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Abstract

Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and
structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using
several markers may increase power by capturing high-degree associations. However, there is also a risk of spurious
associations and power reduction due to the increase in degrees of freedom. In this study we show that associations found
by tests built on simple null hypotheses are highly reproducible in a second independent data set regardless the number of
markers. As a test exhibiting this feature to its maximum, we introduce the multimarker 2-Groups TDT (mTDT2G), a test
which under the hypothesis of no linkage, asymptotically follows a x2 distribution with 1 degree of freedom regardless the
number of markers. The statistic requires the division of parental haplotypes into two groups: disease susceptibility and
disease protective haplotype groups. We assessed the test behavior by performing an extensive simulation study as well as
a real-data study using several data sets of two complex diseases. We show that mTDT2G test is highly efficient and it
achieves the highest power among all the tests used, even when the null hypothesis is tested in a second independent data
set. Therefore, mTDT2G turns out to be a very promising multimarker TDT to perform genome-wide searches for disease
susceptibility loci that may be used as a preprocessing step in the construction of more accurate genetic models to predict
individual susceptibility to complex diseases.
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Introduction

Current commercially-available genotyping technologies for

identifying Single-Nucleotide Polymorphisms (SNPs) are able to

scan a few hundred thousands of these binary markers in a single

chip array. With such arrays, in-silico genome-wide single nucleotide

polymorphisms (SNP) filtering can be performed as a preprocessing

step, before more expensive, molecular-based experimentation, as

a way to reduce costs when searching for loci that may be

associated to a disease. The most common way of filtering is by

performing control-case association studies. However, they are

known to inflate type-I errors due to population stratification [1,2].

An alternative, which is robust to population stratification, is the

Transmission/Disequilibrium Test (TDT), a single marker and

biallelic test able to detect genetic linkage in the presence of

genetic association. Different multimarker generalizations of TDT,

such as mTDT [3,4], enhance the test by detecting marker

interaction, i.e., when a single marker is independent of the trait,

but there is association when more than one marker are

considered together. This conditional dependence may point out

to gene-gene interactions (epistasis), or just to a disease

susceptibility gene whose disease allele needs more than one

marker to be tagged. TDT is also enhanced by multimarker TDTs

when there are no sequenced markers that actually belong to the

disease susceptibility locus, but which are in strong linkage

disequilibrium (LD) with it [5,6].

Let us assume that data consist of M nuclear families with one

affected offspring, and that L SNPs are genotyped for each family

member. As an example, for L~2, and assuming biallelic SNPs,

there will be only k~4 different haplotypes: AB,Ab,aB,ab: Let us

consider a sample S composed of all transmitted and nontrans-

mitted haplotypes whenever parents are heterozygous. Let n be the

sample size, i.e. the number of haplotypes from all heterozygote

parents. Thus, the subsample ST of transmitted haplotypes has

n=2 haplotypes, as well as the subsample SU of nontransmitted

haplotypes. If all the parents were heterozygous for the genotyped

loci, n~4 M would hold.

In nuclear families with one affected child, there must be a

difference between frequencies of nontransmitted and transmitted

haplotypes if they are directly associated with the disease, or in
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linkage with a susceptibility locus. Therefore, at a loci in

association with a disease, the most-frequently transmitted

haplotypes are disease susceptibility haplotypes. Multimarker

TDTs rely on this idea in order to detect linkage in presence of

association between a haplotype and a disease susceptibility locus.

In contrast to monomarker TDTs, they are more powerful as they

are able to detect interaction effects between markers. However,

they have an important issue of sample reproducibility. Sample

reproducibility refers to the extent to which power reached by a

test does not change when the same null hypothesis built using the

first data set is used in a second independent data set from the

same population. Moreover, the lack of sample reproducibility of

multimarker TDTs increases with the number of markers. The

reason of this discouraging behavior is because most of them are

poorly specific and simultaneously check effects of all the

haplotypes found in the data set. For such a generic alternative

hypothesis, degrees of freedom (df) strongly increase and very large

data sets are required to find consistent associations [7]. Therefore,

even if power should increase with haplotype length, the

incremental problem of sparse data affects consistency of both

power and locus specificity. In practice these tests become

inaccurate, except when using one or a couple of SNPs, and their

results hardly reproducible in different data sets. Considering the

alternative hypothesis as a linkage model composed by sets of

haplotypes under the rules of an specific multimarker measure, the

number of markers tested together affects model complexity.

Therefore, for the same statistic, the higher the number of

markers, the larger the data set has to be to detect true

associations, i.e. associations in the population, which therefore

should also be found in a different data set from the same

population. In the very other extreme of only one marker, there

will be only two different alleles and very small data sets may be

enough for accurate estimators of population models, models

which will also replicate in a different data set.

As abovementioned, one example of a multimarker TDT is

mTDT [3,4], a straightforward extension of TDT to be used with

haplotypes defined as:

mTDT~
k{1

k

Xk

i~1

(niT{niU )2

niTzniU

,

with k being the number of different alleles/haplotypes and niT ,

niU being respectively the number of times an allele/haplotype i is

transmitted and nontransmitted, considering only heterozygous

parental genotypes. The measure has a limiting x2 with k{1

(x2
k{1) df under no linkage [8]. mTDT was modified by mTDTS

[9], a score method to guarantee that it asymptotically follows an

exact x2
k{1 under the null hypothesis of no linkage. Other more

recent alternatives are: mTDTE [10], based upon the concept of

entropy, whose null distribution is also x2
k{1 but which reaches

lower power than the classic mTDT and mTDTS under a wide

range of genetic scenearios [6], and mTDTP, a test which weighs

haplotypes by their frequencies and which outperforms mTDT
and mTDTS under the ‘common disease-common variant’

(CDCD) hypothesis [6].

Some solutions to reduce df have been proposed, such as

grouping haplotypes or using measures based on haplotype

similarities [2,7,11,12]. Sometimes, criteria used to select groups

may rely on strong assumptions that reduce the power whenever

they do not hold. This is the case for ET{TDT , a group-based

test that uses a haplotype evolutionary relationship [13] that first

requires estimation of a cladogram, which assumes no recurrent

disease mutations and no recombination or gene conversion.

Perhaps the simplest group-based multimarker TDT is mTDT1

[8,14], which uses the maximum of the biallelic TDT statistics

computed for each haplotype versus all others combined but does

not follow a x2 distribution under the null except for haplotypes of

only one marker, so that the more markers are used, the larger the

false positive rate. The Bonferroni correction is too conservative

and other alternatives that do not require unaffordable simulation-

based analysis [15] only provide lower and upper bounds to

calculate power and type-I errors respectively but are not easily

generalized to be used in genome-wide association studies (GWAS)

in which power and type-I errors are the two extremes (0 and 0:5
respectively) of an increasing recombination fraction with distance

to a disease susceptibility or protective locus. Some similarity-

based tests rely also in strong assumptions which reduce the power

in a general basis [6]. For example, the Length Contrast Test

(mTDTLC ) [5], and the Signed Rank Test (mTDTSR) based on

mTDTLC that uses a Wilcoxon score [5], assume that there must

be less variation within transmitted haplotypes to affected offspring

than within nontransmitted haplotypes [2]. Moreover, the

attempts to reduce df yielding to these similarity measures

translated as well into an increase in computational complexity.

