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a b s t r a c t 

The One-vs-One strategy is among the most used techniques to deal with multi-class problems in Ma- 

chine Learning. This way, any binary classifier can be used to address the original problem, since one 

classifier is learned for each possible pair of classes. As in every ensemble method, classifier combina- 

tion becomes a vital step in the classification process. Even though many combination models have been 

developed in the literature, none of them have dealt with the possibility of reducing the number of gen- 

erated classifiers after the training phase, i.e., ensemble pruning, since every classifier is supposed to be 

necessary. 

On this account, our objective in this paper is two-fold: (1) We propose a transformation of the ag- 

gregation step, which lead us to a new combination strategy where instances are classified on the basis 

of the similarities among score-matrices. (2) This fact allows us to introduce the possibility of reducing 

the number of binary classifiers without affecting the final accuracy. We will show that around 50% of 

classifiers can be removed (depending on the base learner and the specific problem) and that the confi- 

dence degrees obtained by these base classifiers have a strong influence on the improvement in the final 

accuracy. 

A thorough experimental study is carried out in order to show the behavior of the proposed approach 

in comparison with the state-of-the-art combination models in the One-vs-One strategy. Different classi- 

fiers from various Machine Learning paradigms are considered as base classifiers and the results obtained 

are contrasted with the proper statistical analysis. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Multi-class problems are present in many real-world applica-

tions, for example, the severity grading of diseases [1] , fingerprint

classification [2] , the classification of micro-arrays [3] or people

tracking [4] to name a few. Although the number of problems that

can be viewed as multi-class ones is increasing, binary classifiers

are much more studied in the literature. This is due to the fact that

there are some classifier learning paradigms in which multi-class
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odeling is not straightforward. A well-known example of this sit-

ation is Support Vector Machine (SVM) [5] . 

One simple, yet effective way to address multi-class problems

n these cases is by means of decomposition strategies [6] . In or-

er to do so, multi-class problems are divided into easier-to-solve

inary classification problems following the divide-and-conquer

aradigm. As a result, a set of classifiers is learned, each one being

esponsible for a binary problem. In the testing phase, the outputs

f all the classifiers for a given instance are aggregated to make the

nal decision [7] . Therefore, the difficulty in addressing the multi-

lass problem is shifted from the classifier itself to the combination

tage. 

Among decomposition strategies, the One-vs-One (OVO)

8] scheme stands out as one of the most popular techniques.

http://dx.doi.org/10.1016/j.inffus.2016.11.004
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1 http://www.keel.es/dataset.php . 
ts usage to model multi-class problems with SVMs in very well-

nown software tools such as WEKA [9] , LIBSVM [10] or KEEL [11] ,

as made it prevalent in many applications. However, it should

e mentioned that this strategy can be included in the broader

ramework of Error Correcting Output Codes (ECOC) [12,13] In

VO, the multi-class problem division is carried out in such a

ay that a new binary problem is generated for each possible

air of classes. This is why it is also known as pairwise learning

14] . Nevertheless, OVO is not only useful to deal with multi-class

roblems using classifiers without inherent multi-class support,

ut it also provides a better classification accuracy than addressing

he problem directly using multi-class classifiers [15–19] . 

In the combination phase, the way in which the problem is di-

ided has to be taken into account as a key factor. Several com-

ination methods for the OVO strategy can be found in the lit-

rature [18] , among which a voting strategy is the most intuitive

ne (each classifier votes for its predicted class and the most voted

ne is given as output). Nonetheless, more elaborated approaches

ave also been developed attending at the inherent difficulties in

he OVO decomposition [20–22] , although the same accuracy is

chieved by simpler alternatives such as the Weighted Voting (WV)

14] or probability estimation methods [23] . An exhaustive empir-

cal study on the combination methods for OVO can be found in

18] , where the presence of non-competent classifiers in this strat-

gy was stressed as a promising research line to improve previous

ombination models. Non-competent classifiers are those that have

ot been trained with instances from the class to which the exam-

le to be classified belongs to. Recent developments have shown

hat an effective handling of these classifiers allows one to improve

he final classification accuracy rate [24,25] . 

In this paper our aim is to look at the aggregation phase from

 different perspective, which may also take advantage of non-

ompetent classifiers rather than avoiding them. Specifically, in

ur contribution we transform this aggregation by thinking of the

utputs of the classifiers as new inputs to another classification

roblem, which is used to determine the final class labels of the

ataset. This view is similar to Stacking [26] , although neither a

ross-validation procedure is followed (the same base classifier is

sed for all subproblems) nor a classifier is trained. Stacking and

VO together have been previously considered but with different

urposes to ours, focusing on Stacking with cross-validation using

ifferent base classifiers [27] and making use of OVO as a Stack-

ng method [28] . In our case, the main difference appears at the

ombination method. Once the outputs for every training instance

re obtained (each one stored in a score-matrix), new instances

re simply classified by the most similar score-matrices to that ob-

ained for the new instance, that is, the k Nearest Neighbors ( k NN)

29] classifier is applied over the score-matrices (neither requiring

 cross-validation nor the usage of different types of base clas-

ifiers). This is why we named it as Nearest Matrix Classification

NMC). 

We will show that by itself this strategy can be competitive and

ven superior to the state-of-the-art aggregations, although its be-

avior strongly depends on the underlying classifier and the qual-

ty of its confidence degrees. This fact together with the added

torage necessity lead us to introduce prototype (in this case,

core-matrix) selection methods [30] . This way, only those score-

atrices coming from examples that are useful for the classifica-

ion are maintained in the reference set for NMC classifier, reduc-

ng the storage necessity and improving the classification perfor-

ance as a result of being more robust with respect to the differ-

nt base classifiers. 

More interestingly, this novel view allows us to introduce prun-

ng techniques [31] into OVO, which have not been previously con-

idered, since all classifiers are supposed to be necessary. Prun-

ng techniques for ensembles aim at reducing the pool of classi-
ers, decreasing the storage necessity, improving performance and

educing testing times. Our new perspective on the combination

hase turns the pruning (i.e., classifier selection) into a feature se-

ection problem [32] for the k NN classifier. We will show that al-

ost half of the classifiers in OVO can be safely removed for test-

ng time (depending on the problem and the base classifier) and

hat if the appropriate confidence estimates are given by the un-

erlying classifier, accuracy can also be boosted in some cases. In

rder to carry out the feature and instance selection, we consider

he usage of a Genetic Algorithm (GA), which has been previously

pplied with success [33–35] . 

All these aspects are analyzed in a thorough experimental

tudy, where twenty three real-world problems from the KEEL

ata-set repository 1 [11,36] are tested using several well-known

lassifiers from different Machine Learning paradigms as base

earners, namely, SVMs [5] , decision trees [37,38] , instance-based

earning [29] , and decision lists [39] . Different evaluation criteria

re considered to measure the performance, storage reduction and

raining times. The conclusions obtained are supported by the ap-

ropriate statistical tests as suggested in the literature [40,41] . In

ddition to NMC classifier, state-of-the-art combinations for OVO

18] , including a novel Dynamic Classifier Selection (DCS) approach

24] are included in the empirical comparison. 

The contributions of this paper are: 

• A new combination strategy for OVO is proposed by transform-

ing the aggregation problem. 
• The possibility of carrying out pruning in OVO ensembles is in-

troduced for the first time. 
• An exhaustive experimental study showing the existence of re-

dundant (non-necessary) classifiers in OVO is developed, which

opens up new future research lines in the topic. 

The rest of this paper is organized as follows. Section 2 recalls

everal concepts used in this work. Afterwards, Section 3 discusses

ther works related to our proposal. Next, Section 4 presents our

MC proposal to prune OVO ensembles. The set-up of the exper-

mental framework is presented in Section 5 , whereas the experi-

ental analysis is carried out in Section 6 . Finally, Section 7 con-

ludes the paper and presents the future research lines. 

. Preliminaries 

This section recalls the OVO scheme, including existing com-

inations. Afterwards, DTs and their application in OVO are ex-

lained. 

.1. The One-vs-One scheme 

In the OVO strategy, a m -class problem is divided into m (m −
) / 2 two-class problems (one for each possible pair of classes).

ach binary classification sub-problem is addressed by a different

lassifier, which is built using training instances only from the two

lasses considered. This fact is what causes the non-competence

roblem [14,18,24,25] in testing phase. 

An easy way of organizing the outputs of the base classifiers for

n instance is by means of a score-matrix R , from which different

ombination models can be applied: 

 = 

⎛ 

⎜ ⎜ ⎝ 

− r 12 · · · r 1 m 

r 21 − · · · r 2 m 

. . . 
. . . 

r m 1 r m 2 · · · −

⎞ 

⎟ ⎟ ⎠ 

(1) 

http://www.keel.es/dataset.php
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where r ij ∈ [0, 1] represents the confidence of the classifier dis-

criminating classes i and j in favor of the former; whereas the con-

fidence for the latter is computed by r ji = 1 − r i j (if the classifier

does not provide it 2 ). 

2.2. Combination strategies for the One-vs-One scheme 

Several strategies for combining the OVO classifiers have been

proposed in the literature aiming at achieving the highest accuracy

addressing different features of this inference step. In [18] , we de-

veloped a thorough review and a experimental comparison consid-

ering the most-recent and well-known techniques. From this study,

we were able to select the better suited combination strategies for

different paradigms of classifiers, which are presented hereafter. 

• Weighted Voting strategy (WV) [14] uses the confidence of each

base classifier in each class to vote for it. The class with the

largest total confidence is the final output class: 

Class = arg max 
i =1 , ... ,m 

∑ 

1 ≤ j � = i ≤m 

r i j (2)

• Non-Dominance Criterion (ND) [42] considers the score-matrix

as a fuzzy preference relation, which must be normalized. This

method predicts the class with the largest degree of non-

dominance, that is, the class which is less dominated by all the

remaining classes: 

Class = arg max 
i =1 , ... ,m 

{
1 − max 

1 ≤ j � = i ≤m 

r ′ ji 

}
(3)

where r ′ 
ji 

corresponds to the normalized and strict score-

matrix. 
• Wu et al. Probability Estimates by Pairwise Coupling approach

(PE) [23] aims to estimate the posterior probabilities p =
(p 1 , . . . , p m 

) of all the classes starting from the pairwise class

probabilities. Finally, the class having the largest posterior prob-

ability is predicted: 

Class = arg max 
i =1 , ... ,m 

p i (4)

The posterior probabilities ( p ) are computed solving the follow-

ing optimization problem: 

min 

p 

m ∑ 

i =1 

∑ 

1 ≤ j � = i ≤m 

(r ji p i − r i j p j ) 
2 subject to 

m ∑ 

i =1 

p i 

= 1 , p i ≥ 0 , for all i ∈ { 1 , . . . , m } . (5)

A more extensive and detailed description of these methods is

available in [43] . 

In addition to these methods, we will consider a novel ap-

proach, in which we also aimed at getting rid of the non-

competent classifiers by means of a DCS strategy [24] . In that

work, only the classifiers whose classes were in the neighborhood

of the instance were considered. The size of the neighborhood used

was large (3 · m ) compared with the usually considered one for

k NN [30] . This work is related to our model since a classifier se-

lection is carried out, but in NMC this selection is static (what is

known as pruning), and hence equal to all the instances, whereas

in DCS it is dependent on each instance. 

Remark 1. All these methods use exactly the same score-matrix

values (Eq. (1) ) to compute the final class, but they can obtain

different results. We must emphasize the importance of this fact,

since it allows us to fix the score-matrices of each base classifier,
2 If the classifier provides both confidence degrees, one must ensure that they are 

normalized such that r i j + r ji = 1 . 

n  

b  

m  

w  
pplying the combinations to the same outputs; hence, all the re-

ults shown in the experimental analysis will be due to the com-

inations themselves and not due to differences on the predictions

f the base classifiers. 

.3. Decision templates for the One-vs-One decomposition 

Decision Templates (DTs) [44] are a well-known fusion strat-

gy in classifier ensembles, which are related to our proposal, and

his is why we also consider them in the experimental study. They

re based on computing the average output of each classifier for

he examples of each class, storing them in different templates. Af-

erwards, new examples are classified by finding the most similar

emplate to the outputs given by the classifiers for the instance. 

This philosophy can be translated to decomposition models

ven though they were designed to work with classical ensembles.

n OVO, DTs can be computed as the average score-matrices for

ll the instances of each class (only the upper or lower triangular

atrix is needed, since both are complementary). That is, score-

atrices ( R ) act as what were originally named as Decision Profiles

DPs) whose averaging per class form the DTs. 

In order to classify a new instance, its DP is obtained by sub-

itting it to all classifiers. This DP is then compared with all the

Ts using a similarity measure (distance from the template), taking

he predicted class from the DT whose similarity is the highest: 

lass = arg max 
i =1 , ... ,m 

J (DT i , DP (x )) (6)

here x is the instance to be classified, DT i is the DT of the i th

lass, DP ( x ) is the DP obtained for instance x and J is any similar-

ty measure. In this paper, we have considered the most popular

imilarity measure, which is based on the Euclidean distance: 

 (DT i , DP (x )) = 1 − 1 

L 

L ∑ 

j=1 

(DT i ( j) − d j (x )) 2 (7)

here L is the number of classifiers ( m (m − 1) / 2 in OVO), DT i ( j )

s the j th element of the i th DT (corresponding to classifier j ) and

 j ( x ) is the output of the j th classifier for instance x . We will show

hat this representation of the outputs can also be used to prune

VO ensembles. 

. Related work 

Ensemble pruning techniques are designed to reduce the stor-

ge necessity, testing times and even increase the accuracy of clas-

ifier ensembles [31,45,46] . These methods assume the fact that ev-

ry classifier is able to distinguish all the classes of the problem,

hich in decomposition strategies does not occur. In fact, whereas

n classical ensembles the base classifiers usually vary in terms of

he input space, in decomposition strategies their differences ap-

ear at the output space. This is why these types of ensemble

runing techniques are not directly applicable to these strategies.

oreover, in the OVO approach all the classifiers are assumed to

e needed, since each classifier is responsible for a different pair

f classes. 

In other respect, the non-competent classifier handling in OVO

as been shown to be important in order to improve the accu-

acy of this model, showing that their presence could harm some

f the predictions [24,25] . A DCS model was developed in [24] ,

here only those classifiers that were most probably competent

or the instance to be classified were used. In [25] , classifiers were

ot completely removed, but weighted depending on the distance

etween the instance and each class. With a similar idea, reliability

aps were proposed in the wider framework of ECOC [47] . Other-

ise, García-Pedrajas [48] combined the OVA and OVO strategies
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I  
voiding the non-competence problem. A similar combination was

lso developed in [49] . 

Other approaches in OVO have dealt with the problem of reduc-

ng the number of classifier tested when an instance is to be clas-

ified. This are the cases of DDAG [22] and BTC [20] . Another ef-

cient model to test classifiers in ECOC framework was developed

n [50] (and hence, applicable to OVO), where exactly the same ac-

uracy as that obtained with the original model was achieved, but

ith a great reduction in the number of classifiers tested. Differ-

nt to our proposal, these models did not considered the removal

f classifiers before the testing phase. 

Also dealing with the efficiency of ECOC ensembles, Rocha and

oldestein [51] developed a method where starting from a random

COC, the classifiers were added and removed from the ensemble.

ocused on data-sets with large number of classes they were able

o achieve a low decrease in accuracy while maintaining the effi-

iency due to the low number of classifiers considered. However,

n most of the data-sets where OVO was applied, OVO itself was

apable of achieving the best performance in spite of its simplicity.

oreover, the authors showed how OVO lost precision as classi-

ers were randomly removed from it. Nevertheless, we will show

hat this was due to the combination used, since OVO allows for

emoving some of the classifiers without loss of accuracy, if the

ombination is properly designed. Other similar techniques mainly

ocused on reducing the number of classifiers needed in problems

ith a large number of classes are those focused on hierarchical

pproaches [52,53] , in which the reduction is achieved by an in-

rease in building complexity (of the hierarchy and the classifiers

hemselves). 

Stacking [26] can also be related to our approach as mentioned

n the introduction. In this technique a meta-classifier is learned

n top of the outputs of the classifiers in a multiple classifier sys-

em (MCS). Our aim differs from stacking in the sense that it aims

o correct and learn from the errors of the classifiers, whereas we

ssume that instances of the same classes should behave similarly,

iving similar outputs for the same base classifiers (even if they are

ot competent). In [28] , Stacking was not used to combine the OVO

lassifiers, but the OVO strategy was used in a multi-layer Stack-

ng procedure, and more specifically, in its first layer in order to

mprove the classical Stacking model for multi-class problems. Fi-

ally, the approach considered in [27] was different, the authors

onsidered an OVO model where base classifiers coming from dif-

erent machine learning paradigms were considered for each sub-

roblem. Then, Stacking was considered to combine such a great

umber of classifiers ( m (m − 1) / 2 · L, where L is the number of dif-

erent base classifiers considered). Their aim was to find the best

ombination of base classifiers for each pair of classes, and even

hough a selection procedure was established, few classifiers were

emoved and many more than in standard OVO were finally con-

idered. In these approaches focused on improving accuracy con-

idering Stacking, different base classifiers are required in order to

pply the cross-validation procedure. In contrast, our method fo-

uses on pruning classifiers from the standard OVO models, where

he same base classifier is used to classify every pair of classes. 

. NMC: nearest matrix classification 

In this section, we present our new combination proposal

or the OVO strategy. First, we introduce the basic idea of the

ethod and the hypothesis that has motivated our approach

 Section 4.1 ). Afterwards, we present three possible ways in which

t can be extended to select the appropriate instances ( Section 4.2 ),

rune classifiers ( Section 4.3 ) or doing both tasks simultaneously

 Section 4.4 ). Finally, we describe the details of the optimization

rocedure followed to carry out the proposed reduction approach

 Section 4.5 ). 
.1. Basic idea and hypothesis 

Our idea comes from the basic assumption that instances be-

onging to the same class should obtain similar score-matrices af-

er being submitted to all the classifiers. In fact, we assume that

his should also occur even in the case that classifiers are non-

ompetent for the instances. 

With this basic hypothesis one can leave classical aggregations

side and focus on predicting the class based on the score-matrices

f the training examples. Hence, once the score-matrix for a new

nstance is obtained, the k -NN of the matrix (the k most simi-

ar matrices) are computed. The predicted class is obtained from

he most repeated class among these neighbors (whose associated

lass is the one of the original instance, i.e., the classical aggrega-

ion step is no longer applied). 

Notice that in this view of the score-matrix, it contains redun-

ant information, since each element r ij can be computed from r ji 
s r i j = 1 − r ji . For this reason, we only consider the upper trian-

ular matrix (also reducing the dimensionality of the problem). For

n easier understanding of the problem, each score-matrix is trans-

ormed to a vector of length m (m − 1) / 2 as follows: 

 = 

⎛ 

⎜ ⎜ ⎝ 

− r 12 · · · r 1 m 

r 21 − · · · r 2 m 

. . . 
. . . 

r m 1 r m 2 · · · −

⎞ 

⎟ ⎟ ⎠ 

�⇒ 

ˆ R 

= (r 12 , . . . , r 1 m 

, r 23 , . . . , r 2 m 

, . . . , r (m −1) m 

) (8) 

Therefore, for each training instance x i , whose class label is y i 
for i = 1 , . . . , n, being n the number of examples in the training

et), the corresponding score-matrix R ( x i ) is transformed to a vec-

or ˆ R (x i ) , which becomes a new instance with class y i for the ref-

rence set of NMC. A new instance x whose score-matrix R ( x ) is

ransformed to a vector ˆ R (x ) is classified by the predominant class

n its k closest ˆ R (x i ) vectors. As we are dealing with numerical val-

es, we consider the Euclidean distance to compute them: 

( ̂  R (x i ) , ˆ R (x )) = 

√ √ √ √ 

L ∑ 

j=1 

( ̂  R j (x i ) − ˆ R j (x )) 2 (9)

here L is the length of each vector (number of classifiers) and
ˆ 
 j (x ) is the j th element of vector ˆ R . The main difference with re-

pect to DTs is that in this case we have as many templates as

xamples instead of having a unique template for each class. 

It is clear that this fact adds complexity to the aggregation

hase, since it involves the computations of the k NNs. In order to

lleviate this negative effect, we propose to carry out an instance

election (IS) mechanism, also known as prototype selection (ex-

lained in Section 4.2 ). In particular, for this purpose we have se-

ected an hybrid method to reduce the reference set in order to

ake k NN faster (condensing), but also to remove instances hin-

ering the k NN classification (editing) based on genetic algorithms

GAs) [30] . 

Furthermore, not only can we perform an IS, but this new rep-

esentation also allows us to carry out a feature selection (FS) on

he reference set [32] . In fact, this is how we are able to prune OVO

nsembles, since removing features from this set is equivalent to

emoving classifiers. This FS also referred to as classifier selection

CS) is explained in Section 4.3 . 

