Information Fusion 36 (2017) 26-51

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus Y.

NMC: nearest matrix classification - A new combination model for
pruning One-vs-One ensembles by transforming the aggregation

problem

@ CrossMark

Mikel Galar®¢*, Alberto Fernindez®, Edurne Barrenechea?®¢, Humberto Bustince®¢,

Francisco Herrera®4

3 Departamento de Automdtica y Computacion, Universidad Piblica de Navarra, 31006, Pamplona, Spain

b Department of Computer Science, University of Jaén, 23071, Jaén, Spain

¢ Department of Computer Science and Artificial Intelligence, University of Granada, 18071, Granada, Spain

d Faculty of Computing and Information Technology - North Jeddah, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
e Institute of Smart Cities (ISC), Universidad Ptiblica de Navarra, 31006, Pamplona, Spain

ARTICLE INFO

Article history:

Received 22 July 2015

Revised 15 February 2016
Accepted 3 November 2016
Available online 4 November 2016

Keywords:

Multi-class classification
One-vs-One
Decomposition strategies
Classifier selection
Ensemble pruning

ABSTRACT

The One-vs-One strategy is among the most used techniques to deal with multi-class problems in Ma-
chine Learning. This way, any binary classifier can be used to address the original problem, since one
classifier is learned for each possible pair of classes. As in every ensemble method, classifier combina-
tion becomes a vital step in the classification process. Even though many combination models have been
developed in the literature, none of them have dealt with the possibility of reducing the number of gen-
erated classifiers after the training phase, i.e., ensemble pruning, since every classifier is supposed to be
necessary.

On this account, our objective in this paper is two-fold: (1) We propose a transformation of the ag-
gregation step, which lead us to a new combination strategy where instances are classified on the basis
of the similarities among score-matrices. (2) This fact allows us to introduce the possibility of reducing
the number of binary classifiers without affecting the final accuracy. We will show that around 50% of
classifiers can be removed (depending on the base learner and the specific problem) and that the confi-
dence degrees obtained by these base classifiers have a strong influence on the improvement in the final
accuracy.

A thorough experimental study is carried out in order to show the behavior of the proposed approach
in comparison with the state-of-the-art combination models in the One-vs-One strategy. Different classi-
fiers from various Machine Learning paradigms are considered as base classifiers and the results obtained
are contrasted with the proper statistical analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

modeling is not straightforward. A well-known example of this sit-
uation is Support Vector Machine (SVM) [5].

Multi-class problems are present in many real-world applica-
tions, for example, the severity grading of diseases [1], fingerprint
classification [2], the classification of micro-arrays [3] or people
tracking [4] to name a few. Although the number of problems that
can be viewed as multi-class ones is increasing, binary classifiers
are much more studied in the literature. This is due to the fact that
there are some classifier learning paradigms in which multi-class
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One simple, yet effective way to address multi-class problems
in these cases is by means of decomposition strategies [6]. In or-
der to do so, multi-class problems are divided into easier-to-solve
binary classification problems following the divide-and-conquer
paradigm. As a result, a set of classifiers is learned, each one being
responsible for a binary problem. In the testing phase, the outputs
of all the classifiers for a given instance are aggregated to make the
final decision [7]. Therefore, the difficulty in addressing the multi-
class problem is shifted from the classifier itself to the combination
stage.

Among decomposition strategies, the One-vs-One (OVO)
[8] scheme stands out as one of the most popular techniques.
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Its usage to model multi-class problems with SVMs in very well-
known software tools such as WEKA [9], LIBSVM [10] or KEEL [11],
has made it prevalent in many applications. However, it should
be mentioned that this strategy can be included in the broader
framework of Error Correcting Output Codes (ECOC) [12,13] In
0OVO, the multi-class problem division is carried out in such a
way that a new binary problem is generated for each possible
pair of classes. This is why it is also known as pairwise learning
[14]. Nevertheless, OVO is not only useful to deal with multi-class
problems using classifiers without inherent multi-class support,
but it also provides a better classification accuracy than addressing
the problem directly using multi-class classifiers [15-19].

In the combination phase, the way in which the problem is di-
vided has to be taken into account as a key factor. Several com-
bination methods for the OVO strategy can be found in the lit-
erature [18], among which a voting strategy is the most intuitive
one (each classifier votes for its predicted class and the most voted
one is given as output). Nonetheless, more elaborated approaches
have also been developed attending at the inherent difficulties in
the OVO decomposition [20-22], although the same accuracy is
achieved by simpler alternatives such as the Weighted Voting (WV)
[14] or probability estimation methods [23]. An exhaustive empir-
ical study on the combination methods for OVO can be found in
[18], where the presence of non-competent classifiers in this strat-
egy was stressed as a promising research line to improve previous
combination models. Non-competent classifiers are those that have
not been trained with instances from the class to which the exam-
ple to be classified belongs to. Recent developments have shown
that an effective handling of these classifiers allows one to improve
the final classification accuracy rate [24,25].

In this paper our aim is to look at the aggregation phase from
a different perspective, which may also take advantage of non-
competent classifiers rather than avoiding them. Specifically, in
our contribution we transform this aggregation by thinking of the
outputs of the classifiers as new inputs to another classification
problem, which is used to determine the final class labels of the
dataset. This view is similar to Stacking [26], although neither a
cross-validation procedure is followed (the same base classifier is
used for all subproblems) nor a classifier is trained. Stacking and
OVO together have been previously considered but with different
purposes to ours, focusing on Stacking with cross-validation using
different base classifiers [27] and making use of OVO as a Stack-
ing method [28]. In our case, the main difference appears at the
combination method. Once the outputs for every training instance
are obtained (each one stored in a score-matrix), new instances
are simply classified by the most similar score-matrices to that ob-
tained for the new instance, that is, the k Nearest Neighbors (kNN)
[29] classifier is applied over the score-matrices (neither requiring
a cross-validation nor the usage of different types of base clas-
sifiers). This is why we named it as Nearest Matrix Classification
(NMCQ).

We will show that by itself this strategy can be competitive and
even superior to the state-of-the-art aggregations, although its be-
havior strongly depends on the underlying classifier and the qual-
ity of its confidence degrees. This fact together with the added
storage necessity lead us to introduce prototype (in this case,
score-matrix) selection methods [30]. This way, only those score-
matrices coming from examples that are useful for the classifica-
tion are maintained in the reference set for NMC classifier, reduc-
ing the storage necessity and improving the classification perfor-
mance as a result of being more robust with respect to the differ-
ent base classifiers.

More interestingly, this novel view allows us to introduce prun-
ing techniques [31] into OVO, which have not been previously con-
sidered, since all classifiers are supposed to be necessary. Prun-
ing techniques for ensembles aim at reducing the pool of classi-

fiers, decreasing the storage necessity, improving performance and
reducing testing times. Our new perspective on the combination
phase turns the pruning (i.e., classifier selection) into a feature se-
lection problem [32] for the kNN classifier. We will show that al-
most half of the classifiers in OVO can be safely removed for test-
ing time (depending on the problem and the base classifier) and
that if the appropriate confidence estimates are given by the un-
derlying classifier, accuracy can also be boosted in some cases. In
order to carry out the feature and instance selection, we consider
the usage of a Genetic Algorithm (GA), which has been previously
applied with success [33-35].

All these aspects are analyzed in a thorough experimental
study, where twenty three real-world problems from the KEEL
data-set repository! [11,36] are tested using several well-known
classifiers from different Machine Learning paradigms as base
learners, namely, SVMs [5], decision trees [37,38], instance-based
learning [29], and decision lists [39]. Different evaluation criteria
are considered to measure the performance, storage reduction and
training times. The conclusions obtained are supported by the ap-
propriate statistical tests as suggested in the literature [40,41]. In
addition to NMC classifier, state-of-the-art combinations for OVO
[18], including a novel Dynamic Classifier Selection (DCS) approach
[24] are included in the empirical comparison.

The contributions of this paper are:

e A new combination strategy for OVO is proposed by transform-
ing the aggregation problem.

o The possibility of carrying out pruning in OVO ensembles is in-
troduced for the first time.

e An exhaustive experimental study showing the existence of re-
dundant (non-necessary) classifiers in OVO is developed, which
opens up new future research lines in the topic.

The rest of this paper is organized as follows. Section 2 recalls
several concepts used in this work. Afterwards, Section 3 discusses
other works related to our proposal. Next, Section 4 presents our
NMC proposal to prune OVO ensembles. The set-up of the exper-
imental framework is presented in Section 5, whereas the experi-
mental analysis is carried out in Section 6. Finally, Section 7 con-
cludes the paper and presents the future research lines.

2. Preliminaries

This section recalls the OVO scheme, including existing com-
binations. Afterwards, DTs and their application in OVO are ex-
plained.

2.1. The One-vs-One scheme

In the OVO strategy, a m-class problem is divided into m(m —
1)/2 two-class problems (one for each possible pair of classes).
Each binary classification sub-problem is addressed by a different
classifier, which is built using training instances only from the two
classes considered. This fact is what causes the non-competence
problem [14,18,24,25] in testing phase.

An easy way of organizing the outputs of the base classifiers for
an instance is by means of a score-matrix R, from which different
combination models can be applied:

1 http://www.keel.es/dataset.php.
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where r;; € [0, 1] represents the confidence of the classifier dis-
criminating classes i and j in favor of the former; whereas the con-
fidence for the latter is computed by rj; =1 —r;; (if the classifier
does not provide it?).

2.2. Combination strategies for the One-vs-One scheme

Several strategies for combining the OVO classifiers have been
proposed in the literature aiming at achieving the highest accuracy
addressing different features of this inference step. In [18], we de-
veloped a thorough review and a experimental comparison consid-
ering the most-recent and well-known techniques. From this study,
we were able to select the better suited combination strategies for
different paradigms of classifiers, which are presented hereafter.

o Weighted Voting strategy (WV) [14] uses the confidence of each
base classifier in each class to vote for it. The class with the
largest total confidence is the final output class:

Z Tij (2)

Class = arg max
i=1,... 1< ji<m

o Non-Dominance Criterion (ND) [42] considers the score-matrix
as a fuzzy preference relation, which must be normalized. This
method predicts the class with the largest degree of non-
dominance, that is, the class which is less dominated by all the
remaining classes:

i=1,....m 1<j#i<m

Class = arg max {1 — max r},-} (3)

where r}i corresponds to the normalized and strict score-
matrix.
o Wuet al.Probability Estimates by Pairwise Coupling approach
(PE) [23] aims to estimate the posterior probabilities p =
(p1,..., pm) of all the classes starting from the pairwise class
probabilities. Finally, the class having the largest posterior prob-
ability is predicted:
Class = arg max p; (4)
i=1,...m
The posterior probabilities (p) are computed solving the follow-
ing optimization problem:

m m
mpin > > (rjipi—r1ijpj)® subjectto > p;
i=1 1<j#i<m i=1

= 1,p;>0,forallie{1,...,m}. (5)

A more extensive and detailed description of these methods is
available in [43].

In addition to these methods, we will consider a novel ap-
proach, in which we also aimed at getting rid of the non-
competent classifiers by means of a DCS strategy [24]. In that
work, only the classifiers whose classes were in the neighborhood
of the instance were considered. The size of the neighborhood used
was large (3 - m) compared with the usually considered one for
kNN [30]. This work is related to our model since a classifier se-
lection is carried out, but in NMC this selection is static (what is
known as pruning), and hence equal to all the instances, whereas
in DCS it is dependent on each instance.

Remark 1. All these methods use exactly the same score-matrix
values (Eq. (1)) to compute the final class, but they can obtain
different results. We must emphasize the importance of this fact,
since it allows us to fix the score-matrices of each base classifier,

2 If the classifier provides both confidence degrees, one must ensure that they are
normalized such that rj; +rj; = 1.

applying the combinations to the same outputs; hence, all the re-
sults shown in the experimental analysis will be due to the com-
binations themselves and not due to differences on the predictions
of the base classifiers.

2.3. Decision templates for the One-vs-One decomposition

Decision Templates (DTs) [44] are a well-known fusion strat-
egy in classifier ensembles, which are related to our proposal, and
this is why we also consider them in the experimental study. They
are based on computing the average output of each classifier for
the examples of each class, storing them in different templates. Af-
terwards, new examples are classified by finding the most similar
template to the outputs given by the classifiers for the instance.

This philosophy can be translated to decomposition models
even though they were designed to work with classical ensembles.
In OVO, DTs can be computed as the average score-matrices for
all the instances of each class (only the upper or lower triangular
matrix is needed, since both are complementary). That is, score-
matrices (R) act as what were originally named as Decision Profiles
(DPs) whose averaging per class form the DTs.

In order to classify a new instance, its DP is obtained by sub-
mitting it to all classifiers. This DP is then compared with all the
DTs using a similarity measure (distance from the template), taking
the predicted class from the DT whose similarity is the highest:
Class = arg 4n]1ax J (DT;, DP(x)) (6)

1=1,..., m
where x is the instance to be classified, DT; is the DT of the ith
class, DP(x) is the DP obtained for instance x and J is any similar-
ity measure. In this paper, we have considered the most popular
similarity measure, which is based on the Euclidean distance:

L
(0T, DP(9) =1~ 1 S (DT(J) ~ d;(x))? (7)
=1

where L is the number of classifiers (m(m —1)/2 in OVO), DT;(j)
is the jth element of the ith DT (corresponding to classifier j) and
dj(x) is the output of the jth classifier for instance x. We will show
that this representation of the outputs can also be used to prune
OVO ensembles.

3. Related work

Ensemble pruning techniques are designed to reduce the stor-
age necessity, testing times and even increase the accuracy of clas-
sifier ensembles [31,45,46]. These methods assume the fact that ev-
ery classifier is able to distinguish all the classes of the problem,
which in decomposition strategies does not occur. In fact, whereas
in classical ensembles the base classifiers usually vary in terms of
the input space, in decomposition strategies their differences ap-
pear at the output space. This is why these types of ensemble
pruning techniques are not directly applicable to these strategies.
Moreover, in the OVO approach all the classifiers are assumed to
be needed, since each classifier is responsible for a different pair
of classes.

In other respect, the non-competent classifier handling in OVO
has been shown to be important in order to improve the accu-
racy of this model, showing that their presence could harm some
of the predictions [24,25]. A DCS model was developed in [24],
where only those classifiers that were most probably competent
for the instance to be classified were used. In [25], classifiers were
not completely removed, but weighted depending on the distance
between the instance and each class. With a similar idea, reliability
maps were proposed in the wider framework of ECOC [47]. Other-
wise, Garcia-Pedrajas [48] combined the OVA and OVO strategies
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avoiding the non-competence problem. A similar combination was
also developed in [49].

Other approaches in OVO have dealt with the problem of reduc-
ing the number of classifier tested when an instance is to be clas-
sified. This are the cases of DDAG [22] and BTC [20]. Another ef-
ficient model to test classifiers in ECOC framework was developed
in [50] (and hence, applicable to OVO), where exactly the same ac-
curacy as that obtained with the original model was achieved, but
with a great reduction in the number of classifiers tested. Differ-
ent to our proposal, these models did not considered the removal
of classifiers before the testing phase.

Also dealing with the efficiency of ECOC ensembles, Rocha and
Goldestein [51] developed a method where starting from a random
ECOC, the classifiers were added and removed from the ensemble.
Focused on data-sets with large number of classes they were able
to achieve a low decrease in accuracy while maintaining the effi-
ciency due to the low number of classifiers considered. However,
in most of the data-sets where OVO was applied, OVO itself was
capable of achieving the best performance in spite of its simplicity.
Moreover, the authors showed how OVO lost precision as classi-
fiers were randomly removed from it. Nevertheless, we will show
that this was due to the combination used, since OVO allows for
removing some of the classifiers without loss of accuracy, if the
combination is properly designed. Other similar techniques mainly
focused on reducing the number of classifiers needed in problems
with a large number of classes are those focused on hierarchical
approaches [52,53], in which the reduction is achieved by an in-
crease in building complexity (of the hierarchy and the classifiers
themselves).

Stacking [26] can also be related to our approach as mentioned
in the introduction. In this technique a meta-classifier is learned
on top of the outputs of the classifiers in a multiple classifier sys-
tem (MCS). Our aim differs from stacking in the sense that it aims
to correct and learn from the errors of the classifiers, whereas we
assume that instances of the same classes should behave similarly,
giving similar outputs for the same base classifiers (even if they are
not competent). In [28], Stacking was not used to combine the OVO
classifiers, but the OVO strategy was used in a multi-layer Stack-
ing procedure, and more specifically, in its first layer in order to
improve the classical Stacking model for multi-class problems. Fi-
nally, the approach considered in [27] was different, the authors
considered an OVO model where base classifiers coming from dif-
ferent machine learning paradigms were considered for each sub-
problem. Then, Stacking was considered to combine such a great
number of classifiers (m(m — 1)/2 - L, where L is the number of dif-
ferent base classifiers considered). Their aim was to find the best
combination of base classifiers for each pair of classes, and even
though a selection procedure was established, few classifiers were
removed and many more than in standard OVO were finally con-
sidered. In these approaches focused on improving accuracy con-
sidering Stacking, different base classifiers are required in order to
apply the cross-validation procedure. In contrast, our method fo-
cuses on pruning classifiers from the standard OVO models, where
the same base classifier is used to classify every pair of classes.

4. NMC: nearest matrix classification

In this section, we present our new combination proposal
for the OVO strategy. First, we introduce the basic idea of the
method and the hypothesis that has motivated our approach
(Section 4.1). Afterwards, we present three possible ways in which
it can be extended to select the appropriate instances (Section 4.2),
prune classifiers (Section 4.3) or doing both tasks simultaneously
(Section 4.4). Finally, we describe the details of the optimization
procedure followed to carry out the proposed reduction approach
(Section 4.5).

4.1. Basic idea and hypothesis

Our idea comes from the basic assumption that instances be-
longing to the same class should obtain similar score-matrices af-
ter being submitted to all the classifiers. In fact, we assume that
this should also occur even in the case that classifiers are non-
competent for the instances.

With this basic hypothesis one can leave classical aggregations
aside and focus on predicting the class based on the score-matrices
of the training examples. Hence, once the score-matrix for a new
instance is obtained, the k-NN of the matrix (the k most simi-
lar matrices) are computed. The predicted class is obtained from
the most repeated class among these neighbors (whose associated
class is the one of the original instance, i.e., the classical aggrega-
tion step is no longer applied).

Notice that in this view of the score-matrix, it contains redun-
dant information, since each element r; can be computed from rj;
as rjj = 1 —rj;. For this reason, we only consider the upper trian-
gular matrix (also reducing the dimensionality of the problem). For
an easier understanding of the problem, each score-matrix is trans-
formed to a vector of length m(m — 1)/2 as follows:

- a2 - Tm
21 - o Tom ~
R = . . =R
'm1 T'm2 T -
= (2. T 123 - T - Tam1ym) (8)
Therefore, for each training instance x;, whose class label is y;
(for i=1,...,n, being n the number of examples in the training

set), the corresponding score-matrix R(X;) is transformed to a vec-
tor R(x;), which becomes a new instance with class y; for the ref-
erence set of NMC. A new instance X whose score-matrix R(X) is
transformed to a vector R(x) is classified by the predominant class
in its k closest I?(x,-) vectors. As we are dealing with numerical val-
ues, we consider the Euclidean distance to compute them:

L
dRX), RX)) = | D (Rj(xi) — R;(%))> (9)

j=1

where L is the length of each vector (number of classifiers) and
ﬁj (x) is the jth element of vector R. The main difference with re-
spect to DTs is that in this case we have as many templates as
examples instead of having a unique template for each class.