Therefore, the measures are computed by pairwise comparisons

between individuals, so that their computational complexity is

quadratic on the number of founders, in contrast with most TDT

measures, which use sample frequencies and are linear for the

number of individuals. For current data sets, like those used in this

work which contained over two thousand individuals, this

constitutes an important burden when used for genome-wide

searching. If the distribution under the null hypothesis is unknown,

and has to be estimated using permutations, as it is the case with

most similarity and group-based tests [2,5,12,16,17], the compu-

tational time can also increase significantly. Even if computational

complexity is linear to the number of permutations, the test is not a

practical choice for use in genome-wide association searches.

After showing how state-of-the-art multimarker TDTs reduce

sample reproducibility with the increase in the number of markers,

our goal was to define a highly powerful, locus specific and

computationally feasible multimarker TDT for performing

genome-wide association searches which is also highly reproduc-

ible when a second data set from the same population is used. We

conjectured that reducing df to a minimum regardless to the

number of markers should help to reach this goal, and we defined

mTDT2G, a multimarker TDT that is x2
1 under the null. To

achieve this reduction in df, haplotypes are categorized into only

two groups: one group represents the disease susceptibility

haplotypes and is composed of those haplotypes whose transmis-

sion count is higher than their non-transmission count, while the

other group represents the protective haplotypes and is composed

of those haplotypes that are more frequently nontransmitted. The

idea of grouping haplotypes in low and high risk ones was already

suggested [14] but no alternative solution was provided to

supersede the risk of inflated type-I errors if ad-hoc grouping

were performed. In this work we go ahead with this idea and

propose a simple alternative approach to ad-hoc grouping, called

holdout, to avoid the common problem of multiple testing (sample

overfitting) in group-based association tests which would yield to

inflated type-I errors when more than one marker is used at a time

and which becomes very severe for haplotypes with a few markers.

Therefore our approach guarantees the statistic is x2
1 under the

null. Under this approach, we randomly divide the data set into

two halves, and use one half to choose the two haplotype groups

and the other one to infer statistical significance. More complex

multisampling approaches such as cross-validation, which divides

the data set into at least two folds and obtains a central statistic

Sample Reproducibility in Multimarker TDTs
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from the measure obtained by each fold, could be used. However,

power may be inflated because dependence between data subsets

makes the statistic not to follow a chi square under the null

hypothesis of no linkage. We performed simulations in order to

compare power, locus specificity and sample reproducibility of

mTDT2G with several state-of-the-art multimarker TDTs. We also

tested mTDT2G using real data sets comprising family trios with

offspring having a complex disease. We showed that mTDT2G can

be used to narrow down regions known to contain some

susceptibility loci to multiple sclerosis (MS) and Crohn diseases

that are either too wide or undetectable by other multimarker

TDTs. We also used the holdout approach with mTDT1, which

we have called mTDT1{h, instead of using corrections which tend

to over-correct results, such as the Bonferroni correction [18], or

which become unaffordable for genome wide scan such as

permutation-based corrections [12].

Results

The 2-groups multimarker TDT
As abovementioned, mTDT2G reduces df by further relaxing

the small assumptions made in the definition of mTDT or

mTDTS . Thus, the test does not assume any fixed number of

different haplotypes within the population, as there may always be

haplotypes in a population that do not appear in the data set used.

It only considers two groups: group g1, or high-risk group, with all

the haplotypes that are most often transmitted to affected

individuals, versus group g2, or low-risk group, with all the

haplotypes that are most often non transmitted to affected

individuals.

haplotype hi[
g1 if niTwniU

g2 if niTvniU ,

�

Those haplotypes with the same number of transmitted and

nontransmitted counts are not included in any group. Moreover,

once the groups are defined, and in order to compute the statistic

for a data set, those parental genotypes whose two haplotypes

belong to the same group are considered homozygous and are

disregarded as all the haplotypes in the same group are collapsed.

Except for only one biallelic marker where there is only one

model (two haplotypes), there is always a risk of sample overfitting,

i.e. inflated power, which increases with the number of markers as

the number of different models also increases. Therefore, there are

2k{1{1 different ways of dividing haplotypes between two

disjoint and non-empty groups, with k being the number of

different haplotypes in the sample. If the same data set were used

and no correction were performed, the problem of overfitting

would arise: the statistic would be overfitted to that data set, with

much larger values than when a different data set were used to

infer the groups. Therefore, it would barely be reproducible in a

different data set from the same population, with lack of sample

reproducibility increasing with the number of markers. If a

classical linear multiple testing correction were performed such as

the Bonferroni correction, power would strongly decrease, as true

association results would be over-corrected [18].

Our solution applies holdout, a very simple multisampling

approach: the data set with parental genotypes is divided into two,

by default equally sized, data subsets, so that one (the training data

set) is used to learn the model and the other (the test data set) to

compute the statistic. Therefore, the training data set is used to

define the groups, i.e. to assign each haplotype inside the data set

to one of the 2 groups, and the counts to compute the statistic are

obtained by using only ng genotypes of the test data set: those

heterozygous parental genotypes with one haplotype in each

group. To assign a haplotype in the test data set to a group, the

following rule is used:

haplotype hi[
g1 if dmin(hi,g1)vdmin(hi,g2)

g2 if dmin(hi,g2)vdmin(hi,g1),

�
ð1Þ

with dmin(hi,gx),x1,2 being defined as the distance between hi and

the haplotype in gx most similar to hi. As similarity measure we

chose the length similarity measure [5,12,19], which equals the

largest number of consecutive markers with matching alleles and

which is also used in mTDTLC and mTDTSR [5].

The k|k table with haplotype transmissions (one column and

row per haplotype), is reduced by mTDT2G to only two cells in a

2|2 table, with rows representing transmitted group counts and

columns representing non transmitted group counts (see Table 1).

The first row, second column contains ng1g2
, the number of times a

heterozygous parent from the test data set with one haplotype in

each group transmits the haplotype belonging to g1 to their

offspring and does not transmit the one belonging to g2: In an

equivalent way, the first column, second row contains ng2g1
, the

number of times a heterozygous parent from the test data set with

one haplotype in each group transmits the haplotype belonging to

g2 to their offspring and does not transmit the one belonging to g1:
Therefore, counts for each used cell, defined by whether g1 is

transmitted (T) and g2 not (U) or the other way around, are

computed by summing up the counts of all the genotypes with one

haplotype in each group and the same transmission status. Hence,

ng1g2
is computed as:

ng1g2
~

X
hi[g1,hj[g2

nij , ð2Þ

with nij being the number of parents with genotype (hi,hj)

transmitting haplotype hi to their offspring. The other count ng2g1

is computed in an equivalent manner.

The statistic is defined as:

mTDT2G~
(ng1g2

{ng2g1
)2

ng

:

mTDT2G checks differences in transmissions of group g1 versus

group g2, so that it is a McNemar test (x2
1) equivalent to the single

locus biallelic TDT whenever haplotypes are collapsed into groups

and counts were computed by using a different data set. Text S1

shows that mTDT2G is x2
1 under the null hypothesis of no linkage.

Table 1. The 2|2 table used by mTDT2G .