It may become evident that we can also perform both tasks

t the same time, which is explained in Section 4.4 . In the three

ases, we have opted for a GA named as CHC (Crossover elitism

opulation, Half uniform crossover combination, Cataclysm muta-

ion) [54] due to its excellent behavior in this context [30,33,35] .

t is one of the best performing models for these purposes and it
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Fig. 1. Schematic representation of the three reduction methods (IS, CS and IS_CS). 
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can scale to hundreds of thousands of instances with the existing

implementations for large-scale data-sets [34] . 

As a summary, one can think of a matrix where each vector R̂

is a row and each column refers to a classifier. IS removes rows

from the matrix, whereas CS removes columns. Likewise, doing

both tasks at the same time, rows and columns are simultaneously

removed, highly reducing the testing times and storage necessities.

With this view, IS and CS using GAs can be easily explained as

shown in Fig. 1 (where chromosomes encode whether instances or

features are considered as explained in next sections). 

4.2. Instance selection or score-matrix selection 

Instance selection (IS), also known as prototype selection, is a

well-known technique mainly used for the k NN classifier (we refer

the reader to [30] for an exhaustive review, including an experi-

mental study). The aim of these methods is two-fold: (1) to reduce

the reference set; (2) to improve accuracy. In our case, we look for

performing both objectives simultaneously, and hence we focus on

hybrid methods. 

Among hybrid IS methods, we have opted for the one based

on a GA called CHC, since it offers a great compromise between

accuracy and reduction (as concluded in the experimental study

by García et al. [30] ). Moreover, it has been successfully applied in

different scenarios for IS [35,55,56] and there are implementations

of this algorithm that scale up to millions of instances [34] , even

though we focus on its original implementation, which is enough

for the purpose of this work. 

The idea behind this algorithm consists of finding the minimum

subset of instances achieving the maximum accuracy. In order to

do so, chromosomes in the GA encode which instances are selected

for the reference set (left side of the scheme in Fig. 1 ). Hence, a
inary chromosome represents a solution: 

 IS = (c x 1 , c x 2 , c x 3 , c x 4 , . . . , c x N ) , (10)

here c x i ∈ { 0 , 1 } , indicating whether instance x i is included or not

n the reference set ( N being the number of instances). 

As in every GA, the population formed of chromosomes is

volved based on the quality of each member, which is measured

y the so-called fitness function ( f ). The main objective of the opti-

ization process is to maximize the predictive accuracy of the en-

emble (i.e., the percentage of correctly classified instances). How-

ver, the objective of reducing instances from the training set can

lso be taken into account in the fitness function. For this reason,

e study the effect of different fitness functions in the experimen-

al study to analyze how forcing reduction affects accuracy. These

unctions are described hereafter: 

1. Acc ( f A ) : The instance subset maximizing accuracy is sought. 

2. AccRedIS ( f AI ) : A lexicographical order is established. Accuracy

is taken into account first. If there is a tie, the chromosome

with the greatest instance reduction is selected. 

Whereas reduction can be directly computed from the chromo-

ome (as the percentage of 0’s), accuracy needs to be computed by

 NN using the instances selected as reference set . In order to do

o, as usual, accuracy is computed by leave-one-out. Details about

HC are given in Section 4.5 , since the three models make use of

t. Notice that in all cases, if ties still continue, they are solved in

avor of the parents or randomly otherwise. 

.3. Feature selection or classifier selection (pruning) 

In this case, the idea is to remove those classifiers which do not

ontribute to the correct classification or that can be redundant. 
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As in the case of IS, there are a number of FS methods in the lit-

rature [32] . For this purpose, we have followed the same scheme

s in IS, which has also been previously applied with success [34] .

e consider the CHC algorithm to find the best feature (classifier)

ubset, performing a CS via FS. Once again we consider a binary

hromosome to encode the solution (right side of the scheme in

ig. 1 ), where each gene ( c x i ) indicates whether a classifier/feature

s selected (1) or not (0): 

 CS = (c x 1 , c x 2 , c x 3 , c x 4 , . . . , c x L ) , (11)

here L is the number of classifiers, that is, m (m − 1) / 2 . 

In order to evaluate each chromosome, we can also focus only

n accuracy, but it is interesting to force the reduction of classifiers

f possible. Hence, we also consider another fitness function only

ased on accuracy. 

3. AccRedCS ( f AS ) : A lexicographical order is established. Accuracy

is taken into account first. If there is a tie, the chromosome

with the greatest classifier reduction is selected. 

The computation of the fitness function is done in the same

anner as in IS case. 

.4. Combining instance and feature selection 

Finally, it can be easily observed that both models can be com-

ined and performed simultaneously looking for the feature and

nstance subset with the best interaction. With this aim, both chro-

osomes are considered as only one where genes are concate-

ated and the evolution process is performed in the same manner.

In this case, we can also mix the previous fitness functions

o analyzed whether forcing instance or classifier reductions hin-

er accuracy or even if they can help improving the generalization

bility. Therefore, two more fitness functions are considered: 

3. AccRedCSRedIS ( f ACI ) : A lexicographical order is established. Ac-

curacy is taken into account first. If there is a tie, the chromo-

some with the greatest classifier reduction is selected. If the tie

still continues, the best chromosome is decided with respect to

instance reduction. 

4. AccRedISRedCS ( f AIC ) : A lexicographical order is established. Ac-

curacy is taken into account first. If there is a tie, the chromo-

some with the greatest instance reduction is selected. If the tie

still continues, the best chromosome is decided with respect to

classifier reduction. 

.5. CHC genetic algorithm 

As we have already mentioned, we make use of the well-known

HC algorithm due to its good behavior in the topic [34,35,55,56] ,

hich leaves the study of the behavior of other models as well as

he usage of different fitness functions for future works. In CHC

lgorithm, all the M chromosomes in the population and their off-

pring (obtained by the crossover operator) are put together; then,

he next population is formed of the M best individuals (in terms

f the fitness function considered). In this GA, instead of using a

utation operator as other GAs do, an incest prevention mecha-

ism combined with a re-initialization of the population is used

o promote diversity (as explained hereafter). The rest of the nec-

ssary components to design the whole process are: initialization

f the initial population, crossover operator, incest prevention and

estarting mechanisms, given that the representation of the so-

utions (encoding of the chromosomes) have been previously ex-

lained for each case. 

1. Initial population: The initial population is formed of random

chromosomes except for one that is taken to have all its genes

set to 1 in order to represent the original model (without any

selection). 
2. Crossover Operator: The Heterogenous Uniform Crossover (HUX)

is used, since we are considering binary chromosomes. This op-

erator interchanges exactly half of the different genes between

both individuals selected. In the case of its application to IS

and CS, the original HUX is modified, decreasing the probabil-

ity of including instances or features. In this manner, each time

HUX switches a gene on, the gene is switched off with a certain

probability (whose recommended value is 0.25). 

3. Incest prevention: The crossover between too similar parent are

prevented, that is, between parents having their Hamming dis-

tance (divided by two) below a threshold value T . This thresh-

old is initially established to be N c /4 being N c the length of the

chromosome. If no individuals are recombined, then the thresh-

old value is reduced by one. 

4. Restarting mechanism: The mutation operator is replaced by this

mechanism in CHC aiming at avoiding local optima. When the

threshold value T reaches a zero value, all the chromosomes

in the population, except for the best one (following an eli-

tist scheme), are eliminated and generated again. New chromo-

somes are created by randomly changing 35% of the genes of

the best chromosome. As in the crossover operator, the likeli-

hood of including instances or features is decreased by giving

less probability to set a gene on than to set it off (the same

value as before is used, 0.25). 

The optimization process is finished when any of the follow-

ng stopping criteria are met: the number of evaluations or the

umber of restarting procedures without improvements reach their

aximum values. Their set-up is detailed in the experimental

ramework ( Section 5.1 ). Finally, the whole training set is used to

arry out the optimization procedure. 

. Experimental framework 

In this section, the set-up of the experimental framework used

o develop the empirical comparison in Section 6 is introduced.

he base classifiers considered and their configuration are de-

cribed first ( Section 5.1 ). Afterwards, the best combinations for

ach base classifier [18] that will be the baseline for the compar-

sons as explained in Section 2.2 together with the configuration

or the DCS approach [24] are recalled ( Section 5.2 ). Next, details of

he data-sets are given ( Section 5.3 ), and the statistical tests used

o make the comparison are explained ( Section 5.4 ). Finally, details

n the methodology followed throughout the experimental study

re given ( Section 5.5 ). 

.1. Base learners and parameter configuration 

In order to show the usefulness of our combination for the OVO

trategy allowing for classifier pruning, we have selected several

ell-known Machine Learning algorithms as base learners: 

• k NN – k-Nearest Neighbors [29] . 
• SVM – Support Vector Machine [5] . 
• C4.5 – decision tree [37] . 
• Ripper – Repeated Incremental Pruning to Produce Error Reduc-

tion [39] . 

These learning algorithms were selected due to their good be-

avior in a large number of real-world problems. Moreover, in case

f SVM there is not a multi-category approach established yet, al-

hough there are several attempts [57] . 

The majority of the combination methods in OVO make use of

he confidence degrees of the outputs of each base classifier. These

onfidence degrees are obtained for each classifier as follows: 
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Table 1 

Parameter specification for the base learners employed in the experimentation and CHC al- 

gorithm. 

Algorithm Parameters 

3NN k = 3 , Distance metric = HVDM 

SVM Poly C = 1.0, Tolerance Parameter = 0.001, Epsilon = 1.0E-12 

Kernel Type = Polynomial, Polynomial Degree = 1 

Fit Logistic Models = True 

SVM Puk C = 100.0, Tolerance Parameter = 0.001, Epsilon = 1.0E-12 

Kernel Type = Puk, PukKernel ω = 1.0, PukKernel σ = 1.0 

Fit Logistic Models = True 

SVM Fit C = {0.01, 0.1, 1.0, 10.0, 100.0, 10 0 0.0}, Tolerance Parameter = 0.001 

Epsilon = 1.0E-12, Kernel Type = {Polynomial, RBF, Puk} 

Polynomial Degree = 1, RBF γ = {0.001, 0.01, 0.1, 1} 

PukKernel ω = 1.0, PukKernel σ = 1.0, Validation = 5-fold cross-validation 

Fit Logistic Models = True 

C4.5 Prune = True, Confidence level = 0.25 

Minimum number of item-sets per leaf = 2 

Ripper Size of growing subset = 66%, Repetitions of the optimization stage = 2 

CHC Population size ( M ) = 50 individuals, Evaluations = 40 0 0 0 

Restarting procedures without improvement = 3 
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• k NN – Distance-based confidence estimation. 

Con f idence = 

∑ k 
l=1 

e l 
d l ∑ k 

l=1 
1 
d l 

(12)

where d l is the distance between the input pattern and the l th

neighbor and e l = 1 if the neighbor l is from the predicted class

and 0 otherwise. Note that when k > 1, the probability estimate

depends on the distance from the neighbors, hence the estima-

tion is not restricted to a few values. 
• SVM – Probability estimates obtained by the SVM logistic

model [58] . 
• C4.5 – Accuracy of the leaf making the prediction, i.e., the num-

ber of correctly classified training examples divided by the total

number of covered train instances. 
• Ripper – Accuracy of the rule used in the prediction (the same

computation as in C4.5 considering rules instead of leafs). 

In some of the combination strategies ties might occur. As

usual, in those cases the majority class is predicted. If the tie con-

tinues, the class is selected randomly. 

The parameters used in each base classifier are shown in

Table 1 , which also includes the parameters of the CHC algorithm.

These values are common for all problems, and they were selected

according to the recommendation of the corresponding authors,

which is also the default setting of the parameters included in the

KEEL 3 software [11,36] , which we have used to develop our exper-

iments. In the case of SVMs, three configurations are considered.

In the first two ones, the parameter C and the kernel function are

fixed in order to study the behavior of our strategy with differ-

ent configurations, which should address for the robustness of the

proposal (in the sense that despite how fine-tuned are the base

classifiers, its behavior is maintained with respect to the others).

In the third configuration, we considered a fine-tuned SVM (with

respect to the accuracy obtained by OVO using an internal 5-fold

cross-validation scheme). In this way, we are able to analyze the

behavior of NMC with highly fitted classifiers with different pa-

rameters for each data-set and with a little room for improvement.

We treat nominal attributes in SVM as scalars to fit the data into

the systems using a polynomial kernel. 

We acknowledge that the tuning of the parameters in all the

classifiers for each particular problem could lead to better results,

however, we preferred to maintain a baseline performance on each

method as the basis for comparison. Since we are not comparing
3 http://www.keel.es . 
ase classifiers among each other, our hypothesis is that the meth-

ds (combinations) that win on average on all problems would also

in if a better setting is performed. Moreover, when methods are

ot tuned, winner methods tend to correspond to the most robust

nes, which is also desirable. Anyway, given that in SVMs tuning

an lead to highly improved results and it is a commonly consid-

red process, we have also considered SVM Fit in order to show that

he usefulness of the method remain unchanged in this scenario. 

.2. Combinations considered 

We use a different combination for each base classifier to ana-

yze their behavior in comparison with our proposal since the best

ombination model depends on the base classifier. For this reason,

e follow our findings from our previous work [18] and use the

ame representatives for each base classifier as those selected in it

the best ones). 

The following combinations are considered: 

• k NN – ND (Non-Dominance criterion). 
• SVM – PE (Wu et al. [23] Probability Estimates by Pairwise Cou-

pling). 
• C4.5 – WV (Weighted Voting strategy). 
• Ripper – WV (Weighted Voting strategy). 

In addition, we have also considered the DCS approach [24] ,

hich outperformed most of them in the same experimental

ramework as the one we are considering. We use the same param-

ter value for k as the one in the original DCS paper, i.e., k = 3 · m

3 times the number of classes) is considered as the neighborhood

o select competent classifiers (notice that this k is not the one

sed in our proposal). 

.3. Data-sets 

We have used twenty-three data-sets from the KEEL data-set

epository 4 [36] . Data-sets with a large representation of different

umber of classes and attributes have been considered. Their prop-

rties are summarized in Tables 2 and 3 . In the former table for

ach data-set, the number of examples (#Ex.), the number of at-

ributes (#Atts.), the number of numerical (#Num.) and nominal

#Nom.) attributes, and the number of classes (#Cl.) are shown. In

he latter one, the number of instances from each class in each
4 http://www.keel.es/dataset.php . 

http://www.keel.es
http://www.keel.es/dataset.php
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Table 2 

Summary description of data-sets. 

Data-set #Ex. #Atts. #Num. #Nom. #Cl. 

Balance 625 4 4 0 3 

Hayes-roth 132 4 4 0 3 

Iris 150 4 4 0 3 

NewThyroid 215 5 5 0 3 

Splice 319 60 0 60 3 

Tae 151 5 5 0 3 

Thyroid 720 21 21 0 3 

Wine 178 13 13 0 3 

Car 1728 6 0 6 4 

Lymphography 148 18 3 15 4 

Cleveland 297 13 13 0 5 

Nursery 1296 8 0 8 5 

Page-blocks 548 10 10 0 5 

Shuttle 2175 9 9 0 5 

Autos 159 25 15 10 6 

Dermatology 358 34 1 33 6 

Glass 214 9 9 0 7 

Satimage 643 36 36 0 7 

Segment 2310 19 19 0 7 

Zoo 101 16 0 16 7 

Ecoli 336 7 7 0 8 

Penbased 1100 16 16 0 10 

Vowel 990 13 13 0 11 
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ata-set is presented. As it can be observed, they comprise a num-

er of situations, from totally balanced data-sets to highly imbal-

nced ones, besides the different number of classes. 

The performance estimates were obtained by means of a 5-

old stratified cross-validation (SCV). From our point view, 5-fold

CV is more appropriate than a 10-fold SCV in the current frame-

ork, since using smaller partitions there would be more test sets

hat will not contain any instance from some of the classes. More

pecifically, the data partitions were obtained by the Distribution

ptimally Balanced SCV (DOB-SCV) [59] , which aims to correct the

ata-set shift (when the training data and the test data do not fol-

ow the same distribution) that might be produced when dividing

he data. In order to address the stochastic nature of GAs, the 5-

old SCV is repeated five times with different seeds. 
Table 3 

Number of instances per class in each data-set. 

Data-set #Ex. #Cl. C 1 C 2 C 3 C 4

Balance 625 3 288 49 288 

Hayes-roth 132 3 51 51 30 

Iris 150 3 50 50 50 

NewThyroid 215 3 30 35 150 

Splice 319 3 77 77 165 

Tae 151 3 49 50 52 

Thyroid 720 3 17 37 666 

Wine 178 3 59 71 48 

Car 1728 4 1210 384 65 69

Lymphography 148 4 2 81 61 4 

Cleveland 297 5 160 54 35 35

Nursery 1296 5 1 32 405 42

Page-blocks 548 5 492 33 8 12

Shuttle 2175 5 1706 2 6 33

Autos 159 6 3 20 48 46

Dermatology 358 6 111 60 71 48

Glass 214 7 70 76 17 0 

Satimage 643 7 154 70 136 62

Segment 2310 7 330 330 330 33

Zoo 101 7 41 20 5 13

Ecoli 336 8 143 77 2 2 

Penbased 1100 10 115 114 114 10

Vowel 990 11 90 90 90 90
.4. Statistical tests 

In order to assess the results obtained by each model, we have

onsidered the accuracy rate as performance measure. Additionally,

e will consider the reduction rate of instances and features (num-

er of score matrices and binary classifiers, respectively) together

ith the training times spent in obtaining such reduced sets. Test-

ng times have also been computed, but we have observed that

he maximum testing time per instance is much lower than one

illisecond (almost 10 times lower in most data-sets). Such a fast

esting times show the practical utility of the model, and the fact

hat it does not cause a significant increase in the testing times.

or this reason and for the sake of brevity, we have not included

he detailed testing times in the paper and we focus on the cost

f the learning stage. Finally, experiments have been carried out

nder a computer with an Intel(R) Core(TM) i7 CPU 930 micro-

rocessor (4 cores/8 threads, 2.8 GHz, 8 MB Cache) with 24 GB

f DDR2 RAM memory and using CentOS 6.4. The maximum Java

eap space reserved for each execution was only 1GB. 

In order to make a fair comparison of the performance of the

lassifiers, we perform the corresponding statistical analysis as rec-

mmended in the literature [40,41] . Hence, non-parametric sta-

istical tests are considered (for more information please refer to

ttp://sci2s.ugr.es/sicidm/ ). 

Different types of comparisons are carried out in the exper-

mental study. When multiple methods are compared, we use

riedman aligned-ranks test [60] as a non-parametric statistical

rocedure to perform comparison among a set of algorithms. Then,

f this test detects significant differences among them, we check if

he control algorithm (the best one) is significantly better than the

thers (that is, 1 × n comparison) using Holm post-hoc test [61] . 

Moreover, we consider the average aligned-ranks of each algo-

ithm (used in the Friedman aligned-ranks test) in order to com-

are the behavior of each algorithm with respect to the others.

hese rankings are obtained computing the difference between the

erformance obtained by the algorithm and the mean performance

f all the algorithms in the corresponding data-set. These differ-

nces are ranked from 1 to k · n (being k the number of data-

ets and n the number of methods), assigning the corresponding

ank to the method from which the difference has been computed.

ence, the lower the rank is, the better the method is. At last, the
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average ranking of each algorithm in all data-sets can be computed

to show their global performance. 

Additionally, we consider the Wilcoxon paired signed-rank test

[62] as a non-parametric statistical procedure when we need to

perform comparisons between two methods. 

5.5. Methodology of analysis 

Given the large amount of combination tested in the experi-

mental study, they are first outlined in this section. We should re-

call that for each base classifier considered, we include the follow-

ing methods in the comparison. 

1. Comb : The best combination/aggregation method for the base

classifier (see Section 5.2 ). 

2. DCS : The combination based on DCS for the OVO strategy [24] . 

3. WV : An adaptation of the original WV method, which uses the

arithmetic mean of the outputs for the class instead of the sum.

Hence, the result is equivalent to the original WV when no clas-

sifiers are removed, but it allows us to consider the removal

of classifiers using this strategy (since it is no longer affected

by the numbers of elements that are summed up). As a result,

we have the original WV ( NoGA ) and WV with classifier pruning

( CS ), which uses the same GA as NMC. 

4. NMC : Our proposal based on the usage of k NN for combining

classifiers. In this study, k = 1 is considered, even though we

should emphasize the fact that preliminary results were equiv-

alent with different k values. We have four possible models in

this case. 
• NoGA : NMC is applied using all the instances and classifiers.
• CS : Only classifier (feature) selection is considered. 
• IS : Only instance selection is considered. 
• CS_IS : Both instance and classifier selections are performed

simultaneously. 

5. DT : Decision templates where one template per class is com-

puted (see Section 2.3 ). In this case, we have also added the

possibility of reducing the number of classifiers with the same

GA as NMC ( CS ), maintaining also the original one named as

NoGA . 

