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Imbalanced classification is related to those problems that have an uneven distribution among classes.
In addition to the former, when instances are located into the overlapped areas, the correct modeling
of the problem becomes harder. Current solutions for both issues are often focused on the binary case
study, as multi-class datasets require an additional effort to be addressed. In this research, we overcome
these problems by carrying out a combination between feature and instance selections. Feature selection
will allow simplifying the overlapping areas easing the generation of rules to distinguish among the
classes. Selection of instances from all classes will address the imbalance itself by finding the most
appropriate class distribution for the learning task, as well as possibly removing noise and difficult
borderline examples. For the sake of obtaining an optimal joint set of features and instances, we embedded
the searching for both parameters in a Multi-Objective Evolutionary Algorithm, using the C4.5 decision
tree as baseline classifier in this wrapper approach. The multi-objective scheme allows taking a double
advantage: the search space becomes broader, and we may provide a set of different solutions in order to
build an ensemble of classifiers. This proposal has been contrasted versus several state-of-the-art solutions
on imbalanced classification showing excellent results in both binary and multi-class problems.

Keywords: Imbalanced classification; multi-class; overlapping; feature selection; instance selection; multi-
objective evolutionary algorithms; ensembles.
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1. Introduction

When addressing a classification task, researchers
and practitioners often find that some of the classes
are harder to recognize than others. As a result, the
accuracy obtained in these cases is much lower than
for the remaining ones. This issue, known as the
problem of “difficult classes”,26 is mainly due to the
structure and inner characteristics of the data.40,56

We may refer to the classification with imbal-
anced data8,51 as a particular example of the former.
This scenario is shown when learning algorithms face
an uneven class distribution such as in medical appli-
cations57 or business failure prediction.7 Focusing on
accuracy and generalization, models are often biased
towards majority class examples, so minority ones
are more difficult to discriminate. When the number
of classes increases, so does the number of boundaries
to consider, imposing additional restrictions to the
classification algorithm.19 However, imbalance is not
the solely cause for this abnormal behavior. Specif-
ically, one of the main drawbacks in classification
is related to overlapping between classes.29,36 Rules
with a low confidence and/or coverage can be dis-
carded in favor of more general ones, because they
are associated with the overlapped boundary areas.

The issue of overlapping is strongly related to
the attributes that represent the problem. It is well
known that a large number of features can degrade
the discovery of the borderline areas of the prob-
lem, either because some of these variables might
be redundant or because they do not show a good
synergy among them. Therefore, the use of feature
selection can ease to diminish the effect of overlap-
ping.4,13 However, the imbalance class problem can-
not be addressed by itself just by carrying out a fea-
ture selection. For this reason, it is also mandatory
to perform a preprocessing of instances by resam-
pling the training data distribution,6,51 avoiding a
bias of the learning algorithm towards the majority
classes. Additionally, the former approaches can be
integrated into an ensemble-type classifier, both for
instance selection23,24 and feature selection.2,66

Obtaining the optimal set of features and
instances for a given problem is not a trivial task.
For this reason, an optimization procedure is often
required, as they are known to improve the qual-
ity of Data Mining systems.35,47 Among different
approaches, recent works have shown the good-
ness of Multi-Objective Evolutionary Optimization

(MOEA) procedures67 due to their ability to perform
a good exploration and exploitation of the solution
space.37,55 In particular, for imbalanced classifica-
tion, several bioinspired approaches have shown to
be especially efficient and valuable.43,44

In this research, we propose EFIS-MOEA, which
stands for “Ensemble classifier from a Feature and
Instance Selection by means of Multi-Objective Evo-
lutionary Algorithm”. This novel approach addresses
learning on difficult classes focusing on the uneven
class distribution and the overlapping simultane-
ously, as an extension of our previous work on the
topic.18 To do so, we will embed the C4.5 decision
tree52 in a wrapper procedure, applying the well-
known NSGA-II multi-objective optimization algo-
rithm.12 The basis for this methodology involves sev-
eral components. First, feature selection is devoted to
simplify the overlapping areas easing the generation
of rules to distinguish between the classes. Second,
selection of instances from all classes will address
the imbalance itself by finding the most appropri-
ate class distribution for the learning task, as well
as possibly removing noise and difficult borderline
examples. Finally, the nondominated solutions of the
Pareto front from the MOEA can be directly com-
bined into an ensemble of classifiers.53 Accordingly,
it allows reinforcing the recognition capabilities of
the individual classifiers.62

It is known that the C4.5 classifier carries out
an inner feature selection process by itself based on
the information gain. Our approach is intended to
help the learning process of C4.5 by carrying out a
preselection of the variables based on the intrinsic
characteristics of the problem. In particular, and as
stated previously, we focus on the possible overlap-
ping among the classes. In addition, the capabilities
of C4.5 make it a good choice to develop an ensemble
system.54

For a fair validation of our novel EFIS-MOEA
proposal, we have set up two different experimen-
tal frameworks for both binary and multi-class case
studies:

(1) The first framework will serve us as an ini-
tial case study in order to analyze the behav-
ior of EFIS-MOEA with respect to the overlap-
ping between classes. In this scenario, we have
selected a number of 66 different problems com-
monly used in this area of research,40 where half
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of them show a high degree of overlapping. We
will contrast the performance of our method-
ology versus the SMOTE+ENN preprocessing
technique.6,10

(2) In the second case, we use 24 different imbal-
anced datasets. We have set up a framework
of difficult problems as the overlapping can be
increased among the different set of classes. In
order to provide a strong support to the good-
ness of EFIS-MOEA in this particular scenario,
we will contrast the results versus the best
algorithms from the state-of-the-art on multi-
class imbalanced classification,19 namely the
AdaBoost.NC ensemble,58 a global cost-sensitive
learning approach,68 and SMOTE + ENN with
One-vs-One (OVO) methodology.22 We will also
make use of Random Forest9 as a very robust
approach for general classification.

All lessons learned and extracted from these
experimental results will be supported by means of
the statistical analysis of the results.28

In order to carry out the research, this
manuscript is arranged as follows: Section 2 intro-
duces the problem of classification with the imbal-
anced datasets, including its definition and charac-
teristics, and the solutions developed to address this
issue. Section 3 describes our novel EFIS-MOEA
approach for addressing the problem of binary
and multi-class imbalanced problems. Next, the
details about the experimental framework regarding
datasets, parameters, and statistical tests are pro-
vided in Sec. 4. Section 5 contains the experimen-
tal results and the analysis that has been carried
out. Finally, Sec. 6 concludes the paper, and provides
some topics for future work.

2. Imbalanced Datasets in
Classification

The characteristics that define each class in a clas-
sification problem are usually different: the number
of instances (distribution of examples), dependency
among classes (including overlapping), or even rela-
tions between the examples of the own class.8,40,51

Taking all of these into account, we may observe that
in some problems, there can be several classes that
are harder to distinguish than others.26

Among all data intrinsic characteristics, the one
that possibly hinders the performance in a higher

degree is the overlapping between classes.29,36 It is
shown when a region of the data space contains a
similar quantity of training data from each class,
imposing a hard restriction to find the discrimina-
tion functions.13,29

To compute the overlapping degree for a given
problem, the maximum Fisher’s discriminant ratio
(F1 metric)32 is used. It is defined for one feature
dimension as f = (µ1−µ2)2

σ2
1+σ2

2
being µ1, µ2, σ2

1 , σ2
2 the

means and variances of the two classes in that fea-
ture dimension. Therefore, F1 = maxi=1...n fi, so
that smaller values imply a harder class separabil-
ity.

In the context of imbalanced datasets, less repre-
sented classes are usually more affected by this issue,
due to the generalization bias of the learning algo-
rithms.40 A dataset is said to be imbalanced when
a class or set of classes are represented in a smaller
percentage than the others. A common threshold to
determine this scenario is when the ratio between the
largest class and the smaller is about 1.5.40

In order to address the uneven class distribution,
a large number of approaches have been developed
throughout the years. They are based on methodolo-
gies that act at the data level,6 algorithmic level,5

or that apply a cost-sensitive learning.15 These solu-
tions can be applied directly over a single classifier,
or they can be combined into an ensemble learning
procedure,23 aiming at boosting the performance by
providing more diversity to the global system.