It is clear that this fact adds complexity to the aggregation
phase, since it involves the computations of the kNNs. In order to
alleviate this negative effect, we propose to carry out an instance
selection (IS) mechanism, also known as prototype selection (ex-
plained in Section 4.2). In particular, for this purpose we have se-
lected an hybrid method to reduce the reference set in order to
make kNN faster (condensing), but also to remove instances hin-
dering the kNN classification (editing) based on genetic algorithms
(GAs) [30].

Furthermore, not only can we perform an IS, but this new rep-
resentation also allows us to carry out a feature selection (FS) on
the reference set [32]. In fact, this is how we are able to prune OVO
ensembles, since removing features from this set is equivalent to
removing classifiers. This FS also referred to as classifier selection
(CS) is explained in Section 4.3.

It may become evident that we can also perform both tasks
at the same time, which is explained in Section 4.4. In the three
cases, we have opted for a GA named as CHC (Crossover elitism
population, Half uniform crossover combination, Cataclysm muta-
tion) [54] due to its excellent behavior in this context [30,33,35].
It is one of the best performing models for these purposes and it
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Fig. 1. Schematic representation of the three reduction methods (IS, CS and IS_CS).

can scale to hundreds of thousands of instances with the existing
implementations for large-scale data-sets [34].

As a summary, one can think of a matrix where each vector R
is a row and each column refers to a classifier. IS removes rows
from the matrix, whereas CS removes columns. Likewise, doing
both tasks at the same time, rows and columns are simultaneously
removed, highly reducing the testing times and storage necessities.
With this view, IS and CS using GAs can be easily explained as
shown in Fig. 1 (where chromosomes encode whether instances or
features are considered as explained in next sections).

4.2. Instance selection or score-matrix selection

Instance selection (IS), also known as prototype selection, is a
well-known technique mainly used for the kNN classifier (we refer
the reader to [30] for an exhaustive review, including an experi-
mental study). The aim of these methods is two-fold: (1) to reduce
the reference set; (2) to improve accuracy. In our case, we look for
performing both objectives simultaneously, and hence we focus on
hybrid methods.

Among hybrid IS methods, we have opted for the one based
on a GA called CHC, since it offers a great compromise between
accuracy and reduction (as concluded in the experimental study
by Garcia et al. [30]). Moreover, it has been successfully applied in
different scenarios for IS [35,55,56] and there are implementations
of this algorithm that scale up to millions of instances [34], even
though we focus on its original implementation, which is enough
for the purpose of this work.

The idea behind this algorithm consists of finding the minimum
subset of instances achieving the maximum accuracy. In order to
do so, chromosomes in the GA encode which instances are selected
for the reference set (left side of the scheme in Fig. 1). Hence, a

binary chromosome represents a solution:
CIS:(CwaxzyCXnyMH-?CXN)’ (10)

where cy, € {0, 1}, indicating whether instance x; is included or not
in the reference set (N being the number of instances).

As in every GA, the population formed of chromosomes is
evolved based on the quality of each member, which is measured
by the so-called fitness function (f). The main objective of the opti-
mization process is to maximize the predictive accuracy of the en-
semble (i.e., the percentage of correctly classified instances). How-
ever, the objective of reducing instances from the training set can
also be taken into account in the fitness function. For this reason,
we study the effect of different fitness functions in the experimen-
tal study to analyze how forcing reduction affects accuracy. These
functions are described hereafter:

1. Acc (f): The instance subset maximizing accuracy is sought.

2. AccRedIS (fy): A lexicographical order is established. Accuracy
is taken into account first. If there is a tie, the chromosome
with the greatest instance reduction is selected.

Whereas reduction can be directly computed from the chromo-
some (as the percentage of 0’s), accuracy needs to be computed by
kNN using the instances selected as reference set . In order to do
so, as usual, accuracy is computed by leave-one-out. Details about
CHC are given in Section 4.5, since the three models make use of
it. Notice that in all cases, if ties still continue, they are solved in
favor of the parents or randomly otherwise.

4.3. Feature selection or classifier selection (pruning)

In this case, the idea is to remove those classifiers which do not
contribute to the correct classification or that can be redundant.
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As in the case of IS, there are a number of FS methods in the lit-
erature [32]. For this purpose, we have followed the same scheme
as in IS, which has also been previously applied with success [34].
We consider the CHC algorithm to find the best feature (classifier)
subset, performing a CS via FS. Once again we consider a binary
chromosome to encode the solution (right side of the scheme in
Fig. 1), where each gene (cy,) indicates whether a classifier/feature
is selected (1) or not (0):

Ces = (CXIHCXZHCX35CX45'~'7CXL)7 (11)

where L is the number of classifiers, that is, m(m —1)/2.

In order to evaluate each chromosome, we can also focus only
on accuracy, but it is interesting to force the reduction of classifiers
if possible. Hence, we also consider another fitness function only
based on accuracy.

3. AccRedCS (fs): A lexicographical order is established. Accuracy
is taken into account first. If there is a tie, the chromosome
with the greatest classifier reduction is selected.

The computation of the fitness function is done in the same
manner as in IS case.

4.4. Combining instance and feature selection

Finally, it can be easily observed that both models can be com-
bined and performed simultaneously looking for the feature and
instance subset with the best interaction. With this aim, both chro-
mosomes are considered as only one where genes are concate-
nated and the evolution process is performed in the same manner.

In this case, we can also mix the previous fitness functions
to analyzed whether forcing instance or classifier reductions hin-
der accuracy or even if they can help improving the generalization
ability. Therefore, two more fitness functions are considered:

3. AccRedCSRedIS (fac;): A lexicographical order is established. Ac-
curacy is taken into account first. If there is a tie, the chromo-
some with the greatest classifier reduction is selected. If the tie
still continues, the best chromosome is decided with respect to
instance reduction.

4, AccRedISRedCS (f4c): A lexicographical order is established. Ac-
curacy is taken into account first. If there is a tie, the chromo-
some with the greatest instance reduction is selected. If the tie
still continues, the best chromosome is decided with respect to
classifier reduction.

4.5. CHC genetic algorithm

As we have already mentioned, we make use of the well-known
CHC algorithm due to its good behavior in the topic [34,35,55,56],
which leaves the study of the behavior of other models as well as
the usage of different fitness functions for future works. In CHC
algorithm, all the M chromosomes in the population and their off-
spring (obtained by the crossover operator) are put together; then,
the next population is formed of the M best individuals (in terms
of the fitness function considered). In this GA, instead of using a
mutation operator as other GAs do, an incest prevention mecha-
nism combined with a re-initialization of the population is used
to promote diversity (as explained hereafter). The rest of the nec-
essary components to design the whole process are: initialization
of the initial population, crossover operator, incest prevention and
restarting mechanisms, given that the representation of the so-
lutions (encoding of the chromosomes) have been previously ex-
plained for each case.

1. Initial population: The initial population is formed of random
chromosomes except for one that is taken to have all its genes
set to 1 in order to represent the original model (without any
selection).

2. Crossover Operator: The Heterogenous Uniform Crossover (HUX)
is used, since we are considering binary chromosomes. This op-
erator interchanges exactly half of the different genes between
both individuals selected. In the case of its application to IS
and CS, the original HUX is modified, decreasing the probabil-
ity of including instances or features. In this manner, each time
HUX switches a gene on, the gene is switched off with a certain
probability (whose recommended value is 0.25).

3. Incest prevention: The crossover between too similar parent are
prevented, that is, between parents having their Hamming dis-
tance (divided by two) below a threshold value T. This thresh-
old is initially established to be N./4 being N. the length of the
chromosome. If no individuals are recombined, then the thresh-
old value is reduced by one.

4. Restarting mechanism: The mutation operator is replaced by this
mechanism in CHC aiming at avoiding local optima. When the
threshold value T reaches a zero value, all the chromosomes
in the population, except for the best one (following an eli-
tist scheme), are eliminated and generated again. New chromo-
somes are created by randomly changing 35% of the genes of
the best chromosome. As in the crossover operator, the likeli-
hood of including instances or features is decreased by giving
less probability to set a gene on than to set it off (the same
value as before is used, 0.25).

The optimization process is finished when any of the follow-
ing stopping criteria are met: the number of evaluations or the
number of restarting procedures without improvements reach their
maximum values. Their set-up is detailed in the experimental
framework (Section 5.1). Finally, the whole training set is used to
carry out the optimization procedure.

5. Experimental framework

In this section, the set-up of the experimental framework used
to develop the empirical comparison in Section 6 is introduced.
The base classifiers considered and their configuration are de-
scribed first (Section 5.1). Afterwards, the best combinations for
each base classifier [18] that will be the baseline for the compar-
isons as explained in Section 2.2 together with the configuration
for the DCS approach [24] are recalled (Section 5.2). Next, details of
the data-sets are given (Section 5.3), and the statistical tests used
to make the comparison are explained (Section 5.4). Finally, details
on the methodology followed throughout the experimental study
are given (Section 5.5).

5.1. Base learners and parameter configuration

In order to show the usefulness of our combination for the OVO
strategy allowing for classifier pruning, we have selected several
well-known Machine Learning algorithms as base learners:

e kNN - k-Nearest Neighbors [29].

e SVM - Support Vector Machine [5].

e (4.5 - decision tree [37].

o Ripper - Repeated Incremental Pruning to Produce Error Reduc-
tion [39].

These learning algorithms were selected due to their good be-
havior in a large number of real-world problems. Moreover, in case
of SVM there is not a multi-category approach established yet, al-
though there are several attempts [57].

The majority of the combination methods in OVO make use of
the confidence degrees of the outputs of each base classifier. These
confidence degrees are obtained for each classifier as follows:
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Table 1
Parameter specification for the base learners employed in the experimentation and CHC al-
gorithm.
Algorithm  Parameters
3NN k = 3, Distance metric = HVDM
SVMpoly C = 1.0, Tolerance Parameter = 0.001, Epsilon = 1.0E-12
Kernel Type = Polynomial, Polynomial Degree = 1
Fit Logistic Models = True
SVMpye C = 100.0, Tolerance Parameter = 0.001, Epsilon = 1.0E-12
Kernel Type = Puk, PukKernel @ = 1.0, PukKernel o = 1.0
Fit Logistic Models = True
SVME; C = {0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}, Tolerance Parameter = 0.001
Epsilon = 1.0E-12, Kernel Type = {Polynomial, RBF, Puk}
Polynomial Degree = 1, RBF y = {0.001, 0.01, 0.1, 1}
PukKernel @ = 1.0, PukKernel o = 1.0, Validation = 5-fold cross-validation
Fit Logistic Models = True
C4.5 Prune = True, Confidence level = 0.25
Minimum number of item-sets per leaf = 2
Ripper Size of growing subset = 66%, Repetitions of the optimization stage = 2
CHC Population size (M) = 50 individuals, Evaluations = 40000

Restarting procedures without improvement = 3

e k NN - Distance-based confidence estimation.

k ¢
21 a
k 1
=13

Confidence = (12)

where d, is the distance between the input pattern and the Ith
neighbor and e; = 1 if the neighbor [ is from the predicted class
and 0 otherwise. Note that when k > 1, the probability estimate
depends on the distance from the neighbors, hence the estima-
tion is not restricted to a few values.

e SUM - Probability estimates obtained by the SVM logistic
model [58].

e (4.5 - Accuracy of the leaf making the prediction, i.e., the num-
ber of correctly classified training examples divided by the total
number of covered train instances.

o Ripper - Accuracy of the rule used in the prediction (the same
computation as in C4.5 considering rules instead of leafs).

In some of the combination strategies ties might occur. As
usual, in those cases the majority class is predicted. If the tie con-
tinues, the class is selected randomly.

The parameters used in each base classifier are shown in
Table 1, which also includes the parameters of the CHC algorithm.
These values are common for all problems, and they were selected
according to the recommendation of the corresponding authors,
which is also the default setting of the parameters included in the
KEEL® software [11,36], which we have used to develop our exper-
iments. In the case of SVMs, three configurations are considered.
In the first two ones, the parameter C and the kernel function are
fixed in order to study the behavior of our strategy with differ-
ent configurations, which should address for the robustness of the
proposal (in the sense that despite how fine-tuned are the base
classifiers, its behavior is maintained with respect to the others).
In the third configuration, we considered a fine-tuned SVM (with
respect to the accuracy obtained by OVO using an internal 5-fold
cross-validation scheme). In this way, we are able to analyze the
behavior of NMC with highly fitted classifiers with different pa-
rameters for each data-set and with a little room for improvement.
We treat nominal attributes in SVM as scalars to fit the data into
the systems using a polynomial kernel.

We acknowledge that the tuning of the parameters in all the
classifiers for each particular problem could lead to better results,
however, we preferred to maintain a baseline performance on each
method as the basis for comparison. Since we are not comparing

3 http://www.keel.es.

base classifiers among each other, our hypothesis is that the meth-
ods (combinations) that win on average on all problems would also
win if a better setting is performed. Moreover, when methods are
not tuned, winner methods tend to correspond to the most robust
ones, which is also desirable. Anyway, given that in SVMs tuning
can lead to highly improved results and it is a commonly consid-
ered process, we have also considered SVM; in order to show that
the usefulness of the method remain unchanged in this scenario.

5.2. Combinations considered

We use a different combination for each base classifier to ana-
lyze their behavior in comparison with our proposal since the best
combination model depends on the base classifier. For this reason,
we follow our findings from our previous work [18] and use the
same representatives for each base classifier as those selected in it
(the best ones).

The following combinations are considered:

o kNN - ND (Non-Dominance criterion).

e SVM - PE (Wu et al. [23] Probability Estimates by Pairwise Cou-
pling).

e C4.5 - WV (Weighted Voting strategy).

o Ripper - WV (Weighted Voting strategy).

In addition, we have also considered the DCS approach [24],
which outperformed most of them in the same experimental
framework as the one we are considering. We use the same param-
eter value for k as the one in the original DCS paper, i.e., k=3-m
(3 times the number of classes) is considered as the neighborhood
to select competent classifiers (notice that this k is not the one
used in our proposal).

5.3. Data-sets

We have used twenty-three data-sets from the KEEL data-set
repository* [36]. Data-sets with a large representation of different
number of classes and attributes have been considered. Their prop-
erties are summarized in Tables 2 and 3. In the former table for
each data-set, the number of examples (#Ex.), the number of at-
tributes (#Atts.), the number of numerical (#Num.) and nominal
(#Nom.) attributes, and the number of classes (#Cl.) are shown. In
the latter one, the number of instances from each class in each

4 http://www.keel.es/dataset.php.
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Table 2
Summary description of data-sets.

Data-set #EX. #Atts.  #Num.  #Nom.  #Cl.
Balance 625 4 4 0 3
Hayes-roth 132 4 4 0 3
Iris 150 4 4 0 3
NewThyroid 215 5 5 0 3
Splice 319 60 0 60 3
Tae 151 5 5 0 3
Thyroid 720 21 21 0 3
Wine 178 13 13 0 3
Car 1728 6 0 6 4
Lymphography 148 18 3 15 4
Cleveland 297 13 13 0 5
Nursery 1296 8 0 8 5
Page-blocks 548 10 10 0 5
Shuttle 2175 9 9 0 5
Autos 159 25 15 10 6
Dermatology 358 34 1 33 6
Glass 214 9 9 0 7
Satimage 643 36 36 0 7
Segment 2310 19 19 0 7
Zoo 101 16 0 16 7
Ecoli 336 7 7 0 8
Penbased 1100 16 16 0 10
Vowel 990 13 13 0 1

data-set is presented. As it can be observed, they comprise a num-
ber of situations, from totally balanced data-sets to highly imbal-
anced ones, besides the different number of classes.

The performance estimates were obtained by means of a 5-
fold stratified cross-validation (SCV). From our point view, 5-fold
SCV is more appropriate than a 10-fold SCV in the current frame-
work, since using smaller partitions there would be more test sets
that will not contain any instance from some of the classes. More
specifically, the data partitions were obtained by the Distribution
Optimally Balanced SCV (DOB-SCV) [59], which aims to correct the
data-set shift (when the training data and the test data do not fol-
low the same distribution) that might be produced when dividing
the data. In order to address the stochastic nature of GAs, the 5-
fold SCV is repeated five times with different seeds.

Table 3
Number of instances per class in each data-set.

5.4. Statistical tests

In order to assess the results obtained by each model, we have
considered the accuracy rate as performance measure. Additionally,
we will consider the reduction rate of instances and features (num-
ber of score matrices and binary classifiers, respectively) together
with the training times spent in obtaining such reduced sets. Test-
ing times have also been computed, but we have observed that
the maximum testing time per instance is much lower than one
millisecond (almost 10 times lower in most data-sets). Such a fast
testing times show the practical utility of the model, and the fact
that it does not cause a significant increase in the testing times.
For this reason and for the sake of brevity, we have not included
the detailed testing times in the paper and we focus on the cost
of the learning stage. Finally, experiments have been carried out
under a computer with an Intel(R) Core(TM) i7 CPU 930 micro-
processor (4 cores/8 threads, 2.8 GHz, 8 MB Cache) with 24 GB
of DDR2 RAM memory and using CentOS 6.4. The maximum Java
heap space reserved for each execution was only 1GB.

In order to make a fair comparison of the performance of the
classifiers, we perform the corresponding statistical analysis as rec-
ommended in the literature [40,41]. Hence, non-parametric sta-
tistical tests are considered (for more information please refer to
http://sci2s.ugr.es/sicidm/).

Different types of comparisons are carried out in the exper-
imental study. When multiple methods are compared, we use
Friedman aligned-ranks test [60] as a non-parametric statistical
procedure to perform comparison among a set of algorithms. Then,
if this test detects significant differences among them, we check if
the control algorithm (the best one) is significantly better than the
others (that is, 1 x n comparison) using Holm post-hoc test [61].

Moreover, we consider the average aligned-ranks of each algo-
rithm (used in the Friedman aligned-ranks test) in order to com-
pare the behavior of each algorithm with respect to the others.
These rankings are obtained computing the difference between the
performance obtained by the algorithm and the mean performance
of all the algorithms in the corresponding data-set. These differ-
ences are ranked from 1 to k - n (being k the number of data-
sets and n the number of methods), assigning the corresponding
rank to the method from which the difference has been computed.
Hence, the lower the rank is, the better the method is. At last, the

Data-set #EX. #Cl. G G G Cy Cs Cs G Cs (@) Cio Cn
Balance 625 3 288 49 288

Hayes-roth 132 3 51 51 30

Iris 150 3 50 50 50

NewThyroid 215 3 30 35 150

Splice 319 3 77 77 165

Tae 151 3 49 50 52

Thyroid 720 3 17 37 666

Wine 178 3 59 71 48

Car 1728 4 1210 384 65 69

Lymphography 148 4 2 81 61 4

Cleveland 297 5 160 54 35 35 13

Nursery 1296 5 1 32 405 426 432

Page-blocks 548 5 492 33 8 12 3

Shuttle 2175 5 1706 2 6 338 123

Autos 159 6 3 20 48 46 29 13

Dermatology 358 6 m 60 71 48 48 20

Glass 214 7 70 76 17 0 13 9 29

Satimage 643 7 154 70 136 62 71 0 150

Segment 2310 7 330 330 330 330 330 330 330

Zoo 101 7 41 20 5 13 4 8 10

Ecoli 336 8 143 77 2 2 35 20 5 52

Penbased 1100 10 115 114 114 106 114 106 105 115 105 106
Vowel 990 11 90 90 90 90 90 90 90 90 90 90 90
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average ranking of each algorithm in all data-sets can be computed
to show their global performance.

Additionally, we consider the Wilcoxon paired signed-rank test
[62] as a non-parametric statistical procedure when we need to
perform comparisons between two methods.

5.5. Methodology of analysis

Given the large amount of combination tested in the experi-
mental study, they are first outlined in this section. We should re-
call that for each base classifier considered, we include the follow-
ing methods in the comparison.