In those cases where classifier selection is performed (WV, NMC

and DT) two fitness functions are considered ( f A and f AC ). In the

case of NMC, we also consider the fitness functions f AI , f AIC and

f ACI in the corresponding cases. Recall that all the fitness functions

that forcing instance or classifier selection considers a lexicograph-

ical order where accuracy is taken into account first and better re-

ductions are ranked higher in the case of ties. 

In the cases of WV and DTs with CS, the CHC algorithm is used

exactly as in the case of NMC except for the computation of the

outputs, which is made using WV and DTs, respectively, taking

only the classifiers selected into account. 

6. Experimental study 

In this section our aim is to evaluate the usefulness of our pro-

posal. For each model, we obtained the results of accuracy, clas-

sifier reduction rate ( RedCS ), instance reduction rate ( RedIS ) and

training times in the cases where the GA is executed. We should

recall that testing times are not included since all of them are

below 1 millisecond for each instance (in all of the methods and

data-sets). 

On account of all these possibilities we have divided the statis-

tical analysis carried out into four phases: 

• Phase 1: Study of the best fitness function. We study the effect

of the different fitness functions that do not only take accuracy

into account. We will show the fact that CS in WV does not
work properly, different from our model and contrary to the

case of DTs, where it is mandatory in order to be competitive

( Section 6.1 ). 
• Phase 2: Study of the best NMC model. We analyze the results of

the different models from our proposal looking at their advan-

tages and disadvantages ( Section 6.2 ). 
• Phase 3: NMC vs. WV (without pruning) vs. DTs. We test the be-

havior of the three models allowing for CS, which in the case

of WV does not work ( Section 6.3 ). 
• Phase 4 – Final: NMC vs. state-of-the-art combinations (Comb

and DCS). We show that NMC can be competitive with the

state-of-the-art combinations, with the additional advantage of

being able to reduce the number of classifiers ( Section 6.4 ). 
• Discussion: At last, the main points of this study are summa-

rized in Section 6.5 . 

Before starting with the analysis, we show the overall accuracy

ates in test, instance and classifier reduction rates and training

imes in Table 4 . The detailed results of all the methods and data-

ets are presented in Appendix A . 

Along this section we use the two statistical tests mentioned.

hey will be presented as follows: 

• Friedman aligned-rank tests : It is used when more than two

methods are compared. A test is carried out for each base clas-

sifier. An example can be observed in Table 5 . In these tables,

the aligned-ranks obtained by each method (row) in each base

classifier (column) are shown (the lower the better), that is, a

test is run for each column. Near the ranks obtained by each

method the p -value given by the Holm post-hoc test is shown

in brackets, which compares a control method (the best one,

i.e., the one with the lowest rank in a column) against the rest.
• Wilcoxon tests : It is used to compare a pair of methods. A test

is also performed for each base classifier (column), as it can be

observed in Table 6 . For each comparison the ranks obtained

by each method are presented in the first row (the greater the

better) and in the second row the p -value associated with the

comparison is shown. 

In both tables a ‘+’ close to the p -value means that statistical

ifferences are found in the comparison with α = 0 . 1 (90% confi-

ence) and a ‘ ∗’ with α = 0 . 05 (95% confidence). 

.1. Study of the best fitness function 

In this Section we analyze the behavior of the different fitness

unctions considered, for each one of the models in which they are

sed: WV, NMC (CS, IS, CS_IS) and DTs. This analysis is carried out

eparately for each model. 

• WV . Two fitness functions are considered for the WV with

CS ( f A and f AC ). Looking at Table 4 , one can observe that ac-

curacy is almost the same in both cases except for the case

of SVM Puk . However, even though the absolute differences are

rather small there is a tendency to decrease accuracy when CS

is used, and more if it is forced. Anyway, these almost equal

global accuracies can be explained by the fact that classifier re-

duction is almost non-existent with f A , being 3NN and SVM Poly 

the cases with the greatest reduction with 10% and 5%, respec-

tively. When forcing reduction ( f AC ), these rates are increased

around 5%, with the greatest improvement in SVM Puk (where

indeed the largest loss of accuracy is produced). The real dif-

ferences among these models can be better analyzed following

the statistical tests shown in Table 5 . Statistical differences are

only found in the case of SVM Puk using f AC . Hence, when reduc-

tion is forced to some extent accuracy is affected. In the rest

of the cases, whenever some reduction has been achieved ac-

curacy also drops, but due to the low reduction rates obtained
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Table 4 

Average accuracy results in test, classifier and instance reduction rates and training times for the six classifier tested. The best result in each row is highlighted in bold-face. 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Classifier Measure Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

3NN Accuracy 86 .34 86 .93 86 .21 85 .93 85 .93 82 .55 82 .15 81 .92 86 .91 86 .81 86 .86 86 .86 86.96 86 .90 86 .74 83 .44 85 .85 85 .81 

RedCS – – – 9 .59 13 .78 – 31 .90 43 .43 – – 41 .89 50.14 46 .63 48 .58 49 .95 – 37 .86 47 .39 

RedIS – – – – – – – – 75 .29 91 .82 77 .74 80 .86 92 .58 92 .67 92 .45 – 97.97 97.97 

Time – – – 1 .00 0.98 – 170 .8 186 .0 172 .5 113 .1 151 .7 143 .2 109 .3 110 .2 113 .2 – 1 .71 1 .66 

SVM Poly Accuracy 84 .16 84 .24 84 .09 83 .95 83 .98 86.43 85 .90 85 .82 85 .89 85 .73 86 .07 85 .95 85 .81 85 .84 85 .81 81 .32 83 .04 83 .00 

RedCS – – – 4 .89 9 .92 – 36 .13 50 .20 – – 44 .31 54.19 48 .96 51 .45 53 .97 – 34 .08 50 .02 

RedIS – – – – – – – – 68 .13 91 .18 69 .52 75 .90 91 .57 91 .57 91 .12 – 97.97 97.97 

Time – – – 0 .85 0.80 – 196 .2 207 .1 254 .9 215 .8 231 .8 216 .9 200 .7 195 .1 206 .9 – 1 .66 1 .66 

SVM Puk Accuracy 83 .23 85.21 83 .49 83 .49 82 .44 84 .79 84 .56 82 .57 84 .35 84 .30 84 .53 82 .20 83 .79 83 .73 83 .22 82 .62 83 .91 83 .62 

RedCS – – – 0 .00 16 .49 – 18 .01 53 .05 – – 20 .58 52 .85 42 .79 47 .85 53.41 – 22 .60 45 .17 

RedIS – – – – – – – – 34 .80 93 .75 38 .41 67 .25 94 .82 94 .84 94 .56 – 97.97 97.97 

Time – – – 0 .87 0.84 – 125 .3 147 .5 337 .3 103 .7 256 .1 181 .5 83 .81 84 .39 88 .93 – 1 .82 1 .78 

SVM Fit Accuracy 89 .53 89 .59 89 .72 89 .67 89.76 89 .45 89 .18 88 .95 89 .35 89 .27 89 .30 89 .08 89 .10 89 .09 89 .04 87 .14 89 .15 89 .04 

RedCS – – – 1 .34 7 .94 – 30 .55 50 .68 – – 32 .59 50.70 44 .66 47 .11 50 .52 – 27 .27 43 .48 

RedIS – – – – – – – – 55 .43 93 .56 59 .10 73 .61 94 .33 94 .46 94 .14 – 97.97 97.97 

Time – – – 1 .78 1 .68 – 152 .8 162 .0 414 .9 158 .3 246 .9 181 .0 100 .8 100 .2 104 .3 – 1 .38 1.24 

C4.5 Accuracy 85 .35 85 .82 85 .35 85 .33 85 .33 81 .90 81 .80 81 .65 85.87 85 .83 85 .51 85 .41 85 .55 85 .50 85 .45 82 .65 84 .11 84 .06 

RedCS – – – 0 .14 5 .63 – 22 .09 43 .83 – – 33 .94 46.46 42 .80 44 .86 45 .62 – 25 .77 46 .05 

RedIS – – – – – – – – 62 .55 93 .10 64 .65 71 .35 93 .62 93 .76 93 .32 – 97.97 97.97 

Time – – – 0 .98 0.97 – 198 .6 220 .3 231 .7 126 .8 200 .9 170 .7 115 .4 113 .9 121 .3 – 2 .33 2 .66 

Ripper Accuracy 85 .29 85 .58 85 .26 85 .25 85 .21 85.89 85 .22 85 .19 85 .80 85 .70 85 .59 85 .49 85 .56 85 .54 85 .51 84 .05 84 .85 84 .85 

RedCS – – – 0 .38 2 .05 – 22 .98 38 .00 – – 28 .56 40 .64 36 .85 39 .18 40.92 – 25 .11 38 .96 

RedIS – – – – – – – – 59 .50 92 .70 62 .05 72 .41 93 .15 93 .10 93 .06 – 97.97 97.97 

Time – – – 1 .08 1.06 – 202 .0 203 .5 206 .4 122 .2 193 .2 168 .7 120 .9 119 .5 123 .7 – 2 .29 2 .33 

Table 5 

Friedman aligned-rank tests comparing the different WV models in each base classifier with accuracy. 

Methods 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

WV 32 .24 29 .30 31 .11 34 .85 (0.42097) 34 .74 31 .17 

WV with CS- f A 35 .70 (0.82928) 39 .07 (0.19793) 31 .11 (1.0 0 0 0 0) 40 .07 (0.18335) 35 .0 0 (1.0 0 0 0 0) 34 .02 (0.63025) 

WV with CS- f AC 37 .07 (0.82928) 36 .63 (0.21559) 42 .78 (0.09693+) 30 .09 35 .26 (1.0 0 0 0 0) 39 .80 (0.28923) 

A ‘+’ means that there are statistical differences with α = 0 . 1 (90% confidence) and a ‘ ∗ ’ with α = 0 . 05 (95% confidence) 

Table 6 

Wilcoxon tests to compare f A with f AC in NMC with CS using accuracy. 

Comparison 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

f A vs. f AC R + /R − 201 .5/74.5 155 .5/120.5 220 .5/55.5 172 .0/104.0 198 .5/77.5 139 .0/137.0 

p -value 0 .02194 ∗ 0 .49246 0 .01571 ∗ 0 .29588 0 .03546 ∗ 0 .77643 

R + corresponds to the sum of the ranks for NMC CS 
f A 

and R − for NMC CS 
f AC 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

significant differences are not found. The only exception is the

case of SVM Fit where forcing seems to perform well, but looking

at the accuracy from Tables 4 and A.18 , it can be observed that

the real differences between all the approaches are below 0.1%

due to the highly adjusted base classifiers. Hence, few classi-

fiers can be safely removed using the WV, being this reduction

meaningless in most of the cases. Moreover, accuracy tends to

decrease as classifiers are removed. This result is in accordance

with [51] , where OVO lost precision linearly as classifiers where

removed. However, it can be observed that selecting the proper

aggregation, the linear decrease can be avoided when removing

some of the classifiers, even though after the 10% (as in SVM Puk )

significant differences appear. On this account we consider the

original WV for the next comparisons given that it is the best

performer. 
• NMC with CS . In this case f A and f AC fitness functions are consid-

ered. Looking at Table 4 , it can be observed that forcing classi-

fier reduction can lead to reduction rates between 40% and 50%,

whereas without doing so, reductions between 20% and 30% are

obtained. The question is whether this greater reduction comes

along with a drop of accuracy, whose answer varies depend-

ing on the base classifier. As the Wilcoxon test in Table 6 indi-

cates, in 3NN, SVM Puk and C4.5 statistical difference are found

in favor of not forcing reduction, whereas in SVM Poly , SVM Fit 
and Ripper these differences are not significant. Anyway, since

our ultimate objective is to maintain accuracy while reducing

classifiers, we consider f A function, although one could prefer a

greater classifier reduction in which case f AC function would be

recommended. 
• NMC with IS. f A and f AI are compared in this case. In terms of

reduction, it is clear from Table 4 that promoting IS helps in

reducing the final size of the reference set for NMC. Between

15% and 30% more instances (score-matrices) can be removed,

even 60% more in the case of SVM Puk , which shows great dif-

ferences with respect to the behavior of SVM Poly as in previous

works [25,56] due to the probabilities obtained being too crisp

as a consequence of the configuration considered (near 0 or 1).

Tuned SVMs (SVM Fit ) behave similarly to SVM Poly . Even though

in global terms there seems not to be differences in terms

of accuracy between these functions, we performed the cor-

responding Wilcoxon tests, which are shown in Table 7 . From

them, it can be concluded that accuracy is not statistically hin-

dered when IS is forced, but the results get worse in all the

classifiers, being the ranks always in favor of f A . Again, in or-

der to maintain accuracy as high as possible, we consider f A ,

although f AI can be useful to reduce the reference set in large

data-sets. 
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Table 7 

Wilcoxon tests to compare f A with f AI in NMC with IS using accuracy. 

Comparison 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

f A vs. f AI R + /R − 159 .0/117.0 174 .0/102.0 167 .5/108.5 178 .5/97.5 175 .0/101.0 170 .5/105.5 

p -value 0 .52301 0 .27354 0 .39446 0 .21724 0 .40804 0 .33916 

R + corresponds to the sum of the ranks for NMC IS 
f A 

and R − for NMC IS 
f AI 

. 

Table 8 

Friedman aligned-rank tests comparing the different fitness functions for NMC with CS and IS in each base classifier with accuracy. 

Methods 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

f A 58 .93 (1.0 0 0 0 0) 39 .54 50 .39 43 .41 53 .59 55 .43 (1.0 0 0 0 0) 

f AC 58 .61 (1.0 0 0 0 0) 54 .26 (0.13442) 60 .04 (0.77281) 64 .67 (0.12234) 67 .70 (0.60516) 63 .54 (1.0 0 0 0 0) 

f AI 52 .13 65 .72 (0.03106 ∗) 63 .22 (0.76820) 60 .70 (0.17170) 56 .89 (1.0 0 0 0 0) 53 .11 

f AIC 54 .46 (1.0 0 0 0 0) 65 .57 (0.03106 ∗) 54 .83 (0.77281) 59 .11 (0.17170) 55 .24 (1.0 0 0 0 0) 57 .0 0 (1.0 0 0 0 0) 

f ACI 65 .87 (0.64917) 64 .91 (0.03106 ∗) 61 .52 (0.77281) 62 .11 (0.17170) 56 .59 (1.0 0 0 0 0) 60 .91 (1.0 0 0 0 0) 

A ‘+’ means that there are statistical differences with α = 0 . 1 (90% confidence) and a ‘ ∗ ’ with α = 0 . 05 (95% confidence) 

Table 9 

Wilcoxon tests to compare f A with f AI in NMC with CS and IS using accuracy. 

Comparison 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

f A vs. f AI R + /R − 114 .0/162.0 229 .5/46.5 212 .5/63.5 196 .5/79.5 143 .0/133.0 140 .5/135.5 

p -value 0 .46542 0 .00551 ∗ 0 .02209 ∗ 0 .07683+ 0 .77818 0 .93531 

R + corresponds to the sum of the ranks for NMC CIS 
f A 

and R − for NMC CIS 
f AI 

. 
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• NMC with CS and IS. When performing both CS and IS simulta-

neously we have to analyze the whole set of fitness functions,

including those forcing IS and CS at the same time. Looking at

Table 4 , it can be observed that the mere fact of carrying out

both processes simultaneously allows one to achieve better re-

sults in terms of accuracy and reduction rates in all the base

classifiers considering the same fitness function f A than when

they are performed individually. Hence, IS allows for a better

CS and vice versa. At first glance, the results of the fitness func-

tions forcing IS ( f AI , f AIC , f ACI ) are similar for all the measures.

Only forcing CS ( f AC ) usually leads to more classifiers being re-

moved (only reducing accuracy in the case of SVM Puk ), and even

more instances than when only focusing on accuracy ( f A ). In or-

der to gain a better insight of these results, we performed the

statistical tests shown in Tables 8 and 9 . The first one presents

the Friedman aligned-rank tests for each base classifier and all

the fitness functions, whereas the second one shows the direct

comparison between f A and f AI , which are the best performers

in the first analysis. 

Looking at these tables we can observe that in terms of accu-

racy the best options are the ones not forcing CS in any way,

but forcing IS does not have the same effect, achieving the low-

est ranks in 3NN and Ripper. On this account, we carry out the

Wilcoxon test to compare these alternatives, from which it can

be concluded that only focusing on accuracy may be preferable

if one wants to reach the highest accuracy as possible in a gen-

eral manner (with any classifier). In fact, in the case of 3NN it is

beneficial to force IS, but in the case of SVMs, statistical differ-

ences are found against this alternative. Therefore, we continue

with f A , even though f AI could become an interesting model in

data-sets with a large number of instances. 
• DT . Like in WV, we allowed DTs to perform CS, and hence two

different fitness functions can be considered ( f A and f AC ). How-

ever, in this case the results obtained are different to those of

WV. Accuracy is boosted in all cases when CS is considered, and

even forcing CS in the fitness function seems not to affect ac-

curacy, while almost 50% of the classifiers are reduced. In order

to contrast this fact, we have performed the Friedman aligned-

rank tests ( Table 10 ), where the superiority of the CS models is

clearly observed. Consequently, we have confronted both pos-
 o  
sible fitness functions to decide which is better suited for DTs

using the Wilcoxon test ( Table 11 ). According to the results of

these tests, there are no statistical differences with any of the

classifiers. In two cases f AC obtains more ranks than f A (3NN

and SVM Puk ), and in three times f A beats f AC (SVM Poly , SVM Fit 

and Ripper), whereas in one case there is a tie (C4.5). On this

account, we select the f AC fitness function since it obtains bet-

ter reductions (between 40% and 50%) without losing accuracy

and given the good synergy between DTs and pruning. 

emark 2. Summing up, we have shown that WV does not allow

or a meaningful CS, whereas DTs basically require it. Regarding

MC, the different fitness functions allow one to play with the

rade-off between reduction and accuracy. Focusing in the latter,

e have considered f A for the next sections, even though forcing

S sometimes can help increasing accuracy. Overall, it can be ob-

erved that around 40–50% of the classifiers can be safely removed

rom OVO without loosing accuracy with respect to NMC with IS.

n fact, it should be mentioned that NMC by itself, or NMC with

S, do not perform competitively in some cases, and hence consid-

ring IS is required as we show in the next section. 

.2. Study of the best NMC model 

We are looking for the best NMC model in this section. Looking

t Table 4 , the varying behavior of NMC without selection (NoGA)

n each base classifier is clear. In 3NN and C4.5, these results and

he ones of CS are clearly inferior to those in which IS is per-

ormed, showing that IS is mandatory to remove the noise pro-

uced by some of the instances. Otherwise, in the rest of the clas-

ifiers, NMC by itself achieves an excellent performance with the

est results in SVM Poly and Ripper. However, since we are more

nterested in removing classifiers and in a model which is able to

ork with any base classifier, we should focus on CS_IS model. The

ccuracy of this model is competitive with IS attending at the ta-

le of results, including 3NN and C4.5, overcoming the problems of

MC without further processing. Anyway, we should base all these

onclusions in the proper statistical analysis, which is carried out

n Table 12 . 

The results in Table 12 follow our previous claims. NMC with-

ut selection (NoGA) is the best model for some of the base classi-
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Table 10 

Friedman aligned-rank tests comparing the different DTs models in each base classifier with accuracy. 

Methods 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

DT 53 .02 (0.0 0 0 01 ∗) 46 .28 (0.00487 ∗) 39 .89 (0.32744) 47 .15 (0.0 0 027 ∗) 43 .72 (0.05047+) 44 .78 (0.01578 ∗) 

DT with CS- f A 25 .59 28 .35 33 .46 (0.76037) 24 .54 30 .48 29 .07 

DT with CS- f AC 26 .39 (0.89185) 30 .37 (0.73255) 31 .65 33 .30 (0.13864) 30 .80 (0.95604) 31 .15 (0.72427) 

A ‘+’ means that there are statistical differences with α = 0 . 1 (90% confidence) and a ‘ ∗ ’ with α = 0 . 05 (95% confidence) 

Table 11 

Wilcoxon tests to compare f A and f AC in DTs with CS using accuracy. 

Comparison 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

f A vs. f AC R + /R − 129 .0/147.0 173 .0/103.0 114 .5/161.5 172 .5/103.5 138 .0/138.0 152 .5/123.5 

p -value 0 .87533 0 .39425 0 .49246 0 .28598 1 .0 0 0 0 0 0 .79459 

R + corresponds to the sum of the ranks for DT CS 
f A 

and R − for DT CS 
f AC 

. 

Table 12 

Friedman aligned-rank tests comparing the different NMC models selected (CS, IS and CS_IS with f A ) in each base classifier with 

accuracy. 

