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Abstract— The design of efficient big data learning models
has become a common need in a great number of applications.
The massive amounts of available data may hinder the use of
traditional data mining techniques, especially when evolution-
ary algorithms are involved as a key step. Existing solutions
typically follow a divide-and-conquer approach in which the
data is split into several chunks that are addressed individually.
Next, the partial knowledge acquired from every slice of data
is aggregated in multiple ways to solve the entire problem.
However, these approaches are missing a global view of the
data as a whole, which may result in less accurate models.

In this work we carry out a first attempt on the design
of a global evolutionary undersampling model for imbalanced
classification problems. These are characterised by having a
highly skewed distribution of classes in which evolutionary
models are being used to balance the dataset by selecting
only the most relevant data. Using Apache Spark as big
data technology, we have introduced a number of variations
to the well-known CHC algorithm to work with very large
chromosomes and reduce the costs associated to the fitness
evaluation. We discuss some preliminary results, showing the
great potential of this new kind of evolutionary big data model.

I. INTRODUCTION

Learning from big datasets is a great challenge for most

machine learning techniques. Although they are supposed to

work better when there is an abundance of data to leverage

their outcome, in practice, they cannot be really applied

due to memory and time limitations [1]. New parallelisation

technologies, however, provide us powerful tools to handle

large amounts in the form of distributed datasets [2]. Thus,

the problem now consists of figuring out the most suitable

way of using such technology to come up with effective

learning algorithms.

Hadoop [3] and the MapReduce paradigm [4] served as the

first alternatives to deal with data-intensive kind of applica-

tions. The key point lied in the use of a distributed file system

that allowed us to parallelise multiple tasks across a cluster of

computing nodes in a transparent and fault-tolerant manner

[5]. Soon enough, the machine learning community found

multiple limitations [6] to efficiently deploy algorithms that

share data across multiple stages (e.g. iterative algorithms).
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New platforms such as Spark [2] or Flink [7] have been built

upon the MapReduce paradigm to provide us with a new kind

of high throughput in-memory distributed datasets that easily

allow us to repeatedly carry out operations on the data.

Multiple MapReduce-like strategies have been developed

to adapt traditional machine learning and data mining tech-

niques to the new big data scenario. Most of these methods

are approximations of the original algorithms, and just a

few of them are exact replicas of the sequential version.

Approximate models typically divide the data into smaller

subsets in which the original algorithm is applied. Then, the

different outcomes from each part are somehow combined

[8]. Global or sometimes exact approaches aim to replicate

the behaviour of the sequential version by letting it see the

data as a whole (and not as a combination of smaller parts).

As an example, we can find the Decision Trees implemented

in Apache Spark [2] or the big data version of the k-nearest

neighbours proposed in [9]. The great advantage of this last

approach is that they may become more robust and precise,

but they tend to be slower.

Even when there are lots amounts of data, we may also

run into the situation where there is scarcity of a particular

class of samples. Focusing on two-class problems, this issue

is known as the class imbalance problem [10], in which

positive data samples (usually the class of interest) are highly

outnumbered by negative ones [11]. This issue brings along a

series of difficulties such as overlapping, small sample size,

or small disjuncts [12]. Several approaches have been de-

signed to tackle this problem, which can be divided into three

main groups: data sampling, algorithmic modifications and

cost-sensitive solutions. These models have also been suc-

cessfully combined with ensemble learning algorithms [13].

Evolutionary undersampling (EUS) [14] belongs to the

data sampling family, where the main objective is to balance

the distribution of classes of the original dataset by removing

examples of the negative class. This removal is carefully

guided by a genetic-based algorithm that aims to increase

the performance on the two classes of the problem. However,

dealing with a large number of negative examples would lead

to a large chromosome size, resulting in a huge search space

that limits the straightforward application of EUS on big

data. In previous works [15], [16], we devised approximate

approaches, based on Hadoop and Spark technologies, that

split the original problem into small pieces in which EUS

could be concurrently applied. Despite their performance,

these models lack of a global view of the entire dataset.