Among all these methodologies, those based on
resampling are the most popular due to their versatil-
ity and robustness. The most significant approach in
this area is the SMOTE algorithm.10 It was designed
to balance the training set distribution by creat-
ing new synthetic examples of the minority class
through the interpolation among instances from a
given neighborhood. Since the addition of these novel
examples may lead to overgeneralization, SMOTE is
sometimes used in synergy with cleaning techniques,
such as SMOTE + ENN.6

The hitch of preprocessing techniques is that they
are not directly applicable to a multi-class scenario,
as they are many minority classes. To overcome this
gap, in Ref. 19, the authors developed a method-
ology that applies a binarization scheme. Specifi-
cally, the original multi-class problem is divided into
simpler binary subproblems by means of the OVO
scheme,31 i.e. a new problem is derived for each
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possible pair of classes. Then, for each subproblem
obtained, the SMOTE + ENN preprocessing tech-
nique may be applied prior to the learning stage.
Finally, given a new query instance, all binary mod-
els are fired and their response is combined using the
Weighted Voting strategy (WV),34 which is computed
as

Class = arg max
i=1,...,m

∑

1≤j �=i≤m

rij , (1)

being rij ∈ [0, 1], the confidence of the classifier dis-
criminating classes i and j in favor of the former;
whereas the confidence for the latter is computed by
rji = 1 − rij (if the classifier does not provide it).

Another possibility to balance the significance of
the examples for the different classes on an imbal-
anced framework is to weight positively instances
depending on their representation and to apply a
cost-sensitive learning. In order to do so, we may
consider a factor of Ni/Nmax, being Ni the number
of examples of the ith class and Nmax the number of
examples for the majority class of the problem.68

A more sophisticated approach may be found in
Ref. 58. It is based on AdaBoost algorithm,21 so
that instances are iteratively weighted according to
an ad-hoc formula based on the negative correlation
learning.39 To cope with the dataset imbalance, ini-
tial weights are assigned in inverse proportion to the
number of instances in the corresponding class.

Finally, we must state that although the main
core of the former solutions is devoted to cope with
the skewed class distribution, they can also implic-
itly act over the existing overlapping among classes.
For example, SMOTE preprocessing can strengthen
the borderline of the minority clusters, whereas in
conjunction with ENN, it removes some instances
in the overlapped areas. The OVO procedure sim-
plifies the borderlines in the multi-class scenario via
a divide-and-conquer strategy. Finally, the boosting
procedure focuses on the hardest examples, i.e. those
that are more likely to be overlapped.

3. EFIS-MOEA: A Novel Approach to
Address Overlapping and Imbalance
in Classification Tasks

In this section, we will first describe the core of
the procedure (Sec. 3.1). Then, we will present the
MOEA approach to search for the best parameters
of the model, i.e. instances and features (Sec. 3.2).

Finally, we will propose the use of an ensemble
classifier by means of the solutions extracted from
the MOEA, resulting on our final approach: EFIS-
MOEA (Sec. 3.3).

3.1. Core of the procedure

The easiest way to address the uneven class dis-
tributions is by balancing the training set. In this
way, standard classifiers are no longer biased towards
the majority class examples. To do so, a mecha-
nism of instance selection is well suited to com-
pensate the class ratio by removing the majority
instances. Furthermore, this scheme comprises addi-
tional advantages. First, when applied to all classes
disregard their representation, we seek to remove
noisy and borderline instances that can degrade the
individual recognition from these concepts. Obvi-
ously, this implies a kind of informed search to focus
on those “low-quality” instances, such as in Training
Set Selection.27 Second, if we are addressing a large
problem, this procedure allows the training process
to be more efficient, and the output model can also
be simpler.

On the other hand, we have stressed those data
intrinsic characteristics that, in conjunction with the
IR, can hinder the learning ability of the classifier.
Specifically, the overlapping among classes is proba-
bly the most relevant issue for measuring the com-
plexity of the problem to be solved.

Our hypothesis is that the use of feature selection
will allow at simplifying the boundaries of the prob-
lem by limiting the influence of those features that
may create difficulties for the discrimination process.

We consider that the synergy between both
methodologies should result into a very successful
methodology for addressing classification tasks in an
imbalanced scenario. The ultimate goal of our pro-
posal is to provide a rule-based model that maxi-
mizes the recognition of all individual classes. This
must be achieved by focusing on the minority class
clusters that are hard to identify. To do so, we focus
on boosting the confidence of those rules associated
with the former areas by means of the cleaning pro-
cedure, i.e. instance selection. In this way, a good
criterion is to minimize the number of “bad” exam-
ples or, in other words, to maximize the reduction of
instances. Additionally, and taking into account the
findings made in Ref. 42, the coverage of the rules
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may imply capturing some of the nonrelated classes.
Specifically, in Ref. 1, the authors made use of a neu-
ral network, and considered a combination between
both a global and local scheme. The local scheme is
based on the radius of coverage from a given instance,
so that it follows similar idea than the one we stated
previously.

We must stress that the estimation of the best
suited subset of instances and features is not trivial.
Therefore, an optimization search procedure must be
carried out in order to determine the former val-
ues. As stated at the beginning of this section, an
MOEA methodology will be used. For the chromo-
some representation, two genes will be considered,
one (FS) for the feature selection and another one
(IS) for the instance selection. Both are represented
with a binary codification, in such a way that a 0
means that the variable (or instance) will not take
part for generating the classification model, whereas
a 1 value stands for the opposite case:

FS = (a1, a2, . . . , aL),

IS = (x1, x2, . . . , xN ),
(2)

where L is the number of features, and N the num-
ber of instances in the training set (which can be
preprocessed as stated previously).

Chromosomes will be evaluated jointly with aims
at obtaining the best synergy between both char-
acteristics, instead of optimizing them separately.
This issue is based on the fact that it is not clearly
defined which the best order for carrying our both
processes is.

In the end, we must obtain a classifier with a
high performance, being aware that all classes must
be regarded with the same importance, but also a
low degree of confidence related to misclassifications.
Among all possibilities, the mean area under the
curve (MAUC30) is the best suited metric to opti-
mize the ability of the final model to separate pairs
of classes in both binary and multi-class imbalanced
classification.

In the binary case, let Ci and Cj be the
two classes of a problem. The value AUC(Ci, Cj)
represents the probability that a randomly selected
element from the first class also has a higher prob-
ability of being assigned to that class by the classi-
fier compared to a randomly selected element of the
other class (A(Ci, Cj)) and vice versa (A(Cj , Ci)). It

is obtained as shown in Eq. (3).

AUC(Ci, Cj) =
A(Ci, Cj) + A(Cj , Ci)

2
. (3)

In our experiments, we follow17 and calculate the
AUC by approximating the continuous ROC curve
by a finite number of points. The coordinates of these
points in ROC space are taken as false positive and
true positive rates obtained by varying the threshold
of the probability above which an instance is classi-
fied as positive. The curve itself is approximated by
linear interpolation between the calculated points.
The AUC can therefore be determined as the sum of
the areas of the successive trapezoids. This method is
referred to as the trapezoid rule and is also described
in example of Ref. 46.

Finally, MAUC is computed as the macro-average
of the pairwise AUC values of all pairs of classes (see
Eq. (4)).

MAUC =
2

m(m − 1)

∑

i<j

AUC(Ci, Cj). (4)

As baseline classifier, we will make use of the C4.5
decision tree52 for several reasons. The first one is its
wide use in classification with the imbalanced data,
so that we may carry out a fair comparative ver-
sus the state-of-the-art. The second one is its effi-
ciency, since we need to perform a large number of
evaluations throughout the search process. Then, it
is important that the base model is to be particu-
larly quick for not biasing the global complexity of
the methodology. It can be also applied to both the
binary-class and multi-class scenarios without mod-
ifying its working procedure. Finally, its properties
make it a common baseline classifier to be embed-
ded into ensemble learning approaches.14,54

3.2. MOEA approach

In this research, we aim at maximizing the perfor-
mance while minimizing the number of instances
used to generate the model, as stated in Eq. (5). For
this reason, we propose to use an MOEA as basis of
the optimization. In addition to the former, the good-
ness of this decision is twofold: (1) we take advantage
of the wider exploration capabilities of this type of
technique, and (2) we allow the selection among a
set of different solutions, depending on the user’s
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requirements.