Methods 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

NoGA 55.54 (0.00818 ∗) 41.24 41.85 44.67 (1.0 0 0 0 0) 56.48 (0.0 0 078 ∗) 37.02 

CS- f A 62.46 (0.0 0 053 ∗) 50.87 (0.66391) 53.74 (0.39298) 51.80 (0.71863) 61.30 (0.0 0 010 ∗) 58.26 (0.02097 ∗) 

IS- f A 32.93 48.54 (0.70718) 42.46 (0.93838) 42.54 28.54 41.89 (0.53629) 

CS_IS- f A 35.07 (0.78673) 45.35 (0.70718) 47.96 (0.87573) 46.98 (1.0 0 0 0 0) 39.67 (0.15749) 48.83 (0.26767) 

A ‘+’ means that there are statistical differences with α = 0 . 1 (90% confidence) and a ‘ ∗ ’ with α = 0 . 05 (95% confidence) 

Table 13 

Friedman aligned-rank tests comparing WV, NMC with IS and CS using f A and DTs with CS using f AC in each base classifier with accuracy. 

Methods 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

WV 36.80 (0.07472+) 35.87 (0.00662 ∗) 38.37 (0.17776) 25.72 30.09 (0.53460) 33.83 (0.29329) 

NMC with CS_IS- f A 26.26 19.80 28.30 36.85 (0.05992+) 26.41 27.61 

DT with CS- f AC 41.93 (0.01613 ∗) 49.33 (0.0 0 0 0 0 ∗) 38.33 (0.17776) 42.43 (0.00943 ∗) 48.50 (0.0 0 038 ∗) 43.57 (0.01399 ∗) 

A ‘+’ means that there are statistical differences with α = 0 . 1 (90% confidence) and a ‘ ∗ ’ with α = 0 . 05 (95% confidence) 
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a  
ers, but it is statistically outperformed by the IS procedure in two

ases (3NN and C4.5), whereas the contrary does not occur. Never-

heless, none of them is capable of reducing classifiers. Whereas

S model is statistically outperformed in three out of five base

lassifiers, no significant differences are found against CS_IS model,

hich uses the least amount of classifiers. Therefore, the good ca-

abilities shown by the CS_IS approach allow us to consider it for

urther comparisons. 

.3. NMC vs. WV (without pruning) vs. DTs 

This section is devoted to compare the different methods in

hich we have considered CS, that is, WV, NMC and DTs. Recall

hat in the case of WV, CS has a negative effect, and hence the

riginal WV method is compared. In the case of NMC, we con-

inue with CS_IS using f A and in DTs with CS using f AC . Therefore,

t has to be taken into account that NMC and DTs are being com-

ared versus WV, one of the most robust alternatives for aggregat-

ng classifiers in OVO [14] . Clearly, WV does not reduce classifiers,

o it should have an advantage. Between NMC and DTs, the latter is

he one achieving the largest reduction rate in terms of classifiers

nd instances (it only uses one instance per class). However, this

reater reduction makes it achieve lower average accuracy rates

notice that DTs without pruning obtains an even lower accuracy).

he Friedman aligned-rank tests to compare these methods in all

he classifiers are presented in Table 13 . 

Looking at the results of these tests, it can be observed that

emoving classifiers can lead to better results with respect to pre-

ious aggregation strategies such as the WV in most of the clas-

ifiers. NMC is the one achieving the lowest ranks, i.e., the best

erformance, in all the base classifiers except for SVM . Other-
Fit 
ise, DTs, also allowing for CS, are significantly outperformed by

MC in four out of six classifiers. With respect to WV, statisti-

al differences are found with 3NN and SVM Poly ; the p -value for

VM Puk is also low, whereas the differences in C4.5 and Ripper are

ot high in terms of p -values. The case of SVM Fit can be easily ex-

lained looking at the differences in the complete table of results

resented in the Appendix A ( Table A.18 ). Average accuracy differ-

nce between WV and NMC is as low as 0.42%, but it resulted in

 rejection due to the fact that WV is constantly better than NMC.

onetheless, the absolute difference between both models could

ake NMC useful given the fact that it allows for classifier pruning

around 30% of the classifiers are removed). This behavior appears

ue to the highly fine-tuned base classifiers, which make almost all

he results of SVM Fit to be in less than 1% of accuracy difference. 

We conclude that the different behavior among the base clas-

ifiers can be justified by their ability to give good confidence de-

rees and their base performance. In this respect, SVM Poly using

he logistic model is the one giving the best confidence degrees,

hereas the same does not occur with SVM Puk due to the differ-

nt configuration. As we have explained, SVM Fit also gives good

onfidences but its improvement against the WV strategy becomes

uch more difficult due to its fine-tuning. Otherwise C4.5 and Rip-

er are known not to be very good at estimating confidence de-

rees, whereas 3NN using the distance based confidence and after

emoving noisy instances is capable of providing useful degrees so

s to take advantage of NMC. 

.4. NMC vs. state-of-the-art combinations (Comb and DCS) 

In this last analysis, we wanted to test the NMC approach

gainst state-of-the-art combinations for each base classifier and
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Table 14 

Friedman aligned-rank tests comparing the best combination model (Comb), dynamic OVO approach (DCS) and NMC with CS and IS using f A 
in each base classifier with accuracy. 

Methods 3NN SVM Poly SVM Puk SVM Fit C4.5 Ripper 

Comb 37.65 (0.98862) 42.0 0 (0.0 0189 ∗) 42.41 (0.03965 ∗) 32.20 (0.84271) 42.07 (0.01119 ∗) 39.93 (0.25271) 

DCS 33.74 (0.98862) 40.57 (0.00218 ∗) 28.63 31.02 25.67 30.89 

NMC with CS_IS- f A 33.61 22.43 33.96 (0.36797) 41.78 (0.13785) 37.26 (0.05017+) 34.17 (0.57899) 

A ‘+’ means that there are statistical differences with α = 0 . 1 (90% confidence) and a ‘ ∗ ’ with α = 0 . 05 (95% confidence) 
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the DCS approach. Notice that in this case, Comb in C4.5 and Rip-

per coincides with WV. In the case of the DCS, it is interesting to

analyze how the static selection of NMC behaves compared with

the dynamic alternative, which requires of all the OVO classifiers

and also needs to compute the k NN of the instance to be classified

in the original input space. In the case of NCM, the original input

space is no longer used and k NN is only performed with respect to

the selected instances. 

Looking at Table 4 , NMC is always superior to Comb in terms

of global average accuracy (except for the case of SVM Fit ). With re-

spect to DCS, differences are smaller, with the only exception of

SVM Poly in which NMC stands out. Logically, in terms of CS there is

no doubt that NMC requires less classifiers, since it is the only one

allowing for classifier pruning (in DCS they are dynamically used

depending on the instance to be classified, but all of them are re-

quired). In order to shed light on the differences among these ap-

proaches, the Friedman aligned-rank test for each base classifier

comparing these three methods are shown in Table 14 . 

Attending at these results, NMC is the best model in 3NN and

SVM Poly (in the latter case with significant differences with respect

to the other two combinations). In the rest of the cases, DCS per-

forms better in terms of ranks, but there are no statistical dif-

ferences against NMC except for C4.5, whose confidence degrees

seems not to be adequate for NMC. Hence, with NMC one is able

to reduce the number of classifiers to near 50% in OVO without a

significant loss of accuracy, and even increasing it when the base

classifier provides good confidence estimates. In this cases, NMC

can learn from both competent and non-competent classifiers the

outputs that are expected for the instances of each class. 

6.5. A deeper insight into NMC: discussion and lessons learned 

With NMC we have presented a different view of the aggrega-

tion in OVO and the possibility of reducing classifiers. In this sec-

tion, we first want to focus on an example of the results obtained,

which are presented in the Appendix A . Consider Balance data-set

in all the base classifiers, which is a 3-class problem, and there-

fore 3 classifiers are considered in OVO. We consider the methods

in the previous section for the analysis (Comb, DCS and NMC with

CS_IS using f A ): 

• 3NN . Classifier reduction barely achieves a 20% (averaged over

25 executions), which means that most of the times one clas-

sifier is removed, whereas in the rest of the cases all of them

are considered. Accuracy rate is improved with respect to Comb

and DCS. 
• SVM Poly . Around 50% of the classifiers can be removed in this

case, which means that in several partitions only one classifier

(which is trained for two classes) is able to classify the third

one. Hence, there may be a relation between classes in such a

way that the confidence degrees returned by SVM allow NMC

to distinguish the third class; that is, the examples from the

third class have a specific behavior with the SVM learned with

the other two classes. Even with this level of pruning, overall

results are improved with respect to DCS and Comb. 
• SVM Puk . In this case there is no reduction at all (20-30% can

be achieved by forcing CS reduction, improving results in this
case). The characteristics of the confidence degrees given by

this configuration make it difficult to maintain accuracy while

reducing classifiers and instances in training, as we have al-

ready explained. 
• SVM Fit . The behavior of this classifier is between that of the pre-

vious SVMs. Few classifiers are removed with f A (6.66%), but

almost 50% of them are removed when classifier reduction is

forced achieving an even better accuracy than without doing so

(only for 0.08%). The accuracy of DCS is improved in both cases,

whereas Comb equals the accuracy of NMC with f A . 
• C4.5 . This is an interesting case. There is a 66.7% of reduction,

which means that only one classifier is used to classify all the

three classes. However, this has nothing to do with the case of

SVM Poly . The problem here is that the original C4.5 with OVO

is not capable of learning to classify one of the classes. In this

case, our model learns that two classifiers are useless, and re-

moves them. This is due to the class imbalance problem in Bal-

ance [63] . We are aware of this problem and we have already

dealt with it in OVO [25,64] , but we do not treat it specifically

in this work in order to ease the comprehension of the pro-

posed model (it is independent of the underlaying classifiers). 
• Ripper . Surprisingly, in this classifier there is no way to reduce

classifiers in any of the partitions (0% reduction). That is, the

rules learned by Ripper for one pair of classes are not capa-

ble of helping us in classifying the remaining one. This behav-

ior could be related with the inner features of this algorithm,

which is mainly based in a “one-class” learning procedure. 

From a more general viewpoint, we can summarize the lessons

earned in the empirical study as follows: 

a) WV is not capable of dealing with classifier reduction even af-

ter being adapted to handle the absence of classifiers in the ag-

gregation. Otherwise, DTs are clearly benefited from CS, even in

the case when it is forced. In fact, it can be considered to be a

requisite in order to make them work properly. 

b) In the case of NMC, forcing CS usually comes along with a de-

crease in accuracy, although a trade-off between reduction and

performance could be sought depending on the application. In

other respect, forcing IS is not as harmful as doing so with CS,

as it could be expected. In fact, depending on the characteris-

tics of the base classifier and its confidence degrees, forcing IS

can be beneficial. 

c) Among NMC models, all of them have their strengths and

weaknesses. In first place, NMC without any selection (NoGA)

offers very com petitive results, but they are dependent on the

base classifiers. In those cases where NoGA does not achieve

the best result, applying IS allows one to remove noisy in-

stances that are hindering the classification. However, none of

these approaches allow for CS, which the CS_IS model does, be-

ing also capable of maintaining a competitive performance over

all the base classifiers. 

d) With respect to the models in which CS has been tested (WV,

NMC and DTs), NMC can be considered to be the most suit-

able approach. It should be mentioned that removing classifiers

(statically) has allowed us to outperform robust strategies as

WV (even without considering reduction in this case). 
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e) NMC is competitive against the state-of-the-art aggregation

strategies for OVO, while introducing the possibility of prun-

ing classifiers. With respect to the dynamic approach, each one

has its own advantages. Whereas DCS requires all the base clas-

sifiers and computing k NN in testing phase, NMC only stores

a subset (near to 50%) of the classifiers and its aggregation

consists of computing k NN but only over the selected score-

matrices. In terms of accuracy, NMC is better suited for those

classifiers providing good confidence degrees, whereas DCS per-

forms better in the other cases. Anyway significant differences

between these approaches are only found with SVM Poly (in fa-

vor of NMC) and C4.5 (in favor of DCS). 

Finally, looking at the data characteristics from Tables 2 and

 and the complete results in the Appendix A , some straightfor-

ard conclusions can be drawn: 

• The greater the number of classes in the data-set is, the greater

the ensemble size is. 
• The greater the ensemble size is, the greater classifier reduction

achieved can be. This fact can be understood since having more

classifiers implies more redundant information in their outputs,

as the same instances are used in more classifiers. 
• The greater the number of instances is, the greater the instance

reduction achieved can be. Similarly, with more instances for

the same number of classes, it becomes easier to discard not

useful or redundant instances. 

. Concluding remarks and future research lines 

In this paper, we have presented NMC model for OVO. This

odel is based on comparing the outputs (score-matrix) of the in-

tance to be classified with those of the instances in the training

et. Hence, the outputs of the classifiers are viewed as a transfor-

ation of the input space and considered for a new classification

roblem where k NN is applied. This novel view of the aggregation

roblem in OVO allows one to prune this type of classifier ensem-

le, which has not been previously considered. 

With less classifiers, NMC is able to maintain classification ac-

uracy and even outperform previous combination models if the

onfidence degrees of the base classifiers are adequate. In order to

how the usefulness of the method, we have performed a thorough

mpirical analysis considering six base classifiers. We have shown

hat using different fitness functions in NMC classifier or instance

eduction can be forced, depending on the user requirements for

he tradeoff between accuracy and simplicity. Moreover, we have

xtended WV and DTs to allow for classifier pruning. However,

ven with this modification, WV is not able to manage the absence

f classifiers properly, whereas DTs need it in order to achieve their

aximum potential (but it cannot reach that of NMC). 
This paper opens up new possibilities in terms of combining

lassifiers, both in decomposition strategies and classical ensem-

les. On account of the global analysis and the results analyzed for

alance dataset performed in the previous section, it is clear that

he behavior of each base classifier is different even for the same

ata. Hence, our method does not only depend on the overlapping

r relations between classes, but also in the way the classification

oundaries are learned by the classifier. In this respect, several fu-

ure lines arise: 

• To study the information given by the selected classifiers and

analyze whether it is related with the overlapping between

classes or other complexity measures [65,66] . 
• To go a step further trying to use complexity measures (based

on each classifier) to obtain which classifiers are required a pri-

ori (pre-pruning). 
• To use the information about the classifiers selected in order

to analyze which classes require a greater number of classifiers

to be recognized. This knowledge could be coupled with the

difficult classes problem in the OVO strategy studied in [56] . 
• To study the combination of DCS and NMC developing a double

classifier selection scheme. It should be studied whether these

models are diverse in terms of the classifiers selected in order

to analyze the gain that can be obtained from their combina-

tion. 

Apart from these future research lines focused on decomposi-

ion strategies and mainly on OVO, NMC model can be extended

o any classifier ensemble, whose performance should be studied

nd compared against existing models in classical classifier ensem-

les. Furthermore, any other IS or FS algorithm can be considered

nstead of the well-known CHC algorithm. This work leaves open

his possibility, since different synergies may be found using other

odels. 
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thods tested in all the base classifiers and data-sets. These results are 

M Fit ), A.19 (C4.5) and A.20 (Ripper). The average accuracy rates in test, 

re presented in these tables. The best result within each base classifier 
Appendix A. Detailed tables of results 

In this appendix, we present the detailed results for all the me

shown in Tables A.15 (3NN), A .16 (SVM Poly ), A .17 (SVM Puk ), A.18 (SV

the instance and classifier reduction rates and the training times a
and data-set is stressed in bold-face . 

Table A.15 

Average accuracy results in test, classifier and instance reduction rates and training times for 3NN classifier. 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos 78.88 76.96 75.83 75.12 74.88 77.16 74.81 74.45 76.68 75.85 76.70 75.90 76.82 76.87 75.91 71.21 73.39 74.10 

Balance 87.20 87.20 87.20 87.19 87.19 90.72 90.40 90.40 92.28 92.22 92.19 92.38 92.25 92.15 92.22 86.88 87.84 87.84 

Car 93.57 93.40 93.40 93.40 93.40 91.84 91.84 91.84 96.02 95.78 95.45 95.45 95.65 95.60 95.61 92.19 92.82 92.82 

Cleveland 58.31 57.96 56.95 57.05 56.40 52.93 55.00 55.27 57.38 57.52 57.72 57.71 58.46 58.53 57.63 57.96 57.07 57.81 

Dermatology 92.14 95.49 92.68 92.68 93.53 93.82 93.42 92.86 93.14 94.37 93.49 93.78 93.33 93.95 93.89 92.41 93.21 93.21 

Ecoli 81.66 82.52 82.52 81.58 81.86 74.80 73.06 73.12 80.89 81.16 80.25 80.07 80.04 80.79 79.59 79.58 79.97 80.36 

Glass 73.35 74.27 73.81 71.60 71.42 70.22 65.27 64.21 68.47 68.02 66.92 67.05 67.99 67.72 66.70 65.36 66.81 66.58 

Hayes-roth 75.82 74.34 74.34 75.88 75.88 79.73 77.11 77.11 81.31 79.92 79.45 79.13 79.46 79.32 79.46 81.92 81.92 81.92 

Iris 95.33 95.33 95.33 95.33 95.33 90.67 90.67 90.67 94.27 94.00 94.00 94.40 93.73 94.00 93.73 95.33 95.33 95.33 

Lymphography 68.19 79.55 68.88 69.25 69.25 65.62 65.65 65.51 76.11 76.40 76.94 75.95 75.95 75.80 76.51 77.56 77.56 76.74 

NewThyroid 96.28 96.28 96.28 96.28 96.28 92.09 92.09 92.09 96.37 96.74 96.47 96.47 96.74 96.74 96.74 96.28 97.21 97.21 

Nursery 93.29 93.29 93.37 93.44 93.44 89.38 89.21 89.23 93.89 94.05 93.69 93.88 93.97 93.89 93.81 91.36 93.29 93.29 

Page-blocks 95.63 95.46 95.27 95.30 95.19 94.93 95.20 95.09 95.49 95.74 95.41 95.45 95.49 95.49 95.52 80.72 95.12 95.16 

Penbased 97.00 96.64 96.55 96.55 96.55 96.45 95.10 94.80 94.70 94.46 94.90 94.88 94.86 94.36 94.62 79.47 90.20 90.20 

Satimage 87.58 87.73 87.73 87.73 87.73 86.18 86.47 86.44 88.18 88.27 88.08 88.36 88.17 88.39 88.70 84.49 87.96 87.87 

Segment 96.58 96.80 96.71 96.71 96.71 94.72 95.00 95.08 96.56 96.53 96.72 96.70 96.74 96.72 96.57 93.20 96.38 96.44 

Shuttle 99.50 99.40 99.40 99.40 99.40 99.22 99.37 99.37 99.43 99.39 99.43 99.42 99.43 99.43 99.42 97.84 99.34 99.36 

Splice 93.41 93.72 94.04 94.04 94.04 95.29 95.29 95.29 94.98 94.35 94.55 94.99 94.72 94.60 94.41 94.04 94.04 94.04 

Tae 44.25 44.25 44.25 39.09 39.09 55.59 56.90 56.21 40.94 41.84 42.26 43.96 45.21 43.03 42.18 37.09 36.44 36.44 

Thyroid 94.72 94.16 94.72 94.72 94.72 18.32 18.32 18.32 94.50 94.61 94.97 95.02 94.83 95.00 94.91 91.39 93.19 93.19 

Vowel 97.78 97.37 97.37 97.37 97.37 96.87 96.81 96.65 95.31 95.11 96.02 95.52 95.09 95.33 95.62 85.35 95.62 95.54 

Wine 95.49 95.49 95.49 95.49 95.49 99.43 99.43 99.43 99.43 98.40 99.43 98.97 98.29 98.29 98.29 93.79 95.49 95.49 

Zoo 89.90 91.86 90.74 91.13 91.33 92.64 93.11 90.79 92.54 92.01 92.68 92.28 92.87 92.66 92.94 93.64 94.44 92.79 

Average 86.34 86.93 86.21 85.93 85.93 82.55 82.15 81.92 86.91 86.81 86.86 86.86 86.96 86.90 86.74 83.44 85.85 85.81 

Classifier Reduction 

Autos – – – 1.33 4.27 – 46.40 49.07 – – 55.47 64.00 58.40 61.33 60.00 – 39.47 39.73 

Balance – – – 26.67 26.67 – 20.00 26.67 – – 14.67 17.33 10.67 12.00 17.33 – 13.33 13.33 

Car – – – 0.00 0.00 – 0.00 0.00 – – 18.67 23.33 22.67 18.67 20.00 – 23.33 23.33 

Cleveland – – – 41.20 43.60 – 68.40 69.60 – – 78.00 81.60 79.60 75.60 79.60 – 50.80 56.00 

Dermatology – – – 8.00 32.00 – 41.60 56.00 – – 44.27 60.53 54.67 57.87 60.27 – 45.87 61.33 

Ecoli – – – 7.14 11.14 – 65.00 68.86 – – 67.57 72.86 70.86 71.86 71.57 – 59.57 64.29 

Glass – – – 32.00 36.95 – 54.29 64.57 – – 68.57 71.05 70.86 72.38 74.48 – 60.38 72.38 

Hayes-roth – – – 13.33 13.33 – 26.67 26.67 – – 18.67 20.00 20.00 21.33 22.67 – 6.67 13.33 

Iris – – – 0.00 0.00 – 0.00 33.33 – – 14.67 33.33 24.00 33.33 33.33 – 0.00 33.33 

Lymphography – – – 9.33 20.67 – 20.67 56.67 – – 43.33 59.33 50.67 52.00 58.00 – 13.33 43.33 