The main goal of this work is to investigate whether a

global EUS is feasible with the current technology, in terms
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of runtime and in comparison to approximate models. As

new technologies, such as Spark, allow us to take multiple

iterations over the same data without a heavy penalty, we

can now devise a parallel EUS that basically distributes time

consuming and high memory demanding operations across

a number of worker processes, while the main procedure

would be running in the driver process. As an evolutionary

algorithm, we focus on the widely-used CHC evolutionary

algorithm [17], which is modified to create a more compact

representation of the chromosomes, and make use of dis-

tributed datasets when evaluating the current population.

The paper is structured as follows. Section II provides

background information about evolutionary undersampling

for imbalanced big data classification. Section III discusses

the decisions made to take the CHC model to the big data

context with Apache Spark. Section IV analyses the empiri-

cal results. Finally, Section V summarises the conclusions.

II. BACKGROUND

This section describes the big data technologies used in

this paper (Section II-A) as well as the current state-of-the-

art on imbalanced big data classification (Section II-B).

A. Big Data Technologies

The MapReduce paradigm [4] was designed by Google

in 2003 as a scalable data processing tool. Although it

was primarily designed as a part of the most powerful

search engine on the Internet, its usefulness produced a

rapid development becoming one of the most commonly used

approach for data intensive applications.

The most popular open-source implementation of MapRe-

duce is Apache Hadoop [18]. Its usage is widely extended

due to its performance, easiness of installation, open source

nature and the included distributed file system (Hadoop

Distributed File System, HDFS). Nevertheless, there are

several tasks for which Hadoop MapReduce is not the most

appropriate solution due to the additional costs required for

reusing data. This is the case of interactive queries and online

or iterative computing.

Apache Spark was developed aiming at solving the draw-

backs of Hadoop when dealing with these types of tasks.

Spark is only a data processing engine that is usually used

in top of Hadoop ecosystem. Hence, it commonly relies

in HDFS for the storage part. In order to make the data

processing faster on distributed environments, this framework

considers a set of in-memory primitives, which make the

reuse of data faster. The main abstraction of Spark are named

as Resilient Distributed Datasets (RDDs). With this data

structure parallel computations can be easily implemented in

a transparent way. RDDs can persist in memory, making it

easy to efficiently reuse results. Moreover, the lazy evaluation

of Spark allows the engine to optimise consecutive data

transformations without requiring any action from the user.

Among other properties, the partitioning of RDDs can also be

managed to optimise data placement. Very recently, Spark is

moving towards even more efficient APIs such as DataFrame

and Datasets offering even greater optimization capabilities

due to the newly introduced Catalyst optimiser and Tungsten

memory management.

B. Imbalanced classification in the Big Data context

In a binary classification scenario a dataset is said to be

imbalanced whenever the number of instances of one class

outnumbers that of the other. In this situation, performance

measures like the accuracy rate (percentage of correctly

classified examples) are no longer valid to measure the

quality of the models obtained, since the performance over

both classes is not equally weighted. Two commonly used

alternatives are the Area Under the ROC Curve (AUC) and

the g-mean.

The AUC (Area Under the ROC-Curve) [19] provides a

scalar value measuring how well a classifier trades off its

true positive (TPrate) and false positive rates (FPrate). A

popular approximation [10] of this measure is given by

AUC =
1 + TPrate−FPrate

2
. (1)

Similarly, the g-mean is the acronym for the geometric

mean. In this case, the balance between the true positive

rates and true negative rates (TNrate) of the classifier is

measured, that is, how well the classifier is able to recognize

both classes at the same time:

g-mean =
√

TPrate ·TNrate (2)

These two measures have been extensively and interchange-

ably used in various experimental studies of imbalanced

classification [10], [14].

Any classification problem can be affected by the pres-

ence of class imbalance, and big data problems are not an

exception. Even though the quantity of data is much bigger,

the imbalance ratio (the number of majority class examples

divided by the number of negative class examples) can still

be to high so as to extract meaningful models. One main

drawback of distributing large imbalanced datasets across

different nodes is that the sample size of the minority class

in each node will become lower. As a consequence, when

a local model is learned using only a subset of the training

set, the presence of too little minority class examples can

end hindering the classifier learning phase as it is one of the

main sources of problems in imbalanced domains [10].