Nontransmitted group

Transmitted group g1 g2 Total

g1 - ng1 g2
ng1g2

g2 ng2 g1
- ng2g1

Total ng2 g1
ng1 g2

ng

Only those ng parental genotypes with one haplotype in each group are used
by mTDT2G : The counts refer to the number of times haplotypes in one group
are transmitted by heterozygous parents to their affected offspring.
doi:10.1371/journal.pone.0029613.t001

Sample Reproducibility in Multimarker TDTs
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It is straightforward to show that if groups were inferred from the

same data set from which the statistic is computed, mTDT2G defaults

to the usual formula of simple TDT in the case of only one biallelic

marker.

Tables 2, 3 and 4 show how to compute mTDT2G in a simple

example with only two biallelic markers. The data set is first divided

into two equal-size data subsets (see Table 2). Table 3 left grid shows

a k|k table (k~4) with counts for the training data subset, i.e. the

one used to make up groups, using rows to represent transmitted

haplotypes and columns to represent nontransmitted haplotypes. As

it is shown, the only haplotype in the training data set which is more

often non transmitted (56 times) than transmitted (40 times) is AB:
Therefore, group g2 contains only this haplotype. Haplotypes Ab
and aB have transmission counts smaller than non-transmission

counts so that they make up group g1: As haplotype ab is

transmitted as many times as it is non-transmitted, it is not assigned

to any group. Table 3 right grid shows a k|k table (k~4) with

counts from the test data subset, i.e. the one used to compute the

statistic. These counts are used to fill two cells in Table 4, the only

two cells in a 2|2 table of group counts used by mTDT2G: To

obtain the counts for Table 4 from Table 3 right grid (test data

subset) the haplotypes are first assigned to each group defined by the

training data set. Following Equation 1 haplotype ab is assigned to

the group with the most similar haplotype. As the two most similar

haplotypes belongs to group g1, ab is also assigned to this group.

Note that mTDT2G collapses all haplotypes in each group.

Therefore, only those individuals with one haplotype at each

group (hi[g1=hj[g2) are considered.

Implementation
The test has been implemented in 2G, an open source (GPL 2

license) GNU c++ software which can be download from the

supplementary website (http://bios.ugr.es/2G).

Results from simulations
We have performed four sets of simulation studies. The purpose

of the first set of simulations was to test sample reproducibility in

some state-of-the-art methods. The purpose of the second set of

simulations was to show mTDT2G is robust to population

stratification and admixture. The purpose of the third set of

simulations was to test sample reproducibility of mTDT2G and

other tests when used under the holdout approach (see Section

Materials and Methods for a detailed explanation about the

simulation studies). Finally, the four set of simulations was used to

show robustness of mTDT2G to different proportions of missing

haplotypes.

In the first set of simulation results, it can be shown how mTDT

and mTDTS hardly increased power or even reduced it with an

increase in the number of markers (window size). It is also shown

how they reduced sample reproducibility with an increase in the

number of markers as well.

Results under the assumption of a dominant genetic model for

one disease susceptibility locus and a relative risk of 2:4 are plotted

in Figure 1, which show power (recombination fraction h~0) and

locus specificity (recombination fraction hw0) of mTDT and

mTDTS when using a data set to build the hypothesis and

compute p values (dashed lines) and when the hypothesis, i.e., a set

of haplotypes in association with the disease, is being validated by

a second data set (solid lines). The proportion of samples found in

association for nominal level a~0:05 is shown (x-axis). Sample

reproducibility, and even power, decreases with the number of

markers used: 5 (left plot), 10 (middle plot) and 20 (right plot) due

to the problem of sparse data. The same pattern can be observed

under a wide range of scenarios (see Figures S1 to S15 at http://

bios.ugr.es/2G).

Table 2. An example of parental genotype counts showing transmitted and nontransmitted haplotypes in a training and test data
sets of nuclear families and haplotypes of length 2 (4 different haplotypes: AB, AB, aB and ab).

Genotype configuration ID Transmitted haplotype Nontransmitted haplotype Counts in Training data set Counts in Test data set

1 AB AB 25 30

2 AB Ab 30 24

3 AB aB 3 5

4 AB ab 7 5

5 Ab AB 37 31

6 Ab Ab 21 21

7 Ab aB 6 7

8 Ab ab 5 4

9 aB AB 8 9

10 aB Ab 6 8

11 aB aB 2 2

12 aB ab 3 3

13 ab AB 11 11

14 ab Ab 3 4

15 ab aB 1 2

16 ab ab 0 2

Total parental genotypes 168 168

Total trios 168=2~84 168=2~84

The total number of trios is 168 (336 parents) so that half of them (84 trios, 168 parents) were randomly assigned to the training data set and the others to the test data
set. Each row shows counts for a possible configuration (there are 16 possible configurations for haplotypes of length 2) of the transmitted (second column) and
nontransmitted (third column) haplotypes in a parental genotype.
doi:10.1371/journal.pone.0029613.t002
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In a second step, we performed simulations to test robustness to

population stratification and admixture of mTDT2G and

mTDT1{h, i.e. mTDT1 when used under the holdout approach.

Table 5 shows Type I error results for mTDT2G and mTDT1{h

in the presence of population stratification and admixture. Values

shown are rates of data sets in which association was found to be

statistically significant for nominal level a~0:01 and 0:05 and

different haplotype lengths (1,5,10,15 and 20, columns 4 to 8
respectively), for all configurations of pp and q values used (See

Section Materials and Methods for a detailed explanation about

the different configurations used). It can be seen that values are not

significantly different from the nominal values a, as would be

expected in a robust test for population structure and admixture.

In the third set of simulation results, we show how mTDT2G and

mTDT1{h have a good performance in sample reproducibility

and how mTDT and mTDTS also improve sample reproducibility

when using under a holdout approach too, what we called mTDTh

and mTDTS{h respectively.

In order to check sample reproducibility of mTDT2G,
mTDT1{h, mTDTh and mTDTS{h, we show p values obtained

by the tests in one data set (dashed lines) and by applying the test

on a second data set to verify whether associations found in the

first data set hold (solid lines). In the second case, the length

similarity measure was also used to plug haplotype counts from the

second data set into the model obtained from the first data set.

Results under the assumption of a recessive genetic model for

one disease susceptibility locus and a relative risk of 2:4 are plotted

in Figure 2, to compare power (recombination fraction h~0) and

locus specificity (recombination fraction 1:2,1:6,2:0,2:4 and 2:6)

among mTDTh (purple circles), mTDTS{h (blue triangles),

mTDT1{h (green squares) and mTDT2G (red diamonds) when

the null hypothesis is being validated in a second data set. The

proportion of data sets found in association for nominal level

a~0:05 is shown (x-axis). It can be observed how the holdout

approach guarantees sample reproducibility, including when used

with mTDT and mTDTS , so that differences between dashed and

solid lines are smaller compared with those shown in Figure 1.

Moreover, those algorithms with 1 df (mTDT2G and mTDT1{h)

reached the highest power. The differences seem to be more

important for smaller relative risks and two disease loci. The same

pattern can be observed under a wide range of scenarios (see

Figures S16 to S30 at http://bios.ugr.es/2G).

In general, differences among the tests increase with haplotype

length. In contrast to mTDTS, mTDT (Figure 1, solid lines) and

their holdout versions (Figure 2), power of mTDT2G in a second

data set increases with the number of markers, even when using 10
or 20 markers. mTDT2G checks a very simple hypothesis: there are

differences in transmission frequencies between the two groups of

protective and locus susceptibility haplotypes. The reason for a

higher power is that, while df do not change with the number of

markers, complex associations that cannot be captured with very

few markers will be modeled with more markers.

mTDT2G also outperforms mTDT1{h, the other test used

which has also 1 df. mTDT1{h can also be considered a 2-groups

test, but there is only one haplotype in one of the groups, and the

larger the haplotype the lower the chances of the alternative

hypothesis to be confirmed in a second sample. The hypothesis

seems to be too simplistic for models with more than one disease

locus and power hardly increases when using more than 5
markers.