NewThyroid – – – 0.00 0.00 – 0.00 26.67 – – 18.67 33.33 33.33 33.33 33.33 – 20.00 20.00 

Nursery – – – 6.00 8.00 – 14.00 54.00 – – 64.80 67.60 66.00 66.40 67.60 – 46.40 70.00 

Page-blocks – – – 27.60 30.80 – 48.40 52.80 – – 54.40 62.80 55.60 58.80 60.40 – 62.00 68.00 

Penbased – – – 0.00 0.00 – 56.27 57.60 – – 55.82 59.82 56.80 56.53 58.31 – 70.22 70.40 

Satimage – – – 0.19 0.00 – 52.95 59.43 – – 71.62 75.05 74.86 73.71 74.48 – 59.24 65.52 

Segment – – – 0.00 0.57 – 40.76 45.90 – – 55.81 58.86 56.00 56.57 56.95 – 51.43 54.29 

Shuttle – – – 0.00 24.00 – 39.20 58.00 – – 44.80 64.80 56.00 62.40 64.80 – 51.20 58.00 

Splice – – – 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 

Tae – – – 40.00 40.00 – 13.33 20.00 – – 34.67 36.00 38.67 40.00 38.67 – 33.33 33.33 

Thyroid – – – 0.00 0.00 – 13.33 13.33 – – 25.33 33.33 29.33 33.33 33.33 – 53.33 53.33 

Vowel – – – 0.00 0.00 – 60.73 62.47 – – 56.80 53.89 55.78 55.71 58.69 – 68.87 70.11 

Wine – – – 0.00 0.00 – 0.00 26.67 – – 5.33 33.33 26.67 33.33 33.33 – 33.33 33.33 

Zoo – – – 7.81 24.95 – 51.81 70.48 – – 51.43 71.05 61.14 70.86 71.81 – 8.57 73.33 

Average – – – 9.59 13.78 – 31.90 43.43 – – 41.89 50.14 46.63 48.58 49.95 – 37.86 47.39 

Instance Reduction 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos – – – – – – – – 77.38 80.93 74.73 80.47 83.73 84.51 82.99 – 95.49 95.49 

Balance – – – – – – – – 92.05 97.26 91.77 91.38 96.70 96.58 95.79 – 99.40 99.40 

Car – – – – – – – – 92.57 95.26 90.53 89.81 95.22 95.46 94.74 – 99.71 99.71 

Cleveland – – – – – – – – 92.76 93.57 92.80 92.66 94.73 94.34 94.34 – 97.94 97.94 

Dermatology – – – – – – – – 69.65 94.82 74.21 82.98 95.36 95.32 95.23 – 97.95 97.95 

Ecoli – – – – – – – – 91.11 92.93 92.09 92.16 93.38 93.44 92.95 – 97.11 97.11 

Glass – – – – – – – – 84.75 86.87 83.76 87.48 89.75 89.47 89.50 – 96.07 96.07 

Hayes-roth – – – – – – – – 81.24 90.22 80.24 80.23 90.76 91.21 90.53 – 97.24 97.24 

( continued on next page ) 
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Table A.15 ( continued ) 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Iris – – – – – – – – 51.10 95.03 52.67 52.40 95.13 95.07 95.13 – 97.56 97.56 

Lymphography – – – – – – – – 62.63 93.00 74.40 76.79 92.99 92.96 93.02 – 96.73 96.73 

NewThyroid – – – – – – – – 59.35 96.42 63.58 66.07 96.53 96.51 96.56 – 98.29 98.29 

Nursery – – – – – – – – 96.25 97.99 95.10 95.66 98.11 98.12 97.76 – 99.52 99.52 

Page-blocks – – – – – – – – 81.88 97.09 81.81 83.19 97.57 97.56 97.52 – 98.87 98.87 

Penbased – – – – – – – – 84.19 89.09 85.10 88.70 90.49 90.45 89.43 – 98.88 98.88 

Satimage – – – – – – – – 94.32 95.56 93.62 94.86 96.22 96.02 96.15 – 98.66 98.66 

Segment – – – – – – – – 95.98 97.69 96.37 96.88 97.93 98.25 97.76 – 99.62 99.62 

Shuttle – – – – – – – – 55.84 99.40 64.25 70.58 99.39 99.39 99.39 – 99.71 99.71 

Splice – – – – – – – – 72.92 97.34 80.23 78.21 97.27 97.27 97.27 – 98.84 98.84 

Tae – – – – – – – – 72.71 75.06 72.42 71.78 75.57 76.97 76.86 – 97.58 97.58 

Thyroid – – – – – – – – 82.75 98.81 84.30 86.25 98.72 98.69 98.67 – 99.48 99.48 

Vowel – – – – – – – – 63.52 69.95 73.53 71.38 76.24 76.33 77.34 – 98.63 98.63 

Wine – – – – – – – – 30.30 94.38 30.80 58.27 94.80 94.77 94.80 – 97.94 97.94 

Zoo – – – – – – – – 46.48 83.17 59.83 71.54 82.66 82.66 82.71 – 92.02 92.02 

Average – – – – – – – – 75.29 91.82 77.74 80.86 92.58 92.67 92.45 – 97.97 97.97 

Training Times 

Autos – – – 0.24 0.22 – 2.44 2.42 3.50 4.45 3.47 3.38 4.22 4.01 4.39 – 0.22 0.20 

Balance – – – 0.10 0.04 – 1.13 1.01 16.25 14.33 17.67 18.39 15.92 17.31 18.09 – 0.13 0.02 

Car – – – 0.28 0.25 – 41.49 40.37 311.8 270.6 324.5 313.0 264.2 267.0 279.8 – 0.19 0.15 

Cleveland – – – 0.19 0.16 – 2.53 2.28 5.54 5.24 5.36 5.04 4.48 5.00 4.93 – 0.19 0.07 

Dermatology – – – 0.32 0.47 – 7.88 9.98 6.32 6.07 8.84 7.22 8.33 8.35 8.70 – 0.24 0.26 

Ecoli – – – 0.80 0.75 – 26.69 28.74 16.19 16.84 18.19 18.52 19.09 19.21 19.94 – 0.86 0.81 

Glass – – – 0.48 0.39 – 5.97 6.33 7.29 7.23 7.51 7.05 7.60 7.81 8.03 – 0.32 0.25 

Hayes-roth – – – 0.05 0.01 – 0.10 0.05 0.36 0.37 0.41 0.41 0.46 0.48 0.47 – 0.03 0.01 

Iris – – – 0.06 0.02 – 0.08 0.07 0.25 0.23 0.27 0.27 0.24 0.25 0.25 – 0.03 0.01 

Lymphography – – – 0.07 0.03 – 0.20 0.20 0.46 0.40 0.58 0.51 0.49 0.50 0.52 – 0.04 0.02 

NewThyroid – – – 0.06 0.02 – 0.16 0.14 0.79 0.65 0.78 0.74 0.45 0.45 0.46 – 0.04 0.01 

Nursery – – – 0.72 0.71 – 35.58 41.24 113.5 91.56 102.5 98.66 91.55 90.17 92.52 – 0.20 0.23 

Page-blocks – – – 0.26 0.18 – 8.39 7.96 13.55 9.93 15.16 12.69 8.52 8.16 8.89 – 0.15 0.09 

Penbased – – – 6.03 6.10 – 1141 1331 560.8 487.7 530.9 484.0 464.1 464.1 478.1 – 13.48 13.41 

Satimage – – – 0.97 0.83 – 56.52 54.47 45.80 43.29 44.21 39.09 43.39 46.21 44.69 – 0.85 1.01 

Segment – – – 4.68 4.87 – 994.3 1001 720.4 583.3 656.4 652.6 571.6 560.2 597.2 – 3.95 4.21 

Shuttle – – – 0.69 0.87 – 112.2 146.1 1145 97.40 865.1 696.8 116.0 123.6 128.5 – 0.44 0.41 

Splice – – – 0.06 0.02 – 0.35 0.32 2.21 2.19 2.41 2.36 2.44 2.50 2.27 – 0.04 0.01 

Tae – – – 0.05 0.01 – 0.11 0.08 2.28 2.34 2.21 2.12 2.40 2.33 2.43 – 0.03 0.01 

Thyroid – – – 0.08 0.05 – 1.21 1.15 14.10 6.93 13.20 12.81 7.04 7.23 6.91 – 0.05 0.01 

Vowel – – – 6.46 6.47 – 1489 1601 981.5 948.9 868.1 915.1 879.5 897.5 894.6 – 17.65 16.77 

Wine – – – 0.05 0.01 – 0.13 0.09 0.55 0.37 0.61 0.52 0.39 0.40 0.39 – 0.03 0.01 

Zoo – – – 0.22 0.17 – 0.82 1.25 0.46 0.61 0.99 1.12 1.18 1.38 1.41 – 0.08 0.10 

Average – – – 1.00 0.98 – 170.8 186.0 172.5 113.1 151.7 143.2 109.3 110.2 113.2 – 1.71 1.66 

Table A.16 

Average accuracy results in test, classifier and instance reduction rates and training times for SVM Poly classifier. 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos 73.75 73.81 73.14 73.14 73.14 75.35 74.01 74.65 74.98 74.60 73.02 72.78 73.43 73.17 73.33 70.53 71.60 71.10 

Balance 91.02 90.55 91.18 91.50 91.50 90.39 91.53 91.53 90.93 90.75 91.52 92.13 91.42 91.74 91.78 91.66 91.66 91.66 

Car 93.58 93.58 93.69 93.69 93.69 94.85 94.82 94.79 95.68 95.60 95.58 95.56 95.67 95.65 95.59 91.78 92.22 92.21 

Cleveland 58.97 59.31 59.32 58.30 58.30 52.49 52.08 51.88 58.36 59.39 59.17 59.57 58.03 58.62 58.83 57.95 57.79 58.75 

Dermatology 94.71 94.99 94.71 94.71 94.42 95.83 95.83 94.64 95.83 95.25 95.83 94.53 95.27 94.20 94.02 95.55 95.55 94.92 

Ecoli 79.37 79.63 78.78 78.72 78.72 76.82 75.73 75.90 77.40 77.81 80.06 80.02 80.03 79.21 78.84 71.51 75.54 75.23 

Glass 62.14 63.14 63.14 61.98 62.91 71.83 66.73 65.63 67.34 66.59 67.41 67.46 66.52 67.22 67.98 55.22 60.88 61.28 

Hayes-roth 54.45 53.74 52.31 52.31 52.31 72.14 70.60 70.60 66.71 67.63 67.96 67.81 67.07 67.53 67.64 56.81 53.08 52.92 

Iris 95.33 95.33 95.33 95.33 95.33 97.33 96.00 96.40 96.67 96.53 96.00 96.27 95.87 96.00 95.87 95.33 95.33 95.33 

Lymphography 82.48 82.48 82.48 82.48 82.48 81.85 80.05 79.87 80.60 79.94 80.12 81.47 80.52 80.53 81.08 83.77 83.37 83.50 

NewThyroid 96.74 97.21 96.74 96.74 96.74 94.88 95.81 95.81 96.28 96.74 96.74 96.28 96.74 96.74 96.37 96.28 96.74 96.74 

Nursery 92.13 92.13 92.13 92.37 92.21 89.59 89.52 89.45 92.28 92.17 92.37 92.41 92.41 92.35 92.35 89.60 90.07 90.07 

Page-blocks 94.90 94.53 94.72 94.60 94.82 93.65 92.88 92.92 94.65 94.94 94.65 94.58 94.61 94.72 94.57 84.13 94.57 94.61 

Penbased 95.92 96.01 95.83 95.83 95.83 96.45 96.44 96.15 95.48 95.32 95.79 95.30 95.44 95.61 95.63 80.11 88.78 88.45 

Satimage 84.48 84.16 84.01 84.01 84.01 84.47 82.67 82.29 84.82 84.57 84.70 84.17 84.79 84.67 84.01 80.60 83.30 83.27 

Segment 92.68 92.90 92.68 92.68 92.68 95.37 95.37 95.41 95.11 94.85 95.15 95.06 94.94 95.25 95.22 89.83 92.97 92.94 

Shuttle 96.55 97.61 96.46 96.46 96.46 98.67 98.83 98.83 98.34 98.43 98.71 98.64 98.61 98.59 98.66 95.59 96.67 96.65 

Splice 80.59 80.91 80.59 80.59 80.59 80.59 80.59 80.59 80.59 79.15 80.59 80.59 79.78 79.90 79.14 80.58 80.58 80.58 

Tae 53.55 53.50 54.86 53.50 53.50 63.51 62.86 62.86 56.86 54.99 56.07 55.14 55.82 56.20 55.67 52.88 49.57 49.57 

Thyroid 96.26 95.56 96.26 96.12 96.12 96.26 96.56 96.84 96.40 96.12 96.65 96.56 96.51 96.42 96.51 96.68 96.68 96.68 
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Table A.16 ( continued ) 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Vowel 71.41 71.82 71.11 71.11 71.11 91.41 92.63 92.55 86.95 86.85 87.49 87.72 87.03 87.21 87.76 60.51 69.70 69.98 

Wine 98.87 98.87 98.87 98.87 98.87 98.33 98.87 98.87 98.33 98.87 98.87 98.87 98.55 98.55 98.55 98.87 98.87 98.87 

Zoo 95.72 95.72 95.72 95.72 95.73 95.72 95.25 95.32 94.78 94.80 95.08 94.02 94.54 94.13 94.13 94.54 94.41 93.59 

Average 84.16 84.24 84.09 83.95 83.98 86.43 85.90 85.82 85.89 85.73 86.07 85.95 85.81 85.84 85.81 81.32 83.04 83.00 

Classifier Reduction 

Autos – – – 0.00 0.53 – 32.27 49.60 – – 42.40 50.93 47.47 50.93 50.67 – 37.87 44.27 

Balance – – – 6.67 6.67 – 20.00 33.33 – – 50.67 52.00 52.00 50.67 52.00 – 0.00 66.67 

Car – – – 0.00 0.00 – 18.00 20.00 – – 26.00 32.00 28.67 28.67 30.67 – 23.33 23.33 

Cleveland – – – 23.60 30.00 – 65.20 68.00 – – 68.80 72.00 71.60 71.60 75.20 – 56.80 59.60 

Dermatology – – – 0.00 37.33 – 8.00 62.67 – – 9.60 65.60 47.47 59.73 66.67 – 17.87 57.33 

Ecoli – – – 1.43 1.14 – 62.71 68.57 – – 77.71 80.00 77.86 78.86 80.29 – 72.00 75.14 

Glass – – – 16.00 28.00 – 56.38 64.38 – – 70.29 73.52 70.48 71.05 72.00 – 59.81 69.14 

Hayes-roth – – – 0.00 6.67 – 40.00 53.33 – – 50.67 58.67 56.00 60.00 62.67 – 26.67 60.00 

Iris – – – 0.00 0.00 – 40.00 66.67 – – 37.33 64.00 36.00 44.00 64.00 – 0.00 33.33 

Lymphography – – – 3.33 13.33 – 24.00 50.00 – – 36.67 56.67 52.00 56.67 56.67 – 7.33 46.67 

NewThyroid – – – 0.00 0.00 – 33.33 33.33 – – 38.67 46.67 40.00 40.00 46.67 – 20.00 26.67 

Nursery – – – 8.00 12.00 – 20.40 60.00 – – 66.40 68.40 67.20 68.00 68.40 – 30.40 44.00 

Page-blocks – – – 20.00 32.00 – 40.40 50.40 – – 58.00 62.40 61.60 61.20 63.20 – 52.80 58.00 

Penbased – – – 0.00 0.00 – 56.80 58.76 – – 57.51 61.96 58.76 59.38 62.22 – 71.73 72.09 

Satimage – – – 0.19 0.19 – 55.43 62.29 – – 66.10 70.29 66.29 69.14 68.57 – 68.76 72.57 

Segment – – – 0.00 0.00 – 48.57 52.19 – – 51.62 52.57 51.24 52.95 50.86 – 54.10 55.24 

Shuttle – – – 0.00 0.00 – 43.20 50.40 – – 49.60 58.80 47.60 51.60 54.80 – 44.00 58.00 

Splice – – – 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 

Tae – – – 13.33 20.00 – 26.67 40.00 – – 29.33 36.00 28.00 28.00 34.67 – 33.33 33.33 

Thyroid – – – 20.00 20.00 – 26.67 33.33 – – 30.67 33.33 30.67 32.00 33.33 – 6.67 20.00 

Vowel – – – 0.00 0.00 – 61.82 63.20 – – 4 4.4 4 42.91 48.44 44.80 40.44 – 77.38 76.95 

Wine – – – 0.00 0.00 – 6.67 33.33 – – 6.67 33.33 26.67 33.33 33.33 – 0.00 26.67 

Zoo – – – 0.00 20.19 – 44.57 80.76 – – 49.90 74.29 60.19 70.67 74.10 – 23.05 71.43 

Average – – – 4.89 9.92 – 36.13 50.20 – – 44.31 54.19 48.96 51.45 53.97 – 34.08 50.02 

Instance Reduction 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos – – – – – – – – 66.91 84.79 74.02 78.37 86.96 88.38 87.09 – 95.49 95.49 

Balance – – – – – – – – 91.75 94.86 92.11 92.05 95.63 95.51 95.45 – 99.40 99.40 

Car – – – – – – – – 93.78 97.95 93.11 92.77 97.84 97.77 97.67 – 99.71 99.71 

Cleveland – – – – – – – – 92.79 93.99 93.35 93.10 94.24 94.09 93.52 – 97.94 97.94 

Dermatology – – – – – – – – 0.00 95.81 12.99 74.98 95.81 95.81 95.71 – 97.95 97.95 

Ecoli – – – – – – – – 88.03 89.84 90.81 91.98 93.09 92.45 93.04 – 97.11 97.11 

Glass – – – – – – – – 83.97 86.49 86.11 85.36 86.90 86.74 87.02 – 96.07 96.07 

Hayes-roth – – – – – – – – 77.22 89.39 77.52 79.96 89.44 90.38 89.96 – 97.24 97.24 

Iris – – – – – – – – 60.70 94.37 57.47 64.27 94.20 94.10 93.43 – 97.56 97.56 

Lymphography – – – – – – – – 65.26 92.91 65.43 69.34 93.42 93.42 93.42 – 96.73 96.73 

NewThyroid – – – – – – – – 53.77 96.40 61.14 62.65 96.05 96.05 95.93 – 98.29 98.29 

Nursery – – – – – – – – 95.92 98.17 96.04 95.49 98.36 98.17 98.02 – 99.52 99.52 

Page-blocks – – – – – – – – 85.74 97.07 87.17 89.86 97.50 97.38 97.45 – 98.87 98.87 

Penbased – – – – – – – – 85.07 88.68 84.50 87.69 90.13 90.87 90.62 – 98.88 98.88 

Satimage – – – – – – – – 92.07 94.48 92.55 93.74 95.09 94.84 94.93 – 98.66 98.66 

Segment – – – – – – – – 89.98 93.16 88.24 90.71 92.47 91.90 90.22 – 99.62 99.62 

Shuttle – – – – – – – – 84.68 97.63 81.28 85.00 96.30 97.02 96.72 – 99.71 99.71 

Splice – – – – – – – – 0.00 97.65 0.00 0.00 97.65 97.65 97.65 – 98.84 98.84 

Tae – – – – – – – – 73.40 79.17 72.13 72.98 78.83 78.57 79.49 – 97.58 97.58 

Thyroid – – – – – – – – 66.08 98.83 73.45 74.62 98.69 98.70 98.70 – 99.48 99.48 

Vowel – – – – – – – – 55.27 56.81 55.20 51.90 59.06 57.83 52.19 – 98.63 98.63 

Wine – – – – – – – – 0.00 95.79 10.38 48.91 95.79 95.79 95.79 – 97.94 97.94 

Zoo – – – – – – – – 64.64 83.02 54.02 69.95 82.66 82.61 81.76 – 92.02 92.02 

Average – – – – – – – – 68.13 91.18 69.52 75.90 91.57 91.57 91.12 – 97.97 97.97 

Training Times 

Autos – – – 0.23 0.17 – 2.03 2.06 2.84 3.75 2.95 2.83 3.41 3.42 3.80 – 0.24 0.11 

Balance – – – 0.08 0.04 – 1.12 1.19 16.91 15.27 18.24 18.64 15.49 16.36 16.90 – 0.18 0.01 

Car – – – 0.27 0.23 – 63.77 68.90 338.6 277.8 345.1 325.8 278.1 286.2 288.2 – 0.21 0.17 

Cleveland – – – 0.17 0.10 – 3.30 2.87 4.88 4.84 5.64 5.93 5.72 5.64 6.33 – 0.18 0.07 

Dermatology – – – 0.27 0.29 – 4.60 8.55 14.11 3.67 11.51 7.17 5.76 6.86 9.15 – 0.21 0.24 

Ecoli – – – 0.72 0.63 – 26.38 26.93 21.76 22.95 19.86 19.28 20.85 21.42 21.15 – 0.58 0.51 