OBJ1 : M − AUC,

OBJ2 : RED = N −
N−1∑

i=0

ISi.
(5)

Specifically, we will make use of the NSGA-II
algorithm12 to implement our model. The fitness
evaluation of this approach is based on both the
Pareto ranking and a crowding measure. Ranking is
used to organize solutions of the population accord-
ing to their dominance degrees, i.e. rank 1 for non-
dominated solutions (Pareto front), rank 2 for solu-
tions dominated by those in rank 1, but that are
still “better” than the remaining solutions, and so
forth. Crowding distance is used to create a total
ordering among chromosomes, giving a higher fit-
ness value to those solutions that are spread along
the Pareto line. Another interesting feature of this
methodology is the elitist generation update proce-
dure. Specifically, the steps for NSGA-II are shown as
follow:

1: procedure NSGA-II

2: P0 = initial population
3: Q0 = 0 � offspring population
4: repeat
5: Rt = Pt + Qt

6: Evaluate(Rt) � for all objective functions
7: Generate all nondominated fronts F =

(F1, F2, . . .) of Rt.
8: Initialize Pt+1 = 0 and i = 1.
9: repeat

10: Calculate crowding distance in Fi.
11: Include ith nondominated front in the

parent population.
12: Check the next front for inclusion.
13: Sort in descending order using

crowded-comparison operator.
14: Choose the first (M −|Pt+1|) elements

of Fi. � M = Size front
15: i = i + 1
16: until parent population is filled.
17: Use selection, crossover and mutation to

create a new population Qt+1.
18: t = t + 1
19: until t == Maximum generations
20: end procedure

Next, we describe in detail the different compo-
nents selected for our current approach:

(1) Initial population: The initial population is
formed of random chromosomes except for one
that is taken to have all its genes set to 1 in
order to represent the full training set.

(2) Evaluation Mechanism: First, rank 1 is assigned
to all nondominated solutions in the current
population, which are then tentatively removed.
The former procedure is iterated until ranks are
assigned to all solutions. Among solutions with
the same rank, an additional criterion called a
crowding measure is taken into account. Specif-
ically, it computes the distance between its
adjacent solutions with the same rank in the
objective space, so that less crowed solutions are
preferred.

(3) Selection Procedure: Binary tournament is used
based on the fitness values, until the set of off-
spring solutions is full.

(4) Crossover Operator: The Heterogeneous Uni-
form Crossover (HUX) is used, since we are
considering binary chromosomes. This operator
interchanges exactly half of the different genes
between both the selected individuals.

(5) Mutation Operator: We use the “Bit flip” muta-
tion in which each gene is changed from 0 to 1
and vice versa with a certain probability.

(6) Elitism: Current and offspring populations are
merged and the best solutions are maintained
for the next population.

3.3. EFIS-MOEA algorithm

Ensemble-based classifiers, also known as multiple
classifier systems,50 are composed by a set of classi-
fiers with aims at solving a particular learning task.
They have their basis on gathering several opinions
to reinforce the support of the decision making pro-
cess. It has been shown that the global combination
of classifiers in ensemble learning improves the pre-
dictive performance of a single model, i.e. to obtain
a better generalization.63

The advantage from the use of an MOEA
approach is that it allows us to build an ensemble
model by combining the C4.5 different decision tree
models learned from all the training sets obtained
after the optimization procedure. This design allows
us to reinforce the capabilities from the classifiers
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extracted from each of the nondominated solutions
obtained in the Pareto into a single “Decision For-
est”.54

It is important to point out that for the success
of this methodology, two main principles must be
accomplished: (1) predictive performance, and (2)
diversity.

The first issue implies the synergy of individual
trees with a high predictive performance. Regarding
this fact, we must consider that we are addressing
different vectors obtained in the optimization, i.e.
from the most accurate approach (best solution for
M-AUC), to the “simplest” model (best solution for
the number of instances). However, we must stress
that this last case does not necessarily represents a
trivial solution (M − AUC = 0.5), since it depends
on both the characteristics of the problem and the
focus of the search.

Additionally, we have pointed out that in order
to make the ensemble to be accurate, individual trees
should be sufficiently different from each other.48,64

In order to accomplish this goal, training samples are
usually manipulated. This is exactly the procedure
followed by EFIS-MOEA, in which we reduce the
original training data into smaller sets by horizontal
(instance selection) and vertical (feature selection)
partitions. For C4.5, these variations on the training
set may result in a major change in the model. Fur-
thermore, due to the use of the crowding measure
of NSGA-II, the diversity of the components in the
Pareto is guaranteed.

When a query instance arrives this system, each
classifier will output its confidence degrees for each
possible class. Finally, the label of the instance will
be given as the class with the highest sum of confi-
dences:

Class = arg max
i=1,...,m

Si,

Si =
∑

j=1≤K

Confji,
(6)

where m is the number of classes, K the number of
elements of the ensemble, and Confji the confidence
degree of the jth classifier for label i.

In order to determine the goodness of EFIS-
MOEA, we will also consider the behavior shown
by the classifier with the highest precision, i.e. the
one that achieves the best results with respect to
OBJ 1 (M-AUC). This particular case of our pro-
posed approach will be named as 1-FIS-MOEA.

Additionally, before the use of the NSGA-II pro-
cedure, three different approaches to address imbal-
ance are considered in synergy with EFIS-MOEA:

(1) None: Acting directly over the original training
set. This is the simplest and most straightfor-
ward approach that leaves the MOEA approach
to both balancing the data for the learning stage
and cleaning noisy instances from all classes to
enhance the problem description.

(2) Weighting: Update the training set by apply-
ing different weights to the instances in accor-
dance to their distribution. Values are computed
as Ni/Nmax with Ni being the number of exam-
ples of the ith class and Nmax the number of
examples for the majority class of the problem.
The idea is to take into account the a priori class
distribution for boosting the recognition of the
minority class instances. Therefore, the instance
selection carried out in the MOEA will be mainly
designed to remove noisy or redundant instances
for improving the performance.

(3) SMOTE: Using SMOTE as oversampling pre-
processing prior to the learning stage. This
approach follows the same scheme as the pre-
vious case, i.e. to compensate for the uneven
class distribution and to remove both original
and synthetic instances that can hinder the clas-
sification ability of the algorithm. We must state
that due to the nature of this approach, its use
is limited to the binary-class case study.

Finally, we have depicted in Fig. 1 the whole
work-flow of the EFIS-MOEA proposal, for the sake
of summarizing all steps.

4. Experimental Framework

This section includes the complete set up for the
experimental analysis. First, we present the datasets
selected for both the binary and multi-class case
studies (Sec. 4.1). Then, we will include the param-
eters selected for our proposal and the algorithms
used for comparison (Sec. 4.2). Finally, a description
about the statistical tests for adding support to the
extracted conclusions is presented (Sec. 4.3).

4.1. Binary- and multi-class datasets

The binary-class benchmark problems selected for
our study, in which the name, number of examples
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Fig. 1. Complete workflow of the EFIS-MOEA algorithm. Procedure starts at the rightmost side with the training set as
input. Depending on the preprocessing, three schemes (None, Weighting and SMOTE) are considered. NSGA-II is then
used to optimize the number of features and instances using C4.5 as baseline classifier. Finally, the output model is either
the decision tree with the best AUC or an ensemble among all solutions, which are used to act on the test set.