EUS is an interesting alternative to deal with big data

imbalanced problems as it reduces the dataset size, on the

contrary to oversampling methods that generate even more

data [20]. Hence, the corresponding model can be built faster.

Another way of reducing the dataset size is by means of ran-

dom undersampling (RUS). However, its main disadvantage

is that it could discard important data from the majority class

due to the random nature behind its functioning procedure,

whereas EUS guides the balancing of the dataset to preserve

or even improve the final performance.

Several data level algorithms were tested in [20] to deal

with imbalanced big data classification problems (random

over/undersampling and SMOTE). Afterwards, a Random

Forest classifier [21] was trained. A different approach was
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Fig. 1: EUS local for extremely imbalanced datasets [16]

taken in [22] where a fuzzy rule-based classification system

was developed to address the class imbalance problem in the

big data context. In order to do so, the authors proposed

a cost-sensitive approach developed over the MapReduce

adaptation of the fuzzy classifier.

With respect to EUS in big data applications, a preliminary

work was presented in [15]. The authors proposed a two-

level parallelisation model where MapReduce was used to

divide the problem into smaller subproblems over which EUS

was applied and a windowing scheme was used to reduce

the evaluation of each chromosome in each node. However,

the small-sample size problem was not addressed in this

first approach due to the limitations of Hadoop framework.

Nevertheless, this was the main focus of their subsequent

work [16], where the authors took advantage of the primitives

provided by Spark to properly deal with the small-sample

size problem. Spark allows one to broadcast a set of data to

all the nodes. This useful property was used to broadcast all

the minority class examples to all the nodes so that EUS and

the corresponding decision tree could make use of the whole

minority class information. Figure 1 depicts this local EUS

model. In this work, our aim is to go one step further using

all the potential offered by Spark to develop a first attempt

on a global EUS model. This way, we will be able not only

to get rid of the small-sample size problem, but also to obtain

a reduced set which is selected considering the dataset as a

whole, which has not been developed before.

III. A GLOBAL EVOLUTIONARY UNDERSAMPLING FOR

IMBALANCED BIG DATA WITH APACHE SPARK

In this section we describe the proposed global EUS for

imbalanced big datasets based on Apache Spark. We discuss

the necessary changes made to the original EUS proposal to

extend it to the big data context.

EUS [14] was devised as a new kind of evolutionary

instance selection algorithm [23] that accounts for the class

imbalance problem. The focus of EUS is to balance the

dataset in such a way that the performance is maximised

in both classes of the problem.

Following the general procedure of an evolutionary al-

gorithm, it starts off with a population of NP candidate

solutions. In the original EUS, a binary chromosome is used

to encode every possible solution. In this chromosome, each

bit represents the presence (1) or absence (0) of an instance

in the training set. To reduce the search space, only majority

class instances are considered for removal, including always

all the minority class instances in the final dataset.

Having a set of M majority class instances, the first issue

we encounter when dealing with big datasets (i.e., M is very

big) is that this chromosome will be extremely big as it is

representing every single majority class instance. To alleviate

this situation, we change the codification used in EUS for a

sparse chromosome that only contains the indexes of those

majority instances that are being selected. This is a very

tailored modification that works well for EUS because in the

end its main goal is to balance both classes. Therefore, we

assume here that chromosomes are going to select a very

few number of majority instances (similar to the number of

minority class examples). Otherwise, this codification would

probably take even more space than the binary representation.

Figure 2 illustrates a comparison between the standard binary

representation and the proposed sparse representation.

Fig. 2: Differences in representation for EUS. In this exam-

ple, the chromosome is representing the selection of three

majority class instances with indexes 0, 3 and 8, respectively.

The main implication of this decision is that we will

want to keep chromosomes representing a reduced number of

majority class instances from the beginning. This will cause

a few variations on the following steps of the evolutionary

process.

The initialisation procedure will be the first mechanism

affected by this. Originally, EUS randomly initialises all

the chromosomes of the population, so that, the number

of 1s and 0s tend to be similar in the initial population.