Glass – – – 0.48 0.40 – 5.94 6.59 9.09 8.77 9.14 8.84 10.12 10.07 10.32 – 0.27 0.23 

Hayes-roth – – – 0.05 0.01 – 0.09 0.05 0.38 0.47 0.36 0.33 0.50 0.47 0.45 – 0.02 0.01 

Iris – – – 0.04 0.02 – 0.09 0.07 0.30 0.25 0.37 0.39 0.29 0.31 0.33 – 0.03 0.01 

Lymphography – – – 0.08 0.04 – 0.21 0.23 0.48 0.39 0.56 0.50 0.37 0.37 0.40 – 0.05 0.02 
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Table A.16 ( continued ) 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

NewThyroid – – – 0.10 0.02 – 0.16 0.12 0.73 0.56 0.82 0.80 0.61 0.62 0.62 – 0.09 0.01 

Nursery – – – 0.87 0.87 – 30.38 40.14 104.4 91.84 108.0 94.22 89.13 86.05 87.33 – 0.36 0.37 

Page-blocks – – – 0.23 0.21 – 8.92 10.53 16.01 10.04 15.44 13.63 10.14 10.06 11.18 – 0.18 0.13 

Penbased – – – 5.21 5.34 – 1013 1216 569.6 506.5 533.6 497.2 492.9 471.2 479.8 – 12.05 12.54 

Satimage – – – 0.92 0.81 – 55.19 57.86 55.86 54.02 58.19 55.34 56.35 57.23 58.49 – 0.79 0.71 

Segment – – – 3.97 3.99 – 1399 1425 2288 1972 2007 1845 1760 1677 1827 – 4.32 4.36 

Shuttle – – – 0.84 0.81 – 129.6 146.3 912.0 524.2 814.9 718.4 517.2 500.4 556.0 – 0.46 0.51 

Splice – – – 0.06 0.02 – 0.38 0.35 4.74 0.85 4.01 4.02 1.04 1.04 1.05 – 0.04 0.01 

Tae – – – 0.05 0.01 – 0.10 0.07 1.68 1.72 1.82 1.78 2.03 2.22 2.17 – 0.03 0.01 

Thyroid – – – 0.07 0.04 – 1.49 1.60 24.45 6.52 23.37 21.60 6.96 7.36 7.25 – 0.10 0.02 

Vowel – – – 4.50 4.27 – 1766 1747 1475 1455 1348 1344 1338 1322 1369 – 17.71 17.98 

Wine – – – 0.05 0.01 – 0.13 0.10 0.81 0.28 0.71 0.49 0.31 0.30 0.32 – 0.03 0.01 

Zoo – – – 0.27 0.18 – 0.66 1.18 0.60 0.77 1.12 1.50 1.38 1.64 1.90 – 0.12 0.13 

Average – – – 0.85 0.80 – 196.2 207.1 254.9 215.8 231.8 216.9 200.7 195.1 206.9 – 1.66 1.66 

Table A.17 

Average accuracy results in test, classifier and instance reduction rates and training times for SVM Puk classifier. 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos 69.02 70.27 69.61 69.61 59.61 71.53 71.54 70.81 71.77 70.35 71.77 70.72 70.05 71.61 70.23 67.04 70.12 70.51 

Balance 89.58 88.46 89.58 89.58 91.48 89.58 89.58 89.58 89.58 91.31 89.58 89.99 90.53 90.63 91.14 90.37 90.37 90.37 

Car 64.99 84.84 65.39 65.39 65.39 72.92 72.92 76.42 72.92 73.46 72.92 78.12 72.05 73.74 77.05 70.95 70.95 71.35 

Cleveland 47.53 47.87 47.87 47.87 47.53 48.20 48.41 48.54 48.21 47.95 48.88 48.61 47.67 48.61 49.01 51.90 48.75 48.95 

Dermatology 97.20 97.20 97.20 97.20 95.19 97.19 97.13 94.90 97.19 96.57 97.13 94.91 96.80 96.13 94.84 96.62 96.74 96.41 

Ecoli 77.11 77.11 77.11 77.11 77.11 76.85 77.33 77.21 78.19 78.35 78.71 78.88 78.41 78.66 78.46 81.38 78.52 77.77 

Glass 73.72 74.15 74.62 74.62 74.72 72.78 70.12 69.95 73.19 72.68 73.63 73.90 72.67 72.71 72.20 70.59 71.54 72.66 

Hayes-roth 80.44 80.44 80.44 80.44 79.67 82.80 82.80 82.95 79.70 81.04 80.55 81.00 80.73 81.04 81.45 81.21 81.21 81.21 

Iris 95.33 95.33 95.33 95.33 95.33 94.67 94.67 94.67 94.67 94.93 94.67 94.93 95.20 94.80 95.07 95.33 95.33 95.33 

Lymphography 81.87 81.87 81.87 81.87 72.93 81.87 81.87 63.42 81.87 81.87 81.87 63.80 79.60 72.07 66.96 81.87 81.87 74.98 

NewThyroid 95.81 95.81 95.81 95.81 95.81 95.81 95.81 95.53 95.81 95.72 95.81 95.81 95.81 95.81 95.81 95.81 95.81 95.81 

Nursery 80.33 89.05 80.94 80.94 78.42 85.57 85.57 87.84 85.57 84.09 85.57 87.89 85.18 85.74 87.23 83.49 83.49 83.98 

Page-blocks 94.58 94.76 94.76 94.76 94.75 94.04 93.82 93.67 94.83 94.45 94.53 94.68 94.68 94.68 94.68 93.66 94.52 94.86 

Penbased 97.55 97.64 97.55 97.55 97.55 97.64 96.84 96.70 96.46 95.89 96.72 96.46 96.64 96.59 96.35 80.65 95.21 95.50 

Satimage 84.77 85.70 85.38 85.38 85.26 85.55 85.02 84.71 85.96 85.24 85.30 85.33 85.43 85.34 85.27 85.73 85.40 85.24 

Segment 97.23 97.36 97.32 97.32 97.32 97.23 97.23 97.16 97.29 97.31 97.26 97.17 97.14 97.15 97.16 95.33 97.17 97.15 

Shuttle 99.59 99.63 99.59 99.59 99.59 99.59 99.50 99.47 99.63 99.60 99.50 99.51 99.52 99.50 99.50 99.59 99.59 99.61 

Splice 65.57 75.87 63.38 63.38 59.53 64.31 64.31 44.26 64.31 65.70 64.31 30.88 55.88 56.28 52.94 65.89 65.89 62.30 

Tae 52.81 51.50 52.79 52.79 52.79 64.15 62.55 62.42 56.25 56.76 58.26 57.42 56.46 57.67 56.89 52.15 52.15 52.15 

Thyroid 94.31 93.89 94.31 94.31 94.31 93.89 93.89 93.61 94.02 93.44 93.86 93.69 93.66 93.63 93.60 94.02 94.02 94.30 

Vowel 99.70 99.70 99.70 99.70 99.70 98.99 99.03 98.73 97.66 97.27 98.28 98.16 97.96 97.92 98.04 81.62 96.14 96.04 

Wine 97.19 97.19 97.19 97.19 97.78 97.19 97.19 89.20 97.19 96.95 97.19 89.20 97.08 96.16 89.77 97.19 97.19 97.19 

Zoo 78.06 84.13 82.45 82.45 84.26 87.85 87.85 87.28 87.85 87.85 87.85 89.44 87.97 89.42 90.41 87.85 87.85 89.64 

Average 83.23 85.21 83.49 83.49 82.44 84.79 84.56 82.57 84.35 84.30 84.53 82.20 83.79 83.73 83.22 82.62 83.91 83.62 

Classifier Reduction 

Autos – – – 0.00 50.67 – 23.20 52.00 – – 26.93 54.40 50.67 52.00 53.87 – 40.27 50.67 

Balance – – – 0.00 13.33 – 0.00 6.67 – – 0.00 20.00 0.00 21.33 32.00 – 0.00 0.00 

Car – – – 0.00 0.00 – 0.00 63.33 – – 0.00 58.67 14.00 24.67 60.00 – 0.00 16.67 

Cleveland – – – 0.00 12.00 – 12.00 18.80 – – 17.20 28.80 22.40 26.00 27.60 – 18.40 20.00 

Dermatology – – – 0.00 66.67 – 9.60 79.73 – – 8.00 78.40 65.60 73.07 77.60 – 39.47 73.33 

Ecoli – – – 0.00 0.00 – 56.43 63.14 – – 62.43 72.71 70.29 70.71 71.71 – 60.57 69.29 

Glass – – – 0.00 4.57 – 46.67 59.05 – – 56.38 63.62 60.57 63.81 62.67 – 55.05 64.76 

Hayes-roth – – – 0.00 6.67 – 0.00 33.33 – – 4.00 32.00 2.67 6.67 34.67 – 0.00 0.00 

Iris – – – 0.00 0.00 – 0.00 33.33 – – 0.00 33.33 28.00 33.33 33.33 – 0.00 33.33 

Lymphography – – – 0.00 50.00 – 0.00 70.00 – – 0.00 73.33 56.00 71.33 73.33 – 0.00 63.33 

NewThyroid – – – 0.00 0.00 – 0.00 33.33 – – 0.00 33.33 30.67 33.33 33.33 – 0.00 33.33 

Nursery – – – 0.00 4.00 – 0.00 70.00 – – 0.00 70.00 61.20 70.00 70.00 – 0.00 60.00 

Page-blocks – – – 0.00 32.00 – 23.20 64.00 – – 37.20 55.60 49.60 52.80 57.20 – 35.60 54.00 

Penbased – – – 0.00 0.00 – 55.20 58.31 – – 56.53 59.29 58.76 58.04 60.18 – 67.56 68.53 

Satimage – – – 0.00 0.57 – 50.48 60.38 – – 51.81 63.43 60.95 59.62 63.24 – 54.48 59.62 

Segment – – – 0.00 0.76 – 15.05 56.19 – – 33.90 60.19 56.57 56.76 59.81 – 51.24 54.48 

Shuttle – – – 0.00 20.00 – 34.40 56.00 – – 44.00 53.60 47.60 48.00 53.60 – 19.20 50.00 

Splice – – – 0.00 33.33 – 0.00 66.67 – – 0.00 66.67 52.00 66.67 66.67 – 0.00 60.00 

Tae – – – 0.00 0.00 – 26.67 33.33 – – 1.33 2.67 0.00 0.00 8.00 – 0.00 0.00 

Thyroid – – – 0.00 0.00 – 0.00 33.33 – – 13.33 33.33 33.33 33.33 33.33 – 6.67 20.00 

Vowel – – – 0.00 0.00 – 61.24 70.69 – – 60.36 66.40 63.78 62.40 62.76 – 71.27 71.49 
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Table A.17 ( continued ) 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Wine – – – 0.00 13.33 – 0.00 53.33 – – 0.00 53.33 29.33 36.00 52.00 – 0.00 33.33 

Zoo – – – 0.00 71.43 – 0.00 85.14 – – 0.00 82.48 70.29 80.57 81.52 – 0.00 82.67 

Average – – – 0.00 16.49 – 18.01 53.05 – – 20.58 52.85 42.79 47.85 53.41 – 22.60 45.17 

Instance Reduction 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos – – – – – – – – 37.43 88.30 45.28 75.12 90.56 90.56 90.44 – 95.49 95.49 

Balance – – – – – – – – 0.00 98.80 0.00 34.33 98.80 98.80 98.80 – 99.40 99.40 

Car – – – – – – – – 0.00 99.42 0.00 54.91 99.42 99.42 99.33 – 99.71 99.71 

Cleveland – – – – – – – – 50.71 93.96 58.67 74.98 95.17 95.51 95.56 – 97.94 97.94 

Dermatology – – – – – – – – 9.68 95.81 10.25 73.18 95.81 95.81 95.39 – 97.95 97.95 

Ecoli – – – – – – – – 75.94 92.56 78.64 89.56 94.54 94.22 94.48 – 97.11 97.11 

Glass – – – – – – – – 80.14 90.77 81.43 85.73 92.10 92.19 91.70 – 96.07 96.07 

Hayes-roth – – – – – – – – 61.48 94.32 68.00 73.32 94.32 94.32 92.80 – 97.24 97.24 

Iris – – – – – – – – 0.00 95.33 0.00 47.00 95.33 95.33 95.33 – 97.56 97.56 

Lymphography – – – – – – – – 0.00 93.93 0.00 60.55 93.93 93.93 93.93 – 96.73 96.73 

NewThyroid – – – – – – – – 0.00 96.51 0.00 47.58 96.51 96.51 96.51 – 98.29 98.29 

Nursery – – – – – – – – 0.00 99.23 0.00 61.23 99.23 99.23 99.23 – 99.52 99.52 

Page-blocks – – – – – – – – 73.48 97.46 63.30 72.02 97.66 97.66 97.57 – 98.87 98.87 

Penbased – – – – – – – – 76.46 85.16 81.02 84.93 91.51 91.06 90.27 – 98.88 98.88 

Satimage – – – – – – – – 85.21 95.92 78.64 87.49 97.15 97.08 97.02 – 98.66 98.66 

Segment – – – – – – – – 57.60 98.30 55.84 74.73 99.05 99.06 98.91 – 99.62 99.62 

Shuttle – – – – – – – – 13.06 99.40 67.13 65.49 99.37 99.36 99.36 – 99.71 99.71 

Splice – – – – – – – – 0.00 97.65 0.00 49.72 97.65 97.65 97.65 – 98.84 98.84 

Tae – – – – – – – – 78.55 91.75 80.80 83.47 91.62 92.31 90.69 – 97.58 97.58 

Thyroid – – – – – – – – 39.53 98.96 42.54 54.86 98.96 98.96 98.96 – 99.48 99.48 

Vowel – – – – – – – – 61.07 74.20 71.92 79.00 83.77 83.83 82.55 – 98.63 98.63 

Wine – – – – – – – – 0.00 95.79 0.00 50.83 95.79 95.79 95.79 – 97.94 97.94 

Zoo – – – – – – – – 0.00 82.66 0.00 66.72 82.66 82.66 82.55 – 92.02 92.02 

Average – – – – – – – – 34.80 93.75 38.41 67.25 94.82 94.84 94.56 – 97.97 97.97 

Training Times 

Autos – – – 0.23 0.18 – 1.70 2.00 1.38 1.76 1.83 1.65 1.79 1.82 2.04 – 0.21 0.11 

Balance – – – 0.13 0.04 – 1.34 1.29 36.35 3.00 30.34 24.87 3.62 4.10 4.39 – 0.22 0.02 

Car – – – 0.27 0.23 – 23.24 31.45 1260 40.49 922.1 488.1 61.69 66.35 66.87 – 0.19 0.18 

Cleveland – – – 0.21 0.19 – 4.99 4.98 5.06 5.39 5.69 5.47 5.75 5.65 5.99 – 0.27 0.10 

Dermatology – – – 0.34 0.21 – 2.99 7.05 12.81 3.18 12.20 7.66 4.28 4.60 8.01 – 0.21 0.15 

Ecoli – – – 0.81 0.67 – 23.68 26.27 17.33 17.95 15.49 13.64 15.93 15.72 17.18 – 0.69 0.65 

Glass – – – 0.46 0.36 – 6.11 6.40 3.76 4.73 5.07 5.00 5.85 5.71 6.23 – 0.28 0.20 

Hayes-roth – – – 0.05 0.01 – 0.10 0.07 0.18 0.19 0.21 0.21 0.20 0.21 0.29 – 0.03 0.01 

Iris – – – 0.05 0.02 – 0.11 0.09 0.50 0.20 0.47 0.30 0.23 0.23 0.25 – 0.03 0.01 

Lymphography – – – 0.08 0.03 – 0.14 0.19 0.60 0.20 0.68 0.47 0.29 0.33 0.38 – 0.04 0.02 

NewThyroid – – – 0.10 0.02 – 0.20 0.15 1.53 0.42 1.40 0.91 0.45 0.46 0.48 – 0.09 0.01 

Nursery – – – 0.71 0.70 – 21.18 42.71 597.0 19.15 445.0 224.2 26.80 27.83 29.94 – 0.22 0.26 

Page-blocks – – – 0.23 0.17 – 6.52 8.10 19.23 7.25 22.42 17.58 7.22 7.09 8.06 – 0.17 0.11 

Penbased – – – 4.67 4.37 – 956.6 1056 732.2 617.6 531.3 492.9 425.1 422.1 452.3 – 15.38 14.33 

Satimage – – – 0.96 0.96 – 49.55 53.31 58.07 52.03 53.76 43.22 43.98 44.66 47.67 – 0.87 0.91 

Segment – – – 4.31 4.41 – 613.3 877.5 2123 542.7 1942 1106 388.7 398.4 418.2 – 3.36 3.54 

Shuttle – – – 0.79 1.07 – 126.3 160.2 1834 117.6 985.8 909.0 157.9 152.0 169.8 – 0.54 0.56 

Splice – – – 0.07 0.03 – 0.20 0.27 5.07 0.84 4.94 2.84 0.92 0.96 0.99 – 0.04 0.01 

Tae – – – 0.05 0.01 – 0.10 0.08 0.52 0.69 0.53 0.62 0.80 0.74 0.81 – 0.03 0.01 

Thyroid – – – 0.09 0.05 – 1.54 1.44 36.56 5.21 34.23 28.40 4.88 4.88 4.88 – 0.07 0.02 

Vowel – – – 5.17 5.43 – 1041 1112 1012 942.5 872.7 800.2 769.9 775.5 798.9 – 18.86 19.77 

Wine – – – 0.05 0.02 – 0.13 0.09 0.83 0.27 0.79 0.53 0.30 0.31 0.30 – 0.03 0.01 

Zoo – – – 0.23 0.10 – 0.26 0.92 0.46 0.64 0.60 1.00 1.02 1.27 1.35 – 0.08 0.07 

Average – – – 0.87 0.84 – 125.3 147.5 337.3 103.7 256.1 181.5 83.81 84.39 88.93 – 1.82 1.78 
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Table A.18 

Average accuracy results in test, classifier and instance reduction rates and training times for SVM Fit classifier. 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos 81.31 81.31 81.31 81.31 81.31 81.24 80.91 81.30 81.52 81.90 80.39 79.05 79.01 78.76 79.90 80.09 82.25 81.18 

Balance 98.88 97.60 98.88 98.88 98.88 98.88 98.88 99.36 98.91 99.20 98.82 99.00 99.01 99.13 99.23 98.88 98.88 98.88 

Car 99.48 99.48 99.54 99.54 99.54 99.59 99.59 99.51 99.59 99.24 99.59 99.62 99.28 98.90 97.92 99.25 99.32 99.37 

Cleveland 58.32 59.67 59.67 59.33 59.80 53.84 55.33 55.19 59.28 58.79 57.51 56.51 57.39 57.83 56.70 58.27 57.60 58.40 

Dermatology 96.91 97.20 96.91 96.80 95.95 97.18 97.41 95.48 96.56 96.29 96.63 95.16 96.13 96.07 95.50 95.49 96.68 96.06 

Ecoli 84.06 83.47 83.47 83.47 83.47 78.89 77.31 76.82 81.91 81.14 83.22 82.69 83.09 83.09 83.48 77.16 82.53 82.70 

Glass 66.89 68.23 68.70 68.70 68.70 70.97 70.15 69.96 68.90 68.45 68.93 68.42 67.61 67.75 67.10 65.58 66.56 67.20 

Hayes-roth 79.67 78.90 78.90 78.29 79.05 82.03 82.80 83.23 78.34 79.53 79.81 81.16 80.11 80.71 81.29 80.44 80.44 80.13 

Iris 97.33 97.33 97.33 97.33 97.33 98.00 97.33 97.33 98.00 98.00 98.13 97.60 98.00 98.00 97.87 97.33 97.33 97.33 

Lymphography 82.43 82.43 82.43 82.43 83.05 81.03 79.81 79.01 81.69 81.24 81.79 81.50 81.10 81.76 81.62 83.72 83.72 83.45 

NewThyroid 95.81 95.81 95.81 95.81 95.81 93.95 95.81 96.19 95.91 95.26 95.35 95.53 95.81 95.63 94.70 96.28 96.28 95.81 

Nursery 98.61 98.61 98.61 98.61 98.61 98.61 98.61 97.92 98.61 98.20 98.61 98.46 98.61 98.58 98.61 95.10 95.10 94.33 

Page-blocks 94.92 94.92 95.09 95.09 94.91 94.40 93.60 93.63 95.29 95.01 94.89 94.70 94.78 94.82 94.85 88.86 95.27 95.24 

Penbased 97.55 97.64 97.55 97.55 97.55 97.46 96.71 96.77 96.21 96.20 96.44 96.15 96.39 96.28 96.06 81.83 94.64 94.55 

Satimage 89.92 90.23 90.23 90.23 90.23 88.81 87.94 87.85 89.48 89.14 89.36 89.45 88.96 89.36 89.21 87.28 89.33 89.40 