Table 3. Genotype counts and their transmissions used by mTDT2G .

Nontransmitted Nontransmitted

haplotype haplotype

Transmitted g2 g1 Transmitted g2 g1

haplotype AB Ab aB ab Total haplotype AB Ab aB ab Total

g2 AB 6 25 30 3 7 40 g2 AB 6 30 24 5 5 34

g1 Ab 37 6 21 6 5 48 g1 Ab 31 6 21 6 7 6 4 31

aB 8 6 6 2 3 17 aB 9 6 8 6 2 6 3 9

ab 11 3 1 6 0 15 ab 11 6 4 6 2 6 2 11

Total 56 39 10 15 121 Total 51 24 5 5 85

Haplotypes in rows represent those transmitted haplotypes at each genotype. Haplotypes in columns represent those nontransmitted haplotypes at each genotype.
Homozygous genotype counts (diagonal) are crossed off the tables as they are not used to compute mTDT2G : Left grid: genotype counts from the training data set
(see Table 2) used to make up groups g1 and g2 in mTDT2G : Groups are: g1~fAb,aBg, with those haplotypes with T counts larger than U counts (Ab: 48 versus 39 and
aB: 17 versus 10) and g2~fABg with U counts larger than T counts (56 versus 40). Right grid: genotype counts from the test data set used to compute the statistic. As
the length similarity measure is used to assign an haplotype to a group, and the two most similar haplotypes to haplotype ab belongs to group g1, ab is assigned to g1:
All the haplotypes belonging to the same group are considered of having an equivalent effect and are collapsed. Therefore, parental genotypes in the test data set with
haplotypes belonging to the same group are considered as homozygous and not used by mTDT2G (they are crossed off the table too).
doi:10.1371/journal.pone.0029613.t003

Table 4. The 2|2 table built by mTDT2G : an example.

Nontransmitted group

Transmitted

group g1: Ab, aB, ab g2: AB Total

g1: Ab, aB, ab - 31+9+11 51

g2: AB 24+5+5 - 34

Total 34 51 85

The table represents group counts, where groups are defined from the training
data set, instead of original haplotype counts (see left grid at Table 3). The
counts are obtained from the test data set (see those counts not crossed off in
Right grid at Table 3). As all the haplotypes in the same group are collapsed,
genotypes with both haplotypes in the same group are disregarded. Therefore
counts required to compute mTDT2G are: ng1g2

~31z9z11~51 and
ng2g1

~24z5z5~34:
doi:10.1371/journal.pone.0029613.t004
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When the number of markers decreases, the power of the tests

tends to converge, down to the situation with only 1 marker, in

which mTDTh, mTDTS{h, mTDT1{h and mTDT2G have exactly

the same results, as they default to the classic monomarker biallelic

TDT : However, when only 1 marker is used, power is very low

compared with results obtained using longer haplotypes.

Results for the fourth set of simulations are shown in Figure 3

and Figures S31 to S45 at http://bios.ugr.es/2G. These

simulations were performed as explained above for the third set

of simulations except that association rates (at recombination rate

h~0) were computed for data sets with 0%,5%,10%,15% and

20% of missing haplotypes.

As it can be seen in Figure 3 all the tets used: mTDTh,
mTDTS{h, mTDT1{h and mTDT2G are robust to missing data.

Therefore, mTDT2G still shows the highest power in data sets with

different proportions of missing data.

Results from real data sets
We tested power and locus specificity using family trio data sets

of two complex diseases: Crohn’s and MS. We also used trios of

unaffected individuals from the International Hapmap Project

(IHMP) [20] to measure specificity. We compared power and

specificity of mTDT2G with the most competitive tests considering

the wide range of scenarios in our simulations: mTDT , mTDTS

and mTDT1{h:
To show results we used sliding windows and Comparative TDT

(CTDT) [21] maps to plot averaged p values for all the windows

(i.e. haplotypes of fixed length starting at a different marker

position) covering each marker.

Figures 4, 5, and 6 respectively show p values for the MS IL2R-

affected (335 SNPs), MS EVI5-affected (38 SNPs) and MS IL7R-

affected (35 SNPs) data sets and windows of size 10. Genetic

determinants of susceptibility to MS are complex, and until

recently the only validated MS-associated polymorphic variants

were found in the major histocompatibility complex (MHC) region

[22]. Since 2007, the implementation of GWAS in combination

with high-powered patient-control cohorts has completely

changed this picture. Several GWAS and candidate gene studies

have revealed the existence of non-MHC MS susceptibility loci of

moderate genetic effect, and some of these including IL7R,
IL2RA, CLEC16A, CD226, IRF5, EVI5 and CD58 have been

validated successfully in independent studies [23–30]. However,

except for IL7R, the causal SNP of the new determined risk loci

are unknown. It is interesting to observe that the most significant

associations found by mTDT2G at the IL7R locus contained the

rs6897932 SNP (SNP number 9), the causal variant of the

association. For the IL2RA we have analyzed a wide region of the

locus including the variants that have been associated to the MS

and type 1 Diabetes (T1D). The most significant associations

found by mTDT2G are located at the IL2RA gene and 5 region of

the gene, where the maximal association have been observed in

MS and T1D studies [31].

Power and locus specificity are clearly higher in mTDT2G in

these three data sets. Moreover, locus specificity is in general

higher for mTDT2G than for mTDTS, mTDT and mTDT1{h: It

seems that the alternative hypothesis built by mTDT1{h is in

many cases too simplistic so that the more generic mTDT2G

outperforms it. See Figures S46 to S51 (sliding windows) and S52

to S57 (CTDT maps) at the supplementary website (http://bios.

ugr.es/2G) for results using different haplotype lengths 1,2,5,10,15
and 20 and all the data sets.

In agreement with the simulation results, in all cases a clear

increase is detected in the superiority of mTDT2G compared with

the other multimarker TDTs used to detect power when window

size increases. Although sample reproducibility of mTDTS and

mTDT is very high when only one marker is used, in many cases

only one marker is not enough to detect risk alleles. As an

example, in MS IL7R-affected and MS IL2R-affected, associa-

tions found by these tests using only one or two markers lack in

locus specificity and power (see Figures S46 and S47 at http://

bios.ugr.es/2G) compared with results obtained by mTDT2G using

more markers.