1. Comb: The best combination/aggregation method for the base
classifier (see Section 5.2).

2. DCS: The combination based on DCS for the OVO strategy [24].

3. WV: An adaptation of the original WV method, which uses the
arithmetic mean of the outputs for the class instead of the sum.
Hence, the result is equivalent to the original WV when no clas-
sifiers are removed, but it allows us to consider the removal
of classifiers using this strategy (since it is no longer affected
by the numbers of elements that are summed up). As a result,
we have the original WV (NoGA) and WV with classifier pruning
(CS), which uses the same GA as NMC.

4. NMC: Our proposal based on the usage of kNN for combining
classifiers. In this study, k =1 is considered, even though we
should emphasize the fact that preliminary results were equiv-
alent with different k values. We have four possible models in
this case.

e NoGA: NMC is applied using all the instances and classifiers.

o CS: Only classifier (feature) selection is considered.

« IS: Only instance selection is considered.

o CS_IS: Both instance and classifier selections are performed
simultaneously.

5. DT: Decision templates where one template per class is com-
puted (see Section 2.3). In this case, we have also added the
possibility of reducing the number of classifiers with the same
GA as NMC (CS), maintaining also the original one named as
NoGA.

In those cases where classifier selection is performed (WV, NMC
and DT) two fitness functions are considered (fs and fac). In the
case of NMC, we also consider the fitness functions fy, faic and
Jacr in the corresponding cases. Recall that all the fitness functions
that forcing instance or classifier selection considers a lexicograph-
ical order where accuracy is taken into account first and better re-
ductions are ranked higher in the case of ties.

In the cases of WV and DTs with CS, the CHC algorithm is used
exactly as in the case of NMC except for the computation of the
outputs, which is made using WV and DTs, respectively, taking
only the classifiers selected into account.

6. Experimental study

In this section our aim is to evaluate the usefulness of our pro-
posal. For each model, we obtained the results of accuracy, clas-
sifier reduction rate (RedCS), instance reduction rate (RedIS) and
training times in the cases where the GA is executed. We should
recall that testing times are not included since all of them are
below 1 millisecond for each instance (in all of the methods and
data-sets).

On account of all these possibilities we have divided the statis-
tical analysis carried out into four phases:

o Phase 1: Study of the best fitness function. We study the effect
of the different fitness functions that do not only take accuracy
into account. We will show the fact that CS in WV does not

work properly, different from our model and contrary to the
case of DTs, where it is mandatory in order to be competitive
(Section 6.1).
o Phase 2: Study of the best NMC model. We analyze the results of
the different models from our proposal looking at their advan-
tages and disadvantages (Section 6.2).
Phase 3: NMC vs. WV (without pruning) vs. DTs. We test the be-
havior of the three models allowing for CS, which in the case
of WV does not work (Section 6.3).
o Phase 4 - Final: NMC vs. state-of-the-art combinations (Comb
and DCS). We show that NMC can be competitive with the
state-of-the-art combinations, with the additional advantage of
being able to reduce the number of classifiers (Section 6.4).
Discussion: At last, the main points of this study are summa-
rized in Section 6.5.

Before starting with the analysis, we show the overall accuracy
rates in test, instance and classifier reduction rates and training
times in Table 4. The detailed results of all the methods and data-
sets are presented in Appendix A.

Along this section we use the two statistical tests mentioned.
They will be presented as follows:

o Friedman aligned-rank tests: It is used when more than two
methods are compared. A test is carried out for each base clas-
sifier. An example can be observed in Table 5. In these tables,
the aligned-ranks obtained by each method (row) in each base
classifier (column) are shown (the lower the better), that is, a
test is run for each column. Near the ranks obtained by each
method the p-value given by the Holm post-hoc test is shown
in brackets, which compares a control method (the best one,
i.e,, the one with the lowest rank in a column) against the rest.
Wilcoxon tests: It is used to compare a pair of methods. A test
is also performed for each base classifier (column), as it can be
observed in Table 6. For each comparison the ranks obtained
by each method are presented in the first row (the greater the
better) and in the second row the p-value associated with the
comparison is shown.

In both tables a ‘+' close to the p-value means that statistical
differences are found in the comparison with @ = 0.1 (90% confi-
dence) and a **’ with o = 0.05 (95% confidence).

6.1. Study of the best fitness function

In this Section we analyze the behavior of the different fitness
functions considered, for each one of the models in which they are
used: WV, NMC (CS, IS, CS_IS) and DTs. This analysis is carried out
separately for each model.

e WV. Two fitness functions are considered for the WV with
CS (fa and fyc). Looking at Table 4, one can observe that ac-
curacy is almost the same in both cases except for the case
of SVMp,,. However, even though the absolute differences are
rather small there is a tendency to decrease accuracy when CS
is used, and more if it is forced. Anyway, these almost equal
global accuracies can be explained by the fact that classifier re-
duction is almost non-existent with fy, being 3NN and SVMp,
the cases with the greatest reduction with 10% and 5%, respec-
tively. When forcing reduction (fyc), these rates are increased
around 5%, with the greatest improvement in SVMpy, (where
indeed the largest loss of accuracy is produced). The real dif-
ferences among these models can be better analyzed following
the statistical tests shown in Table 5. Statistical differences are
only found in the case of SVMp,, using fsc. Hence, when reduc-
tion is forced to some extent accuracy is affected. In the rest
of the cases, whenever some reduction has been achieved ac-
curacy also drops, but due to the low reduction rates obtained
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Table 4
Average accuracy results in test, classifier and instance reduction rates and training times for the six classifier tested. The best result in each row is highlighted in bold-face.
Wv NMC with k=1 DT
cs (& IS CS_IS (&
Classifier Measure Comb DCS fa fac fa fac fa fai fa fac far farc fact fa fac
3NN Accuracy 86.34 86.93 86.21 8593 8593 8255 82.15 81.92 86.91 86.81 86.86 86.86 86.96 86.90 86.74 83.44 85.85 85.81
RedCS - - - 959 13.78 - 3190 4343 - - 4189 5014 46.63 4858 4995 - 37.86 4739
RedIS - - - - - - - - 7529  91.82 77.74  80.86 92,58  92.67 9245 - 9797 9797
Time - - - 1.00 098 - 170.8 186.0 172.5 1131 151.7 143.2 109.3 110.2 113.2 - 1.71 1.66
SVMPoly Accuracy 84.16 8424 8409 8395 8398 8643 8590 85.82 85.89 8573 86.07 8595 85.81 85.84 8581 8132 83.04 83.00
RedCS - - - 4.89 992 - 36.13 5020 - - 4431 5419 48.96 51.45 5397 - 34.08 50.02
RedIS - - - - - - - - 68.13 91.18 69.52  75.90 91.57 91.57 9112 - 9797 9797
Time - - - 085 0.80 - 196.2 2071 2549 215.8 231.8 216.9 200.7 195.1 206.9 - 1.66 1.66
SVMpy Accuracy 83.23 85.21 8349 8349 8244 8479 84.56 82.57 8435 8430 84.53 8220 83.79  83.73 83.22 82.62 8391 83.62
RedCS - - - 0.00 1649 - 18.01 53.05 - - 20.58 52.85 42.79 47.85 5341 - 22.60 4517
RedIS - - - - - - - - 3480 9375 38.41 67.25 94.82 9484 9456 - 9797 9797
Time - - - 087 0.84 - 1253 147.5 337.3 103.7 256.1 181.5 83.81 8439 8893 - 1.82 1.78
SVME;¢ Accuracy 89.53 89.59 89.72 89.67 89.76 89.45 89.18 88.95 89.35  89.27 89.30  89.08 89.10 89.09 89.04 8714 89.15 89.04
RedCS - - - 1.34 794 - 30.55 50.68 - - 3259 50.70 4466 4711 5052 - 2727 4348
RedIS - - - - - - - - 55.43 93.56 59.10 73.61 94.33 94.46 9414 - 9797 9797
Time - - - 1.78 168 - 152.8 162.0 414.9 158.3 246.9 181.0 100.8 100.2 104.3 - 138 124
C4.5 Accuracy 8535 85.82 8535 8533 8533 81.90 81.80 81.65 85.87 85.83 85.51 85.41 85.55 85,50 8545 8265 8411 84.06
RedCS - - - 0.14 563 - 2209 4383 - - 3394 4646 4280 4486 4562 - 25.77 46.05
RedIS - - - - - - - - 62.55 93.10 64.65 71.35 93.62 93.76 9332 - 9797 9797
Time - - - 098 0.97 - 198.6 2203 231.7 126.8 2009 170.7 1154 113.9 1213 - 233 2.66
Ripper Accuracy 8529 85,58 8526 8525 8521 85.89 8522 85.19 85.80  85.70 8559 8549 85.56  85.54 8551 8405 8485 84.85
RedCS - - - 0.38 205 - 2298 3800 - - 2856 4064 3685 3918 4092 - 2511 38.96
RedIS - - - - - - - - 59.50 92.70 62.05 7241 93.15 93.10 93.06 - 9797 9797
Time - - - 1.08 1.06 - 202.0 2035 206.4 1222 193.2 168.7 120.9 119.5 123.7 - 229 233
Table 5
Friedman aligned-rank tests comparing the different WV models in each base classifier with accuracy.
Methods 3NN SVMpoyy SVMpyk SVMg C4.5 Ripper
wv 32.24 29.30 31.11 34.85 (0.42097) 34.74 31.17
WV with CS-f, 35.70 (0.82928)  39.07 (0.19793)  31.11 (1.00000) 40.07 (0.18335) 35.00 (1.00000)  34.02 (0.63025)
WV with CS-fpc  37.07 (0.82928)  36.63 (0.21559)  42.78 (0.09693+)  30.09 35.26 (1.00000)  39.80 (0.28923)

A ‘+" means that there are statistical differences with o = 0.1 (90% confidence) and a “’ with o = 0.05 (95% confidence)

Table 6
Wilcoxon tests to compare f; with fuc in NMC with CS using accuracy.
Comparison 3NN SVMpoyy SVMpyi SVMEi C4.5 Ripper
fa vs. fac R/R-  2015/745  155.5/120.5 220.5/55.5  172.0/104.0 1985/77.5  139.0/137.0
p-value 0.02194* 0.49246 0.01571* 0.29588 0.03546* 0.77643

R* corresponds to the sum of the ranks for NMC?AS and R~ for NMC?ASC.

significant differences are not found. The only exception is the
case of SVMg;; where forcing seems to perform well, but looking
at the accuracy from Tables 4 and A.18, it can be observed that
the real differences between all the approaches are below 0.1%
due to the highly adjusted base classifiers. Hence, few classi-
fiers can be safely removed using the WV, being this reduction
meaningless in most of the cases. Moreover, accuracy tends to
decrease as classifiers are removed. This result is in accordance
with [51], where OVO lost precision linearly as classifiers where
removed. However, it can be observed that selecting the proper
aggregation, the linear decrease can be avoided when removing
some of the classifiers, even though after the 10% (as in SVMpy;)
significant differences appear. On this account we consider the
original WV for the next comparisons given that it is the best
performer.

o NMC with CS. In this case f4 and f,¢ fitness functions are consid-
ered. Looking at Table 4, it can be observed that forcing classi-
fier reduction can lead to reduction rates between 40% and 50%,
whereas without doing so, reductions between 20% and 30% are
obtained. The question is whether this greater reduction comes
along with a drop of accuracy, whose answer varies depend-
ing on the base classifier. As the Wilcoxon test in Table 6 indi-
cates, in 3NN, SVMp,, and C4.5 statistical difference are found
in favor of not forcing reduction, whereas in SVMpqy, SVMg;

and Ripper these differences are not significant. Anyway, since
our ultimate objective is to maintain accuracy while reducing
classifiers, we consider f, function, although one could prefer a
greater classifier reduction in which case fyc function would be
recommended.

NMC with IS. f4 and fs; are compared in this case. In terms of
reduction, it is clear from Table 4 that promoting IS helps in
reducing the final size of the reference set for NMC. Between
15% and 30% more instances (score-matrices) can be removed,
even 60% more in the case of SVMp,,, which shows great dif-
ferences with respect to the behavior of SVMp,, as in previous
works [25,56] due to the probabilities obtained being too crisp
as a consequence of the configuration considered (near O or 1).
Tuned SVMs (SVMp;) behave similarly to SVMp,,. Even though
in global terms there seems not to be differences in terms
of accuracy between these functions, we performed the cor-
responding Wilcoxon tests, which are shown in Table 7. From
them, it can be concluded that accuracy is not statistically hin-
dered when IS is forced, but the results get worse in all the
classifiers, being the ranks always in favor of f;. Again, in or-
der to maintain accuracy as high as possible, we consider fy,
although f4; can be useful to reduce the reference set in large
data-sets.
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Table 7
Wilcoxon tests to compare fy with fy in NMC with IS using accuracy.
Comparison 3NN SVMpopy SVMpyk SVME; C4.5 Ripper
fa vs. far R* /R~ 159.0/1170  174.0/102.0  167.5/108.5  178.5/97.5  175.0/101.0 ~ 170.5/105.5
p-value 0.52301 0.27354 0.39446 0.21724 0.40804 0.33916

R* corresponds to the sum of the ranks for NMC’ji and R~ for NMCﬁ,.

Table 8

Friedman aligned-rank tests comparing the different fitness functions for NMC with CS and IS in each base classifier with accuracy.
Methods 3NN SVMpoyy SVMpyi SVMFi Cc4.5 Ripper
fa 58.93 (1.00000)  39.54 50.39 43.41 53.59 55.43 (1.00000)
fac 58.61 (1.00000)  54.26 (0.13442) 60.04 (0.77281)  64.67 (0.12234)  67.70 (0.60516) 63.54 (1.00000)
far 5213 65.72 (0.03106*)  63.22 (0.76820)  60.70 (0.17170) 56.89 (1.00000)  53.11
faic 54.46 (1.00000)  65.57 (0.03106*)  54.83 (0.77281)  59.11 (0.17170) 55.24 (1.00000)  57.00 (1.00000)
Jaci 65.87 (0.64917)  64.91 (0.03106*)  61.52 (0.77281)  62.11 (0.17170) 56.59 (1.00000)  60.91 (1.00000)

A ‘+" means that there are statistical differences with o = 0.1 (90% confidence) and a “*** with o = 0.05 (95% confidence)

Table 9
Wilcoxon tests to compare f3 with fi; in NMC with CS and IS using accuracy.
Comparison 3NN SVMpoly SVMpyi SVMEi Cc4.5 Ripper
fa vs. far R*/R~ 114.0/162.0  229.5/46.5 212.5/63.5 196.5/79.5 143.0/133.0  140.5/135.5
p-value 0.46542 0.00551* 0.02209* 0.07683+ 0.77818 0.93531

R* corresponds to the sum of the ranks for NMC?}"S and R~ for NMC%?.

o NMC with CS and IS. When performing both CS and IS simulta-

neously we have to analyze the whole set of fitness functions,
including those forcing IS and CS at the same time. Looking at
Table 4, it can be observed that the mere fact of carrying out
both processes simultaneously allows one to achieve better re-
sults in terms of accuracy and reduction rates in all the base
classifiers considering the same fitness function f; than when
they are performed individually. Hence, IS allows for a better
CS and vice versa. At first glance, the results of the fitness func-
tions forcing IS (fa;, faic, facy) are similar for all the measures.
Only forcing CS (fac) usually leads to more classifiers being re-
moved (only reducing accuracy in the case of SVMp,;), and even
more instances than when only focusing on accuracy (f). In or-
der to gain a better insight of these results, we performed the
statistical tests shown in Tables 8 and 9. The first one presents
the Friedman aligned-rank tests for each base classifier and all
the fitness functions, whereas the second one shows the direct
comparison between f, and fy;, which are the best performers
in the first analysis.
Looking at these tables we can observe that in terms of accu-
racy the best options are the ones not forcing CS in any way,
but forcing IS does not have the same effect, achieving the low-
est ranks in 3NN and Ripper. On this account, we carry out the
Wilcoxon test to compare these alternatives, from which it can
be concluded that only focusing on accuracy may be preferable
if one wants to reach the highest accuracy as possible in a gen-
eral manner (with any classifier). In fact, in the case of 3NN it is
beneficial to force IS, but in the case of SVMs, statistical differ-
ences are found against this alternative. Therefore, we continue
with f4, even though fs; could become an interesting model in
data-sets with a large number of instances.

o DT. Like in WV, we allowed DTs to perform CS, and hence two
different fitness functions can be considered (f4 and fyc). How-
ever, in this case the results obtained are different to those of
WV. Accuracy is boosted in all cases when CS is considered, and
even forcing CS in the fitness function seems not to affect ac-
curacy, while almost 50% of the classifiers are reduced. In order
to contrast this fact, we have performed the Friedman aligned-
rank tests (Table 10), where the superiority of the CS models is
clearly observed. Consequently, we have confronted both pos-

sible fitness functions to decide which is better suited for DTs
using the Wilcoxon test (Table 11). According to the results of
these tests, there are no statistical differences with any of the
classifiers. In two cases fyc obtains more ranks than f; (3NN
and SVMpy,), and in three times f; beats fac (SVMpypy, SVMg;
and Ripper), whereas in one case there is a tie (C4.5). On this
account, we select the f¢ fitness function since it obtains bet-
ter reductions (between 40% and 50%) without losing accuracy
and given the good synergy between DTs and pruning.

Remark 2. Summing up, we have shown that WV does not allow
for a meaningful CS, whereas DTs basically require it. Regarding
NMC, the different fitness functions allow one to play with the
trade-off between reduction and accuracy. Focusing in the latter,
we have considered f, for the next sections, even though forcing
IS sometimes can help increasing accuracy. Overall, it can be ob-
served that around 40-50% of the classifiers can be safely removed
from OVO without loosing accuracy with respect to NMC with IS.
In fact, it should be mentioned that NMC by itself, or NMC with
CS, do not perform competitively in some cases, and hence consid-
ering IS is required as we show in the next section.

6.2. Study of the best NMC model

We are looking for the best NMC model in this section. Looking
at Table 4, the varying behavior of NMC without selection (NoGA)
in each base classifier is clear. In 3NN and C4.5, these results and
the ones of CS are clearly inferior to those in which IS is per-
formed, showing that IS is mandatory to remove the noise pro-
duced by some of the instances. Otherwise, in the rest of the clas-
sifiers, NMC by itself achieves an excellent performance with the
best results in SVMpy, and Ripper. However, since we are more
interested in removing classifiers and in a model which is able to
work with any base classifier, we should focus on CS_IS model. The
accuracy of this model is competitive with IS attending at the ta-
ble of results, including 3NN and C4.5, overcoming the problems of
NMC without further processing. Anyway, we should base all these
conclusions in the proper statistical analysis, which is carried out
in Table 12.

The results in Table 12 follow our previous claims. NMC with-
out selection (NoGA) is the best model for some of the base classi-



M. Galar et al./Information Fusion 36 (2017) 26-51 37

Table 10

Friedman aligned-rank tests comparing the different DTs models in each base classifier with accuracy.
Methods 3NN SVMpoyy SVMpyk SVME;¢ Cc4.5 Ripper
DT 53.02 (0.00001*)  46.28 (0.00487*)  39.89 (0.32744)  47.15 (0.00027*)  43.72 (0.05047+)  44.78 (0.01578*)
DT with CS-f, 25.59 28.35 33.46 (0.76037)  24.54 30.48 29.07

DT with CS-fic 2639 (0.89185)  30.37 (0.73255)  31.65

33.30 (0.13864)  30.80 (0.95604)  31.15 (0.72427)

A ‘+' means that there are statistical differences with o = 0.1 (90% confidence) and a “*** with o = 0.05 (95% confidence)

Table 11
Wilcoxon tests to compare f; and fyc in DTs with CS using accuracy.
Comparison 3NN SVMpoyy SVMpyk SVMgie C4.5 Ripper
fa VS. fac RY/R-  129.0/1470 173.0/1030 1145/161.5 172.5/1035 138.0/138.0  152.5/123.5
p-value 0.87533 0.39425 0.49246 0.28598 1.00000 0.79459

R* corresponds to the sum of the ranks for DT?AS and R~ for DT%SC.

