled and unlabeled data is to start by
learning a supervised classifier from the labeled data, named “baseline classifier.” A compar-
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Fig. 7 Best configuration of the significance threshold parameter for each dataset in the SETRED method. a
FFT 10%, b FFT 20%, ¢ FFT 30%, d ERP 10%, e ERP 20% and f ERP 30%

ison with this classifier allows us to identify situations where the addition of unlabeled data
causes performance degradation of the classifier obtained. In this section, we perform such
analysis measuring the accuracy gain obtained with the addition of unlabeled data during
the training phase. We estimate the accuracy gain subtracting the accuracy obtained with
supervised classification from the accuracy obtained with SSC. In both cases, the classifier
performance is evaluated on the testing set, using the same fivefold cross-validation scheme.
We select as the baseline method the INN classifier because it offers the most accurate
results.

We expect that the best performing self-labeled methods selected from previous sections
will obtain the highest accuracy gain. For this reason, we focus this analysis on those methods.
Figure 10 shows the accuracy gain obtained for each dataset using three semi-supervised
methods. A negative gain means performance degradation of the classifier. We can observe a
very diverse behavior of the gains under the different labeled ratios and methods. There are
datasets that do not benefit from SSL, for instance ECG [60] and Wafer. The size of these
datasets already causes that the hypothesis learned by the supervised baseline is perfectly
capable of obtaining accurate classification results in the inductive phase. On other datasets,
such as Medicall, classification performance deteriorates with the addition of unlabeled data
for 10 and 20% labeled ratio. This is the case as the initial labeled data provided are insufficient
for training a correct model where unlabeled data will be truly beneficial. It is noticeable that
Medicall is a multi-class dataset (10 classes) with high overlapping. This adverse situation
starts to reverse at 30% labeled ratio where Democratic obtains a positive accuracy difference
gain.

Though there are unfavorable situations for SSL in some datasets, Fig. 11 shows the gains
obtained with SETRED, in decreasing order. In general, at 20% labeled data a significant

@ Springer



M. Gonzalez et al.

- v O o o00 ° T L e o
9] o [}
L % %
4 3 8
£ £ £
8 o4 8 o 8 o
c =1 C
g 8 2
= = =
c c c
<) =) =3
« w0 - o 0 - @ w0 -
T T T T T T T T T T T T T T T
00 02 04 06 08 00 02 04 06 08 00 02 04 06 08
Overlapping degree Overlapping degree Overlapping degree
(@ (b) (0
o ®4 ® o ®4 o o © oo®@0 o
2 2 2
[7] [7] [%]
2 2 e
£ < <
8 o] 8 o] 8 o
C C o
[ © o
Q Q2 L
= = 'c
2 2 2
@ [Tol | o [Tol | o 0
T T T T T T T T T T T T T T T
00 02 04 06 08 00 02 04 06 08 00 02 04 06 08
Overlapping degree Overlapping degree Overlapping degree
(d) (e ®
o 04 o o® o o 04 o o® o o 04 © e oo
o) o) o)
< < <
(2] 2] 2]
o o e
£ £ £
8 o 8 o 8 o
C C c
[ v v
Qo Qo Q2
= = =
k=2 k=2 ko)
@ 0 - @ 0 - @ 0 -
T T T T T T T T T T T T T T T
00 02 04 06 08 00 02 04 06 08 00 02 04 06 08
Overlapping degree Overlapping degree Overlapping degree
(8 (h) (@

Fig. 8 Best configuration of the significance threshold parameter for each dataset in the SNNRCE method. a
Euclidean 10%, b Euclidean 20%, ¢ Euclidean 30%, d DTW 10%, e DTW 20%, f DTW 30%, g ACF 10%, h
ACF 20% and i ACF 30%

positive gain can be observed. We also see that it depends heavily on the ratio of labeled
instances if there is benefit and how big it is. Summarizing, the circumstances that make SSL
a suitable approach for a particular dataset depend on the modeling assumptions adopted for
the classifier, as well as the characteristics of the time series data.