Discussion

mTDTS, and other tests alike, combine the segregation

differences for each of the k haplotypes in the form of summation

of squared differences. mTDT2G was derived by further relaxing

Figure 1. Association rates of mTDT and mTDTS using a second data set to test reproducibility. Results for 100 simulations of 250 family
trios as a function of the recombination rate using the dominant and one-locus genetic model and haplotypes of lengths 5 (left plot), 10 (plot in the
middle) and 20 (right plot). A nominal level of a~0:05 and a relative risk of 2:4 were used for all plots. Results for mTDT and mTDTS are plotted in
purple circles and blue triangles respectively. Dashed lines show results for the data subset (125 trios randomly chosen) used to build the model while
solid lines show results for a second data subset (the remaining 125 trios) used to test reproducibility.
doi:10.1371/journal.pone.0029613.g001
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the small assumptions made in the development of mTDTS and

mTDT , in order to reduce df. Thus, it does not assume any

number of haplotypes k in the population and consider the whole

effect of groups of haplotypes instead of considering the individual

effect of each haplotype. Other tests compose groups in order to

reduce df [2,7,11,12]. However, mTDT2G accomplishes this goal

to its maximum: considering only two groups, regardless of the

number of markers, means that df is always 1: With this strong

simplification we have shown that a highly significant way to

collapse haplotype into two groups is in the way mTDT2G does:

one group must represent disease susceptibility haplotypes and the

other disease protective haplotypes. Therefore, we needed to

collapse all the k haplotypes in a sample (mTDTS and mTDT

consider a unique but complex null hypothesis of no association

for exactly those k haplotypes, which is x2
k{1 under the null) into

only two groups. Moreover, for the test to be non-parametric, no

assumptions could be made to set up the groups. Basically, we had

to separate haplotypes into two groups using information from the

sample, and not any prior knowledge we may have about the

population. However, to avoid sample selection and therefore

Table 5. Type I error rates in presence of population stratification and admixture for mTDT2G and mTDT1{h.

a MAFs pp l = 1 l = 5 l = 10 l = 15 l = 20

mTDT2G

0.01 0.1 0.5 0.013 0.008 0.008 0.010 0.007

0.01 0.3 0.5 0.014 0.010 0.007 0.010 0.007

0.01 0.5 0.5 0.006 0.009 0.007 0.010 0.009

0.01 0.1 0.75 0.014 0.010 0.009 0.012 0.012

0.01 0.3 0.75 0.017 0.009 0.012 0.015 0.014

0.01 0.5 0.75 0.015 0.010 0.014 0.007 0.009

0.01 0.1 0.833 0.011 0.010 0.008 0.015 0.005

0.01 0.3 0.833 0.013 0.007 0.009 0.012 0.008

0.01 0.5 0.833 0.012 0.007 0.013 0.017 0.007

0.05 0.1 0.5 0.062 0.047 0.043 0.053 0.052

0.05 0.3 0.5 0.063 0.060 0.043 0.048 0.047

0.05 0.5 0.5 0.044 0.055 0.045 0.050 0.048

0.05 0.1 0.75 0.056 0.048 0.056 0.061 0.064

0.05 0.3 0.75 0.061 0.056 0.053 0.061 0.063

0.05 0.5 0.75 0.056 0.050 0.061 0.060 0.058

0.05 0.1 0.833 0.056 0.045 0.046 0.053 0.049

0.05 0.3 0.833 0.060 0.044 0.047 0.061 0.049

0.05 0.5 0.833 0.046 0.044 0.053 0.071 0.056

mTDT1{h

0.01 0.1 0.5 0.013 0.016 0.009 0.008 0.008

0.01 0.3 0.5 0.014 0.014 0.010 0.008 0.004

0.01 0.5 0.5 0.006 0.017 0.010 0.010 0.015

0.01 0.1 0.75 0.014 0.010 0.012 0.008 0.006

0.01 0.3 0.75 0.017 0.009 0.008 0.008 0.005

0.01 0.5 0.75 0.015 0.007 0.008 0.010 0.009

0.01 0.1 0.833 0.011 0.007 0.011 0.008 0.008

0.01 0.3 0.833 0.013 0.009 0.010 0.010 0.008

0.01 0.5 0.833 0.012 0.008 0.013 0.009 0.008

0.05 0.1 0.5 0.062 0.068 0.051 0.052 0.057

0.05 0.3 0.5 0.062 0.065 0.055 0.048 0.047

0.05 0.5 0.5 0.044 0.068 0.049 0.053 0.065

0.05 0.1 0.75 0.056 0.050 0.052 0.059 0.056

0.05 0.3 0.75 0.061 0.047 0.048 0.065 0.058

0.05 0.5 0.75 0.056 0.058 0.046 0.051 0.056

0.05 0.1 0.833 0.056 0.050 0.050 0.055 0.055

0.05 0.3 0.833 0.060 0.048 0.050 0.058 0.059

0.05 0.5 0.833 0.046 0.050 0.074 0.073 0.061

Results for different minor allele frequencies (MAFs) in the second subpopulation (q) and different proportion of trios from the first subpopulation (pp), obtained by
mTDT2G (top half) and mTDT1{h (bottom half) for nominal levels a~0:01 and a~0:05 and haplotypes of length 1, 5, 10, 15 and 20 (columns 4 to 8 respectively).
doi:10.1371/journal.pone.0029613.t005
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model overfitting, the groups had to be obtained from a different

sample than the one used to compute the statistic. mTDT2G uses

the simple holdout multisampling approach so that the sample is

divided into two equally-sized data subsets. Simulation results

showed the importance of having low df. Therefore, the fact that

mTDT2G is asymptotically x2
1 under the null hypothesis of no

linkage, regardless of the number of markers, and thus the number

of haplotypes, explains why it is on average more powerful than

mTDT and mTDTS when tested in a second data set. The more

generic hypothesis than the one built by mTDT1{h while keeping

df to 1 explains why it also outperforms mTDT1{h in simulations

and in most real data sets. This hypothesis allows considering more

than one disease variant or the situation in which the causal locus

is not sequenced but markers in LD with it, so that more than one

haplotype may be non recombinant haplotypes with the disease

variant. Therefore, mTDT2G benefits from the use of long

haplotypes to capture marker dependencies without reducing

sample reproducibility due to sparse data.

Fine-mapping association may be performed by algorithms

measuring differences in evolutionary haplotype trees [12,13,32].

Figure 2. Association rates under the holdout approach using a second data set to test reproducibility. Results for 100 simulations of
250z125 family trios as a function of the recombination rate using the recessive and one-locus genetic model and haplotypes of lengths 5 (left plot),
10 (plot in the middle) and 20 (right plot). A nominal level of a~0:05 and a relative risk of 2:4 were used for all plots. Results for mTDT{h,
mTDTS{h, mTDT1{h and mTDT2G , i.e. all tests were applied under the holdout approach, are plotted in purple circles, blue triangles, green squares
and red diamonds respectively. Dashed lines show results for a data subset of 250 trios randomly chosen while solid lines show results for a second
data subset of 125 trios used to test reproducibility of the holdout approach.
doi:10.1371/journal.pone.0029613.g002

Figure 3. Association rates for different proportions of missing haplotypes. Results for 100 simulations of 250z125 family trios as a
function of the proportion of missing haplotypes using the additive and one-locus genetic model and haplotypes of lengths 5 (left plot), 10 (plot in
the middle) and 20 (right plot). A nominal level of a~0:05 and a relative risk of 2:4 were used for all plots. Results for mTDT{h, mTDTS{h,
mTDT1{h and mTDT2G , i.e. all tests were applied under the holdout approach, are plotted in purple circles, blue triangles, green squares and red
diamonds respectively.
doi:10.1371/journal.pone.0029613.g003
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These algorithms may strongly benefit analysis whenever g1 and g2
are used as starting point, instead of case versus control subsamples

[12,32], or transmitted versus nontransmitted subsamples [13].