Segment 97.01 97.01 97.01 97.01 97.04 97.06 96.96 96.84 97.18 97.15 97.04 97.00 97.08 97.00 96.96 95.15 96.93 96.95 

Shuttle 99.72 99.72 99.68 99.68 99.72 99.59 99.50 99.37 99.59 99.64 99.61 99.62 99.56 99.58 99.60 99.63 99.68 99.67 

Splice 90.96 92.19 91.58 91.58 91.58 89.03 89.03 89.03 90.20 90.31 90.44 90.57 90.49 90.37 90.49 91.88 91.88 91.88 

Tae 60.09 60.11 61.42 61.42 61.42 66.75 64.17 64.82 59.61 59.77 58.72 58.59 59.25 58.60 59.00 60.75 60.75 60.75 

Thyroid 96.54 95.84 96.67 96.67 96.67 96.95 97.51 97.65 97.17 97.34 97.04 97.04 97.20 97.18 97.18 96.68 96.81 96.67 

Vowel 99.70 99.70 99.70 99.70 99.70 98.99 98.89 98.73 97.76 97.49 98.18 98.14 97.98 98.12 98.26 81.72 95.54 96.02 

Wine 98.33 98.33 98.33 98.33 98.33 98.33 98.33 98.33 98.33 98.33 98.33 98.33 98.22 98.33 98.33 98.33 98.33 98.33 

Zoo 94.72 94.72 94.72 94.72 95.72 95.72 94.45 91.62 95.01 95.71 95.12 94.64 94.23 93.16 94.19 94.54 94.54 93.52 

Average 89.53 89.59 89.72 89.67 89.76 89.45 89.18 88.95 89.35 89.27 89.30 89.08 89.10 89.09 89.04 87.14 89.15 89.04 

Classifier Reduction 

Autos – – – 0.00 0.00 – 36.80 45.33 – – 29.60 52.27 45.33 49.87 49.33 – 36.80 42.67 

Balance – – – 0.00 0.00 – 0.00 46.67 – – 6.67 46.67 38.67 41.33 46.67 – 6.67 20.00 

Car – – – 0.00 0.00 – 0.00 43.33 – – 0.00 41.33 26.67 34.67 42.67 – 20.00 26.67 

Cleveland – – – 18.00 24.80 – 58.00 59.20 – – 68.40 70.40 68.80 66.80 72.00 – 42.80 44.00 

Dermatology – – – 6.13 30.40 – 33.60 61.33 – – 36.00 65.60 54.67 59.20 66.13 – 37.33 54.93 

Ecoli – – – 0.00 0.00 – 65.43 69.57 – – 73.00 77.57 75.57 75.57 76.29 – 63.14 65.57 

Glass – – – 0.00 5.90 – 52.00 63.05 – – 58.86 65.52 62.86 63.24 65.14 – 60.76 66.67 

Hayes-roth – – – 6.67 13.33 – 6.67 33.33 – – 18.67 33.33 18.67 20.00 33.33 – 0.00 20.00 

Iris – – – 0.00 0.00 – 13.33 60.00 – – 14.67 46.67 30.67 38.67 46.67 – 0.00 33.33 

Lymphography – – – 0.00 10.00 – 24.00 50.00 – – 32.67 54.00 47.33 51.33 52.67 – 6.67 50.00 

NewThyroid – – – 0.00 0.00 – 20.00 33.33 – – 17.33 33.33 16.00 18.67 34.67 – 0.00 20.00 

Nursery – – – 0.00 0.00 – 0.00 70.00 – – 0.00 70.00 64.40 70.00 70.00 – 0.00 60.00 

Page-blocks – – – 0.00 35.20 – 46.80 51.20 – – 48.00 60.40 55.60 59.60 59.20 – 51.20 56.00 

Penbased – – – 0.00 0.00 – 55.64 58.13 – – 56.80 59.38 58.40 56.71 58.49 – 68.53 68.80 

Satimage – – – 0.00 0.57 – 51.05 58.29 – – 62.67 65.14 64.19 64.76 65.33 – 54.86 59.05 

Segment – – – 0.00 0.57 – 40.00 53.14 – – 47.62 59.62 56.76 56.95 60.76 – 54.86 58.10 

Shuttle – – – 0.00 20.00 – 40.40 52.00 – – 39.20 48.00 46.80 48.00 48.40 – 15.60 50.00 

Splice – – – 0.00 0.00 – 0.00 6.67 – – 1.33 4.00 0.00 0.00 1.33 – 0.00 0.00 

Tae – – – 0.00 0.00 – 26.67 33.33 – – 13.33 13.33 13.33 13.33 14.67 – 0.00 0.00 

Thyroid – – – 0.00 0.00 – 26.67 33.33 – – 20.00 26.67 24.00 22.67 24.00 – 20.00 26.67 

Vowel – – – 0.00 0.00 – 62.33 70.18 – – 61.02 65.09 61.82 64.65 65.31 – 69.82 70.91 

Wine – – – 0.00 0.00 – 0.00 33.33 – – 0.00 33.33 29.33 33.33 33.33 – 0.00 33.33 

Zoo – – – 0.00 41.90 – 43.24 80.95 – – 43.81 74.48 67.24 74.29 75.62 – 18.10 73.33 

Average – – – 1.34 7.94 – 30.55 50.68 – – 32.59 50.70 44.66 47.11 50.52 – 27.27 43.48 

Instance Reduction 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos – – – – – – – – 62.64 86.45 50.79 76.03 88.70 89.94 88.07 – 95.49 95.49 

Balance – – – – – – – – 13.46 98.76 14.28 55.26 98.82 98.80 98.79 – 99.40 99.40 

Car – – – – – – – – 0.00 99.42 0.00 54.96 99.42 99.42 99.39 – 99.71 99.71 

Cleveland – – – – – – – – 92.46 93.57 92.56 92.83 93.89 93.55 93.71 – 97.94 97.94 

Dermatology – – – – – – – – 56.22 95.49 56.45 82.58 95.81 95.80 95.67 – 97.95 97.95 

Ecoli – – – – – – – – 90.22 92.18 89.87 91.43 93.37 93.40 93.34 – 97.11 97.11 

Glass – – – – – – – – 79.94 90.82 81.05 84.89 91.72 91.56 91.65 – 96.07 96.07 

Hayes-roth – – – – – – – – 67.28 92.92 70.07 72.97 92.73 92.73 92.05 – 97.24 97.24 

Iris – – – – – – – – 54.30 95.00 56.90 60.33 95.00 95.00 94.83 – 97.56 97.56 

Lymphography – – – – – – – – 65.71 92.52 64.05 65.55 93.21 93.17 93.10 – 96.73 96.73 

NewThyroid – – – – – – – – 39.12 96.51 41.86 51.40 96.47 96.58 96.19 – 98.29 98.29 

Nursery – – – – – – – – 0.00 99.23 0.00 64.96 99.23 99.23 99.23 – 99.52 99.52 

Page-blocks – – – – – – – – 74.87 96.30 82.22 84.21 96.89 97.26 96.69 – 98.87 98.87 

Penbased – – – – – – – – 77.93 87.03 82.10 85.45 90.93 90.16 88.70 – 98.88 98.88 

Satimage – – – – – – – – 93.03 95.25 91.98 93.35 96.59 96.63 96.65 – 98.66 98.66 

Segment – – – – – – – – 84.15 98.00 77.00 89.82 98.76 98.77 98.62 – 99.62 99.62 

Shuttle – – – – – – – – 0.00 99.44 66.53 63.45 99.37 99.37 99.37 – 99.71 99.71 

Splice – – – – – – – – 66.11 97.56 70.31 72.59 97.54 97.57 97.51 – 98.84 98.84 

Tae – – – – – – – – 81.33 93.01 81.73 81.60 91.48 91.74 91.68 – 97.58 97.58 

( continued on next page ) 
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Table A.18 ( continued ) 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Thyroid – – – – – – – – 67.12 98.86 70.86 70.42 98.72 98.73 98.71 – 99.48 99.48 

Vowel – – – – – – – – 63.10 74.95 73.11 75.98 82.40 84.74 82.84 – 98.63 98.63 

Wine – – – – – – – – 0.00 95.79 0.00 48.74 95.79 95.79 95.79 – 97.94 97.94 

Zoo – – – – – – – – 45.93 82.90 45.48 74.11 82.66 82.66 82.66 – 92.02 92.02 

Average – – – – – – – – 55.43 93.56 59.10 73.61 94.33 94.46 94.14 – 97.97 97.97 

Training Times 

Autos – – – 0.54 0.35 – 2.74 2.71 2.71 4.02 3.12 2.68 3.22 3.16 3.13 – 0.41 0.21 

Balance – – – 0.24 0.09 – 1.82 1.67 33.76 4.29 28.96 16.84 4.54 4.57 4.05 – 0.47 0.07 

Car – – – 0.54 0.44 – 49.73 52.34 1415 77.69 899.5 488.1 103.4 105.7 121.5 – 0.20 0.15 

Cleveland – – – 0.52 0.35 – 3.77 3.58 7.20 7.52 7.28 7.32 6.94 6.83 6.39 – 0.39 0.18 

Dermatology – – – 0.65 0.65 – 8.62 11.70 12.04 7.48 9.85 6.90 7.31 7.79 10.04 – 0.25 0.26 

Ecoli – – – 1.59 1.36 – 25.73 28.14 26.36 27.82 15.42 16.18 18.82 17.68 17.56 – 0.80 0.81 

Glass – – – 1.13 0.89 – 7.68 7.53 6.61 7.24 6.00 5.91 6.14 6.45 6.73 – 0.51 0.28 

Hayes-roth – – – 0.14 0.03 – 0.22 0.15 0.42 0.50 0.39 0.36 0.39 0.44 0.46 – 0.12 0.04 

Iris – – – 0.13 0.04 – 0.20 0.18 0.52 0.40 0.42 0.39 0.34 0.37 0.35 – 0.12 0.04 

Lymphography – – – 0.24 0.11 – 0.48 0.45 0.71 0.64 0.73 0.67 0.63 0.62 0.64 – 0.20 0.08 

NewThyroid – – – 0.21 0.05 – 0.36 0.29 1.38 0.81 1.23 0.99 0.78 0.76 0.84 – 0.23 0.05 

Nursery – – – 1.72 1.62 – 29.85 51.29 878.2 29.01 577.1 214.3 35.85 37.12 40.62 – 0.20 0.21 

Page-blocks – – – 0.51 0.47 – 14.04 13.11 24.80 17.66 20.67 17.38 12.76 11.70 14.16 - 0.22 0.15 

Penbased – – – 8.92 8.99 – 1184 1137 1146 967.7 631.5 597.5 545.9 567.7 564.7 – 9.75 9.08 

Satimage – – – 2.08 1.98 – 67.70 67.48 75.27 73.58 41.94 36.96 45.99 48.25 48.82 – 0.79 0.73 

Segment – – – 10.04 8.89 – 949.2 1024 1871 874.3 1486 893.4 580.8 587.9 614.9 – 2.42 2.73 

Shuttle – – – 1.92 2.73 – 182.7 212.3 2426 159.9 1119 1058 199.1 200.7 214.0 – 0.47 0.49 

Splice – – – 0.17 0.05 – 0.68 0.61 2.63 2.14 2.53 2.50 2.13 2.22 2.30 – 0.18 0.05 

Tae – – – 0.13 0.03 – 0.24 0.16 0.70 0.85 0.78 0.84 0.90 1.02 0.98 – 0.14 0.04 

Thyroid – – – 0.17 0.10 – 2.25 2.40 23.94 8.04 23.50 22.50 9.99 9.77 9.45 – 0.12 0.02 

Vowel – – – 8.65 9.04 – 981.1 1108 1587 1367 801.4 772.0 730.3 681.0 715.3 – 13.33 12.64 

Wine – – – 0.12 0.03 – 0.27 0.19 1.09 0.49 0.88 0.51 0.37 0.42 0.41 – 0.14 0.04 

Zoo – – – 0.50 0.36 – 0.98 1.23 0.84 1.28 1.11 1.26 1.26 1.61 1.56 – 0.24 0.23 

Average – – – 1.78 1.68 – 152.8 162.0 414.9 158.3 246.9 181.0 100.8 100.2 104.3 – 1.38 1.24 

Table A.19 

Average accuracy results in test, classifier and instance reduction rates and training times for C4.5 classifier. 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos 76.24 74.96 76.24 76.24 76.24 75.61 77.69 77.12 76.68 75.86 73.33 73.78 75.64 73.93 73.54 67.95 77.15 76.65 

Balance 80.63 81.59 80.63 80.63 80.63 50.03 50.03 50.03 80.63 80.63 80.63 80.63 80.63 80.63 80.63 80.63 80.63 80.63 

Car 94.68 94.50 94.68 94.68 94.68 93.00 92.94 92.94 94.76 94.73 94.55 94.53 94.79 94.71 94.65 91.95 93.51 93.52 

Cleveland 52.55 53.55 52.55 52.22 51.86 53.93 53.99 54.26 53.43 52.48 53.28 52.87 53.26 52.93 52.93 51.52 49.38 49.51 

Dermatology 95.24 98.32 95.24 95.24 95.79 95.52 95.75 95.30 96.03 96.31 95.81 95.26 95.42 95.19 95.48 96.63 95.53 95.08 

Ecoli 81.06 81.94 81.06 81.01 80.89 77.78 77.75 77.40 82.48 82.10 82.86 82.86 82.87 82.88 82.63 80.56 80.52 79.98 

Glass 72.03 71.63 72.03 72.03 72.03 68.19 68.14 68.14 70.00 70.64 70.62 70.73 70.89 71.94 71.10 66.09 69.63 69.73 

Hayes-roth 84.12 84.12 84.12 84.12 83.35 73.52 73.52 73.52 84.12 84.12 84.12 84.12 84.12 84.12 84.12 84.12 84.12 84.12 

Iris 94.67 95.33 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67 

Lymphography 74.50 76.44 74.50 74.50 75.19 68.80 68.80 68.11 75.05 75.19 75.46 75.19 75.19 75.19 75.19 61.46 64.98 64.98 

NewThyroid 91.16 93.02 91.16 91.16 91.16 71.16 71.16 71.16 92.56 93.02 91.81 90.70 90.70 90.70 90.70 90.70 90.70 90.70 

Nursery 89.66 89.81 89.66 89.66 89.66 78.46 78.46 78.46 89.66 89.66 89.66 89.66 89.72 89.69 89.69 82.55 82.55 82.55 

Page-blocks 95.64 95.46 95.64 95.64 95.64 95.64 95.17 95.21 95.82 95.60 95.78 95.78 95.82 95.82 95.82 92.40 95.12 94.91 

Penbased 91.10 91.11 91.10 91.10 91.10 93.37 91.59 91.57 92.55 92.39 91.73 91.95 91.63 91.35 91.81 83.47 89.47 89.31 

Satimage 82.15 82.92 82.15 82.15 82.15 82.31 82.00 82.00 82.18 81.74 81.32 81.45 81.19 81.39 81.04 81.51 81.21 81.21 

Segment 96.28 96.71 96.28 96.28 96.26 97.45 97.03 96.93 97.39 97.07 96.95 96.78 96.69 96.74 96.75 93.94 95.92 96.10 

Shuttle 99.59 99.68 99.59 99.59 99.60 99.72 99.70 99.72 99.63 99.59 99.61 99.63 99.62 99.63 99.63 99.63 99.63 99.67 

Splice 89.69 90.61 89.69 89.69 89.69 90.62 90.62 90.30 90.62 90.56 90.49 90.56 90.49 90.56 90.62 89.71 90.62 90.62 

Tae 54.77 54.77 54.77 54.77 54.77 48.95 49.61 49.61 53.38 54.77 53.94 53.81 54.77 54.77 54.77 54.13 54.13 53.46 

Thyroid 98.89 96.53 98.89 98.89 98.89 98.75 98.75 98.75 98.89 98.89 98.92 98.92 98.97 98.97 98.97 98.89 98.89 98.89 

Vowel 83.43 83.64 83.43 83.43 83.43 90.91 89.31 88.38 88.00 87.66 86.53 86.38 87.13 86.53 86.69 72.12 83.01 83.17 

Wine 92.71 94.98 92.71 92.71 92.71 93.25 93.25 93.30 93.25 93.25 93.25 93.30 92.94 93.30 93.30 93.28 93.28 93.87 

Zoo 92.17 92.17 92.17 92.17 92.17 92.09 91.42 91.04 93.22 93.22 91.31 90.80 90.44 90.79 90.60 93.04 89.94 90.16 

Average 85.35 85.82 85.35 85.33 85.33 81.90 81.80 81.65 85.87 85.83 85.51 85.41 85.55 85.50 85.45 82.65 84.11 84.06 

Classifier Reduction 

Autos – – – 0.00 1.07 – 29.60 42.67 – – 45.07 52.00 46.93 49.60 48.53 – 40.27 45.33 

Balance – – – 0.00 33.33 – 0.00 66.67 – – 49.33 66.67 62.67 66.67 66.67 – 0.00 66.67 

Car – – – 0.00 0.00 – 6.67 6.67 – – 19.33 25.33 21.33 22.00 23.33 – 22.67 23.33 

( continued on next page ) 
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Table A.19 ( continued ) 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Cleveland – – – 2.00 6.00 – 23.60 27.60 – – 37.60 40.80 38.40 38.00 40.80 – 18.80 26.00 

Dermatology – – – 0.00 19.47 – 38.13 64.00 – – 44.00 63.20 57.07 59.47 61.87 – 26.93 57.33 

Ecoli – – – 1.29 4.29 – 52.29 65.00 – – 67.86 75.71 74.71 73.57 75.14 – 51.86 68.71 

Glass – – – 0.00 2.10 – 43.81 59.81 – – 57.90 66.10 63.43 64.00 63.62 – 56.57 67.43 

Hayes-roth – – – 0.00 6.67 – 0.00 33.33 – – 25.33 33.33 25.33 33.33 33.33 – 0.00 33.33 

Iris – – – 0.00 0.00 – 0.00 33.33 – – 8.00 33.33 32.00 33.33 33.33 – 0.00 33.33 

Lymphography – – – 0.00 3.33 – 0.00 53.33 – – 44.00 56.67 52.67 56.67 56.67 – 27.33 60.00 

NewThyroid – – – 0.00 0.00 – 6.67 26.67 – – 9.33 33.33 33.33 33.33 33.33 – 6.67 33.33 

Nursery – – – 0.00 17.20 – 0.00 70.00 – – 58.40 80.00 75.60 80.00 80.00 – 0.00 70.00 

Page-blocks – – – 0.00 9.60 – 34.00 50.00 – – 38.80 52.40 49.60 51.20 51.60 – 45.60 58.00 

Penbased – – – 0.00 0.00 – 57.87 57.42 – – 52.27 53.69 52.62 52.89 52.27 – 66.04 66.67 

Satimage – – – 0.00 0.00 – 46.86 53.33 – – 52.95 56.57 54.48 54.10 54.67 – 48.57 53.33 

Segment – – – 0.00 1.14 – 35.43 42.29 – – 44.57 49.90 47.43 46.29 47.05 – 48.38 48.00 

Shuttle – – – 0.00 12.00 – 18.80 58.00 – – 16.80 63.60 56.00 59.20 64.00 – 6.80 56.00 

Splice – – – 0.00 0.00 – 0.00 13.33 – – 2.67 12.00 6.67 6.67 10.67 – 6.67 6.67 

Tae – – – 0.00 0.00 – 6.67 13.33 – – 0.00 1.33 0.00 0.00 0.00 – 0.00 6.67 

Thyroid – – – 0.00 13.33 – 0.00 20.00 – – 9.33 13.33 13.33 13.33 13.33 – 13.33 20.00 

Vowel – – – 0.00 0.00 – 54.25 57.09 – – 47.42 47.56 45.16 48.00 46.47 – 62.91 62.91 

Wine – – – 0.00 0.00 – 0.00 20.00 – – 0.00 20.00 12.00 20.00 20.00 – 0.00 26.67 

Zoo – – – 0.00 0.00 – 53.52 74.29 – – 49.71 71.81 63.62 70.10 72.57 – 43.24 69.52 

Average – – – 0.14 5.63 – 22.09 43.83 – – 33.94 46.46 42.80 44.86 45.62 – 25.77 46.05 

Instance Reduction 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos – – – – – – – – 73.84 83.59 74.75 78.99 85.82 86.51 85.90 – 95.49 95.49 

Balance – – – – – – – – 71.81 99.20 72.56 74.84 99.20 99.20 99.20 – 99.40 99.40 

Car – – – – – – – – 80.64 99.17 79.86 79.87 99.17 99.09 99.04 – 99.71 99.71 

Cleveland – – – – – – – – 91.23 92.78 90.55 91.52 93.50 93.54 93.35 – 97.94 97.94 

Dermatology – – – – – – – – 49.98 95.73 63.11 75.58 95.28 95.50 95.12 – 97.95 97.95 