For imbalanced classification, it means that the resulting
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preprocessed dataset would probably have an imbalanced

distribution of classes. The original EUS corrects this issue

throughout the evolution, by having a fitness function that

favors chromosomes that produce a balanced dataset (so,

typically a few number of selected majority instances are

selected). To keep the chromosome size to a minimum, in

our implementation, we randomly take a set of indexes in

the range [0,M -1] of size equal to the number of minority

class examples. Hence, the initial chromosomes and their

corresponding datasets are initially balanced.
In order to assess and rank the quality of the chromo-

somes, the original EUS uses a fitness function that is based

on how well the current chromosome balances the class

distributions and an expected performance of the selected

instances. Specifically, the performance is computed using

the nearest neighbour algorithm to classify the examples of

the training set with the selected instances represented in the

chromosome. As performance measure, the g-mean is applied

(defined in Eq. (2)).

The complete fitness function looks like this:

fitnessEUS =

{
g-mean−

∣∣∣1− n+

N−

∣∣∣ · P if N− > 0

g-mean−P if N− = 0,
(3)

where n+ is the number of positive instances, N− is the

number of selected negative instances and P is a penalization

factor that focuses on the balance between both classes. P
is typically set to 0.2 as recommended by the authors, since

it provides a good trade-off between both objectives.

As we stated before, the new codification obliges us to

keep the chromosome size to a minimum from the beginning

of the evolution. This means that we can get rid of the

balancing component of the fitness function. Therefore, the

fitness function will basically end up being the g-mean

obtained in the training set.
Definitely, the fitness function will be the most costly

operation throughout the whole evolutionary process. Thus,

this step is going to be parallelised using Apache Spark.

One should notice that the evaluation cost of nearest neigh-

bour algorithm for each chromosome is intractable with big

datasets. Subsection III-A discusses the details.

So far, the discussion above is valid for any genetic

algorithm. As a particular search algorithm, we use the CHC

evolutionary algorithm [17] that offers an excellent balance

between exploration and exploitation. CHC is an elitist

genetic algorithm making use of the heterogeneous uniform

cross-over (HUX) for the combination of two chromosomes.

It also uses an incest prevention mechanism and when the

evolution does not progress, it reinitialises the population.

The changes made in the representation of the chromosome

slightly affect some of the operators of CHC.

• The HUX operator is combined with an incest preven-

tion mechanism aiming at producing offspring that are

maximally different from the parents. Incest prevention

is achieved by impeding that two parents that are too

similar in terms of their Hamming distance (over the

original binary chromosome) are crossed. A crossover

is then only permitted between randomly paired chro-

mosomes with a Hamming distance divided by two

greater than a given threshold d. When allowed, the

heterogeneous uniform crossover (HUX) mechanism

will exchange at random exactly half of the differing bits

of the parents’ chromosomes to make sure that offspring

are significantly different from both parents.

Within the sparse representation of the chromosome,

we can simply extend the application of the Hamming

distance to our representation. Indexes not present in

both chromosomes will have a Hamming distance of 0.

Therefore, the Hamming distance computation comes

down to compare how many elements in both chro-

mosomes are different from each other. For example,

with a chromosome X = {4, 6, 8, 9} and other Y =
{4, 5, 7, 9}, there is a Hamming distance of 4. The

crossover operator will keep common elements in both

parents and it will take 50% of the elements from X that

are not in Y (e.g. index 6), and vice-versa (e.g. index

7), to create two new chromosomes Z = {4, 6, 7, 9} and

T = {4, 5, 8, 9}.
• When the Hamming distance between any selected

parents divided by two does not exceed the distance

threshold d (i.e., not offspring are generated), the pop-

ulation is partially reinitialised. The new population is

created, using the best chromosome obtained so far as

a template. A percentage of the elements in the best

chromosome (e.g. 35%) are randomly reinitialized (0

or 1 at random) according to a given parameter.

With the sparse chromosome, we cannot get exactly

the same implementation. However, we can achieve a

very close implementation in which we randomly take

elements from the best-so-far chromosome. For each

element in the best chromosome if the random number

in the range [0,1] is greater than a certain probability

(e.g. 0.35), we take the corresponding element from

the best chromosome, otherwise, we generate a random

index in the range [0,M ] and add it to the chromosome.