Table 12
Friedman aligned-rank tests comparing the different NMC models selected (CS, IS and CS_IS with f) in each base classifier with
accuracy.
Methods 3NN SVMpoyy SVMpyk SVMF;¢ C4.5 Ripper
NoGA 55.54 (0.00818*)  41.24 41.85 44.67 (1.00000)  56.48 (0.00078*)  37.02
CS-fa 62.46 (0.00053*)  50.87 (0.66391)  53.74 (0.39298)  51.80 (0.71863) 61.30 (0.00010%) 58.26 (0.02097*)
1S-fa 32.93 48.54 (0.70718)  42.46 (0.93838)  42.54 28.54 41.89 (0.53629)
CS_IS-fa 35.07 (0.78673) 45.35 (0.70718)  47.96 (0.87573) 46.98 (1.00000)  39.67 (0.15749) 48.83 (0.26767)

A ‘+" means that there are statistical differences with o = 0.1 (90% confidence) and a “*** with o = 0.05 (95% confidence)

Table 13

Friedman aligned-rank tests comparing WV, NMC with IS and CS using f; and DTs with CS using fyc in each base classifier with accuracy.
Methods 3NN SVMpoly SVMpy SVMg;; C4.5 Ripper
wv 36.80 (0.07472+)  35.87 (0.00662*)  38.37 (0.17776)  25.72 30.09 (0.53460) 33.83 (0.29329)
NMC with CS_IS-f;  26.26 19.80 28.30 36.85 (0.05992+)  26.41 27.61

DT with CS-f;c 4193 (0.01613*)  49.33 (0.00000*)

38.33 (0.17776)

4243 (0.00943*) 4850 (0.00038*)  43.57 (0.01399*)

A ‘+ means that there are statistical differences with o = 0.1 (90% confidence) and a “** with o = 0.05 (95% confidence)

fiers, but it is statistically outperformed by the IS procedure in two
cases (3NN and C4.5), whereas the contrary does not occur. Never-
theless, none of them is capable of reducing classifiers. Whereas
CS model is statistically outperformed in three out of five base
classifiers, no significant differences are found against CS_IS model,
which uses the least amount of classifiers. Therefore, the good ca-
pabilities shown by the CS_IS approach allow us to consider it for
further comparisons.

6.3. NMC vs. WV (without pruning) vs. DTs

This section is devoted to compare the different methods in
which we have considered CS, that is, WV, NMC and DTs. Recall
that in the case of WV, CS has a negative effect, and hence the
original WV method is compared. In the case of NMC, we con-
tinue with CS_IS using f, and in DTs with CS using fsc. Therefore,
it has to be taken into account that NMC and DTs are being com-
pared versus WV, one of the most robust alternatives for aggregat-
ing classifiers in OVO [14]. Clearly, WV does not reduce classifiers,
so it should have an advantage. Between NMC and DTs, the latter is
the one achieving the largest reduction rate in terms of classifiers
and instances (it only uses one instance per class). However, this
greater reduction makes it achieve lower average accuracy rates
(notice that DTs without pruning obtains an even lower accuracy).
The Friedman aligned-rank tests to compare these methods in all
the classifiers are presented in Table 13.

Looking at the results of these tests, it can be observed that
removing classifiers can lead to better results with respect to pre-
vious aggregation strategies such as the WV in most of the clas-
sifiers. NMC is the one achieving the lowest ranks, i.e., the best
performance, in all the base classifiers except for SVMg;. Other-

wise, DTs, also allowing for CS, are significantly outperformed by
NMC in four out of six classifiers. With respect to WV, statisti-
cal differences are found with 3NN and SVMp,,; the p-value for
SVMpy is also low, whereas the differences in C4.5 and Ripper are
not high in terms of p-values. The case of SVMg; can be easily ex-
plained looking at the differences in the complete table of results
presented in the Appendix A (Table A.18). Average accuracy differ-
ence between WV and NMC is as low as 0.42%, but it resulted in
a rejection due to the fact that WV is constantly better than NMC.
Nonetheless, the absolute difference between both models could
make NMC useful given the fact that it allows for classifier pruning
(around 30% of the classifiers are removed). This behavior appears
due to the highly fine-tuned base classifiers, which make almost all
the results of SVM; to be in less than 1% of accuracy difference.

We conclude that the different behavior among the base clas-
sifiers can be justified by their ability to give good confidence de-
grees and their base performance. In this respect, SVMp,, using
the logistic model is the one giving the best confidence degrees,
whereas the same does not occur with SVMp,;, due to the differ-
ent configuration. As we have explained, SVMp; also gives good
confidences but its improvement against the WV strategy becomes
much more difficult due to its fine-tuning. Otherwise C4.5 and Rip-
per are known not to be very good at estimating confidence de-
grees, whereas 3NN using the distance based confidence and after
removing noisy instances is capable of providing useful degrees so
as to take advantage of NMC.

6.4. NMC vs. state-of-the-art combinations (Comb and DCS)

In this last analysis, we wanted to test the NMC approach
against state-of-the-art combinations for each base classifier and
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Table 14

Friedman aligned-rank tests comparing the best combination model (Comb), dynamic OVO approach (DCS) and NMC with CS and IS using f3

in each base classifier with accuracy.

Methods 3NN SVMpoly SVMpyk SVME;¢ C4.5 Ripper
Comb 37.65 (0.98862)  42.00 (0.00189*)  42.41 (0.03965*)  32.20 (0.84271)  42.07 (0.01119%) 39.93 (0.25271)
DCS 33.74 (0.98862)  40.57 (0.00218*)  28.63 31.02 25.67 30.89

NMC with CS_IS-fy  33.61 2243

33.96 (0.36797)

4178 (0.13785)  37.26 (0.05017+)  34.17 (0.57899)

A ‘+' means that there are statistical differences with o = 0.1 (90% confidence) and a “** with o = 0.05 (95% confidence)

the DCS approach. Notice that in this case, Comb in C4.5 and Rip-
per coincides with WV. In the case of the DCS, it is interesting to
analyze how the static selection of NMC behaves compared with
the dynamic alternative, which requires of all the OVO classifiers
and also needs to compute the kNN of the instance to be classified
in the original input space. In the case of NCM, the original input
space is no longer used and kNN is only performed with respect to
the selected instances.

Looking at Table 4, NMC is always superior to Comb in terms
of global average accuracy (except for the case of SVMp;). With re-
spect to DCS, differences are smaller, with the only exception of
SVMp,yy in which NMC stands out. Logically, in terms of CS there is
no doubt that NMC requires less classifiers, since it is the only one
allowing for classifier pruning (in DCS they are dynamically used
depending on the instance to be classified, but all of them are re-
quired). In order to shed light on the differences among these ap-
proaches, the Friedman aligned-rank test for each base classifier
comparing these three methods are shown in Table 14.

Attending at these results, NMC is the best model in 3NN and
SVMpyy, (in the latter case with significant differences with respect
to the other two combinations). In the rest of the cases, DCS per-
forms better in terms of ranks, but there are no statistical dif-
ferences against NMC except for C4.5, whose confidence degrees
seems not to be adequate for NMC. Hence, with NMC one is able
to reduce the number of classifiers to near 50% in OVO without a
significant loss of accuracy, and even increasing it when the base
classifier provides good confidence estimates. In this cases, NMC
can learn from both competent and non-competent classifiers the
outputs that are expected for the instances of each class.

6.5. A deeper insight into NMC: discussion and lessons learned

With NMC we have presented a different view of the aggrega-
tion in OVO and the possibility of reducing classifiers. In this sec-
tion, we first want to focus on an example of the results obtained,
which are presented in the Appendix A. Consider Balance data-set
in all the base classifiers, which is a 3-class problem, and there-
fore 3 classifiers are considered in OVO. We consider the methods
in the previous section for the analysis (Comb, DCS and NMC with
CS_IS using fy):

e 3NN. Classifier reduction barely achieves a 20% (averaged over
25 executions), which means that most of the times one clas-
sifier is removed, whereas in the rest of the cases all of them
are considered. Accuracy rate is improved with respect to Comb
and DCS.

o SVMp,yy. Around 50% of the classifiers can be removed in this
case, which means that in several partitions only one classifier
(which is trained for two classes) is able to classify the third
one. Hence, there may be a relation between classes in such a
way that the confidence degrees returned by SVM allow NMC
to distinguish the third class; that is, the examples from the
third class have a specific behavior with the SVM learned with
the other two classes. Even with this level of pruning, overall
results are improved with respect to DCS and Comb.

e SVMp,. In this case there is no reduction at all (20-30% can
be achieved by forcing CS reduction, improving results in this

case). The characteristics of the confidence degrees given by
this configuration make it difficult to maintain accuracy while
reducing classifiers and instances in training, as we have al-
ready explained.

SVMF;. The behavior of this classifier is between that of the pre-
vious SVMs. Few classifiers are removed with f; (6.66%), but
almost 50% of them are removed when classifier reduction is
forced achieving an even better accuracy than without doing so
(only for 0.08%). The accuracy of DCS is improved in both cases,
whereas Comb equals the accuracy of NMC with fj.

e (4.5. This is an interesting case. There is a 66.7% of reduction,
which means that only one classifier is used to classify all the
three classes. However, this has nothing to do with the case of
SVMpyy,. The problem here is that the original C4.5 with OVO
is not capable of learning to classify one of the classes. In this
case, our model learns that two classifiers are useless, and re-
moves them. This is due to the class imbalance problem in Bal-
ance [63]. We are aware of this problem and we have already
dealt with it in OVO [25,64], but we do not treat it specifically
in this work in order to ease the comprehension of the pro-
posed model (it is independent of the underlaying classifiers).
Ripper. Surprisingly, in this classifier there is no way to reduce
classifiers in any of the partitions (0% reduction). That is, the
rules learned by Ripper for one pair of classes are not capa-
ble of helping us in classifying the remaining one. This behav-
ior could be related with the inner features of this algorithm,
which is mainly based in a “one-class” learning procedure.

From a more general viewpoint, we can summarize the lessons
learned in the empirical study as follows:

a) WV is not capable of dealing with classifier reduction even af-
ter being adapted to handle the absence of classifiers in the ag-
gregation. Otherwise, DTs are clearly benefited from CS, even in
the case when it is forced. In fact, it can be considered to be a
requisite in order to make them work properly.

b) In the case of NMC, forcing CS usually comes along with a de-
crease in accuracy, although a trade-off between reduction and
performance could be sought depending on the application. In
other respect, forcing IS is not as harmful as doing so with CS,
as it could be expected. In fact, depending on the characteris-
tics of the base classifier and its confidence degrees, forcing IS
can be beneficial.

¢) Among NMC models, all of them have their strengths and
weaknesses. In first place, NMC without any selection (NoGA)
offers very competitive results, but they are dependent on the
base classifiers. In those cases where NoGA does not achieve
the best result, applying IS allows one to remove noisy in-
stances that are hindering the classification. However, none of
these approaches allow for CS, which the CS_IS model does, be-
ing also capable of maintaining a competitive performance over
all the base classifiers.

d) With respect to the models in which CS has been tested (WV,
NMC and DTs), NMC can be considered to be the most suit-
able approach. It should be mentioned that removing classifiers
(statically) has allowed us to outperform robust strategies as
WV (even without considering reduction in this case).
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e) NMC is competitive against the state-of-the-art aggregation
strategies for OVO, while introducing the possibility of prun-
ing classifiers. With respect to the dynamic approach, each one
has its own advantages. Whereas DCS requires all the base clas-
sifiers and computing kNN in testing phase, NMC only stores
a subset (near to 50%) of the classifiers and its aggregation
consists of computing kNN but only over the selected score-
matrices. In terms of accuracy, NMC is better suited for those
classifiers providing good confidence degrees, whereas DCS per-
forms better in the other cases. Anyway significant differences
between these approaches are only found with SVMp,, (in fa-
vor of NMC) and C4.5 (in favor of DCS).

Finally, looking at the data characteristics from Tables 2 and
3 and the complete results in the Appendix A, some straightfor-
ward conclusions can be drawn:

o The greater the number of classes in the data-set is, the greater
the ensemble size is.

o The greater the ensemble size is, the greater classifier reduction
achieved can be. This fact can be understood since having more
classifiers implies more redundant information in their outputs,
as the same instances are used in more classifiers.

o The greater the number of instances is, the greater the instance
reduction achieved can be. Similarly, with more instances for
the same number of classes, it becomes easier to discard not
useful or redundant instances.

7. Concluding remarks and future research lines

In this paper, we have presented NMC model for OVO. This
model is based on comparing the outputs (score-matrix) of the in-
stance to be classified with those of the instances in the training
set. Hence, the outputs of the classifiers are viewed as a transfor-
mation of the input space and considered for a new classification
problem where kNN is applied. This novel view of the aggregation
problem in OVO allows one to prune this type of classifier ensem-
ble, which has not been previously considered.

With less classifiers, NMC is able to maintain classification ac-
curacy and even outperform previous combination models if the
confidence degrees of the base classifiers are adequate. In order to
show the usefulness of the method, we have performed a thorough
empirical analysis considering six base classifiers. We have shown
that using different fitness functions in NMC classifier or instance
reduction can be forced, depending on the user requirements for
the tradeoff between accuracy and simplicity. Moreover, we have
extended WV and DTs to allow for classifier pruning. However,
even with this modification, WV is not able to manage the absence
of classifiers properly, whereas DTs need it in order to achieve their
maximum potential (but it cannot reach that of NMC).

This paper opens up new possibilities in terms of combining
classifiers, both in decomposition strategies and classical ensem-
bles. On account of the global analysis and the results analyzed for
Balance dataset performed in the previous section, it is clear that
the behavior of each base classifier is different even for the same
data. Hence, our method does not only depend on the overlapping
or relations between classes, but also in the way the classification
boundaries are learned by the classifier. In this respect, several fu-
ture lines arise:

To study the information given by the selected classifiers and
analyze whether it is related with the overlapping between
classes or other complexity measures [65,66].

To go a step further trying to use complexity measures (based
on each classifier) to obtain which classifiers are required a pri-
ori (pre-pruning).

To use the information about the classifiers selected in order
to analyze which classes require a greater number of classifiers
to be recognized. This knowledge could be coupled with the
difficult classes problem in the OVO strategy studied in [56].
To study the combination of DCS and NMC developing a double
classifier selection scheme. It should be studied whether these
models are diverse in terms of the classifiers selected in order
to analyze the gain that can be obtained from their combina-
tion.

Apart from these future research lines focused on decomposi-
tion strategies and mainly on OVO, NMC model can be extended
to any classifier ensemble, whose performance should be studied
and compared against existing models in classical classifier ensem-
bles. Furthermore, any other IS or FS algorithm can be considered
instead of the well-known CHC algorithm. This work leaves open
this possibility, since different synergies may be found using other
models.
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Appendix A. Detailed tables of results

In this appendix, we present the detailed results for all the methods tested in all the base classifiers and data-sets. These results are
shown in Tables A.15 (3NN), A.16 (SVMpyy ), A17 (SVMpy), A.18 (SVMg), A.19 (C4.5) and A.20 (Ripper). The average accuracy rates in test,
the instance and classifier reduction rates and the training times are presented in these tables. The best result within each base classifier
and data-set is stressed in bold-face.

Table A15
Average accuracy results in test, classifier and instance reduction rates and training times for 3NN classifier.
Accuracy
Wv NMC with k=1 DT
(& (& IS CS_IS (&
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Autos 78.88 7696 7583 7512 7488 7716 7481 7445 7668 75.85 7670 7590 76.82 76.87 7591 7121 73.39 74.10
Balance 8720 8720 8720 8719 87.19 90.72 9040 9040 9228 9222 9219 9238 9225 9215 9222 86.88 87.84 87.84
Car 93.57 9340 9340 9340 9340 91.84 9184 9184 96.02 9578 9545 9545 9565 95.60 95.61 9219 92.82 92.82
Cleveland 58.31 57.96 56.95 57.05 56.40 5293 5500 5527 5738 57.52 57.72 57.71 5846 5853 57.63 57.96 57.07 57.81
Dermatology 9214 9549 9268 92.68 93.53 9382 9342 9286 9314 9437 9349 9378 9333 9395 93.89 9241 9321 93.21
Ecoli 81.66 8252 8252 8158 8186 7480 73.06 7312 80.89 8116 80.25 80.07 80.04 80.79 79.59 79.58 79.97 80.36
Glass 7335 7427 7381 7160 7142 7022 6527 6421 6847 6802 6692 6705 6799 6772 66.70 6536 66.81 66.58
Hayes-roth 7582 7434 7434 7588 75.88 79.73 7711 7711 81.31 7992 7945 7913 7946 7932 79.46 8192 8192 81.92
Iris 9533 9533 9533 9533 9533 90.67 90.67 90.67 9427 9400 94.00 9440 9373 9400 9373 9533 9533 95.33
Lymphography 6819 7955 68.88 69.25 6925 6562 65.65 65.51 76.11 7640 7694 7595 7595 7580 76.51 7756  77.56 76.74
NewThyroid 96.28 96.28 96.28 96.28 96.28 92.09 92.09 92.09 9637 96.74 9647 9647 96.74 96.74 96.74 96.28 97.21 97.21
Nursery 93.29 9329 9337 9344 9344 8938 8921 8923 9389 9405 9369 9388 9397 93.89 9381 9136 93.29 93.29
Page-blocks 95.63 9546 9527 9530 9519 9493 9520 9509 9549 9574 9541 9545 9549 9549 9552 80.72 95.12 95.16
Penbased 9700 96.64 96.55 96,55 96.55 9645 9510 9480 9470 9446 9490 9488 9486 9436 94.62 7947 90.20 90.20
Satimage 8758 8773 8773 8773 8773 8618 8647 86.44 8818 8827 8808 8836 8817 8839 88.70 8449 8796 87.87
Segment 96.58 96.80 96.71 96.71 96.71 9472 9500 9508 96.56 9653 96.72 96.70 96.74 96.72 96.57 93.20 96.38 96.44
Shuttle 99.50 9940 9940 99.40 9940 9922 9937 9937 9943 9939 9943 9942 9943 9943 9942 9784 99.34 99.36
Splice 93.41 9372 94.04 94.04 94.04 9529 9529 9529 9498 9435 9455 9499 9472 9460 9441 94.04 94.04 94.04
Tae 4425 4425 4425 39.09 39.09 5559 5690 5621 4094 4184 4226 4396 4521 43.03 4218 3709 3644 36.44
Thyroid 9472 9416 9472 9472 9472 1832 1832 1832 9450 9461 9497 95.02 9483 9500 9491 9139 93.19 93.19
Vowel 9778 9737 9737 9737 9737 96.87 9681 96.65 9531 95.11 96.02 9552 95.09 9533 9562 8535 95.62 95.54
Wine 9549 9549 9549 9549 9549 9943 9943 9943 9943 9840 9943 9897 9829 9829 9829 9379 9549 95.49
Zoo 89.90 91.86 90.74 9113 91.33 9264 93.11 90.79 92,54 92.01 9268 9228 9287 9266 9294 93.64 9444 9279
Average 86.34 8693 86.21 8593 8593 8255 8215 8192 8691 8681 86.86 86.86 86.96 8690 86.74 8344 85.85 85.81
Classifier Reduction
Autos - - - 133 4.27 - 4640 49.07 - - 5547 64.00 5840 6133 60.00 - 39.47 39.73
Balance - - - 26.67 26.67 - 20.00 26.67 - - 1467 1733 10.67 12.00 17.33 - 13.33 13.33
Car - - - 0.00 0.00 - 0.00 0.00 - - 1867 2333 2267 18,67 2000 - 23.33 23.33
Cleveland - - - 4120 4360 - 6840 69.60 - - 7800 81.60 79.60 75.60 79.60 - 50.80 56.00
Dermatology - - - 8.00 32.00 - 4160 56.00 - - 4427 60.53 54.67 5787 6027 - 45.87 61.33
Ecoli - - - 714 11.14 - 65.00 6886 - - 6757 7286 7086 7186 7157 - 59.57 64.29
Glass - - - 3200 3695 - 5429 6457 - - 68.57 7105 7086 7238 7448 - 60.38 72.38
Hayes-roth - - - 1333 1333 - 26.67 26.67 - - 18.67 20.00 2000 2133 2267 - 6.67 13.33
Iris - - - 0.00 0.00 - 0.00 3333 - - 1467 3333 2400 3333 3333 - 0.00 33.33
Lymphography - - - 9.33 2067 - 20.67 5667 - - 4333 5933 50.67 52.00 5800 - 13.33 43.33
NewThyroid - - - 0.00 0.00 - 0.00 2667 - - 1867 3333 3333 3333 3333 - 20.00 20.00
Nursery - - - 6.00 8.00 - 1400 5400 - - 64.80 6760 66.00 6640 6760 - 46.40 70.00
Page-blocks - - - 2760 30.80 - 4840 5280 - - 5440 62.80 55.60 58.80 6040 - 62.00 68.00
Penbased - - - 0.00 0.00 - 56.27 57.60 - - 5582 5982 56.80 56.53 5831 - 70.22 70.40
Satimage - - - 0.19 0.00 - 5295 5943 - - 7162  75.05 7486 73.71 7448 - 59.24 65.52
Segment - - - 0.00 0.57 - 40.76 4590 - - 55.81 58.86 56.00 56.57 56.95 - 5143 54.29
Shuttle - - - 0.00 2400 - 39.20 58.00 - - 4480 6480 56.00 6240 6480 - 51.20 58.00
Splice - - - 0.00 0.00 - 0.00 0.00 - - 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00
Tae - - - 40.00 40.00 - 13.33 20.00 - - 34.67 36.00 38.67 40.00 3867 - 3333 3333
Thyroid - - - 0.00 0.00 - 1333 1333 - - 2533 3333 2933 3333 3333 - 53.33 53.33
Vowel - - - 0.00 0.00 - 60.73 6247 - - 56.80 53.89 5578 55.71 58.69 - 68.87 70.11
Wine - - - 0.00 0.00 - 0.00 2667 - - 533 3333 26.67 3333 3333 - 33.33 33.33
Zoo - - - 7.81 2495 - 51.81 7048 - - 5143 7105 6114 7086  71.81 - 8.57 73.33
Average - - - 9.59 13.78 - 3190 4343 - - 41.89 5014 46.63 4858 4995 - 37.86 47.39
Instance Reduction
Wv NMC with k=1 DT
CS cs IS CS_IS (&
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Autos - - - - - - - - 7738 8093 7473 8047 83.73 8451 8299 - 95.49 95.49
Balance - - - - - - - - 92.05 9726 9177 9138 96.70 96.58 9579 - 99.40 99.40
Car - - - - - - - - 92,57 9526 90.53 89.81 9522 9546 9474 - 99.71 99.71
Cleveland - - - - - - - - 92.76 93,57 9280 92.66 9473 9434 9434 - 97.94 97.94
Dermatology - - - - - - - - 69.65 94.82 74.21 8298 9536 9532 9523 - 97.95 97.95
Ecoli - - - - - - - - 91.11 9293 92.09 9216 9338 9344 9295 - 9711 9711
Glass - - - - - - - - 84.75 86.87 83.76 8748 89.75 8947 8950 - 96.07 96.07
Hayes-roth - - - - - - - - 8124 90.22 8024 80.23 90.76 91.21 90.53 - 9724 9724
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Table A.15 (continued)