Ecoli – – – – – – – – 88.39 93.11 87.57 91.29 94.54 94.39 94.40 – 97.11 97.11 

Glass – – – – – – – – 83.66 89.86 82.24 85.18 91.14 91.33 90.28 – 96.07 96.07 

Hayes-roth – – – – – – – – 54.91 94.32 60.69 62.77 94.32 94.32 94.32 – 97.24 97.24 

Iris – – – – – – – – 51.07 95.00 52.60 48.00 95.00 95.00 95.00 – 97.56 97.56 

Lymphography – – – – – – – – 61.83 93.92 71.02 75.20 94.60 94.66 94.60 – 96.73 96.73 

NewThyroid – – – – – – – – 30.63 95.93 30.49 49.00 96.51 96.51 96.51 – 98.29 98.29 

Nursery – – – – – – – – 76.03 99.42 76.70 83.41 99.42 99.42 99.42 – 99.52 99.52 

Page-blocks – – – – – – – – 57.41 96.53 60.47 65.11 97.35 97.29 97.26 – 98.87 98.87 

Penbased – – – – – – – – 83.13 87.40 83.74 86.06 89.33 89.64 87.93 – 98.88 98.88 

Satimage – – – – – – – – 91.29 94.67 90.04 90.51 94.74 94.62 94.30 – 98.66 98.66 

Segment – – – – – – – – 86.21 97.03 86.46 89.99 96.66 96.90 96.16 – 99.62 99.62 

Shuttle – – – – – – – – 20.01 99.47 21.15 66.62 99.47 99.47 99.43 – 99.71 99.71 

Splice – – – – – – – – 52.47 97.65 59.55 61.79 97.65 97.65 97.51 – 98.84 98.84 

Tae – – – – – – – – 75.58 94.77 79.70 74.77 94.87 94.90 94.83 – 97.58 97.58 

Thyroid – – – – – – – – 43.21 98.89 45.60 45.90 98.96 98.96 98.96 – 99.48 99.48 

Vowel – – – – – – – – 61.84 64.67 65.38 63.71 67.46 69.22 64.92 – 98.63 98.63 

Wine – – – – – – – – 0.00 95.76 0.00 29.68 95.76 95.73 95.73 – 97.94 97.94 

Zoo – – – – – – – – 53.38 82.44 52.80 71.36 82.56 82.56 82.26 – 92.02 92.02 

Average – – – – – – – – 62.55 93.10 64.65 71.35 93.62 93.76 93.32 – 97.97 97.97 

Training Times 

Autos – – – 0.21 0.17 – 2.27 2.53 2.54 3.18 2.60 2.69 3.00 3.19 3.60 – 0.21 0.15 

Balance – – – 0.06 0.03 – 0.79 1.05 11.05 2.84 11.05 9.99 2.96 2.99 3.03 – 0.11 0.01 

Car – – – 0.25 0.21 – 34.88 36.76 208.4 143.8 204.8 204.8 141.5 143.5 147.8 – 0.20 0.15 

Cleveland – – – 0.21 0.17 – 3.90 4.07 6.34 6.50 6.33 6.25 6.92 6.76 7.06 – 0.22 0.11 

Dermatology – – – 0.31 0.37 – 4.64 7.71 8.17 4.05 8.53 6.61 6.14 6.50 7.25 – 0.19 0.22 

Ecoli – – – 0.67 0.59 – 22.00 24.17 13.80 15.12 12.98 12.77 14.09 15.25 15.67 – 0.61 0.67 

Glass – – – 0.43 0.31 – 5.93 6.40 4.62 5.35 5.42 5.26 6.15 6.56 6.49 – 0.32 0.21 

Hayes-roth – – – 0.06 0.01 – 0.08 0.05 0.19 0.19 0.20 0.19 0.20 0.21 0.21 – 0.03 0.01 

Iris – – – 0.05 0.02 – 0.09 0.08 0.26 0.20 0.27 0.27 0.21 0.22 0.22 – 0.03 0.01 

Lymphography – – – 0.07 0.03 – 0.20 0.20 0.33 0.37 0.40 0.36 0.29 0.29 0.30 – 0.04 0.02 

NewThyroid – – – 0.05 0.02 – 0.16 0.13 0.97 0.53 0.93 0.78 0.43 0.43 0.44 – 0.04 0.01 

Nursery – – – 0.50 0.71 – 20.94 31.92 123.7 24.67 110.9 85.77 26.02 27.39 29.22 – 0.18 0.21 

Page-blocks – – – 0.19 0.15 – 7.33 8.65 22.32 10.11 21.15 17.97 8.24 8.38 8.72 – 0.14 0.11 

Penbased – – – 5.91 5.90 – 1239 1437 655.5 596.9 633.4 602.5 554.3 542.4 567.5 – 14.07 17.45 

Satimage – – – 0.91 0.93 – 61.76 60.36 56.86 55.78 57.25 54.05 54.92 55.74 58.15 – 1.03 1.10 

Segment – – – 3.94 4.25 – 1163 1352 1361 812.6 1051 937.4 656.4 643.0 726.7 – 5.26 5.80 

Shuttle – – – 0.76 0.64 – 93.02 134.3 1701 81.76 1386 895.1 111.2 112.9 137.5 – 0.31 0.46 

Splice – – – 0.06 0.03 – 0.39 0.33 2.46 1.05 2.56 2.48 1.21 1.19 1.23 – 0.04 0.01 

Tae – – – 0.05 0.01 – 0.11 0.07 0.35 0.46 0.41 0.42 0.49 0.46 0.54 – 0.03 0.01 

Thyroid – – – 0.09 0.05 – 1.60 1.71 32.91 4.92 29.10 28.40 5.55 5.73 6.07 – 0.06 0.02 

Vowel – – – 7.59 7.48 – 1904 1956 1114 1145 1076 1050 1053 1034 1061 – 30.34 34.36 

Wine – – – 0.05 0.01 – 0.12 0.08 0.76 0.39 0.69 0.55 0.40 0.42 0.41 – 0.03 0.01 

Zoo – – – 0.18 0.11 – 0.61 1.08 0.47 0.70 0.98 1.21 1.31 1.50 1.73 – 0.09 0.12 

Average – – – 0.98 0.97 – 198.6 220.3 231.7 126.8 200.9 170.7 115.4 113.9 121.3 – 2.33 2.66 
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Table A.20 

Average accuracy results in test, classifier and instance reduction rates and training times for Ripper classifier. 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos 85.09 84.42 85.09 85.09 84.48 84.42 84.51 83.55 82.10 81.27 83.18 82.33 82.23 82.83 82.73 80.69 82.77 83.23 

Balance 78.54 78.22 78.54 78.54 78.54 80.95 80.63 80.63 80.82 80.85 80.82 80.92 80.88 80.95 80.76 78.22 78.22 78.22 

Car 92.59 93.52 92.59 92.59 92.59 90.97 90.85 90.85 92.71 92.73 92.71 92.93 92.81 92.78 92.83 92.13 92.13 92.01 

Cleveland 52.18 54.54 52.18 51.84 51.84 53.49 52.62 51.76 52.76 51.01 50.54 51.41 51.63 51.55 51.49 50.46 49.59 51.71 

Dermatology 93.32 94.43 93.32 93.32 93.11 93.33 92.88 93.06 93.68 94.01 93.67 94.01 93.71 93.44 93.45 93.33 93.38 93.83 

Ecoli 78.47 78.74 78.47 78.47 78.47 74.61 75.30 75.35 78.96 78.95 78.59 78.47 78.94 79.49 79.17 79.66 78.77 78.58 

Glass 68.56 68.12 68.56 68.56 68.56 70.80 66.83 66.17 69.60 70.38 69.42 68.75 68.62 68.76 68.16 67.49 67.76 67.48 

Hayes-roth 83.41 83.41 83.41 83.41 83.41 84.89 84.89 84.89 83.38 82.92 83.82 83.51 83.09 82.93 83.07 83.35 83.35 83.35 

Iris 93.33 95.33 93.33 93.33 93.33 94.67 94.67 94.27 94.40 94.00 94.13 94.00 94.67 94.67 94.67 94.00 94.00 93.60 

Lymphography 75.68 75.68 75.68 75.68 75.68 70.13 69.46 69.46 74.17 73.62 73.06 73.07 72.66 73.21 73.21 75.05 75.05 75.05 

NewThyroid 92.09 93.49 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 92.09 

Nursery 90.66 90.81 90.66 90.66 90.51 90.43 90.37 90.27 90.65 90.80 90.51 90.48 90.58 90.58 90.55 88.52 88.54 88.44 

Page-blocks 95.45 95.11 95.45 95.45 95.45 94.92 95.10 95.63 95.31 95.24 95.42 95.35 95.38 95.31 95.45 94.54 94.92 94.99 

Penbased 91.38 91.11 91.38 91.38 91.38 94.19 92.57 92.88 92.42 92.24 91.96 91.57 92.19 91.97 92.17 84.20 88.12 88.30 

Satimage 82.61 82.14 82.61 82.61 82.61 82.77 81.20 80.96 81.42 81.21 81.79 81.30 81.70 81.45 81.48 81.19 80.85 80.76 

Segment 96.58 96.88 96.54 96.54 96.54 96.88 96.76 96.80 96.73 96.78 96.72 96.68 96.70 96.53 96.61 93.60 96.02 96.09 

Shuttle 99.40 99.68 99.40 99.40 99.45 99.59 99.61 99.55 99.51 99.50 99.51 99.51 99.53 99.51 99.47 99.17 99.51 99.51 

Splice 88.11 90.30 88.11 88.11 88.11 87.46 87.46 87.46 86.90 87.72 87.09 87.03 87.40 87.40 87.65 89.36 89.36 89.36 

Tae 55.50 55.57 55.50 55.50 55.50 57.99 56.66 56.66 58.14 57.37 57.22 57.35 57.13 57.39 56.86 56.06 56.06 56.75 

Thyroid 97.78 96.25 97.78 97.78 97.78 97.64 97.64 97.78 98.06 97.84 98.12 98.20 98.09 98.20 97.97 95.85 97.92 97.92 

Vowel 80.20 79.39 79.60 79.60 79.60 91.01 86.77 86.85 87.43 87.39 86.91 86.57 86.77 85.92 86.40 73.54 81.35 80.44 

Wine 96.68 97.22 96.68 96.68 96.68 96.09 96.09 96.09 96.09 97.12 96.09 96.09 96.23 96.23 96.44 96.68 96.68 96.68 

Zoo 94.05 94.05 94.05 94.05 94.05 96.10 95.05 96.38 96.10 96.10 95.22 94.58 94.88 94.15 94.05 93.88 95.05 93.22 

Average 85.29 85.58 85.26 85.25 85.21 85.89 85.22 85.19 85.80 85.70 85.59 85.49 85.56 85.54 85.51 84.05 84.85 84.85 

Classifier Reduction 

Autos – – – 0.00 1.87 – 36.80 45.87 – – 45.33 50.40 51.20 50.67 52.53 – 39.47 46.93 

Balance – – – 0.00 0.00 – 6.67 6.67 – – 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 

Car – – – 0.00 0.00 – 3.33 3.33 – – 15.33 22.00 18.00 18.00 22.00 – 0.00 3.33 

Cleveland – – – 2.00 2.00 – 26.00 34.80 – – 28.40 30.00 30.00 30.40 30.40 – 14.00 20.00 

Dermatology – – – 0.00 4.53 – 34.13 47.73 – – 37.60 57.07 43.20 46.13 54.93 – 41.60 48.80 

Ecoli – – – 0.00 0.00 – 59.86 62.00 – – 70.00 74.43 72.14 72.29 73.86 – 59.86 63.71 

Glass – – – 0.00 0.00 – 53.71 65.71 – – 61.33 65.14 64.19 65.33 65.71 – 54.29 61.90 

Hayes-roth – – – 0.00 0.00 – 0.00 33.33 – – 28.00 33.33 28.00 33.33 33.33 – 0.00 33.33 

Iris – – – 0.00 0.00 – 0.00 33.33 – – 4.00 33.33 32.00 33.33 33.33 – 0.00 33.33 

Lymphography – – – 0.00 0.00 – 10.67 33.33 – – 28.00 54.67 39.33 55.33 56.67 – 0.00 50.00 

NewThyroid – – – 0.00 0.00 – 0.00 26.67 – – 0.00 26.67 26.67 26.67 26.67 – 0.00 26.67 

Nursery – – – 0.00 6.00 – 23.20 48.00 – – 41.60 62.00 57.60 61.60 61.60 – 33.20 48.00 

Page-blocks – – – 0.00 0.00 – 14.00 50.00 – – 22.80 52.40 46.40 49.60 52.80 – 35.20 56.00 

Penbased – – – 0.00 0.00 – 54.22 55.47 – – 45.96 47.64 46.40 46.04 49.42 – 64.27 64.27 

Satimage – – – 0.00 0.00 – 44.76 52.57 – – 56.19 58.10 57.33 58.67 59.43 – 50.48 53.90 

Segment – – – 0.00 0.00 – 39.81 47.62 – – 42.10 48.00 45.14 44.95 48.57 – 47.81 48.19 

Shuttle – – – 0.00 17.20 – 20.40 52.00 – – 36.40 60.00 52.00 60.80 61.60 – 18.00 56.00 

Splice – – – 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 

Tae – – – 0.00 0.00 – 6.67 6.67 – – 0.00 0.00 0.00 0.00 0.00 – 0.00 6.67 

Thyroid – – – 6.67 13.33 – 0.00 26.67 – – 8.00 26.67 26.67 26.67 26.67 – 20.00 26.67 

Vowel – – – 0.00 0.00 – 56.65 58.40 – – 45.67 46.47 43.71 45.96 45.45 – 65.02 65.60 

Wine – – – 0.00 0.00 – 0.00 13.33 – – 0.00 13.33 6.67 6.67 13.33 – 0.00 13.33 

Zoo – – – 0.00 2.29 – 37.71 70.48 – – 40.19 73.14 60.95 68.76 72.76 – 34.29 69.52 

Average – – – 0.38 2.05 – 22.98 38.00 – – 28.56 40.64 36.85 39.18 40.92 – 25.11 38.96 

Instance Reduction 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data–set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Autos – – – – – – – – 69.36 82.76 72.70 76.16 89.23 87.91 88.59 – 95.49 95.49 

Balance – – – – – – – – 90.94 97.60 91.79 91.88 97.50 97.52 97.52 – 99.40 99.40 

Car – – – – – – – – 85.86 99.22 87.27 84.91 99.18 99.22 99.16 – 99.71 99.71 

Cleveland – – – – – – – – 90.10 91.78 90.34 89.80 92.32 92.54 92.34 – 97.94 97.94 

Dermatology – – – – – – – – 71.09 94.94 65.71 83.44 95.71 95.71 95.45 – 97.95 97.95 

Ecoli – – – – – – – – 90.81 92.19 91.16 91.31 93.98 94.12 93.68 – 97.11 97.11 

Glass – – – – – – – – 82.01 88.50 84.74 86.32 90.31 90.42 89.48 – 96.07 96.07 

Hayes-roth – – – – – – – – 59.95 94.32 61.58 65.13 94.32 94.32 94.32 – 97.24 97.24 

Iris – – – – – – – – 20.30 95.00 20.23 50.00 95.00 95.00 95.00 – 97.56 97.56 

Lymphography – – – – – – – – 49.65 93.93 58.08 78.83 93.93 93.93 93.93 – 96.73 96.73 

NewThyroid – – – – – – – – 0.00 96.51 0.00 39.16 96.51 96.51 96.51 – 98.29 98.29 

Nursery – – – – – – – – 66.34 98.83 64.03 71.58 99.01 98.92 98.92 – 99.52 99.52 

Page-blocks – – – – – – – – 28.12 97.06 37.16 71.67 97.48 96.49 97.16 – 98.87 98.87 

Penbased – – – – – – – – 82.68 86.50 81.82 81.28 83.61 83.91 85.45 – 98.88 98.88 

Satimage – – – – – – – – 90.17 93.84 88.90 90.75 94.08 93.56 93.88 – 98.66 98.66 

Segment – – – – – – – – 86.60 97.13 82.38 86.90 97.45 97.47 97.79 – 99.62 99.62 

Shuttle – – – – – – – – 49.93 99.41 57.80 72.69 99.43 99.43 99.40 – 99.71 99.71 

Splice – – – – – – – – 51.79 97.49 64.54 63.78 97.52 97.52 97.49 – 98.84 98.84 

Tae – – – – – – – – 84.59 92.00 84.06 83.96 92.53 92.69 92.00 – 97.58 97.58 

( continued on next page ) 
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Table A.20 ( continued ) 

Accuracy 

WV NMC with k = 1 DT 

CS CS IS CS_IS CS 

Data-set Comb DCS f A f AC f A f AC f A f AI f A f AC f AI f AIC f ACI f A f AC 

Thyroid – – – – – – – – 20.01 98.80 20.52 41.89 98.92 98.91 98.92 – 99.48 99.48 

Vowel – – – – – – – – 65.26 66.31 65.71 66.18 66.15 66.94 66.61 – 98.63 98.63 

Wine – – – – – – – – 10.33 95.79 9.47 29.02 95.79 95.79 95.50 – 97.94 97.94 

Zoo – – – – – – – – 22.56 82.29 47.19 68.66 82.45 82.41 81.37 – 92.02 92.02 

Average – – – – – – – – 59.50 92.70 62.05 72.41 93.15 93.10 93.06 – 97.97 97.97 

Training Times 

Autos – – – 0.21 0.15 – 2.26 2.44 2.79 3.81 2.26 2.34 2.94 2.95 3.08 – 0.20 0.13 

Balance – – – 0.08 0.04 – 1.28 1.23 12.06 9.04 12.96 12.65 10.74 10.88 10.77 – 0.13 0.02 

Car – – – 0.29 0.22 – 42.22 41.42 159.6 141.7 161.8 164.7 150.4 147.5 151.0 – 0.19 0.17 

Cleveland – – – 0.21 0.13 – 3.94 3.77 7.95 7.38 7.63 6.81 8.21 8.35 8.30 – 0.23 0.12 

Dermatology – – – 0.33 0.39 – 11.47 12.91 7.46 6.97 10.42 9.09 8.73 9.67 11.56 – 0.33 0.32 

Ecoli – – – 0.76 0.69 – 30.54 34.23 16.86 17.14 16.27 17.58 18.54 18.23 18.94 – 0.81 0.89 

Glass – – – 0.39 0.27 – 5.54 6.08 6.28 7.94 6.13 6.42 7.15 6.95 7.31 – 0.32 0.24 

Hayes-roth – – – 0.05 0.02 – 0.09 0.06 0.20 0.18 0.22 0.21 0.20 0.21 0.22 – 0.03 0.01 

Iris – – – 0.05 0.01 – 0.09 0.08 0.38 0.19 0.38 0.27 0.21 0.21 0.22 – 0.03 0.01 

Lymphography – – – 0.07 0.03 – 0.30 0.28 0.34 0.22 0.53 0.42 0.31 0.36 0.37 – 0.04 0.02 

NewThyroid – – – 0.06 0.02 – 0.19 0.17 1.41 0.49 1.27 0.90 0.46 0.45 0.46 – 0.04 0.01 

Nursery – – – 0.66 0.73 – 43.94 59.86 211.7 63.06 204.0 143.5 51.83 53.43 54.48 – 0.35 0.37 

Page-blocks – – – 0.25 0.17 – 7.76 8.96 28.37 9.11 28.05 19.68 10.35 11.71 11.66 – 0.16 0.11 

Penbased – – – 6.00 5.88 – 1540 1281 651.8 593.2 658.1 649.7 633.3 624.8 617.5 – 18.25 21.84 

Satimage – – – 1.11 1.01 – 63.20 69.85 70.21 65.58 56.54 57.05 61.02 61.41 64.22 – 1.04 1.16 

Segment – – – 4.13 3.94 – 1028 1096 1248 764.9 1180 1031 638.1 633.9 686.9 – 4.81 4.82 

Shuttle – – – 0.85 1.04 – 110.9 148.6 1226 79.92 1019 689.6 121.5 122.2 137.1 – 0.34 0.53 

Splice – – – 0.06 0.03 – 0.39 0.34 2.54 1.33 2.41 2.41 1.50 1.53 1.54 – 0.04 0.01 

Tae – – – 0.06 0.01 – 0.12 0.08 0.56 0.71 0.63 0.57 0.71 0.76 0.79 – 0.03 0.01 

Thyroid – – – 0.09 0.05 – 1.46 1.62 40.66 5.68 38.25 30.98 5.44 5.60 5.70 – 0.06 0.02 

Vowel – – – 8.88 9.47 – 1753 1911 1052 1032 1036 1031 1048 1026 1052 – 25.22 22.74 

Wine – – – 0.05 0.01 – 0.13 0.09 0.75 0.34 0.66 0.56 0.40 0.41 0.38 – 0.03 0.01 

Zoo – – – 0.19 0.15 – 0.62 1.11 0.54 0.72 0.99 1.35 1.26 1.53 1.74 – 0.09 0.10 

Average – – – 1.08 1.06 – 202.0 203.5 206.4 122.2 193.2 168.7 120.9 119.5 123.7 – 2.29 2.33 
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