In this way, we will end up having the same number of

elements as the best chromosome. This point is impor-

tant due to the fact that we are no longer considering

the balancing of the dataset in the fitness function and

hence, this phase will maintain the number of instances

selected.

The parameter d is usually initialised to d = L/4, where

L is the length of the chromosome. However, in our imple-

mentation the length of the chromosome is variable due to

the sparse codification and L should be equal to the number

of negative instances. The problem is that the probability of

one index to be entered in the chromosome is too small (due

to the imbalance ratio) given that few indexes are included in

the initialisation (as many as the size of that of the minority

class). As a consequence, the Hamming distance divided by

two (incest prevention) will never be as big as L/4. In order

to model the original behaviour of this parameter, we need to

set it such that d is equal to half the number of indexes in the

2057



chromosomes, that is, the number of minority class instances

divided by two. This models the same behaviour because in

the original case the number of ones in a chromosome is

approximately L/2, which is divided by two to obtain L/4.

A. Spark-based CHC for Imbalanced big data

Here we now discuss the parallelisation details of our pro-

posal, focusing on the required Spark operations. Algorithm

1 shows the pseudo-code of the EUS method with precise

details of the functions utilised from Spark. In the following,

we describe the most significant instructions, enumerated

from 1 to 28.

Let trainFile be the training set stored in the HDFS as a

single file. This file is composed of h HDFS blocks that can

be examined from any computing node. The global EUS al-

gorithm starts off reading the entire trainFile set from HDFS

as an RDD, splitting the dataset into an user-defined number

of #Map disjoint partitions (Instruction 1). This operation

spreads the data across the computing nodes, caching the

different subsets (Map1,Map2,...,Mapm) into main memory.

Using a function toLabeledPoint(), the original text data is

transformed into the LabeledPoint data structure of Spark.

Next, we split this dataset into two subsets: positive set

posTrainRDD and negative set negTrainRDD, which contain

only positive and negative instances, respectively. The filter

transformation provided by Spark is used for this purpose.

For sake of simplicity on the implementation of the chromo-

somes, the negative training set is zipped with indexes (using

zipWithIndex() operation, see Instruction 2). In this work,

we assume that the number of existing positive instances

is so reduced that it will perfectly fit in the main memory

of the driver node (as we did in [16]). Thus, Instruction

3 also collects the data from worker nodes and bring it to

the driver. We will use this copy of the positive training set

posTrainDriver later on.
When the data is well distributed across the cluster of com-

puting nodes, we can now create the initial population and

assess its quality (Instructions 5-8). To do so, we first follow

the scheme explained above, creating sparse chromosomes

at random. Later, we have to evaluate the quality of such

chromosomes.
Algorithm 2 deepens into the necessary instructions to

carry out such relevant operation. For each chromosome

we have a collection of indexes representing the instances

selected from the negative training set. On the one hand,

we have to obtain the actual subset of the training set that

is represented by the indexes of every chromosome of the

population (from now on reducedSet). On the other hand,

we have to evaluate such a subset against the training set.

To obtain the actual subset of the training set, we first

have to filter the negative training set according to the indexes

contained in the current chromosome. To do this, once again,

we rely on the filter function provided with Spark (Instruction

2 of Algorithm 2). Since this is going to be a fairly small

dataset, we also collect the data from the worker nodes to the

driver. Next, both the selected negative instances and all the

local copy of positive instances (posTrainDriver) are joined

together (Instruction 3 of Algorithm 2) to form the resulting

reducedSet.

Typically, the nearest neighbour algorithm is used to

classify the training set with reducedSet. Due to the way

of working of nearest neighbour, this would oblige us to

have the reducedSet available in every single node (using

for example the broadcast function). However, after some

preliminary experiments with this approach, we concluded

that the overhead created sending such information from the

driver to the nodes slows down quite a lot the fitness func-

tion evaluation, compromising the feasibility of the whole

approach.