Accuracy
WV NMC with k=1 DT
cs cs IS CS_IS (&

Data-set Comb  DCS fa fac fa fac Ia fal fa fac far fac faa fa fac
Iris - - - - - - - - 5110 9503 5267 5240 9513 9507 9513 - 9756  97.56
Lymphography - - - - - - - - 62.63 93.00 7440 7679 9299 9296 93.02 - 9673  96.73
NewThyroid - - - - - - - - 5935 9642 6358 66.07 96.53 96.51 96.56 - 98.29 98.29
Nursery - - - - - - - - 96.25 9799 9510 95.66 98.11 9812 9776 - 99.52 99.52
Page-blocks - - - - - - - - 8188 9709 8181 8319 9757 9756 9752 - 98.87 98.87
Penbased - - - - - - - - 8419 89.09 8510 88.70 9049 9045 8943 - 98.88 98.88
Satimage - - - - - - - - 9432 9556 93.62 9486 9622 96.02 9615 - 98.66 98.66
Segment - - - - - - - - 9598 97.69 96.37 96.88 9793 9825 9776 - 99.62 99.62
Shuttle - - - - - - - - 55.84 9940 6425 7058 9939 9939 9939 - 99.71 99.71
Splice - - - - - - - - 7292 9734 8023 7821 9727 9727 9727 - 98.84 98.84
Tae - - - - - - - - 7271 7506 7242 7178 7557 7697 7686 - 97.58 97.58
Thyroid - - - - - - - - 8275 98.81 8430 86.25 9872 98,69 98,67 - 99.48 99.48
Vowel - - - - - - - - 63.52 6995 7353 7138 76.24  76.33 7734 - 98.63 98.63
Wine - - - - - - - - 3030 9438 30.80 5827 9480 9477 9480 - 97.94 97.94
Zoo - - - - - - - - 4648 83.17 59.83 7154 8266 8266 8271 - 92.02 92.02
Average - - - - - - - - 7529 9182 7774 80.86 92,58 92,67 9245 - 97.97 97.97
Training Times
Autos - - - 0.24 0.22 - 2.44 2.42 3.50 4.45 3.47 3.38 4.22 4.01 439 - 0.22 0.20
Balance - - - 0.10 0.04 - 113 1.01 1625 1433 1767 1839 1592 1731 1809 - 0.13 0.02
Car - - - 0.28 0.25 - 4149 4037 3118 270.6 3245 313.0 2642 2670 2798 - 0.19 0.15
Cleveland - - - 0.19 0.16 - 253 2.28 5.54 524 5.36 5.04 4.48 5.00 493 - 0.19 0.07
Dermatology - - - 0.32 0.47 - 7.88 9.98 6.32 6.07 8.84 722 8.33 8.35 8.70 - 0.24 0.26
Ecoli - - - 0.80 0.75 - 26.69 28.74 1619 16.84 18.19 1852 19.09 19.21 1994 - 0.86 0.81
Glass - - - 0.48 0.39 - 5.97 6.33 7.29 7.23 7.51 7.05 7.60 7.81 8.03 - 0.32 0.25
Hayes-roth - - - 0.05 0.01 - 0.10 0.05 0.36 0.37 0.41 0.41 0.46 0.48 0.47 - 0.03 0.01
Iris - - - 0.06 0.02 - 0.08 0.07 0.25 0.23 0.27 0.27 0.24 0.25 0.25 - 0.03 0.01
Lymphography - - - 0.07 0.03 - 0.20 0.20 0.46 0.40 0.58 0.51 0.49 0.50 0.52 - 0.04 0.02
NewThyroid - - - 0.06 0.02 - 0.16 0.14 0.79 0.65 0.78 0.74 0.45 0.45 0.46 - 0.04 0.01
Nursery - - - 0.72 0.71 - 3558 4124 1135 91.56 1025 98.66 91.55 90.17 9252 - 0.20 0.23
Page-blocks - - - 0.26 0.18 - 8.39 7.96 13.55 9.93 15.16 12.69 852 8.16 8.89 - 0.15 0.09
Penbased - - - 6.03 6.10 - 1141 1331 560.8 4877 5309 484.0 4641 4641 4781 - 13.48 13.41
Satimage - - - 0.97 0.83 - 56.52 5447 4580 4329 4421 39.09 4339 4621 4469 - 0.85 1.01
Segment - - - 4.68 4.87 - 9943 1001 7204 5833 6564 6526 5716 560.2 5972 - 3.95 4.21
Shuttle - - - 0.69 0.87 - 112.2 146.1 1145 97.40 865.1 696.8 116.0 123.6 1285 - 0.44 0.41
Splice - - - 0.06 0.02 - 0.35 0.32 221 2.19 241 2.36 244 2.50 2.27 - 0.04 0.01
Tae - - - 0.05 0.01 - 0.11 0.08 228 234 2.21 212 240 233 243 - 0.03 0.01
Thyroid - - - 0.08 0.05 - 121 115 1410 6.93 13.20 1281 704 7.23 6.91 - 0.05 0.01
Vowel - - - 6.46 6.47 - 1489 1601 9815 9489 8681 9151 879.5 8975 8946 - 17.65 16.77
Wine - - - 0.05 0.01 - 0.13 0.09 0.55 0.37 0.61 0.52 0.39 0.40 0.39 - 0.03 0.01
Zoo - - - 0.22 0.17 - 0.82 1.25 0.46 0.61 0.99 112 118 138 141 - 0.08 0.10
Average - - - 1.00 0.98 - 170.8 186.0 172.5 1131 151.7 143.2 109.3 110.2 113.2 - 171 1.66

Table A.16

Average accuracy results in test, classifier and instance reduction rates and training times for SVMp,, classifier.
Accuracy

WV NMC with k=1 DT
(& cs IS CS_IS (&

Data-set Comb  DCS fa fac fa fac fa fal fa fac far fac faa fa fac
Autos 73.75 7381 7314 7314 7314 7535 74.01 7465 7498 7460 73.02 7278 7343 7317 7333 70.53 7160 71.10
Balance 91.02 9055 9118 9150 9150 9039 9153 9153 9093 90.75 9152 9213 9142 9174 9178 9166 91.66 91.66
Car 93.58 9358 93.69 93.69 93.69 9485 9482 9479 9568 9560 9558 9556 95.67 9565 9559 9178 92.22 92.21
Cleveland 5897 59.31 5932 5830 5830 5249 52.08 51.88 5836 5939 5917 59.57 5803 5862 5883 5795 57.79 58.75
Dermatology 9471 9499 9471 9471 9442 9583 95.83 94.64 9583 9525 95.83 9453 9527 9420 94.02 9555 95.55 94.92
Ecoli 7937 7963 7878 78.72 7872 7682 7573 7590 7740 7781 80.06 80.02 8003 7921 7884 7151 75.54 75.23
Glass 6214 6314 6314 6198 6291 7183 66.73 6563 6734 6659 6741 6746  66.52 6722 6798 5522 60.88 61.28
Hayes-roth 5445 53.74 5231 5231 5231 7214 7060 70.60 66.71 6763 6796 67.81 67.07 6753 6764 56.81 53.08 52.92
Iris 9533 9533 9533 9533 9533 9733 96.00 9640 96.67 96.53 96.00 96.27 9587 96.00 9587 9533 9533 95.33
Lymphography 8248 8248 8248 8248 8248 8185 80.05 79.87 8060 7994 80.12 8147 80.52 8053 81.08 83.77 8337 83.50
NewThyroid 96.74 9721 9674 96.74 96.74 9488 9581 9581 96.28 96.74 96.74 96.28 96.74 96.74 9637 96.28 96.74 96.74
Nursery 9213 9213 9213 9237 9221 89.59 89.52 8945 9228 9217 9237 9241 9241 9235 9235 89.60 90.07 90.07
Page-blocks 9490 9453 9472 94.60 94.82 93.65 92.88 9292 9465 9494 9465 9458 9461 9472 9457 8413 9457 94.61
Penbased 9592 96.01 9583 9583 9583 9645 9644 96.15 9548 9532 9579 9530 9544 95.61 95.63 80.11 88.78 88.45
Satimage 8448 8416 84.01 84.01 84.01 8447 8267 8229 8482 8457 8470 8417 8479 8467 84.01 80.60 83.30 83.27
Segment 9268 9290 92.68 92.68 92.68 9537 9537 9541 9511 9485 9515 95.06 9494 9525 9522 89.83 9297 92.94
Shuttle 96.55 9761 9646 9646 9646 98.67 98.83 98.83 9834 9843 9871 9864 9861 9859 98.66 9559 96.67 96.65
Splice 80.59 8091 80.59 80.59 80.59 80.59 80.59 8059 8059 7915 8059 8059 79.78 79.90 79.14 80.58 80.58 80.58
Tae 53,55 5350 5486 53,50 53,50 63.51 62.86 6286 56.86 54.99 56.07 5514 5582 56.20 55.67 52.88 49.57 49.57
Thyroid 96.26 9556 96.26 96.12 9612 96.26 96.56 96.84 9640 9612 96.65 96.56 96.51 9642 96.51 96.68 96.68 96.68
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Table A.16 (continued)

Accuracy
wv NMC with k=1 DT
CcS CcS IS CS_IS (&
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Vowel 71.41 71.82 7111 7111 7111 91.41 92.63 9255 8695 86.85 8749 87.72 87.03 87.21 87.76 60.51 69.70 69.98
Wine 98.87 9887 98.87 9887 9887 9833 9887 9887 9833 9887 9887 98.87 9855 98,55 9855 98.87 98.87 98.87
Zoo 95.72 95.72 95.72 95.72 95.73 95.72 95.25 95.32 9478 94.80 95.08 94.02 9454 9413 9413 9454 9441 93.59
Average 84.16 8424 84.09 8395 8398 8643 8590 8582 8589 8573 86.07 8595 85.81 85.84 85.81 81.32 83.04 83.00
Classifier Reduction
Autos - - - 0.00 0.53 - 3227 4960 - - 4240 5093 4747 5093 50.67 - 37.87 4427
Balance - - - 6.67 6.67 - 2000 3333 - - 50.67 52.00 52.00 5067 52.00 - 0.00 66.67
Car - - - 0.00 0.00 - 18.00 20.00 - - 26.00 32.00 2867 2867 3067 - 23.33 23.33
Cleveland - - - 2360 30.00 - 6520 68.00 - - 68.80 72.00 71.60 71.60 7520 - 56.80 59.60
Dermatology - - - 0.00 3733 - 8.00 62.67 - - 9.60 65.60 4747 59.73 66.67 - 17.87 5733
Ecoli - - - 143 114 - 62.71 68.57 - - 77.71 80.00 77.86 7886 80.29 - 72.00 75.14
Glass - - - 16.00 28.00 - 56.38 6438 - - 7029 73,52 7048 71.05 72.00 - 59.81 69.14
Hayes-roth - - - 0.00 6.67 - 40.00 5333 - - 50.67 58.67 56.00 60.00 62.67 - 26.67 60.00
Iris - - - 0.00 0.00 - 40.00 66.67 - - 37.33 64.00 36.00 44.00 64.00 - 0.00 33.33
Lymphography - - - 333 13.33 - 2400 50.00 - - 36.67 56.67 52.00 56.67 56.67 - 733 46.67
NewThyroid - - - 0.00 0.00 - 3333 3333 - - 38.67 46.67 40.00 40.00 46.67 - 20.00 26.67
Nursery - - - 8.00 1200 - 2040 60.00 - - 6640 6840 67.20 68.00 6840 - 30.40 44.00
Page-blocks - - - 20.00 32.00 - 4040 5040 - - 58.00 62.40 61.60 61.20 63.20 - 52.80 58.00
Penbased - - - 0.00 0.00 - 56.80 58.76 - - 57.51 61.96 58.76 59.38 62.22 - 71.73 72.09
Satimage - - - 0.19 0.19 - 5543 6229 - - 66.10 7029 66.29 69.14 68.57 - 68.76 72.57
Segment - - - 0.00 0.00 - 48.57 5219 - - 51.62 52.57 5124 5295 5086 - 54.10 55.24
Shuttle - - - 0.00 0.00 - 4320 5040 - - 49.60 58.80 47.60 51.60 5480 - 44.00 58.00
Splice - - - 0.00 0.00 - 0.00 0.00 - - 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00
Tae - - - 13.33 20.00 - 26.67 40.00 - - 29.33 36.00 28.00 28.00 34.67 - 33.33 33.33
Thyroid - - - 20.00 20.00 - 26.67 3333 - - 30.67 33.33 30.67 3200 3333 - 6.67 20.00
Vowel - - - 0.00 0.00 - 61.82 6320 - - 4444 4291 48.44 4480 4044 - 77.38 76.95
Wine - - - 0.00 0.00 - 6.67 3333 - - 6.67 3333 26.67 3333 3333 - 0.00 26.67
Zoo - - - 0.00 20.19 - 4457 80.76 - - 4990 7429 60.19 70.67 7410 - 23.05 7143
Average - - - 4.89 9.92 - 36.13 5020 - - 4431 5419 4896 5145 5397 - 34.08 50.02
Instance Reduction
wv NMC with k=1 DT
CS CcS IS CS_IS CcS
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Autos - - - - - - - - 66.91 84.79 74.02 7837 86.96 8838 8709 - 95.49 95.49
Balance - - - - - - - - 91.75 9486 9211 92.05 95.63 9551 9545 - 99.40 99.40
Car - - - - - - - - 93.78 9795 93.11 92,77 9784 97.77 97.67 - 99.71 99.71
Cleveland - - - - - - - - 92.79 93.99 93.35 93.10 9424 94.09 93.52 - 97.94 97.94
Dermatology - - - - - - - - 0.00 95.81 1299 7498 95.81 95.81 95.71 - 97.95 97.95
Ecoli - - - - - - - - 88.03 89.84 90.81 91.98 93.09 9245 93.04 - 9711 9711
Glass - - - - - - - - 8397 8649 86.11 8536 86.90 86.74 87.02 - 96.07 96.07
Hayes-roth - - - - - - - - 7722 89.39 7752 7996 89.44 9038 89.96 - 97.24 97.24
Iris - - - - - - - - 60.70 9437 5747 64.27 9420 9410 9343 - 97.56 97.56
Lymphography - - - - - - - - 65.26 9291 6543 6934 9342 9342 9342 - 96.73 96.73
NewThyroid - - - - - - - - 53.77 9640 6114 62.65 96.05 96.05 9593 - 98.29 98.29
Nursery - - - - - - - - 9592 98.17 96.04 9549 98.36 98.17 98.02 - 99.52 99.52
Page-blocks - - - - - - - - 85.74 97.07 87.17 89.86 9750 97.38 97.45 - 98.87 98.87
Penbased - - - - - - - - 85.07 88.68 84,50 8769 90.13 90.87 90.62 - 98.88 98.88
Satimage - - - - - - - - 92.07 9448 9255 9374 95.09 9484 9493 - 98.66 98.66
Segment - - - - - - - - 89.98 93.16 88.24 90.71 9247 9190 90.22 - 99.62 99.62
Shuttle - - - - - - - - 84.68 9763 81.28 85.00 96.30 97.02 96.72 - 99.71 99.71
Splice - - - - - - - - 0.00 97.65 0.00 0.00 97.65 97.65 97.65 - 98.84 98.84
Tae - - - - - - - - 73.40 7917 7213 7298 78.83 7857 7949 - 97.58 97.58
Thyroid - - - - - - - - 66.08 9883 7345 7462 98.69 9870 98.70 - 99.48 99.48
Vowel - - - - - - - - 55.27 56.81 55.20 5190 59.06 57.83 52.19 - 98.63 98.63
Wine - - - - - - - - 0.00 95.79 1038 4891 9579 9579 9579 - 97.94 97.94
Zoo - - - - - - - - 64.64 83.02 54.02 69.95 82.66 82.61 81.76 - 92.02 92.02
Average - - - - - - - - 68.13 91.18 69.52 7590 9157 91.57 91.12 - 97.97 97.97
Training Times
Autos - - - 0.23 0.17 - 2.03 2.06 2.84 3.75 2.95 2.83 3.41 3.42 3.80 - 0.24 011
Balance - - - 0.08 0.04 - 112 119 16.91 15.27 18.24 18.64 1549 16.36 16.90 - 0.18 0.01
Car - - - 0.27 0.23 - 63.77 6890 3386 2778 345.1 3258 2781 286.2 2882 - 0.21 017
Cleveland - - - 0.17 0.10 - 3.30 2.87 4.88 4.84 5.64 5.93 5.72 5.64 6.33 - 0.18 0.07
Dermatology - - - 0.27 0.29 - 4.60 8.55 14.11 3.67 11.51 717 5.76 6.86 9.15 - 0.21 0.24
Ecoli - - - 0.72 0.63 - 2638 2693 2176 2295 19.86 19.28 2085 2142 2115 - 0.58 0.51
Glass - - - 0.48 0.40 - 5.94 6.59 9.09 8.77 9.14 8.84 10.12 10.07 10.32 - 0.27 0.23
Hayes-roth - - - 0.05 0.01 - 0.09 0.05 0.38 0.47 0.36 0.33 0.50 0.47 0.45 - 0.02 0.01
Iris - - - 0.04 0.02 - 0.09 0.07 0.30 0.25 0.37 0.39 0.29 0.31 0.33 - 0.03 0.01
Lymphography - - - 0.08 0.04 - 0.21 0.23 0.48 0.39 0.56 0.50 0.37 0.37 0.40 - 0.05 0.02
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Table A.16 (continued)