Moreover, using the holdout approach seems to be an interesting

solution that has also been applied to other group-based measures,

such as mTDT1 or to the more classic mTDT and mTDTS: In

contrast to the Bonferroni correction, which over-corrects the

measure by performing a linear correction of p values, or other

more complex and low accurate solutions, the holdout approach in

mTDT1{h and mTDT2G, guarantees an asymptotically x2
1 null

distribution. Moreover, as the number of markers increases, validity

of mTDT and mTDTS decreases and the holdout approach is a

computationally feasible solution for genome-wide scan, compared

with highly time-consuming simulation tests. Therefore, mTDT2G is

a very competitive test to perform genome-wide scan because of its

high performance in power, locus specificity, sample reproducibility

and low computational cost.

In conclusion, we expect that mTDT2G will prove useful in

detecting association for any complex disease in which relative

risk due to a disease locus can be low, and power needs to be

maximized by using several markers at a time, without results

being affected by sparse data. We also expect the two

haplotype groups g1 and g2 defined by mTDT2G may also be

used as the starting point for any method developed to perform

haplotype fine mapping. Moreover, the test may be used as a

first loci-selection step in the process of building more accurate

genetic models to predict individual predisposition to complex

diseases.

Materials and Methods

In this section we explain which other tests were used to

compare the performance of mTDT2G, as well as the simulation

and real data set studies performed for the comparisons.

Figure 4. Sliding window maps for the IL2R-affected data set. Window size is 10: TDTs used were mTDT2G (red diamonds), mTDT1{h (green
squares), mTDT{h (purple circles) and mTDTS{h (blue triangles).
doi:10.1371/journal.pone.0029613.g004

Sample Reproducibility in Multimarker TDTs

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e29613



A supplementary website has been created for this work at

http://bios.ugr.es/2G, where Figures S1–S57, data sets, the

software used to obtain the samples upon which the simulations

were performed (scripts for linux and software in c++) and 2G, the

software used to implement the method, are available.

Comparative studies
We compared the performance in the state-of-the-art mTDT ,

mTDTS and mTDT1{h with mTDT2G in both simulations and

real data sets.

We chose these tests after comparing power and locus specificity

among different state-of-the-art multimarker TDTs: mTDT ,
mTDTS, mTDTLC , mTDTE and mTDTSR (data not shown).

mTDT and mTDTS showed much higher power and locus

specificity than the others and have a low computational complexity

so that they are a practical choice for genome-wide scan.

We performed four different simulation studies: (1) We tested

sample reproducibility in mTDT and mTDTS, and observed a lack

of it which increased with the number of markers. (2) We tested

robustness to population stratification of mTDT2G and mTDT1{h:
(3) We chose the holdout approach for all the tests to make sure power

will be kept when testing on a second data set and therefore we

compared power and locus specificity of mTDT2G, mTDT1{h,
mTDTS{h (the holdout version of mTDTS ) and mTDTh (the

holdout version of mTDT ), in a first data set and in a second data

set to measure sample reproducibility. (4) We tested robustness of

mTDT2G, mTDT1{h, mTDTS{h and mTDTh to different propor-

tions of missing haplotypes.

After the simulation studies, we used real data sets and the

holdout approach in order to guarantee that the results would be

reproducible in a different independent data set, for all the

multimarker TDTs used in the simulations.

Figure 5. Sliding window maps for the EVI5-affected data set. Window size is 10: TDTs used were mTDT2G (red diamonds), mTDT1{h (green
squares), mTDT{h (purple circles) and mTDTS{h (blue triangles).
doi:10.1371/journal.pone.0029613.g005
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Simulation studies
Simulation analyses were performed using haplotype data sets of

family trios. Simulations were similar to those used in several

works [2,5,32], with the intention of evaluating both robustness to

stratification population and sensitivity to a disease susceptibility

locus. However we also added simulations to test locus specificity

and sample reproducibility, as it above explained.

As one of our main goals was to have a useful test to perform

genome-wide association filtering, computational complexity was a

main issue and a linear relationship between computational

complexity and the number of SNPs was highly desirable.

Therefore, we applied the tests in a very feasible way in which

only consecutive or overlapping clusters of SNPs (known as sliding

windows) were tested together.

In order to simulate a cluster, as suggested by [33], we assumed

that recombination rates between all markers tested were very low,

which is equivalent to assuming they belong to the same low

recombination block [34]. The recombination fraction within blocks

(hB) for a common population with exponential growing, such as an

African population, has been estimated to be 0:000088 [35], and this

is the value used in this work. By testing only consecutive SNPs at

high LD we chose a method that is easily adaptable for use with

genome-wide genotype data sets by using sliding windows. A disease

susceptibility locus was placed at one extreme of the low

recombination block. In those tests where the distribution under

the null hypothesis is not known, statistical significance levels were

obtained by using a permutation procedure known as the Monte

Carlo test [16]. To investigate the effect of haplotype width,

simulations were performed over different haplotype lengths within

the low recombination block: 1,5,10,15 and 20:
We also altered the way disease mutations were introduced, and

decided to use the more realistic and now standard coalescent

Figure 6. Sliding window maps for the IL7R-affected data set. Window size is 10: TDTs used were mTDT2G (red diamonds), mTDT1{h (green
squares), mTDT{h (purple circles) and mTDTS{h (blue triangles).
doi:10.1371/journal.pone.0029613.g006
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approach [36]. Thus, instead of considering only one ancestral

chromosome with the disease causing mutation, or the improve-

ment of using two ancestral chromosomes [5], a more realistic

simulation of complex disease inheritance was used, in which the

number of disease ancestral chromosomes can change according

to the coalescent model, as any other gene does. We used MS

sample to draw the populations [36].

Populations were drawn using msHOT [37], a program for

generating samples based on the coalescent model that incorpo-

rates recombination. The samples for all the populations were

obtained using trioSampling, a computer program we developed and

which is available at the supplementary website.

Specific configurations required to test robustness, power and

locus specificity are explained in the next subsections. A more

detailed explanation of the simulations performed can be accessed

at the supplementary website.

Robustness to population stratification. Type I error

rates under population stratification and admixture were estimated

based upon 1000 replications of the simulations here described.

The data sets obtained from the populations were composed of

500 nuclear families with only one child (affected). In order to

check whether mTDT2G and mTDT1{h were robust to population

stratification, we checked Type I errors in samples with affected

individuals, for regions not in linkage with the disease locus

(recombination fraction from the markers to the disease locus

h~0:5), considering the simulation design of [2]. Therefore each

stratified population drawn consisted of two sub-populations [2],

with 500pp nuclear families from the first population and

500(1{pp) nuclear families from the second one, where pp is

the proportion of trios chosen from the first subpopulation.

Populations were generated as described by [2] and [5], with

founder haplotypes randomly having alleles at every marker

independently. MAFs of 0:5 for the first subpopulation were

assumed, while MAFs for the second subpopulation q were

parameterizable, with q[f0:1,0:3,0:5g. Frequencies for the disease

allele at disease susceptibility locus (pD) were 0:2 and 0:3 for the

first and second subpopulation respectively. Families were

randomly sampled by choosing haplotypes with the disease

mutation with probability pD for the parents and randomly

choosing the haplotypes transmitted to children considering

recombinations. As it was done by [2] and [5], we also varied

pp to have values f1=2,1=4,1=6g. Therefore, by varying pp and q,

nine different scenarios where considered in order to test

robustness. The samples obtained from each population were

composed of 500 nuclear families with only one child.