(#Ex.), number of attributes (#Atts), IR and F1
metrics are shown in Table 1. A number of 66
datasets have been selected, as they comprise the
standard experimental framework used in our stud-
ies on the topic.4,25,40 Datasets in this table are pre-
sented in an increasing order with respect to their
imbalance ratio (IR) values.49

Regarding values of the F1 metric, these prob-
lems can be divided into twofolds: (1) a number of
30 problems with a low degree of overlapping, consid-
ering F1 > 1.5; (2) 36 problems with a high degree of
overlapping, when F1 < 1.5. In accordance with the
former properties, this last set contains the hardest
problems to be addressed.

Next, Table 2 shows the 24 multi-class imbal-
anced datasets, where the IR is computed as the
ratio between the class with the highest representa-
tion and the one with the lowest one. The F1 metric

has been obtained as the average of the values com-
puted by pairs of classes. We must point out that
for this task, we have considered only half of the
total pairs. This choice has been made for the sake
of stressing the most difficult classes of the problem,
as well as for avoiding those ones that are linearly
separable. In addition, it is shown the distribution of
examples among classes for the sake of considering
not only the IR, but also those problems with multi
minority/majority classes. We must stress that this
set of problems implies the same experimental con-
ditions used in one of our latest researches on the
topic.19

These problems have been downloaded from
KEEL dataset repository.3 We must stress that all
datasets comprise real case studies originally from
UCI repository,38 varying in complexity and inner
characteristics, as it has been highlighted by the IR
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Table 1. Summary description of binary-class imbalanced datasets used.

Name #Ex. #Atts. IR F1 Name #Ex. #Atts. IR F1

glass1 214 9 1.82 0.1897 glass04vs5 92 9 9.22 1.5420
ecoli0vs1 220 7 1.86 9.7520 ecoli0346vs5 205 7 9.25 1.5950
wisconsin 683 9 1.86 3.5680 ecoli0347vs56 257 7 9.28 1.1300
pima 768 8 1.90 0.5760 yeast05679vs4 528 8 9.35 1.0510
iris0 150 4 2.00 16.8200 ecoli067vs5 220 6 10.00 1.6920
glass0 214 9 2.06 0.6492 vowel0 988 13 10.10 2.4580
yeast1 1484 8 2.46 0.2422 glass016vs2 192 9 10.29 0.2692
vehicle2 846 18 2.52 0.1691 glass2 214 9 10.39 0.3952
vehicle1 846 18 2.52 0.3805 ecoli0147vs2356 336 7 10.59 0.5275
vehicle3 846 18 2.52 0.1855 led7digit02456789vs1 443 7 10.97 1.9570
haberman 306 3 2.68 0.1850 ecoli01vs5 240 6 11.00 1.0490
glass0123vs456 214 9 3.19 3.3240 glass06vs5 108 9 11.00 1.3900
vehicle0 846 18 3.23 1.1240 glass0146vs2 205 9 11.06 0.3487
ecoli1 336 7 3.36 2.6500 ecoli0147vs56 332 6 12.28 0.9124
newthyroid2 215 5 4.92 3.5790 cleveland0vs4 177 13 12.62 1.3500
newthyroid1 215 5 5.14 3.5790 ecoli0146vs5 280 6 13.00 1.3400
ecoli2 336 7 5.46 1.8260 ecoli4 336 7 13.84 3.2470
segment0 2308 19 6.01 1.7980 shuttle0vs4 1829 9 13.87 0.3534
glass6 214 9 6.38 2.3910 yeast1vs7 459 8 13.87 12.9700
yeast3 1484 8 8.11 2.7510 glass4 214 9 15.47 1.4690
ecoli3 336 7 8.19 1.5790 pageblocks13vs4 472 10 15.85 1.5470
pageblocks0 5472 10 8.77 0.5087 abalone918 731 8 16.68 0.6320
ecoli034vs5 200 7 9.00 1.6320 glass016vs5 184 9 19.44 1.8510
yeast2vs4 514 8 9.08 1.5790 shuttle2vs4 129 9 20.50 12.1300
ecoli067vs35 222 7 9.09 0.9205 yeast1458vs7 693 8 22.10 0.1757
ecoli0234vs5 202 7 9.10 1.6180 glass5 214 9 22.81 1.0190
glass015vs2 506 8 9.12 0.1375 yeast2vs8 482 8 23.10 1.1420
yeast0359vs78 172 9 9.12 0.3113 yeast4 1484 8 28.41 0.7412
yeast0256vs3789 1004 8 9.14 1.6350 yeast1289vs7 947 8 30.56 0.3660
yeast02579vs368 1004 8 9.14 0.6939 yeast5 1484 8 32.78 4.1980
ecoli046vs5 203 6 9.15 1.6030 yeast6 1484 8 39.15 2.3020
ecoli01vs235 244 7 9.17 1.1030 ecoli0137vs26 281 7 39.15 1.9670
ecoli0267vs35 244 7 9.18 0.9129 abalone19 4174 8 128.87 0.5295

and F1 metrics. A wider description on their char-
acteristics can be found in its associated Website at
http://www.keel.es/datasets.php.

The estimates for the AUC metric will be
obtained by means of a Distribution Optimally Bal-
anced Stratified Cross-Validation (DOB-SCV), as
suggested for working in imbalanced classification.41

DOB-SCV avoids dataset shift,40,41 which hinders
the results obtained in the experimental analysis.
This procedure is carried out using five folds, aim-
ing to include enough minority class instances in
the different folds. In this way, we avoid additional
problems in the data distribution, especially for
highly imbalanced datasets. In accordance with the
stochastic nature of the learning methods, each one
of the five-fold cross-validation is run three times.

Therefore, experimental results for each method and
dataset are computed with the average of 15 runs.

Finally, experiments have been carried out under
a computer with an Intel(R) Core(TM) i7 CPU
930 microprocessor (4 cores/8 threads, 2.8GHz,
8 MB Cache) with 24GB of DDR2 RAM mem-
ory and using CentOS 6.4. The maximum Java
heap space reserved for each execution was
only 1GB.

4.2. Algorithms and parameters

As stated in Sec. 3.1, in order to analyze the behavior
of our proposed EFIS-MOEA methodology, we have
selected the C4.5 decision tree52 to induce the classi-
fication rules. The construction of the tree is carried
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Table 2. Summary description of multi-class imbalanced datasets used.

id Name #Ex. #Atts. #Cl. IR F1 Class distribution

Aut Autos 150 25 6 16.00 1.2486 3/20/48/46/29/13
Bal Balance 625 4 3 5.88 0.1352 288/49/288
Cle Cleveland 297 13 5 12.62 0.2350 164/55/36/35/13
Con Contraceptive 1473 9 3 1.89 0.0769 629/333/511
Der Dermatology 358 33 6 5.55 9.2647 111/60/71/48/48/20
Eco Ecoli 336 7 8 71.50 0.8518 143/77/2/2/35/20/5/52
Fla Flare 1066 11 6 7.70 0.8614 331/239/211/147/95/43
Gla Glass 214 9 6 8.44 1.3186 70/76/17/13/9/29
Hay Hayes-Roth 160 4 3 2.10 0.0980 160/65/64/31
Led Led7digit 500 7 10 1.54 4.2275 45/37/51/57/52/52/47/57/53/49
Lym Lymphography 148 18 4 40.5 7.4840 2/81/61/4
New New-thyroid 215 5 3 5.00 3.4007 150/35/30
Nur Nursery 12690 8 5 2160.0 0.3957 2/4320/4266/328/4044
Pag Page-blocks 5472 10 5 175.46 1.5015 4913/329/28/87/115
Pos Post-operative 87 8 3 62 0.0000 62/24/1
Sat Satimage 6435 36 7 2.45 2.7252 1533/703/1358/626/707/1508
Shu Shuttle 58000 9 5 4558.6 3.1322 45586/49/171/8903/3267/10/13
Spl Splice 3190 60 3 2.16 1.2621 767/768/1655
Thy Thyroid 7200 21 3 40.16 0.8106 166/368/6666
Win Wine 178 13 3 1.48 3.8438 59/71/48
Wqr Wine-Q.-Red 1599 11 6 68.10 0.3680 10/53/681/638/199/18
Wqw Wine-Q.-White 4898 11 7 439.60 0.2462 20/163/1457/2198/880/175/5
Yea Yeast 1484 8 10 92.60 1.1171 244/429/463/44/51/163/35/30/20/5
Zoo Zoo 101 16 7 10.25 1.9311 41/13/10/20/8/5/4

out in a top–down manner. The normalized informa-
tion gain (difference in entropy) is used to select the
attribute that better splits the data in each node.