Accuracy
WV NMC with k=1 DT
CS CS IS CS_IS CS

Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
NewThyroid - - - 0.10 0.02 - 0.16 0.12 0.73 0.56 0.82 0.80 0.61 0.62 0.62 - 0.09 0.01
Nursery - - - 0.87 0.87 - 3038 40.14 1044 9184 108.0 9422 89.13 86.05 8733 - 0.36 0.37
Page-blocks - - - 0.23 0.21 - 8.92 10.53 16.01 10.04 1544 13.63 10.14 10.06 1118 - 0.18 0.13
Penbased - - - 5.21 5.34 - 1013 1216 569.6 506.5 533.6 4972 4929 4712 4798 - 12.05 12.54
Satimage - - - 0.92 0.81 - 5519 5786 55.86 54.02 58.19 55.34 5635 57.23 5849 - 0.79 0.71
Segment - - - 3.97 3.99 - 1399 1425 2288 1972 2007 1845 1760 1677 1827 - 4.32 4.36
Shuttle - - - 0.84 0.81 - 129.6 146.3 9120 5242 8149 718.4 517.2 5004 5560 - 0.46 0.51
Splice - - - 0.06 0.02 - 0.38 0.35 4.74 0.85 4.01 4.02 1.04 1.04 1.05 - 0.04 0.01
Tae - - - 0.05 0.01 - 0.10 0.07 1.68 172 1.82 178 2.03 2.22 217 - 0.03 0.01
Thyroid - - - 0.07 0.04 - 149 1.60 2445 6.52 2337 2160 6.96 7.36 7.25 - 0.10 0.02
Vowel - - - 4.50 4.27 - 1766 1747 1475 1455 1348 1344 1338 1322 1369 - 17.71 17.98
Wine - - - 0.05 0.01 - 0.13 0.10 0.81 0.28 0.71 0.49 0.31 0.30 0.32 - 0.03 0.01
Zoo - - - 0.27 0.18 - 0.66 118 0.60 0.77 112 1.50 138 1.64 1.90 - 0.12 0.13
Average - - - 0.85 0.80 - 196.2 2071 2549 2158 2318 216.9 200.7 195.1 2069 - 1.66 1.66

Table A.17

Average accuracy results in test, classifier and instance reduction rates and training times for SVMpy, classifier.
Accuracy

wWv NMC with k=1 DT
CS CS IS CS_IS CS

Data-set Comb  DCS fa fac fa fac Ia fal fa fac far fac faa fa fac
Autos 69.02 70.27 69.61 69.61 59.61 71.53 71.54 70.81 7177 7035 71.77 70.72  70.05 71.61 70.23 6704 7012 70.51
Balance 89.58 8846 89.58 89.58 9148 8958 89.58 89.58 89.58 9131 89.58 8999 9053 90.63 9114 90.37 9037 90.37
Car 6499 8484 6539 6539 6539 7292 7292 7642 7292 7346 7292 7812 7205 7374 7705 70.95 70.95 71.35
Cleveland 4753 4787 4787 4787 4753 4820 4841 4854 4821 4795 4888 4861 4767 48.61 49.01 5190 48.75 48.95
Dermatology 9720 9720 9720 9720 9519 9719 97.13 9490 9719 96.57 9713 9491 96.80 96.13 9484 96.62 96.74 96.41
Ecoli 7711 7711 77.11 7711 7711 76.85 7733 7721 78.19 7835 78.71 78.88  78.41 78.66 78.46 8138 78.52 77.77
Glass 73.72 74.15 74.62 7462 74.72 7278 7012 69.95 73.19 7268 73.63 7390 72,67 7271 7220 70.59 7154 72.66
Hayes-roth 80.44 8044 8044 8044 79.67 8280 8280 8295 79.70 8104 8055 81.00 80.73 81.04 8145 81.21 81.21 81.21
Iris 9533 9533 9533 9533 9533 9467 9467 9467 9467 9493 9467 9493 9520 94.80 95.07 9533 9533 95.33
Lymphography 8187 8187 81.87 8187 7293 8187 8187 6342 8187 8187 8187 6380 79.60 72.07 6696 81.87 81.87 74.98
NewThyroid 9581 9581 9581 95.81 95.81 95.81 95.81 95.53 95.81 95.72  95.81 95.81 95.81 95.81 95.81 95.81 95.81 95.81
Nursery 80.33 89.05 8094 80.94 7842 8557 8557 8784 8557 8409 8557 8789 8518 85.74 8723 8349 8349 83.98
Page-blocks 9458 9476 9476 94.76 9475 9404 93.82 93.67 9483 9445 9453 94.68 9468 9468 94.68 93.66 94.52 94.86
Penbased 9755 9764 9755 9755 9755 9764 96.84 96.70 9646 9589 96.72 9646 96.64 96.59 9635 80.65 95.21 95.50
Satimage 84.77 8570 8538 8538 8526 8555 85.02 84.71 8596 8524 8530 8533 8543 8534 8527 8573 8540 85.24
Segment 97.23 9736 9732 97.32 97.32 97.23 97.23 97.16 97.29 97.31 97.26 9717 97.14 9715 97.16 9533 9717 9715
Shuttle 99.59 99.63 9959 99.59 9959 99.59 9950 9947 99.63 99.60 99.50 99.51 99.52 9950 99.50 99.59 99.59 99.61
Splice 65.57 75.87 6338 6338 5953 6431 6431 4426 6431 6570 6431 30.88 5588 56.28 5294 65.89 65.89 62.30
Tae 5281 5150 52.79 52.79 5279 6415 6255 6242 56.25 56.76 58.26 5742 5646 57.67 56.89 5215 5215 52.15
Thyroid 9431 9389 9431 9431 9431 9389 9389 93.61 9402 9344 9386 93.69 93.66 93.63 93.60 94.02 94.02 94.30
Vowel 99.70 9970 99.70 99.70 99.70 9899 99.03 98.73 97.66 97.27 98.28 98.16 97.96 97.92 98.04 81.62 96.14 96.04
Wine 97.19 97.19 97.19 97.19 9778 9719 97.19 89.20 9719 96.95 9719 89.20 9708 96.16 89.77 9719 97.19 97.19
Zoo 78.06 8413 8245 8245 8426 8785 8785 8728 8785 8785 8785 8944 8797 8942 9041 8785 8785 89.64
Average 8323 8521 8349 8349 8244 8479 8456 8257 8435 8430 84,53 8220 8379 8373 8322 8262 8391 83.62
Classifier Reduction
Autos - - - 0.00 50.67 - 2320 5200 - - 2693 5440 50.67 52.00 5387 - 40.27 50.67
Balance - - - 0.00 1333 - 0.00 6.67 - - 0.00 20.00 0.00 2133 3200 - 0.00 0.00
Car - - - 0.00 0.00 - 0.00 6333 - - 0.00 58.67 1400 2467 60.00 - 0.00 16.67
Cleveland - - - 0.00 12.00 - 12.00 1880 - - 1720 28.80 2240 26.00 2760 - 18.40 20.00
Dermatology - - - 0.00 66.67 - 9.60 79.73 - - 8.00 7840 6560 73.07 7760 - 39.47 73.33
Ecoli - - - 0.00 0.00 - 5643 6314 - - 6243 7271 7029 70.71 71.71 - 60.57 69.29
Glass - - - 0.00 4.57 - 46.67 59.05 - - 56.38 63.62 6057 63.81 62.67 - 55.05 64.76
Hayes-roth - - - 0.00 6.67 - 0.00 3333 - - 4.00 32.00 2.67 6.67 3467 - 0.00 0.00
Iris - - - 0.00 0.00 - 0.00 3333 - - 0.00 3333 28.00 3333 3333 - 0.00 33.33
Lymphography - - - 0.00 50.00 - 0.00 70.00 - - 0.00 7333 56.00 7133 7333 - 0.00 63.33
NewThyroid - - - 0.00 0.00 - 0.00 3333 - - 0.00 3333 3067 3333 3333 - 0.00 33.33
Nursery - - - 0.00 4.00 - 0.00 70.00 - - 0.00 70.00 61.20 70.00 70.00 - 0.00 60.00
Page-blocks - - - 0.00 32.00 - 2320 64.00 - - 3720 5560 49.60 5280 5720 - 35.60 54.00
Penbased - - - 0.00 0.00 - 5520 58.31 - - 56.53 5929 58.76 58.04 6018 - 67.56 68.53
Satimage - - - 0.00 0.57 - 5048 6038 - - 51.81 6343 6095 59.62 6324 - 54.48 59.62
Segment - - - 0.00 0.76 - 15.05 5619 - - 3390 6019 56.57 56.76 59.81 - 51.24 54.48
Shuttle - - - 0.00 2000 - 3440 56.00 - - 4400 53.60 4760 48.00 5360 - 19.20 50.00
Splice - - - 0.00 3333 - 0.00 66.67 - - 0.00 66.67 52.00 66.67 66.67 - 0.00 60.00
Tae - - - 0.00 0.00 - 26.67 3333 - - 133 2.67 0.00 0.00 8.00 - 0.00 0.00
Thyroid - - - 0.00 0.00 - 0.00 3333 - - 1333 3333 3333 3333 3333 - 6.67 20.00
Vowel - - - 0.00 0.00 - 61.24 70.69 - - 6036 6640 63.78 6240 62.76 - 71.27 7149

(continued on next page)
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Table A17 (continued)

Accuracy
wWv NMC with k=1 DT
(&) (& IS CS_IS CS
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Wine - - - 0.00 13.33 - 0.00 5333 - - 0.00 5333 2933 36.00 5200 - 0.00 33.33
Zoo - - - 0.00 7143 - 0.00 85.14 - - 0.00 82.48 70.29 80.57 81.52 - 0.00 82.67
Average - - - 0.00 1649 - 18.01 53.05 - - 2058 5285 4279 4785 53.41 - 22.60 45.17
Instance Reduction
WV NMC with k=1 DT
(&) (&) IS CS_IS (&)
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Autos - - - - - - - - 3743 88.30 4528 7512 90.56 90.56 9044 - 95.49 95.49
Balance - - - - - - - - 0.00 98.80 0.00 3433 9880 98.80 9880 - 99.40 99.40
Car - - - - - - - - 0.00 99.42 0.00 54.91 99.42 99.42 99.33 - 99.71 99.71
Cleveland - - - - - - - - 50.71 9396 5867 7498 9517 95.51 9556 - 97.94 97.94
Dermatology - - - - - - - - 9.68 95.81 10.25 7318 95.81 95.81 9539 - 97.95 97.95
Ecoli - - - - - - - - 7594 9256 78.64 89.56 9454 9422 9448 - 9711 9711
Glass - - - - - - - - 80.14 90.77 8143 85.73 92.10 92.19 91.70 - 96.07 96.07
Hayes-roth - - - - - - - - 61.48 94.32 68.00 73.32 94.32 9432 9280 - 97.24 97.24
Iris - - - - - - - - 0.00 9533 0.00 47.00 9533 9533 9533 - 97.56 97.56
Lymphography - - - - - - - - 0.00 9393 0.00 6055 9393 9393 9393 - 96.73 96.73
NewThyroid - - - - - - - - 0.00 96.51 0.00 47.58 96.51 96.51 96.51 - 98.29 98.29
Nursery - - - - - - - - 0.00 99.23 0.00 61.23 99.23 9923 9923 - 99.52 99.52
Page-blocks - - - - - - - - 73.48 97.46 63.30 72.02 97.66 97.66 97.57 - 98.87 98.87
Penbased - - - - - - - - 76.46  85.16 81.02 8493 9151 91.06 90.27 - 98.88 98.88
Satimage - - - - - - - - 85.21 9592 7864 8749 9715 97.08 97.02 - 98.66 98.66
Segment - - - - - - - - 57.60 98.30 5584 7473 99.05 99.06 9891 - 99.62 99.62
Shuttle - - - - - - - - 13.06 9940 6713 6549 9937 9936 9936 - 99.71 99.71
Splice - - - - - - - - 0.00 97.65 0.00 49.72 9765 97.65 97.65 - 98.84 98.84
Tae - - - - - - - - 7855 9175 80.80 8347 91.62 92.31 90.69 - 97.58 97.58
Thyroid - - - - - - - - 39.53 9896 4254 5486 9896 9896 9896 - 99.48 99.48
Vowel - - - - - - - - 61.07 7420 71.92 79.00 83.77 8383 8255 - 98.63 98.63
Wine - - - - - - - - 0.00 95.79 0.00 5083 95.79 9579 95.79 - 97.94 97.94
Zoo - - - - - - - - 0.00 82.66 0.00 66.72 82.66 8266 8255 - 92.02 92.02
Average - - - - - - - - 3480 9375 3841 67.25 9482 9484 9456 - 97.97 97.97
Training Times
Autos - - - 0.23 0.18 - 1.70 2.00 138 1.76 1.83 1.65 1.79 1.82 2.04 - 0.21 011
Balance - - - 0.13 0.04 - 134 1.29 36.35 3.00 3034 2487 3.62 410 439 - 0.22 0.02
Car - - - 0.27 0.23 - 2324 3145 1260 4049 9221 488.1 61.69 66.35 66.87 - 0.19 0.18
Cleveland - - - 0.21 0.19 - 4,99 498 5.06 5.39 5.69 5.47 5.75 5.65 5.99 - 0.27 0.10
Dermatology - - - 0.34 0.21 - 2.99 7.05 12.81 3.18 1220 766 4.28 4.60 8.01 - 0.21 0.15
Ecoli - - - 0.81 0.67 - 2368 26.27 17.33 17.95 15.49 13.64 1593 15.72 1718 - 0.69 0.65
Glass - - - 0.46 0.36 - 6.11 6.40 3.76 4.73 5.07 5.00 5.85 5.71 6.23 - 0.28 0.20
Hayes-roth - - - 0.05 0.01 - 0.10 0.07 0.18 0.19 0.21 0.21 0.20 0.21 0.29 - 0.03 0.01
Iris - - - 0.05 0.02 - 0.11 0.09 0.50 0.20 0.47 0.30 0.23 0.23 0.25 - 0.03 0.01
Lymphography - - - 0.08 0.03 - 0.14 0.19 0.60 0.20 0.68 0.47 0.29 0.33 0.38 - 0.04 0.02
NewThyroid - - - 0.10 0.02 - 0.20 0.15 153 0.42 140 0.91 0.45 0.46 0.48 - 0.09 0.01
Nursery - - - 0.71 0.70 - 2118 42.71 597.0 19.15 4450 2242 26.80 27.83 2994 - 0.22 0.26
Page-blocks - - - 0.23 0.17 - 6.52 8.10 19.23 725 2242 1758 7.22 7.09 8.06 - 0.17 011
Penbased - - - 4.67 4.37 - 956.6 1056 7322 6176 5313 4929 4251 4221 4523 - 15.38 14.33
Satimage - - - 0.96 0.96 - 49.55 5331 58.07 52.03 53.76 4322 4398 4466 4767 - 0.87 0.91
Segment - - - 431 4.41 - 613.3 877.5 2123 542.7 1942 1106 388.7 3984 4182 - 3.36 3.54
Shuttle - - - 0.79 1.07 - 126.3 160.2 1834 117.6 985.8 909.0 1579 152.0 169.8 - 0.54 0.56
Splice - - - 0.07 0.03 - 0.20 0.27 5.07 0.84 494 2.84 0.92 0.96 0.99 - 0.04 0.01
Tae - - - 0.05 0.01 - 0.10 0.08 0.52 0.69 0.53 0.62 0.80 0.74 0.81 - 0.03 0.01
Thyroid - - - 0.09 0.05 - 1.54 144 36.56 5.21 3423 2840 4388 4.88 4.88 - 0.07 0.02
Vowel - - - 517 5.43 - 1041 1112 1012 9425 8727 8002 7699 7755 7989 - 18.86 19.77
Wine - - - 0.05 0.02 - 0.13 0.09 0.83 0.27 0.79 0.53 0.30 0.31 0.30 - 0.03 0.01
Zoo - - - 0.23 0.10 - 0.26 0.92 0.46 0.64 0.60 1.00 1.02 1.27 135 - 0.08 0.07