For this reason, we base the fitness function on an eager

model (and more specifically a Decision Tree), so that, we

can learn a single model in the driver node, and broadcast

it over all the worker nodes to classify the training set (See

Instructions 4-5 in Algorithm 2). The main benefit of doing

this is that the model will be a very small data structure

compared to the reducedSet, and the classification phase

will also be faster than in the case of nearest neighbour.

One should question whether it would be better to avoid the

collect phases by learning a global Decision Tree using the

distributed and filtered data. However, we should emphasise

the fact that the distributed learning is much slower due to

the communication requirements, and repeating this process

for each chromosome becomes too slow.

To accelerate the fitness evaluation, we have considered

the usage of the windowing scheme defined in [15]. Under

such scheme, the chromosomes will only be assessed against

a subset of the training set each evaluation. It always includes

the entire positive set and a random subset of the negative

training set. Both datasets (posTrainRDD and negTrainRDD)

were formerly in the form distributed datasets. Therefore,

applying transformations on them is very straighforward

and not very time consuming operations. Specifically, we

randomly take negative instances according to the a given

number of windows (established in [15] as the imbalanced

ratio). Later, this the entire positive set is joined using the

union operation, obtaining the window of the training set

used for fitness evaluation. The detailed operation can be

found in Instruction 6 of Algorithm 2. We should notice that

this windowing scheme was totally necessary when nearest

neighbour classifier was used to compute the fitness function.

In this case, since we are simply obtaining the output of the

model for each instance and not computing all the distances,

the computational cost highly decreases. Hence, we will

study whether the usage of the windowing scheme in this

context continues providing a good trade-off between speed

and performance or whether it is a better choice not to

consider it in order to achieve the best performance. When

the windowing scheme is deactivated (i.e. NumWindows =
0), Instruction 6 will simply join the entire negTrainRDD and

the posTrainRDD sets.

After that, the classification takes place. We make use of

a mapPartitions(func) transformation to concurrently access

to the instances contained in the window set. The function
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Fig. 3: EUS-global: Data flow

to be applied in every single portion of the data consists

of classifying every single instance using the model broad-

cast before. As a result, this function will provide pairs

< trueclass, predictedclass > for each instance of the

window. This information is brought to the driver node to

compute the g-mean as fitness measure.

When the initial population is evaluated, this is sorted

according to their fitness values (Instruction 10). Then,

the CHC algorithm enters into a loop (Instructions 11 to

29) where search relies upon recombination and repro-

duction to create new potential solutions until a number

of evaluation (MAX EV ALUATIONS) is reached or

we have re-initialised the population a number of times

(MAX REINITIALISATIONS). This loop includes all

the operations described before about the evolutionary pro-

cess i.e. crossover with incest prevention (Instructions 12-

15), elitist selection (Instructions 20-21), and reinitialisation

of the population (Instructions 23-27).

As a result of the evolutionary process, we will obtain

a balanced reduced set of instances that globally represent

the entire training set. This dataset will be later used by

a classifier to learn a model and classify the test set. In

particular, we will use the Decision Tree provided in Apache

Spark to classify the test set.

Figure 3 summarises the proposed model with a focus on

which operations are carried out in the driver node and which

are done in parallel.

IV. PRELIMINARY RESULTS AND DISCUSSION

In order to assess the correctness of the proposed method

for imbalanced big data classification problems, we have

conducted some preliminary experiments in one big dataset.

It comes from the Evolutionary Big Data Competition

ECBDL’14 [24], [25]. For this study, we consider a subset of

10% of the instances, in which the number of features was

reduced from 631 to 90 by means of the feature selection

algorithm applied in [25]. This dataset contains a total

Algorithm 1 EUS Global preprocessing
Require: trainFile; #Maps; #Windows
1: trainRDD ← textFile(trainFile, #Maps).toLabeledPoint().cache()
2: negTrainRDD = trainRDD.filter(line → line.contains(”negative”)).zipWithIndex()
3: posTrainRDD = trainRDD.filter(line → line.contains(”positive”))
4: posTrainDriver = posTrainRDD.collect()
5: d = L/2

{Initialisation}
6: for i = 1 to NP do

7: populationi = Randomly take numPositive indexes in the range [0,M-1].
8: fitnessi = evaluate(populationi , negTrainRDD, posTrain-