As introduced in Sec. 2, several approaches
from the state-of-the-art have been chosen in
order to contrast the results. Particularly, the
SMOTE+ENN preprocessing approach6 for binary-
class problems and multi-class problems (using the
binarization scheme19), and both Global-CS68 and
AdaBoost.NC58 for the multi-class case study. Addi-
tionally, we have selected Random Forest9 as a
robust algorithm for standard classification tasks.
Finally, we must recall that the behavior of EFIS-
MOEA will be also contrasted versus 1-FIS-MOEA,
i.e. the classifier obtained by selecting the best solu-
tion of the Pareto in terms of M-AUC.

The parameters used for each algorithm are
shown in Table 3. These values are common for all
problems. They were selected according to the rec-
ommendation of the corresponding authors and it is
also the default setting of the parameters included in
the KEELa software suite,3 which we have used to

ahttp://www.keel.es

develop our experiments, except for Random Forest
which is based on the Weka implementation.61 In the
case of the MOEA, we have made use of the jmetal
library.16

4.3. Statistical tests for performance
comparison

In this paper, the hypothesis testing techniques
will be used to provide statistical support for
the analysis of the results.28 Specifically, we will
use non-parametric tests, due to the fact that
the initial conditions that guarantee the reliabil-
ity of the parametric tests may not be satisfied,
causing the statistical analysis to lose credibility
with these types of tests.28 Any interested reader
can find additional information on the Website
http://sci2s.ugr.es/sicidm/.

First of all, we will use the Friedman Aligned
test28 to show at a first glance how good a method is
with respect to its partners. In addition, this test
also provides information to check whether there

1750028-10

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

17
.2

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
09

/1
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



June 19, 2017 20:16 1750028

EFIS-MOEA: Ensemble for Imbalance Classification

Table 3. Parameter specification for the algorithms employed in
the experimentation.

Algorithm Parameters

MOEA Pop. size = 60 individuals, Evaluations = 6000
Crossover Prob. = 0.8, Mutation Prob. = 0.025

C4.5 Prune = True, Confidence level = 0.25
Minimum number of item-sets per leaf = 2

SMOTE+ENN Balance Ratio = 1, Neighbors for SMOTE = 5

Neighbors for ENN = 3, Distance = HVDM60

AdaBoost.NC λ = 2 (penalty strength), #classifiers = 51

RandomForest #classifiers = 51, depth = #vars

are significant differences among the results. When
the null hypothesis of equality is rejected, the Holm
post-hoc test33 finds which algorithms are statisti-
cally different to a selected control method in a 1 · n
comparison.

The Friedman Aligned test28 will be used to check
whether there are significant differences among the
results, and the Holm post-hoc test33 in order to find
which algorithms reject the hypothesis of equality
with respect to a selected control method in a 1 · n
comparison. We will compute the adjusted p-value
(APV) associated with each comparison, which rep-
resents the lowest level of significance of a hypothe-
sis that results in a rejection. This value differs from
the standard p-value in the sense that it determines
unequivocally whether the null hypothesis of equal-
ity is rejected at a significance level α.

Regarding pairwise comparisons, we will make
use of Wilcoxon signed-rank test59 to find out
whether significant differences exist between a pair of
algorithms. This procedure computes the differences
between the performance scores of the two classifiers
on each one of the available datasets (Nds). The dif-
ferences are ranked according to their absolute val-
ues, from smallest to largest, and average ranks are
assigned in case of ties. We call R+ the sum of ranks
for the datasets on which the second algorithm out-
performed the first, and R− the sum of ranks for
the opposite. Let T be the smallest of the sums,
T = min(R+, R−). If T is less than or equal to the
value of the distribution of Wilcoxon for Nds degrees
of freedom (Table B.12 in Ref. 65), the null hypoth-
esis of equality of means is rejected.

5. Experimental Results

We divide this section into two different studies for
binary-(Sec. 5.1) and multi-class problems (Sec. 5.2).
As stated in the introduction of this paper, the first
case will serve us as an initial case study in order to
analyze the behavior of EFIS-MOEA with respect to
the overlapping between classes. Then, we will deter-
mine the suitability of EFIS-MOEA in a more signif-
icant framework, i.e. for multiple classes, in which
the recognition of the boundaries becomes harder
because of the wider amount of overlapping among
classes.

It is important to remark that all the findings
extracted throughout this experimental analysis are
based in the output of statistical tests, i.e. average
ranking and p-values. However, we have also included
the average performance results to provide a refer-
ence of the global quality of the different methodolo-
gies selected for this study. In this way, any interested
researcher can be aware of the performance shown in
this work in contrast with their own methods.

5.1. Analysis of the behavior of
EFIS-MOEA in binary
classification

Our first part of the experimental study is focused on
addressing the imbalanced datasets with two classes.
To do so, we will proceed as follows:

(1) We will start by contrasting the different ver-
sions designed for the feature and instance selec-
tions. These different approaches were suggested
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in order to address the imbalanced class problem
in synergy with EFIS-MOEA.

(2) Once the best method has been chosen, we will
contrast the performance of EFIS-MOEA versus
C4.5 and C4.5-SMOTE-ENN into three different
scenarios: all datasets, datasets with high over-
lapping, and datasets with both high overlapping
and imbalance.

5.1.1. Analyzing the preprocessing approach
for EFIS-MOEA

We aim at analyzing the best approach among the
three versions suggested in Sec. 3.1 for modifying the
training set prior to the evolutionary optimization of
the features and instances. Specifically, the options
were using the standard set (None), applying weights
(Weighting), or to use SMOTE to balance the class
distribution.

Average experimental results in training and
test using all datasets and considering AUC met-
ric are shown in Table 4. Results for the three
above-mentioned versions are given in different rows,
according to the “Preprocessing” column. This table
also includes the statistical comparison, showing the
average ranks computed by the Friedman aligned
test, and the APVs obtained by means of a Holm
test. We explicitly stress whether there are statistical
differences with a degree of confidence higher than
95% (symbol ∗) or 90% (symbol +). We also show
the number of wins/ties/loses (W/T/L) for each
approach in comparison with the control method,
i.e. with the highest rank. This will serve as a
complementary measure to the p-value for point-
ing out the degree of improvement achieved by
EFIS-MOEA.

We must highlight the strong synergy between
the instance generation step (made by SMOTE) and
the instance selection of EFIS-MOEA. First, the
resampling procedure allows balancing of the class
distribution so that initial models (at the begin-
ning of the evolutionary search) are more robust. In
addition, it acts on the minority class clusters by
spreading the borderline to facilitate their recogni-
tion in the overlapped areas. Finally, EFIS-MOEA
implies a data-cleaning step for both these novel syn-
thetic instances and those examples that can degrade
the learning ability of the classifier. This combi-
nation of methodologies has been already stressed

in the specialized literature, especially regarding
the high number of approaches that follow this
scheme.40

These conclusions are supported by the statistical
analysis, from which 1-FIS-MOEA and EFIS-MOEA
plus SMOTE obtain significant differences versus the
remaining versions. We must also stress the high con-
fidence degree associated with each comparison (p-
values are close to zero in all cases).

5.1.2. Comparison versus the state-of-the-art

In this part of the study, we will contrast the per-
formance of EFIS-MOEA versus C4.5 and C4.5-
SMOTE+ENN under two different scenarios: (1) for
two-class imbalanced datasets with low overlapping
(the easiest problems); and (2) for binary imbalanced
datasets with high overlapping (the hardest prob-
lems).