Average - - - 0.87 0.84 - 1253 1475 3373 1037 2561 1815 83.81 8439 8893 - 1.82 178
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Table A.18
Average accuracy results in test, classifier and instance reduction rates and training times for SVMp; classifier.
Accuracy
wv NMC with k=1 DT
(& cs IS CS_IS cs
Data-set Comb  DCS fa fac fa fac fa fal fa fac far fac faa Ia fac
Autos 81.31 81.31 81.31 81.31 81.31 8124 8091 8130 8152 8190 8039 79.05 79.01 7876 7990 80.09 82.25 81.18
Balance 98.88 9760 9888 98.88 98.88 9888 9888 9936 9891 9920 9882 99.00 99.01 9913 99.23 98.88 98.88 98.88
Car 99.48 9948 99.54 99.54 99.54 9959 99.59 99.51 9959 9924 9959 99.62 9928 9890 9792 99.25 99.32 99.37
Cleveland 5832 59.67 59.67 5933 59.80 5384 5533 5519 5928 5879 5751 56.51 5739 5783 56.70 5827 57.60 58.40
Dermatology 9691 9720 9691 96.80 9595 9718 9741 9548 96.56 9629 96.63 9516 9613 96.07 95.50 9549 96.68 96.06
Ecoli 84.06 8347 8347 8347 8347 7889 7731 76.82 8191 8114 8322 8269 83.09 83.09 8348 7716 82.53 82.70
Glass 66.89 6823 6870 6870 68.70 7097 70.15 69.96 6890 6845 6893 6842 6761 67.75 6710 65.58 66.56 67.20
Hayes-roth 79.67 7890 7890 7829 79.05 8203 8280 83.23 7834 7953 7981 8116 80.11 80.71 8129 8044 80.44 80.13
Iris 97.33 97.33 97.33 97.33 97.33 98.00 97.33 97.33 98.00 98.00 9813 9760 98.00 98.00 97.87 97.33 97.33 97.33
Lymphography 8243 8243 8243 8243 83.05 81.03 79.81 79.01 8169 8124 8179 8150 8110 8176 81.62 83.72 83.72 83.45
NewThyroid 95.81 9581 9581 9581 9581 9395 9581 9619 9591 9526 9535 9553 9581 9563 9470 96.28 96.28 95.81
Nursery 98.61 98.61 98.61 98.61 9861 98.61 98.61 9792 98.61 9820 98.61 9846 98.61 9858 98.61 9510 9510 94.33
Page-blocks 94.92 9492 9509 95.09 9491 9440 93.60 93.63 9529 9501 9489 9470 94.78 9482 9485 88.86 9527 95.24
Penbased 9755 9764 9755 9755 97.55 9746  96.71 96.77 96.21 96.20 96.44 96.15 96.39 96.28 96.06 8183 94.64 94.55
Satimage 89.92 9023 90.23 90.23 90.23 88.81 8794 8785 8948 8914 8936 8945 8896 8936 89.21 8728 89.33 89.40
Segment 97.01 97.01 97.01 97.01 97.04 9706 9696 96.84 9718 9715 9704 9700 9708 9700 9696 9515 96.93 96.95
Shuttle 99.72  99.72 99.68 99.68 99.72 9959 99.50 99.37 9959 99.64 99.61 99.62 9956 99.58 99.60 99.63 99.68 99.67
Splice 9096 9219 9158 9158 9158 89.03 89.03 89.03 90.20 9031 90.44 90.57 9049 9037 9049 91.88 9188 91.88
Tae 60.09 60.11 61.42 61.42 61.42 66.75 64.17 64.82 59.61 59.77 58.72 5859 5925 5860 59.00 60.75 60.75 60.75
Thyroid 96.54 9584 96.67 96.67 96.67 96.95 97.51 9765 9717 9734 9704 9704 9720 9718 97.18 96.68 96.81 96.67
Vowel 99.70 99.70 99.70 99.70 99.70 98.99 9889 9873 9776 9749 9818 9814 9798 98.12 9826 8172 95.54 96.02
Wine 9833 9833 9833 9833 9833 9833 9833 9833 9833 9833 9833 9833 9822 9833 9833 9833 98.33 98.33
Zoo 94.72 9472 9472 9472 9572 9572 9445 91.62 9501 9571 9512 9464 9423 9316 9419 9454 9454 9352
Average 89.53 8959 89.72 89.67 89.76 8945 89.18 8895 89.35 8927 8930 89.08 89.10 89.09 89.04 8714 8915 89.04
Classifier Reduction
Autos - - - 0.00 0.00 - 36.80 4533 - - 29.60 5227 4533 49.87 4933 - 36.80 42.67
Balance - - - 0.00 0.00 - 0.00 46.67 - - 6.67 46.67 38.67 4133 46.67 - 6.67 20.00
Car - - - 0.00 0.00 - 0.00 4333 - - 0.00 4133  26.67 3467 4267 - 20.00 26.67
Cleveland - - - 18.00 2480 - 58.00 5920 - - 68.40 7040 6880 66.80 72.00 - 42.80 44.00
Dermatology - - - 6.13 3040 - 33,60 6133 - - 36.00 65.60 54.67 5920 6613 - 3733 54.93
Ecoli - - - 0.00 0.00 - 6543 69.57 - - 73.00 7757 75,57 7557 7629 - 63.14 65.57
Glass - - - 0.00 5.90 - 5200 63.05 - - 5886 6552 6286 63.24 6514 - 60.76 66.67
Hayes-roth - - - 6.67 1333 - 6.67 3333 - - 1867 3333 18.67 20.00 3333 - 0.00 20.00
Iris - - - 0.00 0.00 - 1333  60.00 - - 1467 46.67 30.67 38.67 4667 - 0.00 33.33
Lymphography - - - 0.00 10.00 - 2400 50.00 - - 32.67 54.00 4733 51.33 5267 - 6.67 50.00
NewThyroid - - - 0.00 0.00 - 20.00 3333 - - 1733 3333 16.00 18.67 34.67 - 0.00 20.00
Nursery - - - 0.00 0.00 - 0.00 70.00 - - 0.00 70.00 6440 70.00 70.00 - 0.00 60.00
Page-blocks - - - 0.00 3520 - 46.80 5120 - - 48.00 6040 5560 59.60 59.20 - 51.20 56.00
Penbased - - - 0.00 0.00 - 55.64 5813 - - 56.80 59.38 5840 56.71 5849 - 68.53 68.80
Satimage - - - 0.00 0.57 - 51.05 5829 - - 62.67 6514 6419 6476 6533 - 54.86 59.05
Segment - - - 0.00 0.57 - 40.00 5314 - - 4762 59.62 56.76 5695 60.76 - 54.86 58.10
Shuttle - - - 0.00 20.00 - 4040 52.00 - - 39.20 48.00 46.80 48.00 4840 - 15.60 50.00
Splice - - - 0.00 0.00 - 0.00 6.67 - - 133 4.00 0.00 0.00 133 - 0.00 0.00
Tae - - - 0.00 0.00 - 26.67 3333 - - 13.33 13.33 13.33 13.33 1467 - 0.00 0.00
Thyroid - - - 0.00 0.00 - 26.67 3333 - - 20.00 26.67 24.00 22,67 2400 - 20.00 26.67
Vowel - - - 0.00 0.00 - 6233 7018 - - 61.02 6509 6182 64.65 6531 - 69.82 70.91
Wine - - - 0.00 0.00 - 0.00 3333 - - 0.00 3333 2933 3333 3333 - 0.00 3333
Zoo - - - 0.00 4190 - 4324 8095 - - 4381 7448 6724 7429 7562 - 18.10 7333
Average - - - 134 7.94 - 3055 5068 - - 3259 50.70 4466 4711 5052 - 27.27 43.48
Instance Reduction
Wv NMC with k=1 DT
cs cs IS CS_IS (&
Data-set Comb  DCS Ia fac fa fac Ia far fa fac far fac  faal Ia fac
Autos - - - - - - - - 62.64 8645 5079 76.03 88.70 8994 88.07 - 95.49 95.49
Balance - - - - - - - - 1346 98.76 1428 5526 98.82 98.80 98.79 - 99.40 99.40
Car - - - - - - - - 0.00 99.42 0.00 5496 9942 9942 9939 - 99.71 99.71
Cleveland - - - - - - - - 9246 93,57 9256 92.83 93.89 93,55 93.71 - 97.94 97.94
Dermatology - - - - - - - - 56.22 9549 5645 8258 9581 9580 9567 - 97.95 97.95
Ecoli - - - - - - - - 90.22 9218 89.87 9143 9337 9340 9334 - 9711 9711
Glass - - - - - - - - 7994 9082 8105 84.89 9172 9156 9165 - 96.07 96.07
Hayes-roth - - - - - - - - 6728 9292 70.07 7297 9273 9273 9205 - 97.24 97.24
Iris - - - - - - - - 5430 9500 5690 6033 95.00 95.00 9483 - 97.56 97.56
Lymphography - - - - - - - - 65.71 9252 64.05 6555 9321 9317 9310 - 96.73 96.73
NewThyroid - - - - - - - - 3912 96,51 4186 5140 9647 96,58 9619 - 98.29 98.29
Nursery - - - - - - - - 0.00 99.23  0.00 6496 99.23 99.23 99.23 - 99.52 99.52
Page-blocks - - - - - - - - 7487 9630 8222 8421 9689 9726 96.69 - 98.87 98.87
Penbased - - - - - - - - 7793 87.03 82.10 8545 9093 90.16 88.70 - 98.88 98.88
Satimage - - - - - - - - 93.03 9525 9198 9335 96.59 96.63 96.65 - 98.66 98.66
Segment - - - - - - - - 8415 98.00 7700 89.82 98.76 98.77 9862 - 99.62 99.62
Shuttle - - - - - - - - 0.00 99.44 66.53 6345 9937 9937 9937 - 99.71 99.71
Splice - - - - - - - - 66.11 9756 7031 7259 9754 9757 9751 - 98.84 98.84
Tae - - - - - - - - 8133 93.01 8173 8160 9148 9174 9168 - 9758 9758

(continued on next page)
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Table A.18 (continued)

Accuracy

wv NMC with k=1 DT

CS CS IS CS_IS CS

Data-set Comb  DCS fa fac fa fac Ia I fa fac far fac faa fa fac
Thyroid - - - - - - - - 67.12 98.86 70.86 7042 98.72 98.73 98.71 - 99.48 99.48
Vowel - - - - - - - - 63.10 7495 7311 7598 8240 84.74 8284 - 98.63 98.63
Wine - - - - - - - - 0.00 95.79  0.00 48.74 9579 9579 9579 - 97.94 97.94
Zoo - - - - - - - - 4593 8290 4548 7411 82.66 82.66 8266 - 92.02 92.02
Average - - - - - - - - 5543 9356 59.10 73.61 9433 9446 9414 - 97.97 97.97
Training Times
Autos - - - 0.54 0.35 - 2.74 2.71 2.71 4.02 312 2.68 3.22 3.16 313 - 0.41 0.21
Balance - - - 0.24 0.09 - 1.82 1.67 3376  4.29 2896 16.84 4.54 4.57 4.05 - 0.47 0.07
Car - - - 0.54 0.44 - 49.73 5234 1415 7769  899.5 488.1 1034 1057 1215 - 0.20 0.15
Cleveland - - - 0.52 0.35 - 3.77 3.58 7.20 7.52 7.28 7.32 6.94 6.83 6.39 - 0.39 0.18
Dermatology - - - 0.65 0.65 - 8.62 11.70 12.04 748 9.85 6.90 7.31 7.79 10.04 - 0.25 0.26
Ecoli - - - 1.59 1.36 - 25.73 28.14 2636 2782 15.42 16.18 18.82 17.68 17.56 - 0.80 0.81
Glass - - - 113 0.89 - 7.68 7.53 6.61 7.24 6.00 5.91 6.14 6.45 6.73 - 0.51 0.28
Hayes-roth - - - 0.14 0.03 - 0.22 0.15 0.42 0.50 0.39 0.36 0.39 0.44 0.46 - 0.12 0.04
Iris - - - 0.13 0.04 - 0.20 0.18 0.52 0.40 0.42 0.39 0.34 0.37 0.35 - 0.12 0.04
Lymphography - - - 0.24 0.11 - 0.48 0.45 0.71 0.64 0.73 0.67 0.63 0.62 0.64 - 0.20 0.08
NewThyroid - - - 0.21 0.05 - 0.36 0.29 1.38 0.81 123 0.99 0.78 0.76 0.84 - 0.23 0.05
Nursery - - - 1.72 1.62 - 2985 5129 8782 29.01 577.1 2143 3585 3712 40.62 - 0.20 0.21
Page-blocks - - - 0.51 0.47 - 14.04 1311 2480 1766  20.67 1738 1276  11.70 14.16 - 0.22 0.15
Penbased - - - 8.92 8.99 - 1184 1137 1146 967.7 6315 5975 5459 5677 5647 - 9.75 9.08
Satimage - - - 2.08 1.98 - 6770 6748 7527 7358 4194 3696 4599 4825 4882 - 0.79 0.73
Segment - - - 10.04 8.89 - 949.2 1024 1871 874.3 1486 8934 580.8 5879 614.9 - 242 2.73
Shuttle - - - 1.92 2.73 - 182.7 2123 2426 1599 1119 1058 199.1 200.7 2140 - 047 0.49
Splice - - - 0.17 0.05 - 0.68 0.61 2.63 214 2.53 2.50 213 2.22 2.30 - 0.18 0.05
Tae - - - 0.13 0.03 - 0.24 0.16 0.70 0.85 0.78 0.84 0.90 1.02 0.98 - 0.14 0.04
Thyroid - - - 0.17 0.10 - 2.25 2.40 2394 8.04 2350 2250 9.99 9.77 9.45 - 0.12 0.02
Vowel - - - 8.65 9.04 - 981.1 1108 1587 1367 801.4 772.0 730.3 681.0 7153 - 13.33 12.64
Wine - - - 0.12 0.03 - 0.27 0.19 1.09 0.49 0.88 0.51 0.37 0.42 0.41 - 0.14 0.04
Zoo - - - 0.50 0.36 - 0.98 123 0.84 1.28 111 1.26 1.26 1.61 1.56 - 0.24 0.23
Average - - - 1.78 1.68 - 152.8 162.0 4149 1583 2469 181.0 100.8 1002 1043 - 138 124

Table A.19
Average accuracy results in test, classifier and instance reduction rates and training times for C4.5 classifier.
Accuracy
wv NMC with k=1 DT
CS CS IS CS_IS (&)
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Autos 7624 7496 7624 7624 7624 75.61 7769 7712 76.68 7586 7333 7378 75.64 7393 7354 6795 7715 76.65
Balance 80.63 8159 80.63 80.63 80.63 50.03 50.03 50.03 80.63 80.63 80.63 80.63 8063 80.63 80.63 80.63 80.63 80.63
Car 94.68 94.50 94.68 94.68 94.68 93.00 9294 9294 9476 9473 9455 9453 9479 9471 9465 9195 9351 93.52
Cleveland 52,55 53,55 52,55 5222 5186 5393 5399 5426 5343 5248 5328 5287 5326 5293 5293 5152 4938 49.51
Dermatology 9524 9832 9524 9524 9579 9552 9575 9530 96.03 9631 9581 9526 9542 9519 9548 96.63 95.53 95.08
Ecoli 81.06 8194 81.06 81.01 80.89 7778 7775 7740 8248 8210 82.86 8286 82.87 82.88 82.63 80.56 80.52 79.98
Glass 7203 7163 72,03 72.03 72.03 6819 6814 6814 7000 7064 7062 7073 7089 7194 7110 66.09 69.63 69.73
Hayes-roth 8412 8412 8412 8412 8335 7352 7352 7352 8412 8412 8412 8412 8412 8412 8412 8412 8412 84.12
Iris 94.67 95.33 9467 94.67 9467 9467 9467 94.67 9467 9467 94.67 94.67 9467 9467 94.67 94.67 94.67 94.67
Lymphography 7450 7644 7450 7450 7519 68.80 6880 68.11 7505 7519 7546 7519 7519 7519 7519 6146 64.98 64.98
NewThyroid 91.16 93.02 9116 91.16 91.16 71.16 71.16 71.16 92,56 93.02 9181 90.70 90.70 90.70 90.70 90.70  90.70 90.70
Nursery 89.66 89.81 89.66 89.66 89.66 7846 78.46 78.46 89.66 89.66 89.66 89.66 89.72 89.69 89.69 82.55 82.55 82.55
Page-blocks 95.64 9546 9564 95.64 9564 9564 95.17 95.21 95.82 9560 9578 9578 95.82 95.82 9582 9240 9512 94.91
Penbased 91.10 91.11 91.10 91.10 91.10 9337 9159 9157 9255 9239 9173 9195 9163 9135 9181 83.47 8947 89.31
Satimage 8215 8292 8215 8215 8215 8231 8200 8200 8218 8174 8132 8145 8119 8139 81.04 8151 81.21 81.21
Segment 96.28 96.71 96.28 96.28 96.26 9745 9703 9693 9739 9707 9695 96.78 96.69 96.74 96.75 93.94 95.92 96.10
Shuttle 99.59 99.68 99.59 99.59 99.60 99.72 99.70 99.72 99.63 9959 99.61 99.63 99.62 99.63 99.63 99.63 99.63 99.67
Splice 89.69 90.61 89.69 89.69 89.69 90.62 90.62 9030 90.62 90.56 9049 9056 9049 90.56 90.62 89.71 90.62 90.62
Tae 5477 5477 5477 5477 5477 4895 49.61 49.61 5338 54.77 5394 5381 5477 5477 54.77 5413 5413 53.46
Thyroid 98.89 96.53 98.89 9889 9889 9875 9875 9875 9889 9889 9892 9892 98.97 9897 9897 98.89 98.89 98.89
Vowel 8343 83.64 8343 8343 8343 9091 8931 8838 88.00 8766 8653 8638 8713 86.53 86.69 7212  83.01 83.17
Wine 92.71 9498 9271 9271 9271 9325 9325 9330 9325 9325 9325 9330 9294 9330 9330 9328 93.28 93.87
Zoo 92.17 9217 9217 92.17 9217 92.09 9142 91.04 9322 9322 9131 90.80 9044 90.79 90.60 93.04 8994 90.16
Average 8535 8582 8535 8533 8533 8190 8180 8165 8587 8583 8551 8541 8555 8550 8545 8265 84.11 84.06
Classifier Reduction
Autos - - - 0.00 1.07 - 29.60 4267 - - 45.07 52.00 4693 4960 4853 - 40.27 45.33
Balance - - - 0.00 3333 - 0.00 66.67 - - 4933 66.67 62.67 66.67 66.67 - 0.00 66.67
Car - - - 0.00 0.00 - 6.67 6.67 - - 1933 2533 2133 2200 2333 - 2267 2333

(continued on next page)
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Table A.19 (continued)