In addition to the performed analysis, we consider the baseline classifier trained on the
fully labeled training set and evaluated on the testing set. These accuracy results can be con-
sidered as an upper bound for the self-labeled methods. Figure 12 shows the semi-supervised
classification accuracy bounded by the baseline classifier. In general, the semi-supervised
results in most of the datasets are competitive compared with the upper bound considered.
Interestingly, for datasets such as StarLightC and Synthetic the multi-learning hypothesis,
learned by Democratic, outperforms the upper bound classifier.
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Fig. 11 Bar plot of the accuracy gain for SETRED in inductive phase, using Euclidean distance. a 10%
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4.6 General discussion

This section gives a general discussion of the properties observed throughout this study. In
addition, we highlight the methods that perform best in general.

— For most of the methods, accuracy increases with an increase of labeled examples. How-
ever, this increase is usually rather moderate in most methods. In self-labeled methods
with SVMs as base classifiers, the increase is bigger than in the other methods.

— The classical SelfT is clearly outperformed by other self-labeled techniques indepen-
dently of the learning approach and the dissimilarity measure used.

— Usually, there is no difference between the obtained rankings with accuracy and kappa
statistics. This means that there is no significant difference in the way that the classifiers
benefit from random hits.

— In general, INN offers the best transductive and inductive results as base classifier in
most self-labeled methods. In addition, this base classifier yields the most competitive
run-times in comparison with SVM and DT.

— Although SVM and DT do not offer competitive results as base classifiers, when these
learning schemes are combined with 1NN, following a multi-learning scheme (Demo-
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set. a SETRED. b TriT-1NN. ¢ Democratic

cratic), good results are obtained. However, the increment of the run-time is a side effect
of the Democratic method.

The use of DTW and ERP distance results in a gain of accuracy in comparison with the
other measures studied. In the case of DTW, this advantage is reduced in presence of
SVM as a base classifier. This behavior is caused by the indefiniteness of the kernels
constructed under DTW.

SETRED, Democratic and TriT-1NN are the best performing methods in this study.
TriT-SVM also exhibits a competitive behavior under FFT and ERP dissimilarity
measures. For Euclidean, ERP and FFT, we recommend the use of Democratic. For
DTW, we recommend TriT-1NN and SETRED for transductive and inductive scenarios,
respectively. For ACF, we recommend TriT-1NN for either inductive and transductive
learning.

The overlapping in datasets is an aspect that should be taken into account during the
solution of time series classification problems. We find strong evidence about the negative
effects of overlap in the accuracy of the self-labeled techniques.

From the study of the significance threshold parameter, we recommend in general the
use of the most restrictive value 0.05 in both methods SETRED and SNNRCE. In par-
ticular, for datasets with high levels of overlap, other values of this parameter must be
considered.
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5 Conclusion

We have investigated the applicability of different self-labeled methods for semi-supervised
learning in a time series context. In addition to the popular SelfT with INN as base learner,
we have explored other combinations of self-labeled methods and learning schemes that had
not been applied in a time series context, to the best of our knowledge. We can conclude with
the following remarks:

— In general, 1NN is a robust choice for the base classifier in the semi-supervised context
as it offers the most accurate results and no parameters have to be tuned.

— SelfT is always outperformed by other self-labeled methods such as TriT and SETRED.

— Our empirical study allows us to highlight three methods, in particular SETRED,
TriT-1NN and Democratic, that perform significantly better than the rest in terms of
transductive and inductive capabilities.

— The use of ensembles of classifiers (TriT-1NN and Democratic) is a very promising
attempt to perform SSL in the time series context. This is in line with recent studies
[3,39] in supervised classification of temporal data.

— Taking into account the underlying risk to classification performance caused by the
addition of unlabeled data, we recommend a comparison of the SSL results with the
INN as baseline classifier to identify the real benefits of learning with unlabeled data. The
overlapping in datasets is other aspect that should be taken into account in the selection of
the classification techniques. Specifically, the performance of the self-labeled techniques
can be seriously affected by the presence of overlapping.
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