Table 5 includes the average performance values
for training and test partitions together with their
standard deviation. We also show the ranking (com-
puted by Friedman aligned method), p-values (with
post-hoc Holm test) and wins/ties/loses (W/T/L)
for each method with respect to the best one. This
table is divided into three parts as stated above,
where the number of datasets for each case study
is given between brackets. Additionally, Table A.1 of
the paper includes the complete table of results for
all 66 problems. We must recall that in accordance
to the results obtained in the previous part of this
study, we apply SMOTE to the training set prior to
EFIS-MOEA.

From these experimental results, our proposed
EFIS-MOEA is the approach that presents the best
behavior overall. This is supported by both the high
average results in AUC for the test partitions, and
the top ranking achieved in both case studies. We
also observe an overfitting problem for 1-FIS-MOEA.
This is due to the fact that the best solution for
AUC is always selected. Indeed, when we apply our
EFIS-MOEA extension, the collaboration among all
solutions allows mitigating this negative effect.

Finally, the synergy between feature selection
and instance selection boosts the performance of
our approach versus the oversampling and cleaning
carried out by SMOTE+ENN, especially for highly
overlapped problems in which the absolute differ-
ences are almost four points on average.
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Table 4. Average training and test results (AUC), ranks (Friedman aligned) and APVs (Holm test) for the three
versions for EFIS-MOEA.

GA-Approach Preprocessing AUC Train AUC Test Ranking APV W/T/L
(Holm test)

None 0.9610 ± 0.0097 0.8219 ± 0.0745 113.947 (2) 0.00000* 23/0/43
1-FIS-MOEA Weighting 0.9909 ± 0.0033 0.8205 ± 0.8205 116.7652 (3) 0.00000* 23/0/43

SMOTE 0.9844 ± 0.0058 0.8407 ± 0.0647 67.7879 (1) — —/—/—

None 0.9568 ± 0.0151 0.8687 ± 0.0570 117.12 (3) 0.00000* 26/0/40
EFIS-MOEA Weighting 0.9873 ± 0.0084 0.8694 ± 0.0589 110.44 (2) 0.00007* 27/0/39

SMOTE 0.9803 ± 0.0087 0.8803 ± 0.0513 70.94 (1) — —/—/—

Table 5. Average training-test results (AUC), ranks (Friedman aligned) and APVs (Holm test) for SMOTE+ENN,
EFIS-MOEA and 1-FIS-MOEA (both with SMOTE preprocessing) for binary imbalanced datasets.

Scenario Method AUC Train AUC Test Ranking APV W/T/L
(Holm test)

C4.5 0.9510 ± 0.0253 0.8892 ± 0.0661 94.00 (4) 0.00000* 4/0/26
Low overlap C4.5-SMOTE+ENN 0.9797 ± 0.0090 0.9263 ± 0.0472 53.30 (2) 0.00737* 8/0/22

(F1 > 1.5)30 1-FIS-MOEA 0.9943 ± 0.0031 0.9195 ± 0.0514 65.47 (3) 0.00005* 3/0/27
EFIS-MOEA 0.9906 ± 0.0072 0.9439 ± 0.0414 29.23 (1) — —/—/—

C4.5 0.8437 ± 0.0454 0.7352 ± 0.0726 113.78 (4) 0.00000* 2/0/34
High overlap C4.5-SMOTE+ENN 0.9338 ± 0.0182 0.7817 ± 0.0740 71.61 (2) 0.00000* 3/0/33

(F1 < 1.5)36 1-FIS-MOEA 0.9761 ± 0.0081 0.7749 ± 0.0757 79.22 (3) 0.00000* 0/0/36
EFIS-MOEA 0.9717 ± 0.0100 0.8273 ± 0.0596 25.39 (1) — —/—/—

We conclude that this interesting behavior is
due to the fact that true hits are associated with
high confidence values (around 1.0), whereas mis-
classifications are associated with low confidences
(around 0.5). This way, the final Area Under the
ROC is positively weighted for all case studies.

5.2. Analysis of the behavior of
EFIS-MOEA in multi-class
datasets

Regarding the different preprocessing approaches to
be applied prior to the MOEA procedure, i.e. None,
Weighting and SMOTE, in our previous research
on the topic,19 we stressed that using SMOTE in
datasets with multiple classes is not the better
choice. On the contrary, we suggested the use of an
instance weighting approach for addressing multi-
minority and multi-majority classes. In this way,
the significance of all classes are balanced and the
final system obtained will be able to correctly clas-
sify them disregard their initial representation in the
problem. Even in the case of using the oversampling

approach, the size of the multi-class problems will be
significantly increased. In this sense, the search space
for EFIS-MOEA will become too large in order to
obtain accurate solutions. The former analysis sup-
ports the use of the “Weighting” version for the pre-
processing of the training set in the context of multi-
class imbalanced problems.

We have compiled the average training and test
performance values together with the statistical vali-
dation of the former into a unique table of results
(Table 6). The different algorithms are shown by
rows, whereas by columns we include the M-AUC
values both in training and test (with the standard
deviation), the ranking value and position (computed
by Friedman aligned procedure), the APVs (obtained
by a Holm test), and the number of wins/ties/loses
(W/T/L) in comparison to EFIS-MOEA.

The findings extracted from the results obtained
in this case study are similar to those given for
binary-class problems. The goodness shown by our
EFIS-MOEA approach is clear, as it is able to out-
perform all algorithms selected for comparison. The
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Table 6. Average training and test results (M -AUC), ranks (Friedman aligned) and APVs (Holm
test) for EFIS-MOEA and the state-of-the-art for multi-class imbalanced datasets.

Method AUC Train AUC Test Ranking APV W/T/L
(Holm test)

C4.5 0.9006 ± 0.0141 0.8157 ± 0.0297 102.54 (6) 0.00000* 2/0/22
OVO-SMOTE + ENN 0.9369 ± 0.0136 0.8292 ± 0.0352 74.58 (5) 0.00725* 6/0/19
Global-CS 0.9726 ± 0.0060 0.8324 ± 0.0346 72.48 (3) 0.01206* 4/0/20
AdaBoost.NC 0.9530 ± 0.0147 0.8233 ± 0.0319 69.06 (2) 0.02597* 8/0/16
1-FIS-MOEA 0.9715 ± 0.0041 0.8299 ± 0.0355 74.08 (4) 0.00820* 5/0/19
EFIS-MOEA 0.9691 ± 0.0058 0.8441 ± 0.0322 42.25 (1) ***** —/—/—

Table 7. Average training and test results (M -AUC), ranks and p-values (Wilcoxon
Test) for EFIS-MOEA versus Random Forest in multi-class imbalanced datasets.

Method AUC Train AUC Test Ranks p-value W/T/L
(Wilcoxon)

Random Forest 0.9648 ± 0.0042 0.8382 ± 0.0330 128.0 0.52032 11/0/13
EFIS-MOEA 0.9691 ± 0.0058 0.8441 ± 0.0322 172.0 ***** —/—/—

statistical results provide a strong support to the
excellent capabilities for our approach. By taking
advantage from all the solutions discovered in the
optimization stage into an ensemble, results are sig-
nificantly boosted with respect to the best classifier
found in the MOEA search, i.e. 1-FIS-MOEA, which
suffers from the curse of overfitting.

The full results among all datasets are shown in
Table A.2 of this work. We must stress the qual-
ity shown by EFIS-MOEA for the hardest problems,
i.e. those with a high overlapping (F1 < 1.5). In
this subset, our proposal achieves the highest perfor-
mance in contrast with the state-of-the-art in multi-
class imbalanced classification in almost half of the
datasets (7 out of 16). Therefore, the significance
of our methodology for addressing the overlapping
among classes has been clearly established.

A final comparison versus one state-of-the-art in
standard classification was carried out in Table 7.
Specifically, we have applied Random Forest9 to
contrast the quality of our novel proposal versus
probably one of the highest performing rule-based
classifiers currently. First, we are able to stress the
capabilities of EFIS-MOEA based on the average
results in M-AUC. Additionally, the sum of ranks
achieved in a Wilcoxon pairwise comparison, and the
p-value associated to the statistical test, implies that
our approach is competitive in terms of overall per-
formance.