Accuracy
WV NMC with k=1 DT
(& (& IS CS_IS CS
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Cleveland - - - 2.00 6.00 - 2360 2760 - - 37.60 40.80 3840 38.00 40.80 - 18.80 26.00
Dermatology - - - 0.00 19.47 - 38.13 64.00 - - 44,00 63.20 57.07 5947 61.87 - 26.93 5733
Ecoli - - - 1.29 4.29 - 5229 65.00 - - 6786 75.71 74.71 73.57 75.14 - 51.86 68.71
Glass - - - 0.00 2.10 - 43.81 59.81 - - 57.90 66.10 6343 6400 6362 - 56.57 6743
Hayes-roth - - - 0.00 6.67 - 0.00 3333 - - 2533 3333 2533 3333 3333 - 0.00 33.33
Iris - - - 0.00 0.00 - 0.00 3333 - - 8.00 3333 32.00 3333 3333 - 0.00 33.33
Lymphography - - - 0.00 333 - 0.00 5333 - - 44,00 56.67 52.67 56.67 56.67 - 2733 60.00
NewThyroid - - - 0.00 0.00 - 6.67 26.67 - - 9.33 3333 3333 3333 3333 - 6.67 3333
Nursery - - - 0.00 17.20 - 0.00 70.00 - - 58.40 80.00 7560 80.00 80.00 - 0.00 70.00
Page-blocks - - - 0.00 9.60 - 3400 50.00 - - 38.80 5240 4960 5120 51.60 - 45.60 58.00
Penbased - - - 0.00 0.00 - 57.87 57.42 - - 52.27 53.69 52.62 52.89 52.27 - 66.04 66.67
Satimage - - - 0.00 0.00 - 46.86 5333 - - 5295 56.57 5448 54.10 5467 - 48.57 53.33
Segment - - - 0.00 114 - 3543 4229 - - 4457 4990 4743 46.29 47.05 - 48.38 48.00
Shuttle - - - 0.00 1200 - 18.80 58.00 - - 16.80 6360 56.00 5920 64.00 - 6.80 56.00
Splice - - - 0.00 0.00 - 0.00 1333 - - 2.67 12.00 6.67 6.67 1067 - 6.67 6.67
Tae - - - 0.00 0.00 - 6.67 13.33 - - 0.00 133 0.00 0.00 0.00 - 0.00 6.67
Thyroid - - - 0.00 1333 - 0.00 20.00 - - 9.33 13.33 13.33 13.33 13.33 - 13.33 20.00
Vowel - - - 0.00 0.00 - 5425 57.09 - - 47.42 4756 4516 48.00 4647 - 62.91 62.91
Wine - - - 0.00 0.00 - 0.00 2000 - - 0.00 20.00 12.00 20.00 20.00 - 0.00 26.67
Zoo - - - 0.00 0.00 - 5352 7429 - - 49.71 71.81 63.62 70.10 7257 - 4324  69.52
Average - - - 0.14 5.63 - 2209 4383 - - 3394 46.46 4280 4486 4562 - 25.77 46.05
Instance Reduction
WV NMC with k=1 DT
(& CS IS CS_IS (&
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa Ia fac
Autos - - - - - - - - 73.84 83.59 74.75 7899 85.82 86.51 8590 - 95.49 95.49
Balance - - - - - - - - 71.81 9920 7256 7484 9920 9920 99.20 - 99.40 99.40
Car - - - - - - - - 80.64 99.17 79.86 79.87 9917 99.09 99.04 - 99.71 99.71
Cleveland - - - - - - - - 91.23 92.78 90.55 9152 9350 9354 9335 - 97.94 97.94
Dermatology - - - - - - - - 4998 9573 63.11 7558 9528 9550 95.12 - 97.95 97.95
Ecoli - - - - - - - - 88.39 9311 87.57 91.29 9454 9439 9440 - 9711 9711
Glass - - - - - - - - 83.66 89.86 8224 85.18 91.14 91.33 90.28 - 96.07 96.07
Hayes-roth - - - - - - - - 54.91 9432 60.69 6277 9432 9432 9432 - 97.24 97.24
Iris - - - - - - - - 51.07 95.00 52.60 48.00 9500 95.00 9500 - 97.56 97.56
Lymphography - - - - - - - - 61.83 9392 71.02 7520 94.60 9466 94.60 - 96.73 96.73
NewThyroid - - - - - - - - 30.63 9593 3049 49.00 96.51 96.51 96.51 - 98.29 98.29
Nursery - - - - - - - - 76.03 9942 76.70 83.41 9942 9942 9942 - 99.52 99.52
Page-blocks - - - - - - - - 5741 96.53 60.47 65.11 97.35 97.29 97.26 - 98.87 98.87
Penbased - - - - - - - - 83.13 87.40 83.74 86.06 89.33 89.64 8793 - 98.88 98.88
Satimage - - - - - - - - 91.29 94.67 90.04 90.51 94.74 9462 9430 - 98.66 98.66
Segment - - - - - - - - 86.21 97.03 86.46 89.99 9666 96.90 96.16 - 99.62 99.62
Shuttle - - - - - - - - 20.01 9947 2115 66.62 99.47 9947 9943 - 99.71 99.71
Splice - - - - - - - - 52.47 97.65 59.55 6179 97.65 97.65 97.51 - 98.84 98.84
Tae - - - - - - - - 7558 9477 79.70 7477 9487 9490 9483 - 97.58 97.58
Thyroid - - - - - - - - 43.21 98.89 4560 4590 9896 98.96 9896 - 99.48 99.48
Vowel - - - - - - - - 61.84 64.67 6538 63.71 67.46 69.22 6492 - 98.63 98.63
Wine - - - - - - - - 0.00 95.76  0.00 2968 9576 95.73 9573 - 97.94 97.94
Zoo - - - - - - - - 53.38 82.44 52.80 7136 82.56 82.56 8226 - 92.02 92.02
Average - - - - - - - - 62.55 93.10 64.65 7135 9362 93.76 9332 - 97.97 97.97
Training Times
Autos - - - 0.21 0.17 - 2.27 2.53 2.54 3.18 2.60 2.69 3.00 3.19 3.60 - 0.21 0.15
Balance - - - 0.06 0.03 - 0.79 1.05 11.05 2.84 11.05 9.99 2.96 2.99 3.03 - 011 0.01
Car - - - 0.25 0.21 - 3488 36.76 2084 1438 204.8 2048 1415 143.5 147.8 - 0.20 0.15
Cleveland - - - 0.21 017 - 3.90 4.07 6.34 6.50 6.33 6.25 6.92 6.76 7.06 - 0.22 01
Dermatology - - - 0.31 0.37 - 4.64 771 8.17 4.05 8.53 6.61 6.14 6.50 7.25 - 0.19 0.22
Ecoli - - - 0.67 0.59 - 22.00 2417 13.80 15.12 12.98 12.77 14.09 15.25 1567 - 0.61 0.67
Glass - - - 043 0.31 - 5.93 6.40 4.62 5.35 5.42 5.26 6.15 6.56 6.49 - 0.32 0.21
Hayes-roth - - - 0.06 0.01 - 0.08 0.05 0.19 0.19 0.20 0.19 0.20 0.21 0.21 - 0.03 0.01
Iris - - - 0.05 0.02 - 0.09 0.08 0.26 0.20 0.27 0.27 0.21 0.22 0.22 - 0.03 0.01
Lymphography - - - 0.07 0.03 - 0.20 0.20 033 0.37 0.40 0.36 0.29 0.29 0.30 - 0.04 0.02
NewThyroid - - - 0.05 0.02 - 0.16 0.13 0.97 0.53 0.93 0.78 0.43 0.43 0.44 - 0.04 0.01
Nursery - - - 0.50 0.71 - 2094 3192 123.7 2467 110.9 85.77 26.02 2739 2922 - 0.18 0.21
Page-blocks - - - 0.19 0.15 - 733 8.65 2232 1011 21.15 17.97 8.24 8.38 8.72 - 0.14 011
Penbased - - - 5.91 5.90 - 1239 1437 6555 5969 6334 6025 5543 5424 5675 - 14.07 17.45
Satimage - - - 091 0.93 - 61.76 6036 56.86 55.78 57.25 5405 5492 5574 5815 - 1.03 1.10
Segment - - - 3.94 425 - 1163 1352 1361 812.6 1051 9374 6564 643.0 726.7 - 5.26 5.80
Shuttle - - - 0.76 0.64 - 93.02 1343 1701 81.76 1386 895.1 111.2 112.9 1375 - 031 0.46
Splice - - - 0.06 0.03 - 0.39 0.33 2.46 1.05 2.56 248 1.21 119 123 - 0.04 0.01
Tae - - - 0.05 0.01 - 0.11 0.07 0.35 0.46 0.41 0.42 0.49 0.46 0.54 - 0.03 0.01
Thyroid - - - 0.09 0.05 - 1.60 171 3291 492 29.10 2840 5.55 5.73 6.07 - 0.06 0.02
Vowel - - - 7.59 748 - 1904 1956 1114 1145 1076 1050 1053 1034 1061 - 30.34 34.36
Wine - - - 0.05 0.01 - 0.12 0.08 0.76 0.39 0.69 0.55 0.40 0.42 0.41 - 0.03 0.01
Zoo - - - 0.18 0.11 - 0.61 1.08 0.47 0.70 0.98 1.21 131 1.50 1.73 - 0.09 0.12

Average - - - 0.98 0.97 - 1986 2203 2317 1268 2009 1707 1154 1139 1213 - 2.33 2.66
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Table A.20
Average accuracy results in test, classifier and instance reduction rates and training times for Ripper classifier.
Accuracy
Wv NMC with k=1 DT
cs (& IS CS_IS (&
Data-set Comb  DCS fa fac fa fac fa far fa fac far fac faa fa fac
Autos 85.09 8442 85.09 8509 8448 8442 8451 8355 8210 8127 8318 8233 8223 8283 8273 80.69 8277 83.23
Balance 7854 7822 7854 7854 7854 8095 80.63 80.63 8082 8085 80.82 8092 80.88 8095 80.76 78.22 78.22 78.22
Car 9259 93.52 9259 9259 9259 9097 90.85 90.85 9271 9273 9271 9293 9281 9278 9283 9213 9213 92.01
Cleveland 52.18 5454 5218 51.84 51.84 5349 52.62 5176 52.76  51.01 50.54 5141 51.63 51.55 51.49 5046  49.59 51.71
Dermatology 9332 9443 9332 9332 9311 9333 9288 93.06 93.68 9401 9367 94.01 9371 9344 9345 9333 9338 93.83
Ecoli 7847 7874 7847 7847 7847 7461 7530 7535 7896 7895 7859 7847 7894 7949 7917 79.66 78.77 78.58
Glass 68.56 68.12 6856 6856 6856 70.80 66.83 66.17 69.60 7038 6942 68.75 6862 68.76 6816 6749 67.76 67.48
Hayes-roth 8341 8341 8341 8341 8341 84.89 8489 84.89 8338 8292 8382 8351 8309 8293 8307 8335 8335 83.35
Iris 9333 9533 9333 9333 9333 9467 9467 9427 9440 94.00 9413 94.00 9467 94.67 9467 94.00 94.00 93.60
Lymphography 75.68 75.68 75.68 75.68 75.68 70.13 6946 69.46 74.17 73.62 73.06 73.07 7266 73.21 73.21 75.05  75.05 75.05
NewThyroid 92.09 9349 92.09 92.09 92.09 92.09 9209 9209 9209 9209 9209 9209 92.09 92.09 92.09 92.09 92.09 92.09
Nursery 90.66 90.81 90.66 90.66 90.51 9043 90.37 90.27 90.65 9080 90.51 9048 90.58 90.58 90.55 88.52 88.54 88.44
Page-blocks 9545 95.11 9545 9545 9545 9492 9510 95.63 9531 9524 9542 9535 9538 9531 9545 9454 9492 94.99
Penbased 91.38 91.11 91.38 91.38 91.38 94.19 9257 9288 9242 9224 9196 91.57 92.19 91.97 9217 8420 88.12 88.30
Satimage 82.61 8214 8261 82.61 82.61 8277 8120 8096 8142 81.21 8179 8130 81.70 8145 8148 8119 80.85 80.76
Segment 96.58 96.88 96.54 96.54 96.54 96.88 96.76 96.80 96.73 96.78 96.72 96.68 96.70 96.53 96.61 93.60 96.02 96.09
Shuttle 99.40 99.68 9940 9940 9945 99.59 99.61 99.55 99.51 99.50 99.51 99.51 9953 9951 9947 99.17  99.51 99.51
Splice 88.11 90.30 88.11 88.11 88.11 8746 8746 8746 8690 8772 8709 8703 8740 8740 8765 89.36 89.36 89.36
Tae 5550 55,57 5550 5550 5550 57.99 56.66 56.66 5814 57.37 57.22 57.35 5713 5739 56.86 56.06 56.06 56.75
Thyroid 9778 9625 9778 9778 9778 9764 9764 9778 98.06 9784 9812 9820 98.09 98.20 9797 9585 9792 97.92
Vowel 80.20 7939 79.60 79.60 79.60 91.01 86.77 86.85 8743 8739 8691 8657 86.77 8592 8640 7354 8135 80.44
Wine 96.68 97.22 96.68 96.68 96.68 96.09 96.09 96.09 96.09 9712 96.09 96.09 96.23 96.23 9644 96.68 96.68 96.68
Zoo 94.05 94.05 94.05 94.05 9405 9610 9505 9638 9610 9610 9522 9458 9488 9415 94.05 93.88 95.05 93.22
Average 8529 8558 8526 8525 8521 8589 8522 8519 8580 8570 8559 8549 8556 8554 8551 84.05 84.85 84.85
Classifier Reduction
Autos - - - 0.00 187 - 36.80 4587 - - 4533 5040 5120 50.67 52.53 - 39.47 46.93
Balance - - - 0.00 0.00 - 6.67 6.67 - - 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00
Car - - - 0.00 0.00 - 3.33 3.33 - - 1533 2200 18.00 18.00 2200 - 0.00 333
Cleveland - - - 2.00 2.00 - 26.00 3480 - - 2840 30.00 30.00 3040 3040 - 14.00 20.00
Dermatology - - - 0.00 453 - 3413 47.73 - - 37.60 5707 4320 4613 5493 - 41.60 48.80
Ecoli - - - 0.00 0.00 - 59.86 62.00 - - 70.00 7443 7214 7229 7386 - 59.86 63.71
Glass - - - 0.00 0.00 - 53.71 6571 - - 6133 6514 6419 6533 6571 - 54.29 61.90
Hayes-roth - - - 0.00 0.00 - 0.00 3333 - - 28.00 3333 28.00 3333 3333 - 0.00 33.33
Iris - - - 0.00 0.00 - 0.00 3333 - - 4.00 33.33 32.00 3333 3333 - 0.00 33.33
Lymphography - - - 0.00 0.00 - 10.67 3333 - - 28.00 54.67 3933 5533 56.67 - 0.00 50.00
NewThyroid - - - 0.00 0.00 - 0.00 26.67 - - 0.00 26.67 26.67 26.67 26.67 - 0.00 26.67
Nursery - - - 0.00 6.00 - 2320 48.00 - - 4160 62.00 5760 6160 6160 - 33.20 48.00
Page-blocks - - - 0.00 0.00 - 1400 5000 - - 2280 5240 4640 49.60 52.80 - 35.20 56.00
Penbased - - - 0.00 0.00 - 5422 5547 - - 4596 4764 4640 46.04 4942 - 64.27 64.27
Satimage - - - 0.00 0.00 - 44776 5257 - - 56.19 58.10 5733 58.67 5943 - 50.48 53.90
Segment - - - 0.00 0.00 - 39.81 4762 - - 4210 48.00 4514 4495 4857 - 47.81 48.19
Shuttle - - - 0.00 1720 - 2040 52.00 - - 3640 60.00 52.00 60.80 61.60 - 18.00 56.00
Splice - - - 0.00 0.00 - 0.00 0.00 - - 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00
Tae - - - 0.00 0.00 - 6.67 6.67 - - 0.00 0.00 0.00 0.00 0.00 - 0.00 6.67
Thyroid - - - 6.67 1333 - 0.00 26.67 - - 8.00 26.67 26.67 26.67 26.67 - 20.00 26.67
Vowel - - - 0.00 0.00 - 56.65 5840 - - 45.67 4647 4371 4596 4545 - 65.02 65.60
Wine - - - 0.00 0.00 - 0.00 1333 - - 0.00 1333 6.67 6.67 1333 - 0.00 13.33
Zoo - - - 0.00 2.29 - 37.71 7048 - - 4019 7314 6095 6876 7276 - 3429 69.52
Average - - - 0.38 2.05 - 2298 38.00 - - 2856 40.64 36.85 39.18 4092 - 2511 38.96
Instance Reduction
wWv NMC with k=1 DT
CS cs IS CS_IS (&
Data-set Comb  DCS fa fac fa fac Ia far fa fac far fac faa fa fac
Autos - - - - - - - - 6936 8276 7270 7616  89.23 8791 8859 - 95.49 95.49
Balance - - - - - - - - 90.94 9760 9179 91.88 9750 9752 9752 - 99.40 99.40
Car - - - - - - - - 85.86 99.22 8727 8491 9918 9922 9916 - 99.71 99.71
Cleveland - - - - - - - - 90.10 91.78 9034 89.80 9232 9254 9234 - 97.94 97.94
Dermatology - - - - - - - - 71.09 9494 6571 8344 9571 9571 9545 - 97.95 97.95
Ecoli - - - - - - - - 90.81 9219 9116 91.31 9398 9412 9368 - 9711 9711
Glass - - - - - - - - 82.01 8850 8474 8632 9031 9042 8948 - 96.07 96.07
Hayes-roth - - - - - - - - 5995 9432 6158 6513 9432 9432 9432 - 97.24 97.24
Iris - - - - - - - - 2030 95.00 20.23 5000 95.00 9500 9500 - 97.56 97.56
Lymphography - - - - - - - - 4965 9393 58.08 7883 9393 9393 9393 - 96.73 96.73
NewThyroid - - - - - - - - 0.00 96.51  0.00 3916 96,51 96,51 96,51 - 98.29 98.29
Nursery - - - - - - - - 66.34 9883 64.03 7158 99.01 9892 9892 - 99.52 99.52
Page-blocks - - - - - - - - 2812 9706 3716 71.67 9748 9649 97.16 - 98.87 98.87
Penbased - - - - - - - - 82.68 86.50 81.82 81.28 83.61 83.91 8545 - 98.88 98.88
Satimage - - - - - - - - 90.17 93.84 8890 90.75 9408 9356 93.88 - 98.66 98.66
Segment - - - - - - - - 86.60 97.13 8238 86.90 9745 9747 9779 - 99.62 99.62
Shuttle - - - - - - - - 4993 9941 5780 72.69 9943 9943 99.40 - 99.71 99.71
Splice - - - - - - - - 51.79 9749 64,54 63.78 9752 9752 9749 - 98.84 98.84
Tae - - - - - - - - 84.59 92.00 8406 8396 92,53 9269 9200 - 97.58 97.58

(continued on next page)
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Table A.20 (continued)
Accuracy
NMC with k=1
CS CS IS CS_IS CS
Data-set Comb  DCS fa fac fa fac Ia far fa fac far fac faa fa fac
Thyroid - - - - - - - 20.01 98.80 20.52 41.89 9892 9891 98.92 99.48 99.48
Vowel - - - - - - - 65.26  66.31 65.71 66.18 66.15 66.94 66.61 98.63 98.63
Wine - - - - - - - 1033  95.79 947 29.02 9579 95.79 95.50 97.94 97.94
Zoo - - - - - - - 2256 8229 4719 68.66 8245 8241 81.37 92.02 92.02
Average - - - - - - - 59.50 92,70 62.05 7241 93.15 93.10 93.06 97.97 97.97
Training Times
Autos - - 0.21 0.15 - 2.26 244 2.79 3.81 2.26 234 294 295 3.08 0.20 0.13
Balance - - 0.08 0.04 - 1.28 123 12.06 9.04 1296 1265 10.74 10.88  10.77 0.13 0.02
Car - - 0.29 0.22 - 4222 4142 159.6 1417 161.8 164.7 1504 1475 151.0 0.19 0.17
Cleveland - - 0.21 0.13 - 3.94 3.77 7.95 7.38 7.63 6.81 8.21 8.35 8.30 0.23 0.12
Dermatology - - 0.33 0.39 - 11.47 12.91 7.46 6.97 1042  9.09 8.73 9.67 11.56 0.33 0.32
Ecoli - - 0.76 0.69 - 30.54 3423 1686 1714 16.27 17.58 18.54 18.23 18.94 0.81 0.89
Glass - - 0.39 0.27 - 5.54 6.08 6.28 7.94 6.13 6.42 715 6.95 7.31 0.32 0.24
Hayes-roth - - 0.05 0.02 - 0.09 0.06 0.20 0.18 0.22 0.21 0.20 0.21 0.22 0.03 0.01
Iris - - 0.05 0.01 - 0.09 0.08 0.38 0.19 0.38 0.27 0.21 0.21 0.22 0.03 0.01
Lymphography - - 0.07 0.03 - 0.30 0.28 0.34 0.22 0.53 0.42 0.31 0.36 0.37 0.04 0.02
NewThyroid - - 0.06 0.02 - 0.19 0.17 141 0.49 1.27 0.90 0.46 0.45 0.46 0.04 0.01
Nursery - - 0.66 0.73 - 4394 59.86 2117 63.06 204.0 1435 51.83 5343 5448 0.35 0.37
Page-blocks - - 0.25 0.17 - 7.76 8.96 2837 911 28.05 1968 1035 11.71 11.66 0.16 01
Penbased - - 6.00 5.88 - 1540 1281 651.8 5932 6581 649.7 6333 6248 6175 18.25 21.84
Satimage - - 111 1.01 - 63.20 69.85 70.21 65.58 56.54 57.05 61.02 61.41 64.22 1.04 116
Segment - - 413 3.94 - 1028 1096 1248 7649 1180 1031 638.1 6339 686.9 4.81 4.82
Shuttle - - 0.85 1.04 - 110.9 1486 1226 79.92 1019 689.6 1215 1222 1371 0.34 0.53
Splice - - 0.06 0.03 - 0.39 0.34 2.54 133 241 241 1.50 153 154 0.04 0.01
Tae - - 0.06 0.01 - 0.12 0.08 0.56 0.71 0.63 0.57 0.71 0.76 0.79 0.03 0.01
Thyroid - - 0.09 0.05 - 146 1.62 40.66 5.68 38.25 3098 544 5.60 5.70 0.06 0.02
Vowel - - 8.88 9.47 - 1753 1911 1052 1032 1036 1031 1048 1026 1052 25.22 22.74
Wine - - 0.05 0.01 - 0.13 0.09 0.75 0.34 0.66 0.56 0.40 0.41 0.38 0.03 0.01
Zoo - - 0.19 0.15 - 0.62 111 0.54 0.72 0.99 135 1.26 153 174 0.09 0.10
Average - - 1.08 1.06 - 2020 2035 2064 1222 1932 168.7 1209 1195 123.7 2.29 233
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