Power and locus specificity. Association rates were

estimated based upon 100 replications of the simulations here

described. The data sets obtained from the populations were

composed of 250 nuclear families with only one child (affected).

When only one disease susceptibility locus was used, it was placed at

one extreme of the low recombination block the markers belonged

to. When two disease loci were used, the first was placed in the same

way, while the second was placed at a position with h~0:1 from that

block, in order to model a second disease locus not in linkage with

the tested markers [5]. The power of the tests was analyzed under

three genetic models for one disease susceptibility locus: additive,

dominant and recessive, and six genetic models for two disease

susceptibility loci: additive, dom-and-dom, rec-or-rec, dom-or-dom,

threshold and modified [5]. Different relative genotype risks RR
were also used: 1:2,1:6,2:0,2:4 and 2:6: RR is defined as

Pr(diseasejDD)=Pr(diseasejdd), with d being the normal allele

and D the disease allele for simulations with only one disease locus,

and as Pr(diseasejDDEE)=Pr(diseasejddee) for simulations of two

disease loci, with e being the normal allele at the second disease locus

and E the disease allele at that locus [5]. Relative risks for all other

genotypes were computed based on RR [5,38] (see Table S1 on the

supplementary website). To simulate a complex disease, disease loci

were chosen among markers with MAFs in the intervals ½0:2{0:4�:
Simulations for power (sensitivity), i.e., assuming no recombi-

nation between the disease susceptibility locus and the markers

tested, were similar to those used in several studies assuming one

founder disease haplotype [2,5,32], except that SNPs tested

together were assumed to be in high LD, i.e., they belong to the

same low-recombination block [34].

To test locus specificity, we added six other different

recombination fractions (h) from the markers to the disease

susceptibility locus, to the perfect LD (no recombination) used to

test power: 0:00005, 0:0001, 0:00015 and 0:0002:
Sample reproducibility. To check sample reproducibility,

for each data set used as a first step, a second independent data set

from the same population with 125 family trios as well was used to

compute p values. The length similarity measure was used by all

the tests to plug the second data set into the model learned from

the first data set. Association rates using 100 simulations were used

to evaluate results.

Missing data. To check whether the tests were robust to

missing data, we randomly chose a marker and a parent and

deleted the parental genotype at that marker until reaching the

desired proportion of missing data (5%,10%,15% and 20%).

Real data
Sample reproducibility. Nine data sets of genotypes from

trio families were used; one with offspring having Crohn’s disease,

the other nine with offspring having MS disease. The Crohn

affected data set (IBD5-affected) is a publicly available set that was

originally used by [39]. It consists of the genotype data of 103

SNPs typed in 129 trios with offspring having Crohn’s disease

[34]. The phenotype is the presence/absence of Crohn disease.

The SNPs span across 500 kilobases at the IBD5/SLC22A4 locus

(5q31), and the region contains 11 known genes. For MS disease,

genotype information was obtained from a GWAS performed by

the International Multiple Sclerosis Genetic Consortium. A DNA

microarray (GeneChip Human Mapping 500 K Array Set,

Affymetrix) was used by that study to examine 334,923 common

genetic variants in 931 family trios, consisting of a patient with MS

and both parents [23]. Nine regions corresponding to risk loci for

MS as previously determined in well powered studies [23,29] were

chosen. Table 6 details information about the MS data sets.

Results shown are meant to be highly valid and sample

reproducible. Therefore, we chose the holdout approach in all

the tests used. This way we increase the chances of finding similar

power and locus specificity results if a second data set from the

same population were to be used.

Data sets to test specificity. To check specificity in real

data, for each data set with affected offspring we fabricated data

sets for healthy trios, using data publicly available on the IHMP

website [20], comprised of genotype data for 30 family trios

(HapMap Phase II) typed in a population of Utah residents with

ancestry from northern and western Europe (CEPH).

In the particular case of the IBD5-affected data set, most SNPs

were not genotyped by the IHMP. As a solution, the IBD5-

unaffected data set was composed by choosing the CEPH

genotypes of only 656 consecutive SNPs (positions 276117 to

890934) out of 247,632 SNPs from chromosome 5, to correspond

to the same region as in the IBD5-affected data set. It has to be

noted that SNP density in the CEPH data set is about 6 times

higher than that in the IBD5-affected data set. To prevent

differences in densities to bias results, we chose only one SNP for
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each cluster of 6 consecutive SNPs in the CEPH data set, so that

only 110 SNPs were selected to create the IBD5-unaffected data

set. IBD5-affected and IBD5-unaffected data sets are both

available at the supplementary website. As it was done with

disease data sets, data were split in order to test specificity in a

second sample.

All unaffected data sets used to test specificity in MS samples are

also available at the supplementary website.
Genome-wide exploration. In general, for a multimarker

TDT to be used in data sets with genotypes spanning many bases,

some techniques must be used to divide the region into smaller

sequences so that individual tests can be applied to each sequence

within a feasible computation time. In order to use a TDT to

perform genome-wide pre-filtering, we only tested together SNPs

in strong LD. Strategies to perform genome-wide searches using

SNPs not in LD are very time consuming if they are exhaustive.

For example, with only 2 markers tested together, computational

time is quadratic to the number of markers. Thus, this is usually

the maximum number of SNPs tested together in TDT or case/

control studies that consider SNPs not in LD [40]. Therefore, we

only considered consecutive sequences of SNPs to be tested

together. Different haplotype lengths w[f1,2,5,10,15,20g were

used to investigate the effects upon power. To reduce random

errors, we used sliding windows [34] of width w and an offset of 1
SNP. Before these calculations, we investigated dividing the whole

chromosome into blocks of low recombination by using several

algorithms proposed in the literature [41]. However, as blocks

turned out to be very different depending upon the algorithm used

(results not shown), we decided not to perform this division to

avoid biased results.

Unknown haplotypes. If genotypes, instead of haplotypes,

were the only information available, the phase for each family and

marker was inferred using information from the family [5,42].

Phase for those markers that remained unsolved, was estimated by

using the E-M algorithm under the restriction of family

information [2,5,43]. Other algorithms for phase resolution are

known to be more accurate but at a high computational cost, such

as Phase [44], an algorithm that uses Gibbs sampling for phase

reconstruction of each individual.

For mTDT2G, each data set of genotypes was divides into two

equal-size data subsets, from which haplotypes were obtained.

Comparative TDT maps. For a quick visual comparison of

power and specificity between these different measures, we also

used CTDT maps [21] for all the data sets and all the window

sizes used. These maps are colored only in those regions found in

association. Results from each TDT are plotted in a different pair

of consecutive rows. The first row in a pair (white color

background) shows results from the affected data sets at every

marker to test power. The second row in the pair (gray

background) shows results from the unaffected data sets to test

specificity at every marker. All rows in a map have the same

length, as it represents the number of markers in the sample. The

height of a row represents the association level. If height is 0 when

used with affected offspring, it means that the p value at that

marker is larger than 0:01, and the test is considered powerless to

detect association to that SNP. When used with samples of

unaffected offspring, height must be 0 except in the situation of a

protective locus.

Supporting Information

Text S1 An Appendix which shows that mTDT2G follows
a x2

1 distribution under the null hypoyhesis of no linkage.

(PDF)
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Maximum identity length contrast: a powerful method for susceptibility gene

detection in isolated populations. American Journal of Human Genetics 68: 154–59.