In order to complement our study, we show in
Table 8 some interesting information from the EFIS-
MOEA model for every dataset. Specifically, this
table includes by columns the total number of clas-
sifiers of the ensemble (“#Classif.”), measured as
the number of solutions from the Pareto, the aver-
age number of selected features (“#Feats.”) and the
percentage of reduction from the total (“RedFS”),
the number of selected instances (“#Inst.”) as well
as the percentage of reduction from the initial size
(“RedIS”), and the elapsed training time.

From this information, we can conclude the fol-
lowing:

• The number of classifiers that compose the ensem-
ble is quite low on average, between 10 and 40 clas-
sifiers, which is the standard in this framework.23

In comparison with AdaBoost.NC, which uses 51
classifiers in total, our approach only comprises an
average of 36 classifiers.

• Regarding the dimensionality reduction, about
25% of the initial variables are considered for the
learning stage, thus implying the necessity of car-
rying out the feature selection process for simpli-
fying the borderline areas of the problem.

• Only half of the initial instances are finally used.
Considering the boost in performance achieved, we
may conclude that our methodology carried out
the removal of “low-quality” instances that were

1750028-14

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

17
.2

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
09

/1
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



June 19, 2017 20:16 1750028

EFIS-MOEA: Ensemble for Imbalance Classification

Table 8. Information about the number of classifiers, variables and
instances selected, and elapsed training time for EFIS-MOEA for
multi-class imbalanced datasets.

Data #Class. #Vars. RedFS #Inst. RedIS Tr. Time

aut 35.0 14.4 42.40 50.6 60.26 0:00:28.2
bal 41.4 4.0 0.00 262.2 47.56 0:00:44.8
cle 47.0 9.0 30.77 133.2 43.94 0:00:46.7
con 47.8 7.8 13.33 731.4 37.93 0:07:17.1
der 11.8 19.4 42.94 62.2 78.27 0:00:48.3
eco 36.0 5.4 22.86 130.4 51.49 0:00:34.2
fla 40.0 9.6 12.73 458.6 46.26 0:01:59.9
gla 42.0 6.8 24.44 82.0 52.10 0:00:24.8
hay 32.8 3.0 25.00 28.2 77.95 0:00:07.0
led 30.6 6.8 2.86 162.2 59.40 0:00:48.5
lym 27.4 11.4 36.67 43.6 63.19 0:00:16.0
new 15.2 2.4 52.00 32.6 81.05 0:00:06.9
nur 50.6 7.2 10.00 6523.4 37.08 0:17:58.5
pag 29.2 6.0 40.00 2297.8 47.51 0:39:38.1
pos 52.0 5.8 27.50 25.6 63.15 0:00:06.7
sat 59.8 27.4 23.89 3574.6 30.56 3:14:44.0
shu 18.4 5.6 37.78 22418.2 51.68 54:43:43.5
spl 41.4 40.0 33.33 1504.2 41.06 0:24:13.9
thy 10.8 11.8 43.81 2522.4 56.21 0:50:26.7
win 14.8 6.8 47.69 25.0 82.46 0:00:06.8
wqr 58.4 8.6 21.82 816.0 36.21 0:07:54.6
wqw 59.6 9.2 16.36 2616.4 33.23 1:26:08.1
yea 50.2 7.0 12.50 734.4 38.11 0:09:25.8
zoo 58.0 9.6 40.00 6.2 92.31 0:00:08.9

Avg. 37.9 10.2 27.53 1885.1 54.54 2:35:22.4

hindering the classification ability of the learning
algorithm.

• Regarding the elapsed training time, we observe
that for most of the problems, the time consump-
tion is minimal (less than a minute). For larger
problems (those with more than 1000 instances),
the computation time obviously increases; but
there are only 3 cases out of 24 in which more
than an hour is needed to generate the final model.
In any case, a distributed mechanism to compute
the evaluation function can enhance the response
times for those problems with a high number of
examples.

6. Concluding Remarks

In this paper, we have proposed EFIS-MOEA, a
novel methodology to improve the classification
ability of algorithms in two-class and multi-class

imbalanced datasets. This approach has been
designed under a double perspective: (1) removing
instances that may hinder the classification ability;
and (2) removing features to act on the overlap-
ping areas. One of the main advantages of our novel
methodology is its versatility, as it follows the same
structure for both binary- and multi-class problems,
as well as to be embedded with any classifier.

The results obtained by EFIS-MOEA were very
competitive, especially for highly overlapped prob-
lems. The selection of instances allowed rebalancing
the training set as well as to clean the low quality
data, i.e. noisy and redundant examples. In addi-
tion, feature selection simplified the boundaries of
the problem to manage the above-mentioned overlap-
ping issue. The behavior of EFIS-MOEA is excelled
as it was shown to outperform the state-of-the-art
algorithms, especially the AdaBoost.NC approach,
which has been stressed as the most competitive
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approach in this context. Additionally, when con-
trasted with more general classifiers such as Ran-
dom Forest, it also reaches a superior performance
in terms of AUC.

As future work, we propose focusing on the final
ensemble generated by the MOEA, carrying out an
optimal selection of classifiers.11,25 Another topic
of high interest is to analyze the scalability of our
approach to address Big Data problems in terms
of number of instances, features and also classes.
This may imply to act directly on the evolution-
ary scheme,45 or to redesign the whole methodology
to embed it in a distributed MapReduce methodol-
ogy.20

Table A.1. Experimental results for C4.5, C4.5 with SMOTE+ENN (C4.5+S ENN), 1-FIS-MOEA and
EFIS–MOEA in training and test with AUC metric. Datasets are ordered according to the F1 metric in
ascending order (from highly overlapped to linearly separable problems).

Dataset IR F1 C4.5 C4.5+S ENN 1-FIS-MOEA EFIS-MOEA

Tr Tst Tr Tst Tr Tst Tr Tst

glass015vs2 9.12 0.1375 0.8001 0.6048 0.9678 0.7925 0.9920 0.6405 0.9792 0.7085
vehicle1 2.52 0.1691 0.8984 0.7228 0.8912 0.7658 0.9719 0.7354 0.9833 0.8365
yeast1458vs7 22.10 0.1757 0.5000 0.5000 0.8893 0.5637 0.9740 0.5966 0.9545 0.6099
haberman 2.68 0.1850 0.6143 0.5671 0.7283 0.6355 0.8485 0.6279 0.8438 0.6548
vehicle3 2.52 0.1855 0.9133 0.7229 0.8785 0.7540 0.9691 0.7160 0.9821 0.8139
glass1 1.82 0.1897 0.8652 0.7400 0.8702 0.7531 0.9786 0.7997 0.9680 0.8343
yeast1 2.46 0.2422 0.7946 0.6970 0.8041 0.7166 0.8771 0.7057 0.8993 0.7660
glass016vs2 10.29 0.2692 0.9495 0.7194 0.9384 0.6938 0.9921 0.6825 0.9863 0.7731
yeast0359vs78 9.12 0.3113 0.6973 0.5803 0.9210 0.7056 0.9806 0.6557 0.9802 0.7291
glass0146vs2 11.06 0.3487 0.8900 0.6753 0.9613 0.6890 0.9920 0.6820 0.9868 0.7953
yeast1vs7 13.87 0.3534 0.7859 0.5759 0.9343 0.6215 0.9691 0.5772 0.9718 0.6592
yeast1289vs7 30.56 0.3660 0.6353 0.6176 0.9324 0.6131 0.9559 0.6458 0.9219 0.6955
vehicle2 2.52 0.3805 0.9940 0.9430 0.9894 0.9462 0.9943 0.9533 0.9965 0.9815
glass2 10.39 0.3952 0.8959 0.6802 0.9518 0.7217 0.9944 0.6875 0.9904 0.7949
page-blocks0 8.77 0.5087 0.9703 0.9396 0.9759 0.9486 0.9916 0.9445 0.9930 0.9725
ecoli0147vs2356 10.59 0.5275 0.9363 0.8286 0.9791 0.8488 0.9938 0.8613 0.9912 0.8909
abalone19 128.87 0.5295 0.5000 0.5000 0.9057 0.5523 0.9245 0.5900 0.8549 0.6214
pima 1.90 0.5760 0.8279 0.7328 0.8261 0.7468 0.9142 0.7058 0.9245 0.7802
abalone9-18 16.68 0.6320 0.6780 0.5985 0.9575 0.6752 0.9711 0.6982 0.9713 0.7304
glass0 2.06 0.6492 0.9480 0.7890 0.8862 0.7916 0.9787 0.8048 0.9700 0.8674
yeast0256vs3789 9.14 0.6939 0.7872 0.7445 0.9182 0.7836 0.9756 0.7686 0.9709 0.8266
yeast4 28.41 0.7412 0.7973 0.7050 0.8923 0.7843 0.9560 0.7417 0.9645 0.8199
ecoli0147vs56 12.28 0.9124 0.9263 0.8167 0.9754 0.8292 0.9961 0.9170 0.9941 0.9362
ecoli0267vs35 9.18 0.9129 0.8821 0.8344 0.9730 0.8525 0.9951 0.8348 0.9927 0.8987
ecoli067vs35 9.09 0.9205 0.8828 0.8450 0.9708 0.8703 0.9956 0.8918 0.9913 0.9084
glass5 22.81 1.0190 0.9841 0.9463 0.9902 0.8890 0.9990 0.8709 0.9974 0.9380
glass06vs5 11.00 1.0490 0.9949 0.9947 0.9886 0.9775 0.9996 0.9609 0.9952 0.9639
yeast05679vs4 9.35 1.0510 0.8338 0.7360 0.9267 0.7760 0.9850 0.7719 0.9843 0.8553
ecoli01vs235 9.17 1.1030 0.9433 0.8469 0.9814 0.9279 0.9961 0.8646 0.9903 0.9229