Driver,#Windows )
9: end for

10: population.sorted
11: while eval < MAX EVALUATIONS and reinitialisations <

MAX REINITIALISATIONS do

12: offspring = crossover(population)
13: if offspring.size > 0 then

14: evaluate(offspring,negTrainRDD, posTrainDriver,#Windows)
15: offspring.sorted
16: end if

17: if offspring.size == 0 or offspring(0).fitness <

population(0).fitness then

18: d = d - 1
19: else

20: population = (offspring ++ population).sorted.take(NP)
21: evaluate(population.tail,negTrainRDD, posTrainDriver,#Windows)
22: end if

23: if d <= 0 then

24: re-initialise(population)
25: d = L/2
26: reinitialisations += 1
27: end if

28: end while

Algorithm 2 EUS-global: Parallel fitness function using

Spark
Require: population; negTrainRDD; posTrainDriver; NumWindows
1: for i = 1 to NP do

2: negativeSetSelected = negTrainRDD.filter{case (key, value) → popula-
tion(i).contains(key).collect()}

3: reducedSet = negativeSetSelected.union(posTrainRDD)
4: model = LearnDecisionTree(reducedSet)
5: model broadcast sc.broadcast(model)
6: window = negTrainRDD.mapPartitions(dataset → RandomSelec-

tion(NumWindows)).union(posTrainRDD)
7: Outputs = window.mapPartitions(dataset → Classify(dataset,

model broadcast)).collect()
8: end for

9: return ComputeGmean(Outputs(True Class, Predicted Class))
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of 3,489,083 instances, from which 69,133 belong to the

positive class (i.e., an imbalanced ratio of 49, approximately).
In our experiments we consider a 5-fold stratified cross-

validation model. To evaluate our model, we consider the

AUC and g-mean measures. The experiments are carried

out in a cluster with 12 nodes: a master node and eleven

computing nodes. Each one of these nodes has 2 Intel Xeon

CPU E5-2620 processors, 6 cores per processor (12 threads),

2.0 GHz and 64GB of RAM. The network is Gigabit ethernet

(1Gbps). In terms of software, we have used the Cloudera’s

open-source Apache Hadoop distribution (Hadoop 2.6.0-

cdh5.4.2) and Spark 1.6.2. A maximum of 216 concurrent

tasks are available.
Table I collects the parameters used for the algorithms

involved in this experiment. We consider the standard param-

eters for EUS [16]. In order to obtain a measure of the quality

of the selected set after the evolutionary undersampling

process, we have considered the Decision Tree included in

Spark to learn a model and classify the test examples.

TABLE I: Parameters used for the involved algorithms.

Algorithm Parameters

Decision Tree Max Depth = 5,
Minimum number of item-sets per leaf = 2

EUS-ImbBD Population Size = 50, Number of Evaluations = 10000,
Probability of inclusion HUX = 0.25,
Evaluation Measure = g-mean, Selection Type = Majority,
Balancing = True, P = 0.2
Maps = 512, Windowing activated

EUS-global Population Size = 50, Number of Evaluations = 10000,
Probability of inclusion HUX = 0.25,
Evaluation Measure = g-mean,

Since the main bottleneck of a global approach is the

fitness function evaluation, the first point we wanted to check

is the average runtime required to carry out that operation

depending on the number of maps used. To do this, we make

use of the performance measures provided by the web UI of

Apache Spark. Note that this information is always limited

to actions, rather than transformations.

There are two main processes involved in the fitness

evaluation, where information must come from the worker

nodes to the driver: collecting the selected negative set of

instances, and classifying and evaluating the corresponding

window (if any) of the training data. We also account for the

necessary time to learn a model within the driver node. Table

II presents a comparison of the average times (average over

100 fitness evaluations) of each of these phases, including a

comparison amongst the classification time needed keeping

windowing activated and deactivated.