12. Sevon P, Toivonen H, Ollikainen V (2001) Tree pattern mining for gene

mapping. IEEE/ACM Trans Comput Biol Bioinf 3: 174–85.

13. Seltman H, Roeder K, Devlin B (2001) Transmission/Disequilibrium test meets

measured haplotype analysis: family-based association analysis guided by

evolution of haplotypes. American Journal of Human Genetics 68: 223–35.

14. Schaid D (1996) General score tests for associations of genetic markers with

disease using cases and their parents. Genetic Epidemiology 13: 423–449.

Table 6. Markers used in real data sets (affected and
unaffected) for MS disease.

Data set ch. first SNP last SNP SNPs

EVI5 1 92388330 93651891 93

IL2R 10 6103680 7715013 353

IL7R 5 35847586 35991293 31

HLA 6 30736061 33163225 468

CD226 18 65550188 65997985 38

CD58 1 116677600 116983610 19

IRF5 7 128055671 128309250 15

CLEC 16 10947194 12685795 305

At first and last SNPs columns, the physical SNP position (NCBI build 36) is
provided.
doi:10.1371/journal.pone.0029613.t006

Sample Reproducibility in Multimarker TDTs

PLoS ONE | www.plosone.org 13 February 2012 | Volume 7 | Issue 2 | e29613



15. Betensky RA, Rabinowitz D (2000) Simple approximations for the maximal

transmission disequilibrium test with a multi-allelic marker. Ann Hum Genet 64:

567–74.

16. Kaplan NL, Martin ER, Weir BS (1997) Power studies for the transmission/

disequilibrium tests with multiple alleles. American Journal of Human Genetics

60: 691–702.

17. Yu K, Gu CC, Province M, Xiong C, Rao DC (2004) Genetic association

mapping under founder heterogeneity via weighted haplotpe similarity analysis

in candidate genes. Genetic Epidemiology 27: 182–91.

18. Tang R, Feng T, Sha Q, Zhang S (2009) A variable-sized sliding-window

approach for genetic association studies via principal component analysis.

Annals of Human Genetics 73: 631–637.

19. Tzeng J, Devlin B, Wasserman L, Roeder K (2003) On the identification of

disease nutations by the analysis of haplotype similarity and goodness of fit.

Am J Hum Genet 72: 891–902.

20. HapMap-Consortium TI (2003) The international hapmap project. Nature 426:

789–796.

21. Montes R, Abad-Grau MM (2009) Biocase: Accelerating software development

of genome-wide filtering applications. In: Omatu S, Rocha M, Bravo J,

Corchado E, eds. IWANN ’09: Proceedings of the 10th International Work-

Conference on Artificial Neural Networks. BerlinHeidelberg: Springer-Verlag,

volume 5518. pp 1097–1100.

22. Ramagopalan S, McMahon R, Dyment D, Sadovnick A, Ebers G, et al. (2009)

An extension to a statistical approach for family based association studies

provides insights into genetic risk factors for multiple sclerosis in the hla-drb1

gene. BMC Medical Genetics 10: e10.

23. ‘International Multiple Sclerosis Genetics Consortium’ DH, Compston A,

Lander SSE, Daly M, Jager PD, et al. (2007) Risk alleles for multiple sclerosis

identified by a genomewide study. New England Journal of Medicine 357:

851–62.

24. Gregory J, Schmidt S, Seth P, Oksenberg J, Hart J, et al. (2007) Interleukin 7

receptor alpha chain (il7r) shows allelic and functional association with multiple

sclerosis. Nature Genetics 39: 1053–1054.

25. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, et al. (2007)

Variation in interleukin 7 receptor alpha chain (il7r) inuences risk of multiple

sclerosis. Nature Genetics 39: 1108–1113.

26. Matesanz F, Caro-Maldonado A, Fedetz M, Fernandez O, Milne R, et al. (2007)

Il2ra/cd25 polymorphisms contribute to multiple sclerosis susceptibility. Journal

of Neurology 254: 682–684.

27. Zoledziewska M, Costa G, Pitzalis M, Cocco E, Melis C, et al. (2007) An

entropy-based genomewide transmission/disequilibrium test. Genes Immun 10:

15–17.

28. Haer J, Maier L, Cooper J, Plagnol V, Hinks A, et al. (2009) Cd226 gly307ser

association with multiple autoimmune diseases. Genes and Immunity 10: 5–10.
29. Kristjansdottir G, Sandling J, Bonetti A, Roos I, Milani L, et al. (2008)

Interferon regulatory factor 5 (irf5) gene variants are associated with multiple

sclerosis in three distinct populations. Journal of Medical Genetics 45: 362–9.
30. Jager PD, Baecher-Allan C, Maier L, Arthur A, Ottoboni L, et al. (2008) The

role of the cd58 locus in multiple sclerosis. Proc Natl Acad Sci U S A 106:
5264–69.

31. Alcina A, Fedetz M, Ndagire D, Fernandez O, Leyva L, et al. (2009) Il2ra/cd25

gene polymorphisms: uneven association with multiple sclerosis (ms) and type 1
diabetes (t1d). PLoS ONE 4: e4137.

32. Lam J, Roader K, Devlin B (2000) Haplotype fine mapping by evolutionary
trees. American Journal of Human Genetics 66: 659–73.

33. Crawford DC, Bhangale T, Li N, Hellenthal G, Rieder MJ, et al. (2004)
Evidence for substantial fine-scale variation in recombination rates across the

human genome. Nature Genetics 36: 700–706.

34. Daly M, Rioux J, Schaffner S, Hudson T, Lander E (2001) High-resolution
haplotype structure in the human genome. Nature Genetics 29: 229–32.

35. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, et al. (2005) Whole-
genome patterns of common dna variation in three human populations. Science

18: 1072–79.

36. Hudson R (2002) Generating samples under a wright-fisher neutral model of
genetic variation. Bioinformatics 18: 337–338.

37. Hellenthal G, Stephens M (2007) mshot: modifying hudson’s ms simulator to
incorpore crossover and gene conversion hot spots. Bioinformatics 23: 520–521.

38. Fan RZ, Xiong MM (2001) linkage transmission disequilibrium test of two
unlinked disease loci. Advances and Applications in Statistics 1: 277–308.

39. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, et al. (2001)

Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to
crohn disease. Nature Genetics 29: 223–228.

40. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2005) A new multipoint
method for genome-wide association studies via imputation of genotypes. Nature

Genetics 39: 906–13.

41. Gabriel S, Schaffner S, Nguyen H, Moore J, Roy J, et al. (2002) The structure of
haplotype blocks in the human genome. Science 296: 2225–9.

42. Rinaldo A, Bacau SA, Devlin B, Sonpar V, Wasserman L, et al. (2005)
Characterization of multilocus linkage disequilibrium. Genetic Epidemiology 28:

193–206.
43. Abecasis GR, Martin R, Lewitzky S (2001) Estimation of haplotype frequencies

from diploid data. American Journal of Human Genetics 69: 198.

44. Scheet P, Stephens M (2006) A fast and exible statistical model for large-scale
population genotype. data: Applications to inferring missing genotypes and

haplotypic phase. Am J Hum Genet 78: 629–644.

Sample Reproducibility in Multimarker TDTs

PLoS ONE | www.plosone.org 14 February 2012 | Volume 7 | Issue 2 | e29613