Acknowledgments

This work was supported by the Spanish Ministry
of Science and Technology under projects TIN2014-
57251-P and TIN2015-68454-R; the Andalusian
Research Plan P11-TIC-7765; and both the Univer-
sity of Jaén and Caja Rural Provincial de Jaén under
project UJA2014/06/15.

Appendix A. Full Tables of Results

This final section shows Tables A.1 and A.2, which
include the full results in training and test for the
probabilistic AUC and M-AUC metrics in both in
two-class and multi-class imbalanced problems.
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Table A.1. (Continued)

Dataset IR F1 C4.5 C4.5 + S ENN 1-FIS-MOEA EFIS-MOEA

Tr Tst Tr Tst Tr Tst Tr Tst

vehicle0 3.23 1.1240 0.9884 0.9443 0.9768 0.9194 0.9934 0.9290 0.9933 0.9713
ecoli0347vs56 9.28 1.1300 0.9088 0.8193 0.9717 0.8041 0.9954 0.8732 0.9930 0.9169
yeast2vs8 23.10 1.1420 0.5528 0.4891 0.9543 0.7996 0.9973 0.7862 0.9846 0.8171
ecoli0146vs5 13.00 1.3400 0.9405 0.7786 0.9863 0.8942 0.9965 0.8443 0.9950 0.8978
cleveland0vs4 12.62 1.3500 0.9147 0.5808 0.9624 0.7457 1.0000 0.8039 0.9914 0.8299
ecoli01vs5 11.00 1.3900 0.9668 0.8355 0.9764 0.8770 0.9972 0.8632 0.9955 0.8875
glass4 15.47 1.4690 0.9766 0.8156 0.9828 0.8739 0.9992 0.8652 0.9973 0.8767
glass04vs5 9.22 1.5420 0.9940 0.9941 0.9940 0.9550 0.9990 0.9554 0.9925 0.9771
page-blocks13vs4 15.85 1.5470 0.9989 0.9978 0.9930 0.9708 0.9996 0.9647 0.9983 0.9891
ecoli3 8.19 1.5790 0.9220 0.8230 0.9714 0.7999 0.9902 0.8491 0.9857 0.8903
yeast2vs4 9.08 1.5790 0.9631 0.8757 0.9821 0.8841 0.9938 0.8703 0.9922 0.9298
ecoli0346vs5 9.25 1.5950 0.9206 0.8166 0.9899 0.9182 0.9995 0.8659 0.9957 0.9123
ecoli046vs5 9.15 1.6030 0.9214 0.7542 0.9793 0.8915 0.9981 0.9156 0.9959 0.9278
ecoli0234vs5 9.10 1.6180 0.9208 0.7898 0.9858 0.9036 0.9987 0.9259 0.9951 0.9222
ecoli034vs5 9.00 1.6320 0.9147 0.7632 0.9878 0.9056 0.9978 0.8933 0.9931 0.9012
yeast02579vs368 9.14 1.6350 0.8783 0.8382 0.9726 0.9013 0.9938 0.8954 0.9942 0.9313
ecoli067vs5 10.00 1.6920 0.9172 0.8800 0.9711 0.9144 0.9965 0.8754 0.9932 0.9471
segment0 6.01 1.7980 0.9926 0.9831 0.9978 0.9916 0.9999 0.9920 0.9998 0.9951
ecoli2 5.46 1.8260 0.9372 0.8821 0.9754 0.8812 0.9949 0.8978 0.9922 0.9191
glass016vs5 19.44 1.8510 0.9832 0.9414 0.9850 0.9571 0.9989 0.9748 0.9962 0.9860
led7digit02456789vs1 10.97 1.9570 0.9184 0.8225 0.9232 0.8846 0.9451 0.8606 0.9357 0.8485
yeast6 39.15 1.9670 0.8878 0.7943 0.9669 0.7961 0.9932 0.7955 0.9921 0.8635
ecoli0137vs26 39.15 2.3020 0.8360 0.7800 0.9692 0.8299 0.9986 0.8104 0.9968 0.8316
glass6 6.38 2.3910 0.9527 0.9113 0.9743 0.9369 0.9968 0.9039 0.9927 0.9306
vowel0 10.10 2.4580 0.9970 0.9644 0.9983 0.9860 0.9999 0.9839 0.9995 0.9942
ecoli1 3.36 2.6500 0.9387 0.8650 0.9423 0.8870 0.9765 0.8812 0.9739 0.9158
yeast3 8.11 2.7510 0.9403 0.8943 0.9341 0.9145 0.9744 0.9029 0.9697 0.9485
ecoli4 13.84 3.2470 0.9115 0.8078 0.9942 0.9329 0.9974 0.8763 0.9949 0.9323
glass0123vs456 3.19 3.3240 0.9787 0.9037 0.9699 0.9554 0.9980 0.9390 0.9926 0.9609
wisconsin 1.86 3.5680 0.9856 0.9406 0.9810 0.9530 0.9932 0.9550 0.9921 0.9736
new-thyroid2 4.92 3.5790 0.9879 0.8919 0.9902 0.9540 0.9993 0.9554 0.9971 0.9867
new-thyroid1 5.14 3.5790 0.9926 0.9522 0.9954 0.9534 0.9993 0.9596 0.9967 0.9847
yeast5 32.78 4.1980 0.9721 0.8858 0.9797 0.9575 0.9955 0.9177 0.9949 0.9743
ecoli0vs1 1.86 9.7520 0.9870 0.9841 0.9870 0.9841 0.9994 0.9762 0.9977 0.9817
shuttle2vs4 20.50 12.1300 0.9802 0.9500 1.0000 1.0000 1.0000 0.9960 0.9998 0.9986
shuttle0vs4 13.87 12.9700 1.0000 0.9997 0.9998 0.9997 1.0000 0.9997 1.0000 0.9998
iris0 2.00 16.8200 1.0000 0.9900 1.0000 0.9900 1.0000 0.9967 0.9667 0.9633

Average 0.8925 0.8052 0.9546 0.8474 0.9844 0.8407 0.9803 0.8803
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