TABLE II: Fitness evaluation time according to the number

of maps

Collect time(s) Learning time(s) Classif. time(s) Classif. time(s)

#Maps No windows Windowing

12 0.5830 0.8766 0.2427 0.5278

64 0.6250 0.8621 0.2273 0.5148

128 0.6412 0.8505 0.1924 0.4854

As we can observe, the larger the number of maps is,

the higher the time spent to collect the negative selected set

from the workers to the driver is. On the other hand, the

classification time seems to follow the opposite behaviour.

Nevertheless, this phase is so quick (due to the use of

Decision Tree model) that increasing the number of maps

does not really speed up the classification time, which

is fairly small. Hence, it is clear that using a very high

number of maps creates a small overhead in the distributed

processing, making it not really worthy to accelerate the

fitness evaluation.
We can also observe that the classification time can be

reduced by half using the windowing scheme. Although it

does seem to be a very high improvement with respect to the

time necessary to evaluate the fitness function, the reduction

in the total time invested by the whole evolutionary process

(with up to 10,000 evaluations) may be worthwhile. It is

interesting to note that the reduction in time due to the usage

of the windowing scheme is not linear, since the set of data

evaluated is approximately 25 times smaller (half of the IR)

and the time is only reduced to a half. Hence, the filtering

phase for selecting the data to be classified also produces

some overhead reducing the effectiveness of the windowing,

given that the classification is really fast due to the usage of

a model instead of nearest neighbour classifier.
The second goal of this experiment is to check whether

the algorithm is able to converge or not in such a huge search

space. Figure 4 depicts a convergence plot in which every

time we evaluate a new bunch of chromosomes, we provide

the best g-mean obtained so far. Both, the algorithm using

windowing and not using it are compared in this plot.

Fig. 4: EUS-global: Convergence of the algorithm.

From this figure, we can observe that the algorithm clearly

evolves towards a better solution in both cases and therefore,

the global selection seems to work as expected. Nevertheless,

there are differences in the behaviour of the model with or

without windowing. When the windowing mechanism is ap-

plied, the bunch of training data assessed every single fitness

evaluation is way smaller. Thus, it is somehow easier that the

selection of more relevant examples in the chromosomes are

more rapidly reflected in the fitness value.
Finally, in Table III we compare the performance of the

global model against our previous local approach EUS-Imb.

In this case and to make the comparison as fair as possible,
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we have used the local EUS model from [15] but instead of

learning a local decision tree in each partition, all the selected

negative instances and the positive ones have been used to

build a global Decision Tree with Spark. This way, the only

difference between the two models is the way the EUS is

carried out. We have not considered the EUSextImb model

from [16] as it really replicates positive class instances, being

less comparable in terms of global vs. local approaches.

As we stated before, in terms of runtime, the advantage

of the local model against this new proposal is clear inde-

pendently of the use of windowing. However, with respect

to the classification performance, both in terms of AUC and

G-mean the global model obtains better results. Comparing

our proposal with and without windowing, the runtime is

naturally reduced when applying windowing. Very interest-

ingly, however, the performance for this particular dataset is

also improved with the windowing approach as it seemed to

converge to a better solution.
It is clear that we could not draw meaningful conclusions

from one dataset with such a slight improvement. However,

the results obtained are promising and encourage us to further

concentrate on developing global models, or instead, consider

hybrid models that could take advantage of the global view

of the whole data and the speed of the local approaches.

TABLE III: Preliminary results obtained with ECBDL14

datasets (10%) with 90 features

Preprocessing Time Reduction Rate AUC G-mean

EUS-local 99.1720 95.7613 0.7090 0.7088

EUS-global(windowing) 18338.6602 95.7256 0.7111 0.7108

EUS-global 21622.9775 95.8645 0.7100 0.7099

V. CONCLUDING REMARKS

In this contribution we have carried out a first attempt

on global evolutionary undersampling for imbalanced big

data classification. To do so, we have focused on Spark

as big data technology. The main advantage of this model

in comparison to existing local approaches is that it will

analyse all the data as a whole. Our preliminary results

show the potential of this scheme. However, we still need

to extend our experiments to get more insights. As future

work, we consider that the design of hybrid approaches that

accelerate even more the fitness function evolution may result

in a very suitable approach to deal with imbalance big data

classification from a global perspective.
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